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Abstract

The Dark Energy Survey is able to collect image data of an extremely large number of extragalactic objects, and it can be reasonably

assumed that many unusual objects of high scientific interest are hidden inside these data. Due to the extreme size of DES data,

identifying these objects among many millions of other celestial objects is a challenging task. The problem of outlier detection is

further magnified by the presence of noisy or saturated images. When the number of tested objects is extremely high, even a small

rate of noise or false positives leads to a very large number of false detections, making an automatic system impractical. This study

applies an automatic method for automatic detection of outlier objects in the first data release of the Dark Energy Survey. By using

machine learning-based outlier detection, the algorithm is able to identify objects that are visually different from the majority of the

other objects in the database. An important feature of the algorithm is that it allows to control the false-positive rate, and therefore

can be used for practical outlier detection. The algorithm does not provide perfect accuracy in the detection of outlier objects, but

it reduces the data substantially to allow practical outlier detection. For instance, the selection of the top 250 objects after applying

the algorithm to more than 2 · 106 DES images provides a collection of uncommon galaxies. Such collection would have been

extremely time-consuming to compile by using manual inspection of the data.

1. Introduction

The deployment of digital sky surveys driven by powerful

robotic telescopes has enabled the collection of very large astro-

nomical databases. Surveys such as Sloan Digital Sky Survey

(SDSS), the Panoramic Survey Telescope and Rapid Response

System (Pan-STARRS) the and the Dark Energy Survey (DES)

are some of the world’s most productive scientific instruments,

generating databases of billions of astronomical objects. While

these databases are far too large to be inspected manually, fu-

ture Earth-based and space-based instruments are expected to

generate even larger databases, further stressing the ability to

analyze the data. Space-based instruments such as Euclid, Ro-

man, and the Chinese Survey Space Telescope (CSST), as well

as ground-based telescopes such as the Vera Rubin Observatory

are expected to transform the field of astronomy by the genera-

tion of unprecedented amounts of astronomical data.

While most celestial objects in these databases can be as-

sumed to be of known types, it is likely that these databases

also contain rare objects of paramount scientific interest. The

distinction between a “peculiar” and a “non-peculiar” galaxy is

difficult and subjective to formalize (Nairn and Lahav, 1997). It

is determined by its complex visual appearance and degree of

similarity to known galaxy types.

Galaxies that cannot be associated with a stage in a known

morphological classification scheme such as the Hubble Se-

quence can provide unique information about the history of the

Universe and galaxy evolution (Gillman et al., 2020), and there-

fore identifying and studying of these galaxies can be of scien-

tific value (Bettoni et al., 2001; Casasola et al., 2004; Abraham

and van den Bergh, 2001). Known types of peculiar galaxies

are ring galaxies, which can form into a ring shape due to colli-

sions (Appleton and Struck-Marcell, 1996) or instability of the

galaxy bars (Sellwood and Moore, 1999). Another common

type of peculiar galaxies are tidally distorted galaxies, with un-

usual shapes formed due to the gravity field of another galaxy,

leading to tidal tails or other unusual morphological features.

Irregular galaxies (Gallagher and Hunter, 1984) do not have

defined expected shapes, and can contain higher amounts of

gas and dust. Gravitational lenses can cause regular galaxies

to appear distorted to an Earth-based observer, and while these

galaxies are not peculiar they can be identified in digital sky sur-

veys by their unusual shape. Dust lanes can also make galax-

ies seem unusual due to the reduction of light blocked by the

dust lane (Möllenhoff and Bender, 1989; Athanassoula, 1992).

Other types of peculiar galaxies include older forms such as

quasar and blazars. Peculiar galaxies are of scientific impor-

tance, as they can carry substantial information about the past,

present, and future Universe. For instance, strong gravitational

lenses were used to determine the Hubble constant with high

accuracy (Suyu et al., 2017; Wong et al., 2020). Statistical anal-

ysis of galaxy merger history can also be used to test the valid-

ity of cosmological models (Conselice et al., 2014; Conselice,

2014).

An example of a collection of peculiar galaxies is the At-

las of Peculiar Galaxies (Arp, 1966; Arp and Madore, 1975).



While that catalog was useful for studying peculiar galaxies, it

required over a decade to prepare. Other catalogs include col-

lections of peculiar galaxies of a certain defined type such as

the collection of collisional ring galaxies (Madore et al., 2009).

Manual observation of a large number of galaxies can lead to

identification of peculiar galaxies, as was demonstrated by Nair

and Abraham (2010), who annotated a large number of galax-

ies and identified several peculiar galaxies through that process.

Kaviraj (2010) identified 70 peculiar systems in stripe 82 of

SDSS. Manual analysis also led to the identification of irreg-

ular and interacting galaxies imaged by the Vatican Advanced

Technology Telescope (Taylor et al., 2005).

Manual analysis is limited in its throughput, and therefore

does not allow to analyze the extremely large databases col-

lected by modern digital sky surveys. For instance, the Vera

Rubin Observatory is expected to collect image data of more

than 1010 galaxies. Even if each galaxy can be analyzed manu-

ally in 10 seconds, analyzing the entire database will take over

3000 years of human labor. One proposed solution for increas-

ing the throughout was to use crowdsourcing of non-expert vol-

unteers. An example of an unusual objects identified in that

manner is “Hanny’s Voorwerp” (Lintott et al., 2009), as well as

a large number of ring galaxies (Finkelman et al., 2012; Buta,

2017).

As digital sky surveys become increasingly more powerful,

manual identification becomes impractical. General methods to

automate the analysis of galaxy images include model-driven

methods such as GIM2D (Simard, 1999), GALFIT (Peng et al.,

2002), CAS (Conselice, 2003), Gini (Abraham et al., 2003),

Ganalyzer (Shamir, 2011), and SpArcFiRe (Davis and Hayes,

2014). Other methods are based on machine learning (Shamir,

2009; Huertas-Company et al., 2009; Banerji et al., 2010; Ku-

minski et al., 2014; Dieleman et al., 2015; Graham, 2019; Mit-

tal et al., 2019; Hosny et al., 2020; Cecotti, 2020; Cheng et al.,

2020). For instance, Huertas-Company et al. (2009) used Sup-

port Vector Machines (SVM) to classify galaxies by their broad

morphological type. Banerji et al. (2010) demonstrated as early

implementation of an artificial neural network to distinguish

between elliptical and spiral galaxies. Dieleman et al. (2015)

applied deep neural networks to estimate the expected manual

annotations of certain morphological features of galaxies. More

modern approaches are based on convolutional neural networks

(Hosny et al., 2020; Cecotti, 2020; Cheng et al., 2020). The ap-

plication of these methods to image data collected by digital sky

surveys also led to catalogs (Huertas-Company et al., 2015a,b;

Shamir and Wallin, 2014; Kuminski and Shamir, 2016; God-

dard and Shamir, 2020). Machine learning algorithms were

also used to identify unusual galaxies, such as galaxy mergers

(Margalef-Bentabol et al., 2020), and peculiar galaxy mergers

(Shamir and Wallin, 2014).

Determinstic model-driven approaches can be developed and

adjusted to detect specific defined types of galaxies such as ring

galaxies (Timmis and Shamir, 2017; Shamir, 2020) and grav-

itational lenses (Jacobs et al., 2019b; Liu et al., 2021; Wilde

et al., 2022). Methods for automatic detection of strong lenses

in large databases generated by ground-based sly surveys such

as DES (Jacobs et al., 2019b), KiDS (Petrillo et al., 2019), HSC

(Wong et al., 2022), and DECal (Huang et al., 2020). These

algorithms normally cannot match the same level of complete-

ness as manual analysis, but their ability to scan much larger

datasets allows them to identify more objects than manual de-

tection (Shamir, 2020). Such algorithms are designed for spe-

cific and previously known morphological types, and therefore

cannot identify objects of types that were not known when the

algorithm was designed. That can be done by using unsuper-

vised machine learning, where the algorithm learns automati-

cally from the data, and can identify objects that are different

from the “typical” objects in the database. This paper describes

the application of a method based on machine learning to image

data acquired by the Dark Energy Survey (DES). The process

leads to a collection of galaxies identified as the most different

from the other “typical” galaxies as determined by the algo-

rithm.

2. Data

The image data used in this study is data from the Dark

Energy Survey (Perez et al., 2018; Morganson et al., 2018;

Flaugher et al., 2015) Data Release 1 (Perez et al., 2018). The

Dark Energy Survey (DES) uses the Dark Energy Camera (DE-

Cam) of the four-meter Blanco Telescope (Diehl et al., 2012).

It covers a footprint of around 5 · 103deg2 (Abbott et al., 2018)

in the Southern hemisphere. The primary goal of DES is the

studying of dark energy, but it can also be used as a general-

purpose powerful digital sky survey (Abbott et al., 2016).

To select objects that are galaxies, the initial list of objects in-

cluded objects identified as de Vaucouleurs r1/4 profiles, expo-

nential disks, or round exponential galaxies. To avoid faint ob-

jects, only objects brighter than 20.5 magnitude in one or more

of the g, r or z bands were included. In DES DR1, ∼ 1.9 · 108

objects met that criteria. Due to the time required to download

and analyze a dataset of the size, ∼10% of the data was used in

this experiment, leading to a dataset of 2 · 106 objects. The im-

ages were downloaded using the cutout API of the DESI Legacy

Survey, and the downloading was complete after 32 days of

continuous data retrieval. The image are in the JPEG image

format and dimensionality of 256×256. The JPEG format does

not allow accurate photometric measurements, but it allows to

combine information from the g, r, and z color channels in the

same image, and therefore the image contained more informa-

tion about the morphology of the galaxy. The Petrosian radius

of each image was used to scale the object such that the entire

object fits in the image.

3. Method

Unsupervised identification of outlier images can be consid-

ered an understudied task compared to other machine vision

tasks such as image classification. Unlike supervised machine

learning tasks, in unsupervised machine learning the samples

do not have “ground truth” labels, and therefore there is no

training and test steps. Instead, the machine learning model
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attempts to identify patterns in the data without associating dif-

ferent patterns to different labels. In the case of automatics out-

lier detection, a machine learning model attempts to identify

the samples that are most different from the other samples in

the dataset, which needs to be done without training a system

based on ground truth labels. In the case of outlier galaxies,

many of the galaxies of interest may be of forms that are not

yet known, and therefore no training with these galaxies is pos-

sible.

Some work on outlier galaxy detection was based on adjust-

ing deep convolutional neural networks (DCNNs) to that task.

DCNNs have demonstrated superior image classification prob-

lem, but they require a relatively large number of labeled sam-

ples for training. Rare objects often do not have a large num-

ber of instances, making it more difficult to train such model.

Moreover, new objects that have never been seen before do

not have any existing images, making it impossible to train a

CNN model. The most common approach to apply deep neu-

ral networks to automatic identification of outlier images is by

using auto-encoders, where outliers can be detected by compar-

ing the reconstruction loss of the different images (Amarbayas-

galan et al., 2018; Chen et al., 2018). Such methodology was

also used to identify outlier galaxies (Margapuri et al., 2020) or

galaxy mergers (Margalef-Bentabol et al., 2020).

Deep neural networks provide good ability to analyze im-

ages, and are also relatively easy to implement by using com-

monly used deep learning libraries. On the other hand, due to

their complex and non-intuitive nature, it is more difficult to

control the noise that is part of almost all machine learning-

based outlier detection systems. That is, when applying to

datasets of millions of galaxies, even a small false positive rate

of 1% could make an outlier detection algorithm impractical.

That requires an algorithm that can identify outlier images, but

on the other hand can also reject outlier images that are the re-

sults of known non-astronomical factors. A mandatory property

of such algorithm is the ability to control the trade-off between

the completeness of the algorithm, and its false-positive rate.

That will allow the user to sacrifice some of the outlier galaxies

that will be detected in favor of limiting the false-positive rate

to make the system practical in real-world settings.

The image analysis method is based on outlier detection us-

ing machine learning and a comprehensive set of numerical

image content descriptors (Shamir and Wallin, 2014; Shamir,

2021). In summary, the set of visual content descriptors in-

clude the entropy of the image, Radon transform (Lim, 1990),

edge statistics, texture descriptors such as Haralick (Haralick

et al., 1973), Tamura (Tamura et al., 1978) textures, and Gabor

(Fogel and Sagi, 1989) textures, statistics of pixel intensities,

multi-scale histograms (Hadjidemetriou et al., 2001), Zernike

polynomials (Teague, 1980), fractals (Wu et al., 1992), the Gini

coefficient (Abraham et al., 2003), and Chebyshev statistics.

These numerical image content descriptors are described in de-

tail in (Shamir et al., 2008, 2010, 2013; Shamir, 2016; Schutter

and Shamir, 2015). The source code of the method is open

and publicly available (Shamir, 2017). Previous studies have

shown that the combination of these descriptors provide an ef-

fective numerical description of galaxy morphology (Shamir,

2009; Schutter and Shamir, 2015; Shamir, 2016; Shamir et al.,

2013).

To select numerical image content descriptors that are infor-

mative to the detection of outlier galaxies, the content descrip-

tors are ranked by their entropy as described by Equation 1.

W f = | − 1 · ΣiPi · log Pi|, (1)

where Pi is the frequency of the values in the ith bin of a 10-bin

histogram of the values of descriptor f measured from all im-

ages in the database. The W f weight of feature f is the entropy

of that feature computed by Equation 1. Low entropy of the

feature reflects more consistent values, and the consistency can

indicate that the values are not random, and therefore reflect the

visual content.

Using the weights, the weighted distance between all pairs

of images in the dataset are computed. These distance are

computed by the Earth Mover’s Distance (EMD). EMD is an

established method for measuring distances between vectors,

widely used in machine learning (Rubner et al., 2000; Ruzon

and Tomasi, 2001). EMD can be conceptualized as an optimiza-

tion problem, where the solution is the minimum work required

to fill a set of holes in space with the mass of Earth. The unit

of work is the work required to move an Earth unit by a dis-

tance unit. Equation 2 shows a formal description of the EMD

optimization problem.

Work(X,Y, F) = Σn
i=1Σ

n
j=1 fi, jdi, j, (2)

where X and Y are the weighted feature vectors

(Wx1, x1).....(Wxn, xn) of size n, fi, j is the flow between

Xi and Y j, and W is the vector of weights. The weight vector W

is computed by applying Equation 1 to all features. The flow F

is the solution of the linear programming problem:

Σ
n
i=1
Σ

n
j=1

fi, j = min(Σn
i=1

Wxi,Σ
n
j=1

Wy j)

With the constraints:

Wxi ≥ Σ
n
j=1

fi, j

Wy j ≥ Σ
n
i=1

fi, j

The Earth Mover’s Distance between X and Y is then defined

as

EMD(X,Y) =
Work(X,Y,F)

Σ
n
i=1
Σ

n
j=1

fi, j

A full description of the Earth Mover’s Distance method is

available in (Rubner et al., 2000; Ruzon and Tomasi, 2001).

The EMD method is effective for measuring distances between

the histograms of all sets of numerical image content descrip-

tors described in (Shamir et al., 2008, 2010). The distance be-

tween each pair of galaxies in the database is measured by the

sum of EMD distances between all histograms.

After the similarity between each pair of images is computed,

an outlier galaxy x can be detected by ranking the distances of
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all galaxies from galaxy x. The Nth shortest distance is deter-

mined to reflect the degree of difference of the galaxies from

all galaxies in the database, where N > 1. The galaxy with the

longest Nth is determined to be the galaxy that is the most likely

to be an outlier galaxy. The reason for using the Nth shortest

distance and not the shortest distance (N=1) is that in very large

databases rare galaxies of the same type can appear more than

once. That can lead to several galaxies similar to each other,

but different from all other galaxies in the database. A short

distance between the two galaxies might therefore reflect two

or more outlier galaxies that are similar to each other but could

be different from all other galaxies. Therefore, using the short-

est distance as a measurement of how different a galaxy is from

all other galaxies might lead the algorithm to a high number of

false negatives.

On the other hand, some images might be different

from other galaxy images in the database for certain non-

astronomical reasons such as the impact of nearby very bright

stars on the imaging. Examples of such images are provided in

Section 4. Such artefacts make the images look very different

than regular galaxies, but they are also not rare. Therefore, tak-

ing the Nth distance can allow to avoid some of these artefacts

that are common in the database. If the artefact is not com-

mon, the algorithm might falsely flag it as an outlier, increasing

the false positive rate of the algorithm. In any case, the large

databases of current and future astronomical sky surveys re-

quire the ability to handle the trade-off between completeness

and false positive rate, as even a small false positive rate might

make such algorithm impractical due to the very large number

of non-outlier galaxies identified.

4. Results

The outlier detection method described in Section 3 was ap-

plied to the image data collected by the Dark Energy Survey as

described in Section 2. Due to the large number of galaxies, the

2 · 106 galaxies were separated into 100 sets of 2 · 104 galax-

ies. Then, the algorithm described in Section 3 was applied to

each of the 100 sets, returning the top 30 most peculiar images

as determined by the algorithm. The value of N was set to 50.

That led to a dataset of 3,000 galaxies that could be considered

as possible peculiar galaxies.

As also mentioned in Section 3, the algorithm is not expected

to be fully accurate in the identification of outlier galaxies.

Many of the galaxies identified as outlier galaxies are not ex-

pected to indeed be of scientific interest, and therefore manual

selection is required. The advantage of using the algorithm is

that the manual selection is applied to 3,000 galaxies, which is

several orders of magnitude less than the initial set of 2 · 106

DES galaxies. The 3,000 galaxies picked by the algorithms can

be separated into regular galaxies, artefacts, or true positives of

galaxies that could be of scientific interest.

Figure 1 shows examples of images identified by the algo-

rithm that are different from a regular galaxy, but the difference

cannot be considered of particular astronomical interest. As the

figure shows, these outlier images are different from most other

galaxy images, although the reasons for the differences are not

necessarily of astronomical origin. The identification of arte-

facts and unusual images driven by non-astronomical reasons

is based on previous knowledge, as these forms of outlier im-

ages are relatively common. It is therefore theoretically possi-

ble that true outlier galaxies that seem similar to common arte-

facts might not be identified. Figure 2 shows galaxies identified

by the algorithm as outliers, although visual inspection shows

that the galaxies do not have unusual features.

Figure 1: Objects considered galaxies that were detected by the algorithm as

outliers, but visual inspection shows that these objects are not of astronomical

interest.

Figure 2: Galaxies that were detected by the algorithm as outliers, but seem to

be regular galaxies by visual inspection.

The definition of peculiar or unusual galaxies is not necessar-

ily formal (Nairn and Lahav, 1997), making the manual identi-

fication of all peculiar galaxies a task that is not considered of

high precision. Some galaxies of scientific interest might there-

fore not be identified as peculiar galaxies. In this study, the

selection of peculiar galaxies was done such that galaxies that

belong in a known type of usual galaxies were selected based on

their visual appearance. That selection was done based on pre-

vious knowledge of these galaxies, although many of the galax-

ies that were detected are of morphology that does not neces-

sarily have an existing known similar instance. Like with the

removal of artefact, that process of manual selection can also

lead to the loss of some galaxies of scientific interest. On the
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other hand, identification of peculiar galaxies when done purely

by manual labor can also lead to incompleteness of the output.

A notable example is the “Hanny’s voorwerp” galaxy (Lintott

et al., 2009), which was annotated as a regular galaxy by two

more than dozens different observers, until it was identified as

an unusual galaxy of scientific interest.

From the galaxies identified by the algorithm, 250 galaxies

were identified by visual inspection as galaxies that could have

certain features that make these galaxies different from most

other galaxies. These galaxies were separated into several cat-

egories. Tables 1 through 7 show the equatorial coordinates of

the galaxies detected by the algorithm, and separated into the

different categories. The images of the galaxies are displayed

in Figures 3 through 9.

Tables 1 and 5 list galaxies with detached segments and dust

lanes. Such galaxies are not necessarily considered peculiar

galaxies, but most galaxies do not have clear large detached

segments or dust lanes. Object 129 is the “Cartwheel” galaxy.

While that object is known, its detection shows that the algo-

rithm can detect unusual objects automatically. Table 6 shows

gravtiationally interacting systems such that the interactions

change the shape of at least one of the galaxies in the system.

Figure 8 displays the images of the galaxies in that table. Such

galaxies are common in the Atlas of Peculiar Galaxies (Arp,

1966), but since these system are relatively rare their identifica-

tion by manual inspection is a labor consuming task.

Table 2 shows possible gravitational lenses. These objects

are not included in known previous catalogs of gravitational

lenses such as the CASTLES survey of gravitational lenses

(Kochanek et al., 1999), the catalog of SDSS gravitational lens

candidates (Inada et al., 2012), gravitational lenses detected in

COSMOS (Faure et al., 2008), or a survey powered by a group

finding algorithm (Wilson et al., 2016). These lenses are also

not present in detected gravitational lenses in HSC (Wong et al.,

2018), or in catalogs compiled by using convolutional neural

networks applied to DES (Jacobs et al., 2019a), or the VST

Optical Imaging of the CDFS and ES1 survey (Gentile et al.,

2022).

Table 7 list objects that cannot be associated clearly with any

of the groups, and these galaxies are shown in Figure 9. For in-

stance, object 252 is a galaxy with two dense arms, seemingly

embedded in another, less dense, structure. The top of the sys-

tem features another sparse and long arm that is not necessarily

aligned with the other arms of the galaxy. Object 228 features

a ring as well as a one spiral arm. Objects 232 and 244 has sev-

eral rings. Object 250 also has a ring, but also has several other

features making it more difficult to characterize the galaxy as a

ring galaxy. Although these shapes can be the results of grav-

itational interaction between two or more objects, the images

do not show another object that can lead to the peculiar shapes.

Fully understanding each of these systems might require further

detailed observation of these systems.

4.1. Performance evaluation

One of the considerations of the described algorithm is re-

sponse time. The bottleneck of the analysis is the representa-

tion of each image by a set of its numerical content descriptors.

Analysis of a single image required nearly two minutes using

a single core of an Intel Core-i7 processor. That means that a

single core can analyze the entire set of ∼ 2 · 106 galaxies in

nearly eight years.

To handle the data, 32 cores of a Beowulf cluster were used,

and reduced the response time of the system to ∼ 3 months

of computing. While digital sky surveys are becoming in-

creasingly more powerful, computing resources, and especially

parallelizations, are also becoming more accessible. For in-

stance, modern processors have 64 or more cores, and the

availability of multiple cores in single processors is expected

to grow. Therefore, while the method is computationally de-

manding, its requirement of computing power can be matched

by the increasing availability of hardware that can be paral-

lelized. Specifically, graphics processing units (GPUs) can be

customized to parallelize the analysis, and perform a faster

analysis by reducing the energy and cost of the hardware.

5. Conclusions

Autonomous digital sky surveys can acquire very large

databases of astronomical data, making “traditional” manual

analysis of the data impractical. Perhaps one of the more al-

gorithmically challenging tasks is identification of peculiar as-

tronomical object of potential interest among millions of other

common astronomical objects.

This study applies a method of automatic detection of out-

lier galaxies imaged by the Dark Energy Survey. The experi-

ment shows that an automated method can provide a practical

solution to the problem of identification of peculiar galaxies in

large databases. Although the automatic identification results

in a large number of false positives, it allows to reduce the size

of the data that needs to be inspected to make manual detection

practical. That allows to reduce a dataset of millions of objects

into a far smaller dataset of thousands of objects, of which sev-

eral hundred objects are outliers.

As automatic detection of peculiar galaxies is a relatively

complex task, the method shown in this paper is clearly not

perfect. The advantage of the method is that it allows to control

the number of alerts, and consequently handle very large image

databases. The initial dataset used here of 2 ·106 objects was re-

duced to 3·103 objects, where ∼ 92% of these objects were not

outlier galaxies. That makes a false-positive rate of 1.375 ·10−3.

The true positive is obviously much lower, at 1.125 · 10−4.

Digital sky surveys have been growing consistently in both

power and number, and that trend in astronomy research is

bound to continue. Surveys such as Vera Rubin Observatory

and the space-based Euclid are further expanding the already

high throughput of modern ground-based and space-based sky

surveys. Due to the size of the data, it can be reasonably as-

sumed that many objects of paramount scientific interest will

be hidden in these databases, but might not be noticed. The

method described here can be easily applied to data from the

fourth-generation surveys and provide a large number of irregu-

lars galaxies, peculiar galaxies, strong gravitational lenses, etc.

This will significantly benefit studies of galaxy evolution and

the exploration of cosmologies.
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ID RA Dec ID RA Dec ID RA Dec

1 25.0160 -43.423 2 53.3290 -39.219 3 53.1833 -39.151

4 53.3321 -39.221 5 29.5303 -39.041 6 93.2225 -38.770

7 40.0661 -38.481 8 66.9333 -37.460 9 18.2232 -34.734

10 19.3597 -34.737 11 48.0650 -34.784 12 41.6079 -33.938

13 92.2672 -33.710 14 82.3580 -29.968 15 11.5389 -24.646

16 13.8953 -24.153 17 18.2169 -23.816 18 14.9967 -22.885

19 14.2179 -22.104 20 44.0267 -14.186 21 15.0158 -4.9402

22 26.1296 -4.9703 23 12.5307 -4.4804 24 10.9840 -4.2419

25 12.1810 -4.2121 26 26.3561 -3.8271 27 9.93519 -65.011

28 9.53072 -65.120 29 12.5187 -3.5511 30 15.7978 -3.6055

31 1.42831 -3.0761 32 4.27571 -2.6985 33 8.59889 -2.8351

34 1.85732 -2.3476 35 9.0261 -2.256. 36 13.0401 -2.2339

37 0.55003 -1.8722 38 3.04020 -1.8381 39 34.1008 -64.027

40 31.1652 -60.958 41 37.8805 -60.589 42 30.8068 -60.123

43 23.0091 -53.861 44 25.0463 -49.265 45 17.2175 -47.142

46 13.5656 -3.5828

Table 1: The equatorial coordinates of detected objects with detached segments.

ID RA Dec ID RA Dec

47 36.0262 -61.719 48 35.8424 -60.673

Table 2: The equatorial coordinates of objects detected as possible gravitational lenses.
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Sharples, R., Cortese, L., Obreschkow, D., Bower, R., et al., 2020. From

peculiar morphologies to hubble-type spirals: the relation between galaxy

dynamics and morphology in star-forming galaxies at z 1.5. Monthly No-

tices of the Royal Astronomical Society 492, 1492–1512.

Goddard, H., Shamir, L., 2020. A catalog of broad morphology of pan-starrs

galaxies based on deep learning. Astrophysical Journal Supplement Series

251, 28.

Graham, A.W., 2019. A galaxy classification grid that better recognizes early-

type galaxy morphology. Monthly Notices of the Royal Astronomical Soci-

ety 487, 4995–5009.

Hadjidemetriou, E., Grossberg, M.D., Nayar, S.K., 2001. Spatial information in

multiresolution histograms, in: Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, IEEE. pp. I–I.

Haralick, R.M., Shanmugam, K., Dinstein, I.H., 1973. Textural features for

image classification. IEEE Transactions on Systems, Man, and Cybernetics

, 610–621.

Hosny, K., Elaziz, M., Selim, I., Darwish, M., 2020. Classification of galaxy

color images using quaternion polar complex exponential transform and bi-

nary stochastic fractal search. Astronomy and Computing , 100383.

Huang, X., Storfer, C., Ravi, V., Pilon, A., Domingo, M., Schlegel, D., Bailey,

S., Dey, A., Gupta, R., Herrera, D., et al., 2020. Finding strong gravitational

lenses in the desi decam legacy survey. Astrophysical Journal 894, 78.

Huertas-Company, M., Gravet, R., Cabrera-Vives, G., Pérez-González, P., Kar-
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Figure 3: Galaxies with detached segments that were detected by the algorithm.
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Figure 4: Galaxies that are possible gravitational lenses.
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Figure 5: Irregular blue galaxies detected in DES.
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Figure 6: Ring galaxies detected in DES.
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Figure 7: Galaxies with dust lanes.
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Figure 8: Images of detected objects that can be tidally distorted systems.
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Figure 9: Unusual galaxies that are not associated to the previous categories.
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