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Abstract

This paper presents AdaChain, alearning-based blockchain frame-
work that adaptively chooses the best permissioned blockchain ar-
chitecture to optimize effective throughput for dynamic transaction
workloads. AdaChain addresses the challenge in Blockchain-as-
a-Service (BaaS) environments, where a large variety of possible
smart contracts are deployed with different workload characteris-
tics. AdaChain supports automatically adapting to an underlying,
dynamically changing workload through the use of reinforcement
learning. When a promising architecture is identified, AdaChain
switches from the current architecture to the promising one at
runtime in a secure and correct manner. Experimentally, we show
that AdaChain can converge quickly to optimal architectures under
changing workloads and significantly outperform fixed architec-
tures in terms of the number of successfully committed transactions,
all while incurring low additional overhead.

1 Introduction

Permissioned blockchain systems have enabled a new class of
data center applications, ranging from contact tracing [56], crowd-
working [14], supply chain assurance [15, 60], and federated learn-
ing [57]. The popularity of these services has motivated cloud
providers, e.g., Amazon [2, 3], IBM [8], Oracle [9], and Alibaba [65],
to offer Blockchains-as-a-Service (BaaS) [26].

BaaS offerings have resulted in a large variety of possible smart
contract deployments. Different smart contracts may exhibit differ-
ent workload characteristics, such as read/write ratios, skewness
of popular keys, compute intensity, etc. To address these varia-
tions in workloads, there has been a proliferation of permissioned
blockchain systems, e.g., Tendermint [46], Fabric [16], Fabric++
[59], Fabric# [58], Streamchain [39], and ParBlockchain [12]. These
systems present significant variation in architectural design, includ-
ing the number of transactions in a block, stream processing (with
no blocks), the use of reordering and early aborts, and the sequence
in which ordering, execution and validation are done.

Past studies [22, 33] have shown that different blockchain ar-
chitectures and hyperparameter settings are optimal for different
workloads with varying properties (e.g. system load, write ratios,
skewness, and compute intensity). We experimentally confirmed
this observation. Figure 1 shows the performance of various archi-
tectures across four different workloads, showcasing significant
variations in throughput. For example, for Workload Al which is
highly compute-intensive, an Execute-Order-Validate (XOV) archi-
tecture with reordering provides the best throughput. On the other

Details about each workload can be found in Tables 2 and 3.
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hand, for Workload D, which requires significantly less computation
but has higher skewness, an Order-Parallel Execute (OXII) archi-
tecture demonstrates the highest throughput. This clearly shows
the dependency between workload characteristics and the optimal
blockchain architecture for each workload.

Currently, BaaS providers must choose a single architecture
to offer customers, potentially resulting in poor performance, as
no single architecture provides dominant throughput. Even when
the user has control over the blockchain architecture, choosing
the right architecture and parameters is not easy given the large
configuration space. Moreover, in a BaaS$ setting, the workload may
fluctuate and change, as different tenants scale up or down their
smart contracts deployments, and client requests fluctuate with
different patterns throughout the day. Of course, one could imagine
building a static mapping from workload characteristics to optimal
blockchain architectures - but this mapping would (1) be expensive
to compute, (2) depend on the underlying hardware, (3) still be
suboptimal for workloads that shift unexpectedly over time, and
(4) require recomputing the mapping each time a new blockchain
architecture is developed.

In this paper, we propose AdaChain, a reinforcement learning-
based blockchain framework that chooses the best blockchain ar-
chitecture and sets appropriate parameters in order to maximize
effective throughput for dynamic transaction workloads. Experi-
mentally, we show that AdaChain is not only able to select optimal
or near-optimal configurations for a wide variety of workloads, but
its reinforcement learning approach also allows it to quickly adapt
to new hardware, new storage subsystems, and new unanticipated
workload changes on the fly.

In order to build an adaptive blockchain, AdaChain relies on two
key innovations. First, it models the selection of a blockchain archi-
tecture as a contextual multi-armed bandit problem, a well-studied
reinforcement learning problem with asymptotically optimal re-
sults [42]. This formulation allows AdaChain to apply classical
algorithms, such as Thompson sampling [23], to select blockchain
architectures in a way that minimizes regret (the difference between
the performance of the chosen architecture and the optimal archi-
tecture). AdaChain will strategically test different architectures to
learn which ones are well-suited to the user’s workload. It learns
which architectures work best by observing the characteristics of
the workload and the effective throughput of the system. When the
workload changes, AdaChain notices drops in throughput, and can
automatically adjust the blockchain architecture and parameters to
maximize performance, all without any user intervention.

Second, AdaChain introduces protocols to switch from one block-
chain architecture to another in a live system, while maintaining



strong serializability properties. This switching protocol is not only
required for AdaChain to function (multi-armed bandits generally
require making multiple decisions before the optimal is reached),
but also enables a new class of blockchains that can more-or-less
seamlessly transition between different architectures to support
the shifting workloads in the real-world. Intuitively, the switching
protocol works by splitting switching decisions between two paths.

In the normal path, all nodes agree to switch to the same new

architecture after a certain number of blocks have been committed,

while in the slow path, all nodes switch to the same architecture

after failing to make progress on processing transactions for a

certain amount of time.

Specifically, this paper makes the following contributions.

e Learned adaptive blockchain. To the best of our knowledge,
AdaChain is the first blockchain system to support automat-
ically adapting to an underlying, dynamic workload. Through
careful modeling of the states, actions, and objective function,
AdaChain’s use of reinforcement learning makes it the first
blockchain system to learn from its mistakes and self-correct.

e Multi-architecture switching. Additionally, we also present
the first blockchain system capable of switching from one archi-
tecture to another at runtime while respecting correctness and
security concerns.

e Analysis of architecture impact on blockchain performance.

We perform a large-scale measurement examining the relation-
ship between architecture choice and blockchain performance.
We implemented a wide range of blockchain architectures, and
through a suite of workload parameters, we identified architec-
ture configurations and runtime settings that significantly impact
performance improvements. Our experiments highlight the large
state space, which renders manual heuristics difficult to achieve.
The workloads, architectures and measured performance will be
publicly available to aid future research.

e Prototype and performance evaluation. We have developed
a prototype of AdaChain, which will be publicly available un-
der an open-source license. Our evaluation results on CloubLab
demonstrate that AdaChain can converge quickly to optimal ar-
chitectures under changing workloads, significantly outperform
existing fixed architectures, and incur low additional overhead.

2 Architecture Landscape

To motivate AdaChain, we first examine, both intuitively and
experimentally, why different blockchain architectures perform
diversely across different workloads. In Section 2.1, we highlight a
number of blockchain architectures, and illustrate their advantages
and disadvantages. The point here is not that some blockchain
architectures are “better” or “worse” than others, but rather that
each blockchain architecture performs well under some conditions
and poorly under others. In Section 2.2, we argue that a blockchain
that can adaptively switch between multiple architectures is able
to achieve “best of all worlds” performance.

2.1 Blockchain Architectures and Workloads

Table 1 lists representative blockchain systems and their archi-
tectures, where the design space consists of seven performance
optimizations (P1-P7) and two correctness dimensions (C1-C2). Fig-
ure 1 shows their corresponding performance under four different
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Figure 1: Performance of different blockchain architectures
under various workloads. The performance of different ar-
chitectures can vary significantly between workloads. Work-
loads and architectures are described in Table 1 and 2.

workloads. Here, we use effective throughput as the performance
metric, which measures the number of successfully committed
transactions per second.

The workloads A to D are characterized in Table 2. BaaS work-
loads embody a large extent of variations. For instance, different
transactions might invoke different percentages of write operations
to the underlying key-value store, as represented by the write ratio.
These transactions might also contend to access or update the same
set of popular keys (or hot keys), as indicated by the contention
level. In addition, the runtime load on a Baa$ can be determined by
the frequency of issued transactions by each client and the num-
ber of active clients varying with time. Last, compute intensity is
an important characterization of BaaS workloads, as pointed out
by [36, 58, 64]. This is because permissioned blockchains support a
wide range of applications, some of which are compute-intensive
(e.g., those that provide security and correctness guarantees for
machine learning applications).

Below, we briefly describe the design principles of each architec-
ture and explain the intuition behind why the performance of each
architecture can vary under different workloads.

Order-Execute (OX). The order-execute architecture has been
widely used in permissioned blockchain systems such as Tender-
mint [46], Quorum [24], Chain Core [4], Multichain [37], Hyper-
ledger Iroha [7], and Corda [5]. In the OX architecture, transactions
are totally ordered and batched into blocks and then transactions of
a block are executed sequentially. As a result, the OX architecture
does not require a Multi-version Concurrency Control (MVCC)
validation phase, which is used to resolve conflicts between trans-
actions, and hence, no transactions will be aborted due to conflicts.
As shown in Figure 1, this design principle makes OX outstanding
at workload D, where transactions are write-heavy and contentious,
i.e., transactions update a small set of hot keys. On the other hand,
OX performs comparatively poorly on workloads A and C, which
are compute-intensive. Due to the lack of parallel execution mech-
anisms, OX cannot take advantage of the multi-core processing
power of modern servers.



Architecture Rep. System P1.Block Size  P2.Early Exec.  P3.Dependency Graph ~ P4. Early Abort  P5. Cross-Block Conflicts ~ P6. Parallel Exec. ~ C1. MVCC C2. Isolation

OX Tendermint [46] tunable X X X - X X strong serializable
OXII ParBlockchain [12] tunable X v X - partial X strong serializable
Xov Fabric [16] tunable v X X v fully v strong serializable
XOV++ Fabric++ [59] tunable v v X, 0 \ fully v strong serializable
XOV# Fabric# [58] tunable v v [¢] [¢] fully X serializable

Xov StreamChain [39] 1 v X X v fully 4 strong serializable

Table 1: Comparing design principles of existing permissioned blockchain architectures. Here, P stands for performance, C
stands for correctness, X stands for execution, O stands for ordering, and V stands for validation.

Workload ~ Write Ratio ~ Contention Level Load Compute Intensity
A low high high high
B moderate high moderate low
C moderate low high very high
D high very high moderate very low

Table 2: Characterizing workloads A, B, C and D. Specific
workload parameters are presented in Table 3.

Order-Parallel Execute (OXII). In the OXII architecture, used
by ParBlockchain [12], transactions are first totally ordered and
batched into blocks. OXII then constructs a dependency graph for
transactions within a block based on their positions. Specifically, if
t; is ordered before ¢}, and the pair of transactions are conflicting,
OXII adds an edge from ¢; to t;. This dependency graph is then
used to execute transactions in parallel, i.e., a transaction can be
executed once all its predecessors have finished execution. Given
a higher level of execution parallelism than OX, OXII performs
better than OX under computation-heavy workloads such as A and
C. Note that even for a given workload, OXII requires careful tuning
of block size; a large block results in high overhead in dependency
graph construction, while a small block results in less parallelism
and higher communication overhead.

Execute-Order-Validate (XOV). Hyperledger Fabric [16] presents
the XOV architecture (which was first introduced by Eve [41] in
the context of Byzantine fault-tolerant SMR) by switching the order
of the ordering and execution phases such that transactions are
simulated fully in parallel before being ordered in the ordering
phase. Since it utilizes early execution, XOV requires an MVCC
validation phase to invalidate all transactions that are simulated on
stale data, and commits only the validated transactions to the world-
state and the blockchain ledger. This early execution enables XOV to
perform well on contention-free workloads such as C. On the other
hand, XOV demonstrates poor performance under contentious and
write-heavy workloads, such as B and D, due to the high percentage
of invalidated transactions. Similarly, as network delay increases,
XOV suffers from inconsistent world states among peers as well as
stale reads, and thus significantly degraded performance [22].

XOV with early abort and reordering (XOV++). The XOV++
architecture, as introduced in Fabric++ [59], follows the XOV par-
adigm but with some modifications. First, a dependency graph is
constructed in the ordering phase to capture RW conflicts between
each pair of transactions within the same block. When the graph is
constructed, all elementary cycles in the graph are aborted greed-
ily. Unlike OXII, which utilizes the graph for concurrency control,
XOV++ uses the graph for transaction reordering; when there is a
RW conflict between ¢; and ¢, it (re)orders t; before ¢; in the block.

Second, it adopts early abort techniques in both the simulation
and ordering phases. Whenever XOV++ detects that a transaction
operates on stale data, XOV++ immediately aborts that transac-
tion without waiting for the final MVCC validation. As an effect of
transaction reordering, XOV++ has outstanding performance on
workload A, where the conflicts are reconcilable given a low write
ratio. On the other hand, XOV++ performs poorly on workload
D with a near-zero effective throughput. This is because, under a
contentious and update-heavy workload, very few conflicts can
be reconciled through reordering. Moreover, reordering becomes
more expensive when there are a large number of cycles in the de-
pendency graph, resulting in more pending blocks and, thus, more
transactions that simulate on stale data.

XOV with serializable isolation (XOV#). The XOV# architecture,
presented in Fabric# [58], is mainly different from XOV and XOV++
in that XOV# is serializable, while XOV and XOV++ are strong
serializable. To achieve this isolation level, XOV# incrementally
constructs a dependency graph that keeps track of all dependencies,
including those that span across blocks in the ordering phase. Once
a transaction is ordered, XOV# immediately drops this transaction
if there is a dependency cycle involved. The resulting acyclic sched-
ule is guaranteed to be serializable, thus, no extra MVCC validation
is needed in XOV#. To ensure a fair comparison with other archi-
tectures, we run XOV# under the strong serializability isolation
level while keeping the remaining design dimensions the same as
the original XOV# (the XOV+reorder+block_pipelining bar). XOV#
performs worse than vanilla XOV in all workloads A to D due to the
overhead of maintaining a large dependency graph and detecting
cycles. This suggests that the performance improvement reported
in Fabric# is mainly due to a more relaxed isolation level.

Stream XOV. StreamChain [39] switches from block processing to
stream transaction processing. Specifically, StreamChain follows
the XOV paradigm while fixing the block size to 1. The motivation
behind stream processing is simple: while the original, permission-
less blockchains were forced to used proof of work (PoW) consensus
techniques to maintain fault tolerance, a permissioned blockchain
environment allows more efficient consensus protocols to be used.
Thus, stream processing can reduce transaction latency. In terms
of effective throughput, StreamChain has relatively good perfor-
mance when the workload is lightweight or not contentious, such
as in workloads B and C. Otherwise, the high block construction
overhead in terms of cryptographic operations and excessive disk
I/Os leads to a large number of pending blocks in StreamChain,
making incoming transactions simulate on stale data. As expected,
StreamChain is more sensitive to the type of storage hardware used



than OX: the system have poor performance without RAM disk [22].

StreamChain also highlights that the parameters of a given archi-
tecture can impact performance. A large block size leads to higher
block formation overhead and latency, while a small block size
results in higher communication and disk overhead.

2.2 The Case for Reinforcement Learning

The main takeaways of the previous subsection are as follows:
depending on workload and hardware characteristics, the perfor-
mance of a given blockchain architecture can vary drastically. We
thus argue that there is no one-size-fits-all architecture. Figure 1 not
only shows that there is no single dominant architecture, but also
some architectures that perform well on one workload can end up
performing quite poorly on another.

One may consider the design of simple heuristics to map work-
load characteristics and hardware features to the optimal blockchain
architecture. However, designing a good heuristic is difficult and
cumbersome in the case of permissioned blockchains. For example,
Hyperledger Fabric [16] has proposed that “when the contention
level is high, use OX; otherwise, use XOV”. Unfortunately, such a
simple heuristic leads to wrong decisions in 50% of our recorded
traces, let alone in a real BaaS production environment.

This suggests, to develop a good heuristic, an expert needs to
exhaustively experiment over the entire state and action space
to understand the intricate interactions. The expert also needs to
carefully tune the specific threshold parameters that distinguish
“very high contention” from “high contention”, or “low write ratio”
from “moderate write ratio”, etc. Given the large space of workload
(i.e., write ratio, contention level, load, compute intensity) and
hardware (i.e., CPU, RAM, disk, network) features, if the expert
discretizes each dimension by uniformly sampling 5 points in it
and tests each architecture for 5 seconds, it takes at least 90 days
to conduct the experiments even when the effect of block size is
ignored. This is a conservative estimate given that most dimensions
will require more than 5 sample points in practice. Due to the lack of
blockchain simulators that capture the variations in architectures,
such experiments are hard to be conducted in parallel.

Moreover, such heuristics become outdated when new hardware
or blockchain architectures are introduced in the BaaS and hence,
difficult for the expert to keep up with these changes. For instance,
when the Baa$ provider introduces non-volatile RAM [61] to re-
place the traditional combination of volatile RAM and disk, or when
BaasS transitions to disaggregated architecture [64] where there is
extra latency for accessing memory, new hardware features are
also naturally introduced. Thus, the expert needs to rerun all exper-
iments over these new hardware to understand how they interact
with workloads and blockchain architectures.

Reinforcement learning (RL) is an ideal solution to this Sisyphean
task, which has shown superior performance in other learned sys-
tems [51, 52]. Unlike supervised learning that assumes training
data is complete and requires a separate data collection process
prior to deployment, RL-based system learns from its mistakes and
optimizes long term rewards through its trials. With reinforcement
learning, AdaChain can optimize itself to whatever workloads, hard-
ware and blockchain architectures at hand, providing significant
operational benefits.
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present the internals of server;.

3 AdaChain Overview

At a high level, AdaChain contains two key components: a ma-
chine learning model (the learning agent) which guides AdaChain
towards better and better blockchain architectures, and an architec-
ture switching mechanism that allows AdaChain to near-seamlessly
transition from one blockchain architecture to another while en-
suring correctness and security.

Learning agent. AdaChain’s learning agent models the problem
of selecting a blockchain architecture as a contextual multi-armed
bandit (CMAB) problem [66]: periodically, AdaChain examines the
most recent properties of the workload (context), and then selects
one of many blockchain architectures (arms). After making the
selection, it observes the effective throughput of the newly selected
architecture (reward). To be successful, AdaChain must balance
the exploration of new, untested architectures with exploiting past
experience to maximize throughput — without a careful balance of
exploration and exploitation, AdaChain risks failing to discover an
optimal configuration (too much exploitation), or performing no
better than random (too much exploration). We select this CMAB
formulation (as opposed to generalized reinforcement learning
models) because CMABs are exceptionally well-studied, and many
asymptotically-optimal algorithms exist to solve them [10, 23].
Details about the learning agent are provided in Section 4.

Switching architecture. AdaChain utilizes a switching protocol
that allows it to switch from one blockchain architecture to another
in a distributed fashion across all nodes in the blockchain deploy-
ment, while transactions are ongoing. AdaChain achieves this by
splitting switching decisions between two paths, a normal path in
which all nodes agree to switch to the same new architecture after
a certain number of blocks have been committed, and a slow path
in which all nodes switch to the same new architecture after failing
to make progress for a certain amount of time.
Details about AdaChain’s switching protocol are in Section 5.

AdaChain workflow overview. Figure 2 shows the overall archi-
tecture of AdaChain. AdaChain operates in episodes, where within
one episode, the blockchain architecture remains unchanged. When
the learning agent finds an architecture candidate, it instructs the
peer to use that architecture for the next episode. Each episode is
marked by the completion of a constant number of transactions
(ANepisode), including invalidated transactions. This episode design
ensures AdaChain does not stuck in a bad architecture for a long
time even when the fraction of invalidated transactions is high



due to conflicts. Below, we describe how the learning agent pro-
poses the architecture for episode n + 1 in detailed steps. Although
our discussion below focuses on the internals of servers, the same
procedure happens simultaneously on every blockchain server.

Step 1: Notifying the learning agent. In episode n, the peer noti-
fies its local learning agent when the number of committed blocks
has reached a certain watermark. The notification also includes the
local performance measurement r, in episode n.

Step 2: Featurization. Since learning agents are distributed across
different servers, the state (i.e., some features that capture the work-
load) that they need in order to make a decision should also be
distributed. In AdaChain, states are not only distributed, but also
decentralized as no single entity controls the state. This is possible
with negligible overhead due to two key insights: (1) the blockchain
ledger contains rich information about the workload, and thus is a
good source of raw data for featurization; (2) the ledger is naturally
decentralized and consistent across peers. Thus, once the agent
is notified by the peer, its featurizer extracts the state s, from
blocks committed in episode n. Features are described in detail in
Section 4.2.

Step 3: Exchanging performance measurements. The locally
observed performance is different across different peers, and ma-
licious peers could even manipulate the local measurement. To
ensure each honest server has the same architecture for episode
n + 1, the learning agent on server; exchanges the local measure-
ment r, with learning agents on every other server, so as to agree
on performance measurement. Details are described in Section 5
and 6.

Step 4: Estimating the performance for each architecture. The
predictive model My predicts the performance of each architecture
candidate under state s,+1, and selects architecture a4 that is
predicted to have the best performance. The learning agent then
informs the peer to switch to a,4; for episode n + 1.

Step 5: Building experience buffer. Once an ry, is obtained, the
learning agent adds the (sp, an, rn) triplet to the experience buffer.
Note that s, and a, are derived prior to the start of episode n.

Step 6: Retraining. The predictive model Mpy is periodically re-
trained based on the experience buffer, creating a feedback loop.
As a result, AdaChain’s predictive model improves, and AdaChain
more reliably picks the best architecture for the observed state.

Assumptions. In short, AdaChain can adapt itself according to the
workload and hardware setup to continually improve performance.
Moreover, AdaChain is an online learned system that does not
require a separate and cumbersome data collection process prior to
deployment. Our current design makes two assumptions. First, in
AdaChain, similar to many other permissioned blockchain systems
[13, 24, 46], each node serves as both the ordering and execution
(endorser) node. This, however, is in contrast to Hyperledger Fabric
and its variants that separate endorsing and ordering roles. Second,
AdaChain is designed for a homogeneous setup, where different
servers have access to similar resources. While having these two
assumptions in place simplifies the system design, they have been
used in real-world BaaS deployments. Removing these assumptions
is an avenue for future work.

4 Learning Algorithms

In this section, we discuss AdaChain’s learning approach in de-
tail. We first formalize AdaChain’s learning problem as a contextual
multi-armed bandit problem, and then discuss our selected algo-
rithm, Thompson sampling, for solving such problems. We next
describe the predictive model used by AdaChain, followed by the
specific state and action space design.

Contextual multi-armed bandits (CMABs). In a contextual
multi-armed bandit problem, an agent periodically makes deci-
sions in a number of episodes, enumerated by n. In each episode,
the agent selects an action a, based on a provided state s, and then
receives a reward ry,. The agent’s goal is to select actions in a way
that minimizes regret, i.e., the difference between the reward from
the chosen action and the reward from the optimal action. CMABs
assume that each episode is independent? from each other, and that
the optimal decision depends only on the state s,. As described
in Section 3 and 5, in order to be responsive to workload changes,
there are no pending blocks across different episodes in AdaChain.
Thus, each episode in AdaChain can also be considered to be in-
dependent (although caching effects may bring a small amount of
dependence between episodes).

AdaChain’s formulation. AdaChain uses effective throughput
as the performance metric P to maximize, which is the number of
successfully committed transactions per second. For each episode,
it must select an architecture to use. AdaChain’s goal is to select
the best architecture (in terms of effective throughput) in the family
of available architectures A, given the current perceived workload
w € W. We call this selection function S : W — A. We formalize
the goal as a regret minimization problem, where the regret r,
for an episode n is defined as the difference between the effective
throughput of the architecture selected by AdaChain and the ideally
optimal architecture as presented in equation 1.

n = maz( P(w,a) — P(w,S(w)) (1)

We use effective throughput as the performance metric since it is
the dominant metric used by blockchain benchmark tools [6, 29, 36]
and previous literatures that proposed fixed architectures [12, 16,
58, 59]. Extending the optimization goal to a combination of metrics
is left for future work.

Thompson sampling. While there are many algorithms to solve
contextual multi-armed bandit problems, we select Thompson sam-
pling for its simplicity: at the start of each episode, we train a model
based on our current experience, and then select the best action
as predicted by the model. In order to train the model, Thompson
sampling deviates from traditional ML techniques: instead of select-
ing the model parameters that are most likely given the data, we
sample model parameters proportionally to their likelihood given the
training data. More formally, we can define maximum likelihood
estimation as finding the model parameters 6 that maximize likeli-
hood given experience E: arg maxy P(0 | E) (assuming a uniform
prior). Instead of maximizing likelihood, Thompson sampling sim-
ply samples from the distribution P(6 | E). This means that if we
have a lot of data suggesting that our model weights should be in

2Contextual multi-armed bandit algorithms have been shown to be effective even
when these condition do not strictly hold [23].



a certain part of the parameter space, our sampled parameters are
likely to be in the part of the space. Conversely, if we have only a
small amount of data suggesting that our model weights should be
in a certain part of the parameter space, we may or may not sample
parameters in that part of the space during any given episode.

4.1 Predictive Model

AdaChain uses random forests [18] as the predictive model due
to their good performance on data sets of moderate sizes and fast
inference. The model takes the state (i.e., workload) concatenated
with action (i.e., architecture choice) as input, and outputs the
predicted performance.® Thus, given a state, AdaChain enumerates
the action space and uses the model to predict the performance
of each action. AdaChain then chooses the action with the best-
predicted performance to be carried out. Once there is a tie on the
best-predicted performance, AdaChain breaks the tie randomly to
avoid local maxima.

Integrating random forests with Thompson sampling requires
the ability to sample model parameters from P(6 | E). The simplest
technique (which has been shown to work well in practice [54]) is to
train the model as usual, but only on a bootstrap [17] of the training
data. In other words, the random forest is trained using |E| random
samples drawn with replacement from experience E, inducing the
desired sampling properties. AdaChain uses this bootstrapping
technique for its simplicity.

4.2 State Space

In AdaChain, the state represents properties of the client work-
load. AdaChain captures the state space using the four features
below. To ensure the accuracy of feature extraction, all aborted
or invalidated transactions are still written to the ledger with a
validity flag (similar to [38]). Below, we assume a window of blocks
b; to b;j in the ledger are read by the learning agent for featurizing
the current state.

Write ratio. We observe that counting the write ratio in terms of
write accesses to the key-value store is not effective for predicting
performance. Thus, AdaChain measures the write ratio at the trans-
action level: once a transaction writes to the key-value store, it is
viewed as a write transaction. The write ratio is the ratio of write
transactions to the number of all transactions during b; and b;.
Hot key ratio. AdaChain measures the frequency that each key is
accessed during b; and b;. It then takes the frequency corresponding
to the hottest key to be the hot key ratio.

Transaction arrival rate. AdaChain timestamps each transaction
upon its first arrival to the system. AdaChain first measures the
number of all transactions from b; to bj, denoted as N, and then

derives the transaction arrival rate using tsJths,
sents the arrival timestamp of the first transaction in b; and ts;
represents that of the last transaction in b;.

Execution delay. AdaChain uses average execution delay of all trans-

actions in the period of b; to b;.

where ts; repre-

4.3 Action Space

In AdaChain, the action space consists of different blockchain
architectures. One naive approach to represent the action space is
3This corresponds to a value based model. A policy model, in which the predictive

model predicts simultaneously the probability of each action being optimal, might be
an interesting direction for future work.

to give each architecture a one-hot encoding. However, from the
random forest’s perspective, this approach makes two semantically
close architectures totally unrelated, resulting in ineffective splits,
and thus poor prediction accuracy. For example, assume XOV is
represented by vector (1,0, ..., 0) in the one-hot encoding. Random
forest might split on the first dimension in the vector, i.e., XOV is its
left child, while everything non-XOV is its right child. Each child’s
performance will be predicted using the average performance of
that child. Clearly, XOV++ and StreamChain might have a relatively
close performance to XOV, but they will always fall into a wrong
child node and their predicted performances are wrongly averaged.

Thus, AdaChain chooses to first featurize the blockchain architec-
tures to maintain the semantic information of their design. Feature
engineering an optimal representation of blockchain architectures
is a difficult and inexact task. Instead of attempting to design an
all-encompassing representation that captures every dimension of
blockchain architectures, we instead selected a simple representa-
tion based on our intuition of the most important properties. We
leave investigating alternative representations to future work.

AdaChain therefore captures the action space using three main
features: block size, early (speculative) execution, and dependency
graph construction. Block size is a scalar variable, representing the
number of transactions within a block. The block size in AdaChain
is also equal to the batch size in the consensus protocol. To limit the
growth of action space, the block size can not exceed 1, 000, which
is larger than typical block sizes used in blockchain systems, and
we further discretize the block size using paces. Early execution and
dependency graph construction are both binary variables. Thus,
AdaChain’s action space consists of 100 choices in total.

We do not consider parallel execution as a feature because it can
be derived from the two previous features (i.e., early execution and
dependency graph construction): (1) early execution of transactions
happens fully in parallel; (2) the goal of constructing a dependency
graph is to execute independent transactions in parallel.

5 Switching Architectures

This section discusses the architecture switching mechanism
of AdaChain. We first introduce the normal path of operations,
followed by our timeout-based mechanism in the slow path.

5.1 Normal Path

Algorithm 1 presents the normal path of operations. Each server
in AdaChain runs Algorithm 1 in a distributed fashion in order to
carry out architecture switching. Here, S is the set of blockchain
servers, i stands for the index of the server, n stands for the current
episode, and ANepisode and ANjear, are two constant hyperparame-
ters. At a high level, the normal path introduces two watermarks: a
low watermark (W}') that triggers the learning phase, and a high
watermark (W) that marks the end of an episode.

The untrustworthiness of participants in a blockchain system
prevents us from relying on a centralized entity to featurize the
state and measure the reward. Thus, inspired by the PBFT proto-
col [20], AdaChain conducts them in a decentralized fashion. Upon
reaching the low watermark W', each server i € S records its lo-
cally observed throughput p* of episode n and featurizes the state
for the next episode n + 1 from its local blockchain ledger (lines
1-3). Although most dimensions of the state are naturally consis-
tent across different servers, there can be slight variations on the



Algorithm 1 Normal path

Algorithm 2 Slow path

> On each server i

1: Upon index of local last committed block byt reaching W
2:  Record performance pf
3:  Extract features f;.'”'l = (Wi’”'l, c;“'l, r;”'l, e;”'l) from block WH"’I to W/
4:  Multicast (CHECKPOINT, n, i, e;‘“, pr >Ui to all servers
> On the leader sever [
5: Upon receiving valid CHECKPOINT messages from a quorum Q of 2f +1 servers
6:  Compute e™! median{e}’+1 |j eQ}
7:  Compute p™ median{p;.'lj €Q}
8:  Multicast ((PROPOSE, e"*!, p™ )o;s C) to all servers

> On each server i

9: Upon receiving a PROPOSE message from the leader
10:  if ™! and p™ are valid (based on C) then
11: Multicast (ACCEPT, n, i, e"*!, p" >C'i to all servers
12: Upon receiving valid matching ACCEPT messages from 2f + 1 different servers
13:  Multicast (COMMIT, n, i, e™*!, p™ )o; to all servers
14: Upon receiving valid matching COMMIT messages from 2f + 1 different servers
15:  Add p™ to experience and derive action a,4; based on f™*!
16: if T™ transactions have been committed then
17:  Abort any new incoming transaction ¢ in the ordering phase
18: Upon byyst reaching Wiy
19:  Pause block formation thread until action a,; is derived
20: Wgﬁl — ng + LANiearn/1bn11]
21: WIZ‘H — W}r[n + I_ANepisode/lbn-H |J
22: T < T"+ I_ANepisode/lbn+l|J X b1
23: nen+l1
24:  Carry out action ap41
25:  Reset timer 7

execution delay, e;”l, and measured throughput. Thus, each server
i multicasts a checkpoint message consisting of e/*! and p" to all
other servers (line 4). AdaChain relies on the leader server to (1)
collect a quorum Q of 2f + 1 checkpoint messages, (2) calculate the
median of observed throughput values to be the global reward p”,
and (3) calculate the median of the execution delay values ¢! to be
part of the global state (lines 5-7). Once both values are computed,
the leader multicasts a propose message, including the values and
the set C of 2f + 1 received checkpoint messages to all servers (line
8). Upon receiving the propose message, each server validates the
message according to the set C and multicasts an accept message
to all other servers (lines 9-11). Each server then waits for 2f + 1
matching accept messages before sending a commit message (lines
12-13). The accept and commit phases, similar to prepare and com-
mit phases of PBFT, ensure that values are correct and replicated
on a sufficient number of nodes. Finally, when a server receives
2f + 1 commit messages, the predictive model will derive action
an+1 as described in Section 4 (lines 14-15). Note that since accept
and commit messages are broadcast to all servers, even if a server
has not received the propose message from the leader (due to the
asynchronous nature of the network or the maliciousness of the
leader), the server still has access to the values.

In order to be responsive to workload changes, each episode
is marked by the completion of | ANepisode/|bn|] blocks, where
ANepisode is a constant hyperparameter of the system (10, 000 trans-
actions in the current deployment) and |b,, | denotes the block size in
episode n. As aresult, each episode processes | ANepisode / |bn| 1% |bn|
transactions, including transactions invalidated in MVCC valida-
tion due to conflicts. Specifically, when the number of committed
transactions in consensus reached T", AdaChain early aborts trans-
actions in the ordering phase (i.e., no more transactions will be
committed by the consensus protocol) until AdaChain transitions

> On each server i
+ if timer 7 timeouts and bjast has not reached W} then
pause block formation thread after committing the current block
Record performance pf!
Multicast (S-CHECKPOINT, n, i, bl:lxst,i )Ji to all servers
> On each server j where 7 has not been expired
: Upon receiving f + 1 valid S-CHECKPOINT messages from different servers
pause block formation thread after committing the current block
Record performance p;’

Multicast (S-CHECKPOINT, n, j, bﬁstj >(’j to all servers

W W N =

® N

> On the leader sever [
9: Upon receiving valid S-CHECKPOINT messages from a quorum Q of 2f + 1
servers

10:  Compute W] « max{bl':lstj ljeq}

11:  Multicast ((S-PROPOSE, W/} >"l ,C’) to all servers
> On each server i
12: Upon receiving a S-PROPOSE message from the leader
13:  if W} is valid (based on C’) then
14: Multicast (S-ACCEPT, n, i, wj ><’i to all servers
15: Upon receiving valid matching S-ACCEPT from 2f + 1 different servers
16:  Multicast (S-COMMIT, n, i, wy )o; to all servers
17: Upon receiving valid matching S-COMMIT from 2f + 1 different servers
18:  Resume block formation thread

19:  Extract features f™' = (w"!, ¢*1, r2**1, e*1) from block Wi ™! to biast

20:  Multicast (CHECKPOINT, n, i, f;."“,pl'.’ >"i to all servers

> On the leader sever [
21: for every transaction ¢ in the ordering phase do
22:  t.episode < n

> On each server i
23: for every transaction ¢t committed by consensus do
24:  if t.episode # n then
25: abort ¢
into the next episode (lines 16-17). In AdaChain, the block forma-
tion thread waits for transactions to be committed, cuts the block,
possibly performs dependency graph construction, reordering, or
execution according to the current architecture, and lastly, commits
the block. Once the number of committed blocks reaches the high
watermark, the block formation thread will be paused until action
an+1 is derived (lines 18-19). This ensures exactly | ANepisode/|bn!]
blocks are committed in episode n on different servers. Note that the
learning phase (including feature extraction, exchanging measure-
ments, training, and inference) is triggered by low watermark W,
and AdaChain keeps processing transactions using architecture a,
between WL” and Wﬁ. Thus, as shown in Section 7.5, architecture
an+1 is derived before reaching W}j in most cases, ensuring high
throughput of the system.

5.2 Slow Path

Before AdaChain converges to the optimal architecture, the learn-
ing agent might occasionally choose “bad” architectures. The bad
architectures might result in a high fraction of transactions being
invalidated, or a slow growth of committed blocks (e.g., choosing
OX when the workload is highly compute-intensive, or choosing
XOV+reorder when the contention is extremely high). In terms of
wall-clock time, AdaChain should not be stuck in either scenario.
While the normal path is capable of handling the first scenario, we
further introduce a slow path to handle the scenario where the
growth of committed blocks is slow.

Algorithm 2 presents the slow path operations. When server i
timeouts and the index of the last committed block, bj,, has not
reached the low watermark, server i pauses the block formation af-
ter committing the current block, records the performance p* in the
current episode, and multicasts a s-checkpoint message including




the by, to all servers (lines 1-4). If a server j receives s-checkpoint
messages from at least f + 1 servers, even if its timer has not ex-
pired, it pauses the block formation, records its performance, and
multicasts a s-checkpoint message to all servers (lines 5-8).

When the leader receives s-checkpoint messages from a quorum
of 2f + 1 servers, it finds the maximum index of the last committed
block across all servers, Wy}, and multicasts a s-propose message
including W] and the received 2f + 1 s-checkpoint messages to all
servers (lines 9-11). All servers validate the received s-propose mes-
sage before two rounds of s-accept and s-commit communication,
as shown in lines 12-16 (similar to the normal path). Each server
then uses Wy} as its high watermark and then resumes the block
formation thread (lines 17-18). This ensures that in a slow path, the
same number of blocks are committed in episode n across different
servers. These operations might be expensive on the normal path,
but are negligible on the slow path, compared to the timeout (15s in
our case) and the poor performance before timeouts. The worst case
happens when a fast server has not sent a s-checkpoint message,
or its message has not been considered in the leader’s calculation
of W In this case, if the index of its last committed block is higher
than W/}, the server needs to rollback those exceeding blocks. Sim-
ilar to the normal path, each server also needs to exchange state
and performance measurements to derive action ap4+1 for the next
episode (lines 19-20).

Upon receiving transaction t for ordering at the leader I, the
leader tags ¢ with the current episode n as part of the sequence
number (lines 21-22). When a server receives transactions com-
mitted by consensus protocol, it aborts transactions whose tagged
episode is not equal to the current episode (lines 23-25). This en-
sures episode independence, i.e., there are no pending blocks across
episodes in AdaChain. As a result, a bad architecture that triggers
the slow path will not affect the performance of future episodes
with promising architectures.

The normal path and slow path of AdaChain ensure two prop-
erties. First, transactions are strong serializable, and second, the
world state is eventually consistent across different servers.

6 Security Analysis

Compared to fixed-architecture blockchains, our use of machine
learning and run-time architecture switching add new security
risks. In this section, we briefly present the new threats and discuss
how AdaChain addresses them.

Adversarial ML. As studied in the ML community, machine learn-
ing can be adversarial [34, 45, 49, 63]. In the context of AdaChain,
using reinforcement learning does not affect the correctness of the
system, which depends only on the consensus protocol (predefined
in our system), the current architecture, and our switching protocol.
That being said, AdaChain’s correctness guarantee is always as
strong as the weakest architecture in its action space, regardless of
the specific reinforcement learning algorithm.

However, reinforcement learning introduces a new performance
attack vector: manipulating feature data to cause the learning agent
to pick a bad architecture. To carry out this attack, a malicious
node might propose adversarial feature values into the quorum
Q in Algorithm 1. There are at least two ways such adversarial
features could negatively impact performance: (1) decision attacks
that target the inference phase, where an adversary reports false

observations of its own features in order to push the global feature
in one direction or another; and (2) poisoning attacks that target the
training phase [25], where an adversary reports carefully selected
feature values and labels to cause the next trained model to be
inaccurate.

AdaChain mitigates such attacks by selecting the median value
of all reported features. For a feature with low variance, adversaries
would only be able to move the median value by a small amount
even if they can report strong outliers (e.g., infinity or zero). How-
ever, for a feature with high variance, adversaries could potentially
create a non-trivial change in the median value, impacting future
inference and training. Since AdaChain is designed to operate in a
homogeneous environment, most existing features and labels have
low variance.

Thus, while adversarial ML attacks cannot impact the correctness
of AdaChain, there are open questions about potential performance
attacks caused by learning. Studying the full impact of adversarial
learning on a system like AdaChain is an interesting avenue for
future work.

Choosing different architectures. If peers choose different ar-
chitectures within the same episode, the world state across peers
can diverge and lead to correctness issues. AdaChain guarantees
that every honest node agrees on the same new architecture in the
same episode. We provide an analysis as follows.

Each node’s learning agent starts with the same random seed
when it is launched. Thus, since both the state and reward of a
certain episode are the same across all honest nodes (as mentioned
in Section 5), with the predictive model’s deterministic training
and inference, each honest agent chooses the same blockchain
architecture in the same episode. Moreover, although dishonest
nodes are tempted to make decisions that are different from honest
nodes, they cannot affect the agreement on architecture among
honest nodes. Without loss of generality, we assume f = 1 and
there are 3f + 1 peers in the system, where Py, P, P3 are honest
and Py is malicious; we further assume the honest peers choose the
XOV architecture.

Case 1: Py is the leader in the consensus protocol. There are four
possible scenarios, none of which poses a correctness issue: (1) if
P4 chooses OX in the same episode, it will send out transaction
proposals instead of endorsements in the ordering phase, so honest
peers will detect this mismatch and initiate a view-change; (2) if
P4 chooses XOV but with a batch size by that is different from
what honest learning agents have chosen, it does not affect the
agreement; (3) if P4 chooses XOV with different batch sizes and
uses different batch sizes for different peers (e.g., bs,1 for Py, byy
for Py, etc.), the honest peers will detect and reject these batches
during consensus on batches and initiate a view-change; and (4)
finally, if P4 chooses XOV but with an opposite reordering choice,
since reordering happens locally on each peer according to its local
model, the malicious peer cannot corrupt honest peers.

Case 2: Py is not the leader in the consensus protocol. The honest
leader detects type mismatch for messages originating from P4 and
discards them, while other honest peers work as normal.

Delay in architecture switching. An adversary might deliber-
ately delay its own communication (sending messages) during archi-
tecture switching. In this scenario, if the adversary is a backup node



in the switching protocol, it does not hurt the system’s throughput
assuming the number of faulty backups is less than f. On the other
hand, if the adversary is the leader, it could carry out a performance
attack by delaying the transition into the new architecture, where
the delay is carefully chosen to avoid triggering the timeout. Fortu-
nately, there are known orthogonal techniques to mitigate these
attacks. For example, instead of using a pessimistic switching pro-
tocol (inspired by PBFT), we can adopt a robust switching protocol,
e.g., following Prime [11] which is a BFT consensus protocol robust
to performance attacks.

In the partial synchrony model used by AdaChain, an adver-
sary cannot indefinitely delay honest nodes. This is because in the
partially synchrony model, there exists a global stabilization time
(GST), after which all messages between honest nodes are received
within some bound A. Even if we remove this partial synchrony
assumption, correctness is still guaranteed at the expense of some
performance degradation. It should also be noted that such attacks
are not specific to AdaChain. In a fixed blockchain architecture,
such timing-based attacks are also possible (e.g. adversaries delay
messages in the ordering phase), and AdaChain does not exacerbate
this attack.

Other vanilla threats. Other common Byzantine failures might
also occur during the normal path and slow path operations. For in-
stance, a malicious leader could send different propose messages to
different backups, or forge a deviated global state and reward. In the
meantime, a malicious backup node could double vote. AdaChain
handles these threats using a PBFT-style switching protocol, which
guarantees that the committed state and reward of a certain episode
is the same across all honest nodes. We refer readers to the original
paper [20] for more details.

7 Evaluation
Our evaluation aims to answer the following questions:

(1) Can AdaChain converge to the optimal architecture under a
static workload without prior knowledge? (Section 7.2)

(2) How well does AdaChain perform compared to existing fixed
blockchain architectures when the workload changes? (Section 7.3)

(3) How does the hardware setup (e.g., the type of CPU, network
latency and bandwidth, etc.) affect the performance of AdaChain
and existing blockchain architectures? (Section 7.4)

(4) What overhead does AdaChain introduce? (Section 7.5)

7.1 Experimental Setup

We have implemented a prototype of AdaChain in C++ and
Python. The blockchain peers which process transactions and carry
out architecture switching are implemented in C++. We use gRPC
for communications between peers and LevelDB [1] for storing
the world states. The learning agents are implemented separately
in Python due to its mature machine learning libraries. Each peer
communicates with its local learning agent through gRPC.
Testbed. Our testbed consists of 4 c6220 bare-metal machines on
CloudLab [30], each with two Xeon E5-2650v2 processors (8 cores
each, 2.6Ghz), 64GB RAM(8 x 8GB DDR-3 RDIMMs, 1.86Ghz) and
two 1TB SATA 3.5” 7.2K rpm hard drives. These machines are con-
nected by two networks, each with one interface: (1) a 1 Gbps
Ethernet control network; (2) a 10 Gbps Ethernet commodity fab-
ric. Unless otherwise specified, we use the second network for all

Workload Py Prot Npor Ntrans Tfire Tcompute

A 0.2 0.95 5 300 50ms 5ms
B 0.5 0.99 10 100 50ms 1ms
C 0.5 0.1 10 300 50ms 10ms
D 0.9 0.95 1 100 50ms Oms
E 0.5 0.99 10 100 50ms 5ms

Table 3: Specific workload parameters.

communication. We set the size of the execution thread pool equal
to the number of cores on each peer.
System configuration. We run a single blockchain channel con-
sisting of 3 peers on 3 different servers. As mentioned in Section 3,
each peer in AdaChain serves as an executor as well as an orderer.
The choice of consensus protocol is configurable inside AdaChain,
and we use Raft [53] for consistency with Hyperledger Fabric and
its variants. We run the client on a separate server with 3 threads,
each firing transaction proposals to one specific peer. The reported
throughput only considers effective transactions, i.e., excluding
early aborted and invalidated transactions. Throughout this paper,
we parameterize the architecture switching protocol as follows:
normal path timeout is set to 15s, the low watermark is set to 7500
transactions, and the high watermark to set to 10000 transactions.
Workloads. To capture the diversity in real-world blockchain trans-
actions, we implement a benchmark driver above SmallBank [29] to
derive customized workloads with tunable parameters. The bench-
mark driver preloads the blockchain with 10k users, each with
two accounts. We set Np,,; of them as hot accounts. When firing
transactions, the client randomly picks one of the five modifying
transactions with probability P,, and the read-only transactions
with probability 1 — P,,. Each transaction has a certain probability
to access the hot accounts, as controlled by the Py,,; parameter. The
client continuously fires Nirans transactions every Tr;y, millisec-
onds. To simulate computation-heavy transactions, each transac-
tion has a Teompute interval after it fetches the required world states
from the key-value store and before its subsequent operations.
We use workloads A-E throughout this paper, where workloads
A-D are the same as in Figure 1. The specific parameters of work-
loads A-E are listed in Table 3. Unlike workloads A-D, the additional
workload E is introduced later in the section that explores adaptiv-
ity to different hardware settings. Although workload E has only
slight deviation from workload B, it renders blockchain architec-
tures extremely sensitive to hardware setup (details in Section 7.4).
Note that we have written our own benchmark driver because no
existing benchmark captures all these variations in workloads.

7.2 Convergence under Static Workloads

Our first set of experiments aims to demonstrate that AdaChain
can rapidly converge to the optimal architecture under a static work-
load with no prior experiences required. We run AdaChain for 100
episodes on four representative workloads (i.e., A-D). To compare
AdaChain against the a priori optimal architecture, we also perform
a grid search in the action space to find the optimal architecture
for each workload. For our four workloads, we compare AdaChain
with the four optimal static architectures.

Figure 3 plots the performance of AdaChain and four baselines
for each workload, where the baseline curves are smoothed for bet-
ter readability. The curve for AdaChain is not smoothed. Each work-
load has a different optimal architecture. For instance, XOV+reorder
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Figure 3: Convergence of AdaChain to the optimal architecture under static workloads. Each plot shows the performance of
AdaChain (w/ and w/o hint), XOV+reorder, XOV, OXII, and OX. While different blockchain architectures are optimal for each
workload, AdaChain always reaches near-optimal performance.

Effective Throughput AdaChain’s Conv. Time

Workload ‘ XOV+reorder XOV ~ OXI  OX  AdaChain | w/hint w/o hint
A 1532 1415 968 194 1425 0.65 2.48
B 897 866 1545 861 1426 0.42 0.62
c 3228 3235 940 98 3153 045 0.48
D 1 272 1494 1498 1447 0.43 0.43
Average 1414 1447 1237 663 1862 0.49 1.00
Worst 1 22 0 98 1425 0.65 248

Table 4: Effective throughput (tps) for each architecture in
the last 20 episodes of each workload and the convergence
time (minutes) of AdaChain.

is optimal for workload A, suboptimal for workloads B and C, but
the worst for workload D. Unlike a fixed architecture that cannot
adjust itself even under a static workload, AdaChain always con-
verges to the optimal architecture for each workload quickly within
40 episodes, no matter how bad the first episode (initial architec-
ture) is. Due to Thompson sampling, AdaChain still performs some
exploration in the architecture space even after convergence, as
identified by the drops in the performance plot. Although these
explorations do not seem useful under static workloads, they are
crucial for finding optimal architectures under a changing workload
which is more realistic in today’s BaaS environment.

Comparing to exhaustive grid search (not shown in Figure 3)
that takes n, (the size of action space, i.e., 100 in our case) to con-
verge and performs pure random exploration at all times, AdaChain
converges much faster and strikes a better balance between exploit-
ing known good actions and exploring unknown actions. Table 4
shows AdaChain’s typical convergence time. In our definition, con-
vergence is reached when staying within 95% of the optimal per-
formance for 5 consecutive episodes.

Average performance. AdaChain obviously does not outperform
the optimal action in any workload (it is the optimal action, after
all). However, we show that AdaChain does offer good average
and worst-case performance after convergence. Table 4 shows the
throughput for each blockchain on each workload in the last 20
episodes of execution. Even with a few performance drops due to
exploration, AdaChain achieves both the best average throughput
and the best worst-case throughput across all four workloads.

Providing hints. An experienced administrator can build his knowl-
edge into the learning framework by specifying certain rules in
order to prevent some sub-optimal decisions. An example hint is
“if the compute intensity is higher than 2000 us, enable early ex-
ecution; otherwise, disable early execution". Hints of this nature

AdaChain

71 XOV+reorder
Xov

oxi

OoX

Cumulative Committed Transactions
IS

30 40 50 60 70

Time (min)

(I) 10 Z‘U
Figure 4: Cumulative committed transactions with time for a
changing workload, showing AdaChain’s ability to maintain
superior performance during workload shifts.

reduce the search space, thus providing faster convergence and
avoid certain explorations. Figure 3 summarizes our findings using
the example hint (see “AdaChain-+hint” lines). For workload A, the
hint accelerates the convergence time of AdaChain by 3.8x. How-
ever, it is not sufficient to avoid all explorations in AdaChain, i.e.,
varying reordering choice and block size. In contrast, for workloads
B and C where the convergence is already fast, the additional hint
reduces unnecessary explorations after convergence.

7.3 Adaptivity under a Changing Workload

Our next experiment focuses on the key benefits of AdaChain:
when the workload is changing, AdaChain can commit significantly
more transactions than the best baseline during the same deployment
period. To emulate a changing workload, we run workload A for the
first 15 minutes, followed by workloads B, C, D, and A, each for 15
minutes. We use the same four baselines as in Figure 3, which are
the optimal architectures for workload A-D when they are static.

Figure 4 shows the number of cumulative committed transac-
tions with respect to time. During the entire 75 minutes, AdaChain
successfully completed 7.73 x 10® committed transactions, while
the best baseline XOV completed 6.60 x 10® committed transactions.
The worst baseline OX only completed 0.87 X 10° committed trans-
actions. AdaChain can successfully commit 1.12 million (17%) more
transactions than the best baseline during 75 minutes. The trend in
Figure 4 also suggests the improvement of AdaChain would become
increasingly significant with a longer deployment time and more
variations in the workloads, which are common in today’s BaaS.

Interestingly, Figure 4 also shows a “catastrophic” effect for cer-
tain fixed architectures when the workload is changing. For in-
stance, when transitioning back to workload A again (60-75 min),



the slope of XOV+reorder is near zero, indicating poor performance
where few if any transactions are completed successfully. However,
if we start running XOV+reorder right from the beginning under
workload A without any changes to the workload (Figure 3(a)),
XOV+reorder would be the optimal architecture. XOV+reorder per-
forms poorly in workload D (45-60 min) due to the high overhead
of Johnson’s algorithm with a large number of cycles, which slows
down the block formation. Since the block formation is sequential,
the number of pending blocks grows significantly. Thus, incoming
transactions simulate on stale data and would fail in the MVCC
validation phase, even when transitioning back to workload A again.
OX suffers from similar problems due to a large number of pending
blocks. This phenomenon also justifies our watermark-based design
of AdaChain, as elaborated in Section 5.

To further investigate how AdaChain switches its architecture
under a changing workload, we plot AdaChain’s effective through-
put in each episode during the 75 minutes in Figure 5. The red
dashed vertical line indicates when the workload shifts. Although
workloads A and B have the same duration in terms of wall clock
time (15 min), they vary in terms of the number of episodes. This
is because, depending on the transaction arrival rate and compute
intensity of different workloads, each episode (which is marked by
the high watermark) may have a different time duration.

Figure 5 shows that when workloads shifts, AdaChain is able
to quickly converge and perform competitively with the optimal
architecture. For instance, when transitioning from workload A to
B, AdaChain quickly converges to the new optimal (i.e., OXII) and
achieves a 1450 tps throughput. In contrast, while XOV+reorder
is optimal under workload A, as shown in Figure 3(b), it is able to
reach only 900 tps when processing workload B, even in the best-
case scenario where the catastrophic effect is avoided by starting
with workload B and XOV+reorder right at the beginning. When
transitioning from workload B to C, AdaChain quickly converges
to the new optimal (i.e., XOV) and achieves a 3250 tps throughput.
In comparison, OXII, which is optimal under workload B, is able to
achieve only 980 tps under workload C (Figure 3(c)).

Due to Thompson sampling, AdaChain maintains some degree
of exploration in the architecture space even after convergence, so
as to avoid getting stuck at the local optimum. As AdaChain gains
more experiences (i.e., data points) on a certain workload, the extent
of exploration decreases, which is indicated by the less frequent
drops within each 15 minutes period. Also, when AdaChain en-
counters a workload it has seen before (e.g., transition to workload
A again in the last 15 minutes), AdaChain converges much faster
than the first time and has less variation in performance.

Ideally, since we use the state of the previous episode to ap-
proximate the state of the next episode, AdaChain can adapt to
workloads that shift less frequently than every two episodes (20s
at most). In practice, due to the exploration performed by CMAB,
as long as the workload changes are slower than the convergence
time (as shown in Table 4), AdaChain can still operate effectively.

7.4 Adaptivity under Different Hardware

Our next set of experiments demonstrates another operational
benefit of AdaChain: when deployed on different hardware configu-
rations, AdaChain can rapidly converge to the optimal architecture
for that hardware without manually re-configuring the blockchain

featurization ~ communication training inference episode

0.11s +0.01
0.11s
0.20s

0.14s + 0.04
0.14s
0.27s

0.21s + 0.04
0.21s
0.32s

0.01s +0.01
0.01s
0.02s

3.67s £2.12
2.57s
16.35s

mean
median
max

Table 5: Overhead of each stage in AdaChain.

architecture. We use workload E on three different hardware setups:
HW?1 stands for single data center deployment, where the network
connecting peers has low latency (0.15 ms) and high bandwidth (10
Gbps), and each peer has 16 CPU cores; HW2 also stands for single
data center deployment, but with 2 CPU cores per peer; HW3 stands
for a multi-data center deployment, with high latency (50 ms) and
low bandwidth (1 Gbps) network, and 2 CPU cores per peer. As
mentioned in Section 7.1, for HW1 and HW2, we use the commod-
ity network fabric; for HW3, we use the control network as well
as Linux netem [32] to inject delay to the NIC. For each hardware
setup, we also perform a grid search to find the optimal architecture
for that hardware: for HW1, the optimal is (OXII, blocksize = 100);
for HW2, the optimal is (XOV, blocksize = 1), for HW3 the optimal
is (OXIIL, blocksize = 100) again. Figure 6 plots AdaChain’s perfor-
mance in each episode on HW1-HW3, along with the averaged
performance of the optimal architecture for comparison.

As shown in Figure 6, even under the same workload, the hard-
ware setup affects the effective throughput and thus affects the
choice of the best architecture. For instance, OXII performs well
when each server has enough compute resources (HW1 best arch
in Figure 6(a)), but suffers when the servers have low compute
resources (HW1 best arch in Figure 6(b)); StreamChain can perform
well in a single data center deployment (HW2 best arch in Fig-
ure 6(b)), but suffers from the high round trip time when deployed
across multiple data centers due to the small batch size it uses in
the consensus protocol (HW2 best arch in Figure 6(c)). No matter
what type of hardware AdaChain is deployed on, AdaChain can
adapt itself to the optimal architecture for that hardware.

More importantly, for any kind of unseen hardware setup, users
of AdaChain do not need to recollect data and retrain the machine
learning model offline. AdaChain is an online system that learns
from its past experiences and balances exploitation and exploration.
With AdaChain, BaaS can have humans completely out of the loop.

7.5 Overhead of Learning

Our last experiment evaluates the additional overhead incurred
by AdaChain’s learning framework. We repeat the experiment in
Section 7.3 and profile every stage that involves the learning agent.
We report the results along with the episode duration in Table 5.

Before deriving the architecture for the next episode, AdaChain
needs to go through feature extraction, communication, training
and inference phases in sequence (Section 3). Table 5 shows that all
of these four phases have low average overhead with low variance,
as compared to the episode duration. The additional mean overhead
time (0.47s) is only 12.8% of the average episode duration (3.67s).

More importantly, the 12.8% overhead can be masked by paral-
lelizing transaction processing and learning. The learning phase
only occurs between the low and high watermark period, which
constitutes 25% duration with each episode. Considering that the
median episode duration is 2.57s, this interval time is 0.64s which
is higher than the mean overhead of 0.47s. During this interval,
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the peers continue to process transactions based on the current
architecture, while in parallel, the learning agent goes through the
four stages to determine the architecture for the next episode. Such
parallel execution ensures that the overhead of AdaChain does not
adversely affect its effective throughput, as long as there are some
spare CPU cycles devoted to the learning agent.

Finally, we note that the episode duration has a high standard
deviation due to two reasons: (1) AdaChain triggers the slow path
when making poor architecture choices; (2) even in the normal path,
the wall-clock time needed to reach a high watermark depends on
the workload, e.g., the episode duration is longer under a compute-
intensive or low-load workload.

Unlike deep neural networks, which are especially expensive to
train, the random forest model used by AdaChain has moderate
training overhead. With thousands of data points in the experience
buffer, AdaChain only incurs a maximum training overhead of 0.32
seconds. Moreover, the succinct action space design also results in
a lightweight inference phase, i.e., 0.02 seconds. When AdaChain
is deployed for a long run, techniques such as periodic resampling
and limiting the length of experience buffer [51] can be utilized.

8 Related Work

Learned systems. More generally, many recent works have ap-
plied machine learning concepts to systems components. These
works, falling under the umbrella of machine programming [35],
cannot be exhaustively enumerated here, but we refer the reader to
past work on indexing [44], cardinality estimation [43, 48], index
selection [28], database tuning [55], scheduling [50], garbage col-
lection [21], and concurrency control for in-memory databases [62].

As a novel application, learned permissioned blockchains not only
require unique featurization of the blockchain design landscape (i.e.,
action space), but also operate in an environment where there are
Byzantine failures. Consequently, our design uses a fully decentral-
ized machine learning approach to handle the untrustworthiness
of participating nodes.

Database migration. Efficient and live migration of databases has
been studied in multi-tenant data infrastructures [19, 27, 31, 40, 47].
Unlike existing work that mainly migrates data between differ-
ent physical nodes, AdaChain switches between system architec-
tures within the same participating node. Moreover, AdaChain’s
migration protocol is robust to Byzantine failures and mitigates the
explorations performed by reinforcement learning.

9 Conclusion

In this paper, we presented AdaChain, an adaptive blockchain
framework that leverages reinforcement learning to dynamically
switch between different blockchain architectures based on the
workload. AdaChain is able to identify the optimal blockchain
architecture as workload changes, obtaining significantly higher
throughput compared to fixed architectures. The low additional
overhead of AdaChain can also be masked by parallelizing the
transaction processing and learning phases. As future work, we are
exploring expanding the learning framework to cover other aspects
of blockchain architectures, e.g., choosing the best performing con-
sensus protocol. Another intriguing future direction is to figure
out whether our learning framework can be used to uncover new
effective architectures not previously explored by human experts.
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