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Abstract— A major challenge in multi-agent sys-
tems is that the system complexity grows dramatically
with the number of agents as well as the size of their
action spaces, which is typical in real world scenarios
such as autonomous vehicles, robotic teams, network
routing, etc. It is hence in imminent need to design
decentralized or independent algorithms where the
update of each agent is only based on their local obser-
vations without the need of introducing complex com-
munication/coordination mechanisms. In this work,
we study the finite-time convergence of independent
entropy-regularized natural policy gradient (NPG)
methods for potential games, where the difference in
an agent’s utility function due to unilateral deviation
matches exactly that of a common potential func-
tion. The proposed entropy-regularized NPG method
enables each agent to deploy symmetric, decentral-
ized, and multiplicative updates according to its own
payoff. We show that the proposed method con-
verges to the quantal response equilibrium (QRE)—
the equilibrium to the entropy-regularized game—at
a sublinear rate, which is independent of the size of
the action space and grows at most sublinearly with
the number of agents. Appealingly, the convergence
rate further becomes independent with the number
of agents for the important special case of identical-
interest games, leading to the first method that con-
verges at a dimension-free rate. Our approach can be
used as a smoothing technique to find an approximate
Nash equilibrium (NE) of the unregularized problem
without assuming that stationary policies are isolated.

I. INTRODUCTION

Reinforcement learning (RL) has garnered a growing
amount of interest in recent years, due to its excellent
empirical performance in a wide variety of applications,
such as Go [44], motor control [25], chip design [38],
and so on. There is a growing interest to applying
RL techniques such as Q-learning and policy gradient
methods to the setting with multiple agents, i.e., multi-
agent reinforcement learning (MARL) problems.
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While it seems appealing to apply single-agent RL
methods to each agent in a multi-agent system in
a straightforward fashion, this approach neglects non-
stationarity of the environment due to the presence of
other agents, and thus lacks theoretical support in gen-
eral. The complication has given rise to the paradigm of
centralized training with decentralized execution (CTDE)
[29], where the policies are first obtained through training
with a centralized controller with access to all agents’
observations and then disseminated to each agent for
execution. However, this approach falls short of adapting
to changes in the environment without retraining and
raises privacy concerns as well. It is hence of great inter-
est to understand and design more versatile independent
learning algorithms that only depend on the agents’
local observations, require minimal coordination between
agents, and provably converge.

In this work, we focus on independent learning algo-
rithms for potential games [40], an important class of
games that admit a potential function to capture the
differences in each agent’s utility function induced by
unilateral deviations. In particular, the analysis estab-
lished in this work is tailored to potential games in their
most basic setting, i.e., static potential games, an impor-
tant stepping stone to the more general Markov setting.
Despite its simple formulation and decades-long research,
however, the computational underpinnings of such prob-
lems are still far from mature, especially when it comes
to finding the Nash equilibrium (NE) of potential games
in a decentralized manner. While several recent works
have made significant breakthroughs by achieving loga-
rithmic regrets with independent learning dynamics [12],
[2], these results only guarantee convergence to coarse
correlated equilibrium or correlated equilibrium, which
are arguably much weaker equilibrium concepts than NE
and hence do not lead to an approximate NE solution.

A. Our contributions

We seek to find the quantal response equilibrium
(QRE) [34], the prototypical extension of NE for games
with bounded rationality [43], where each agent runs
independent natural policy gradient (NPG) methods [22]
involving symmetric, decentralized, and multiplicative
updates according to its own payoff. This amounts to
solving a potential game with entropy regularization,
whose algorithmic role has been studied in the setting
of single-agent RL [36], [7] as well as two-player zero-
sum games [8], but yet to be explored in more general
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settings. Our contributions are summarized below.

o Finite-time global convergence of indepen-
dent entropy-regularized NPG methods. We
show that independent entropy-regularized NPG
methods provably converge to the QRE of a poten-
tial game, and it takes no more than

o ( min{\/ﬁ7 (bmax}(bmax )

22

iterations to find an e-optimal QRE (to be defined
precisely). Here, N stands for the number of agents,
7 > 0 the entropy regularization parameter, and
®hax > 0 the maximum value of the potential func-
tion.

o Finite-time global convergence to e-NE with-
out isolation assumption. By setting the entropy
regularization parameter 7 sufficiently small, the
result translates to finding an approximate NE with
non-asymptotic convergence guarantees, thereby ob-
viating the additional assumption in prior literature
[16], [42], [52] that requires the set of stationary
policies to be isolated. Specifically, it takes no more

than
6 ( min{\/]v, (pmax}(bmax )

4

iterations to find an eNE for the unregularized
potential game, where O hides logarithmic depen-
dencies.

These rates give the first set of iteration complexities—to
the best of our knowledge—that are independent of the
size of the action spaces, up to logarithmic factors. In
addition, the iteration complexities exhibit a sublinear
dependency with the number of agents, outperforming
existing NE-finding algorithms whose complexities de-
pend at least linearly with the number of agents. Even
more appealingly, when interpreting our convergence
rates for the important special case of identical-interest
games with bounded payoffs [39], they further become
independent with the number of agents, leading to the
first method that achieves a dimension-free convergence
rate of O (1/€*) to find an eNE.

B. Related works

We review some related works, focusing on the the-
oretical advances on policy gradient methods and inde-
pendent learning in games.

a) Global convergence of policy gradient methods:
Only recently theoretical understandings on the global
convergence of policy gradient (PG) methods have
emerged, mostly in the single-agent setting, including
but not limited to [15], [1], [36], [7], [5], [28], [26], [35],
[46], [48]. In addition, several works developed finite-
time guarantees of independent PG methods for zero-
sum two-player Markov games [13], [47], [54], [8] in the
competitive MARL setting. A recent line work has been

successful in extending PG methods with direct param-
eterization to Markov potential games [53], [24], [14],
[31]. In addition, [52] studies the finite-time convergence
rate of PG methods with softmax parameterization for
Markov potential games. Given that NPG methods often
have better finite-time convergence rates than vanilla PG
methods in the single-agent setting, our work focuses on
the understanding of NPG methods for potential games.

b) Fast convergence of natural policy gradient meth-
ods with entropy regqularization: Entropy regularization
as a de facto trick to promote exploration in RL [18] and
has been shown to provably accelerate convergence of
policy gradient methods for single-agent RL [36], [7], [8],
[51], [23]. In particular, combining entropy regularization
with NPG methods leads to fast linear convergence at a
desirable dimension-free rate [7], [51], [23], which contin-
ues to hold in two-player zero-sum games [8]. Extending
such results to potential games, however, is non-trivial,
due to the non-uniqueness of NE even with regulariza-
tion. [16], [42], [52] established asymptotic convergence of
independent NPG methods for Markov potential games
with an additional assumption that requires the set
of stationary policies to be isolated. [19] demonstrated
asymptotic convergence of NPG with diminishing step
sizes for potential games in the bandit feedback setting.
In addition, [52] proposed to use a log-barrier regulariza-
tion along with NPG to sidestep the isolation assumption
and achieved the same iteration complexity as that of
PG methods with direct parameterization. In contrast,
we consider NPG with entropy regularization, which
achieves a convergence rate that has better dependencies
with the size of the action spaces and the number of
agents.

¢) Independent learning in general-sum games:
Considerable progress has been made towards under-
standing independent learning dynamics in general-sum
games [12], [2] and general-sum Markov games (also
known as stochastic games) [45], [21], [30] by establishing
non-asymptotic convergence to correlated equilibrium
and coarse correlated equilibrium. However, such suc-
cesses do not directly extend to potential games where
NE is of interest. Specialized analysis for potential games
is thus needed as finding approximate NE in a two-player
game can be PPAD-hard even with full information
[11]. Notably, there have been attempts to establish
asymptotic convergence with independent learning dy-
namics [32], [33], [49] for weakly acyclic games [50], which
includes potential games as a special case.

C. Notation and paper organization

We use A(A) to denote the probability simplex over
the set A. For a vector a € AN, we use a; € Aand a_; €
AN=1 to denote the entry with index i and all the rest
entries as a vector, respectively. The application of scalar
functions such as exp and log to vectors are defined in an
entry-wise fashion. Let 1 be the all-one vector, and [N] =
{1,...,N}. Given two distributions 71 and 7] over A, the
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Kullback-Leibler (KL) divergence from 7} to mp is de-
fined by KL(m1 || 7}) =3 cam1(a)(logm (a) —log ] (a)).
Note that KL divergence is additive for product distri-
butions in the sense that KL(7 || 7') = > ie[N] KL (m; || 7))
for r=m x - xmny €AAN and 7' =7] x - x 7Ty €
A(A)N. We denote Jeffrey divergence [20] by J(m,7’) =
KL(m ||7") + KL(7" || ), which is the symmetric version
of the KL divergence.

The rest of this paper is organized as follows. Section
II presents the backgrounds of the potential game setup.
Section III introduces independent NPG methods and
presents the finite-time global convergence guarantees.
Detailed proof and numerical results can be found in [6].
Finally, we conclude in Section IV.

II. POTENTIAL GAMES WITH ENTROPY
REGULARIZATION

In this section, we introduce the basics of potential
games, as well as the incorporation of entropy regular-
ization into its formulation.

A. Potential games

A strategic game G = {N, A, {u; };cn]} consists of N
agents each with an individual utility or payoff function
u; : AN —[0,1], i € [N], where A is, without loss of
generality, a finite action space shared by all agents. The
policy or mixed strategy of agent ¢ is denoted by m; €
A(A), which is a distribution over the action space A. By
an abuse of notation, let u;(7) denote agent i’s expected
utility function under the joint policy 7 = 7 X -+ X
N € A(AY, ie., ui(m) = Eq,or, vien) [ui(a)], where
we denote the action profile (a1,---,an) of all agents by
a € AN. We shall often instead write a = (a;,a_;) where
a_; = {a;}jz; collects the actions of all agents but i
similarly, we write 7 = (m;,7_;), where m_; = {7}
collects the policies of all agents but .

The game G is said to be a potential game if there
exists a potential function ® : AN — R such that

wi(ai, a—;) —ui(al, a—;) = ®(a;, a—;) — ®(al, a_;)

for any a;,a} € A, a_; € AN~ and i € [N]. We assume
that

0< CI)(a,) < Prax, Va € ANa (1)

where ®,,x upper bounds the potential function. An
important special case of the potential game is when all
the agents share the same utility function, known as the
identical-interest game [39]. It is straightforward to see
that for an identical-interest game, we can set ® = u; for
all 7 € [N], and therefore @, =1 due to the fact that
the individual payoff is bounded in [0, 1].
By linearity of expectation, we have

wi(mi, i) — wi(mp, moi) = B(mi, moy) — B(f, T_4),
where, again with slight abuse of notation, we denote
D () = Bqur [0(a)] = By, wic ) [0(a)],
for any 7,7l € A(A), m—; € A(A)N " and i € [N].

a) Nash equilibrium: We now introduce the impor-
tant notion of Nash equilibrium in a potential game.
Definition 2.1 (Nash equilibrium): A joint policy 7* is
called a Nash equilibrium (NE) when it holds that

vr! € A(A), Vi € [N].

In other words, every agent cannot improve its utility
function by deviating from the current policy. It is known
that there exists at least one NE in a strategic game with
finite agents and actions [41]. It follows immediately that
the policy or strategy profile maximizing ® in a potential
game is an NE.

wi (i, m—i) > u(mh, m—4),

b) Marginalized utility: Before continuing, let us
introduce an important quantity called the marginalized
utility 7 : A — R:

s

ri(a) =Ba_j~r_; [ui(a, a—i)], (2)
which can be viewed as the “single-agent” payoff or
reward function when the policies of other agents are
fixed. It is immediate to see that the utility function u;
can be written as

ui(m) = Eanr [ui(@)] = Eqnr, [r] (a)] = (r i)

Here and throughout this paper, we shall often abuse the

notation to treat m, m; and r; ~ as vectors.

B. Entropy-regularized potential games

The quantal response equilibrium (QRE) is proposed
by McKelvey and Palfrey [34] as a seminal extension to
the Nash equilibrium, which enables players to combat
randomness in payoffs. A QRE or logit equilibrium 7% =
Trq X XTF  necessitates every agent to maximize its
own utility function with entropy regularization [37], i.e.,

“LT(W:,Z" 7‘—:,—1’) 2 ui,‘l'(wéﬂ W:,—i)v

vl € A(A),

where the entropy-regularized individual utility function
is given by

Ui () = ui(m) +7H(7;).
Here, m = m X --- x wny, 7 > 0 is the regularization
parameter, and H(m;) = — >, c 4 mi(a|s)logm;(als) is the

Shannon entropy of the policy m employed by agent 4.
By introducing the regularized potential function

O () =P(m)+7H(7) :=D(7)+7 Z H(m;),
1€[N]
it is easy to verify
O, (7l m4).

Wi 7 (i, T—i) = Wi (5, T—i) = @ (0, ™) —

for any 7;, 7, € A(A),m—; € A(A)N ! and i € [N], as long
as the unregularized game is a potential game.

2835

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 03,2023 at 02:23:03 UTC from IEEE Xplore. Restrictions apply.



a) Fized-point characterization of QRE: An equiva-
lent interpretation of QRE is to let each agent assign the
probability mass in its policy according to every action’s
utility in a bounded rationality fashion [43]:

77 ;(a) ocexp (r?: (a)/T) , Yie[N], (3)

where ;7 is the marginalized utility of 7% defined in
(2). Note that the above relation defines a fixed-point
equation of 7.

III. FINITE-TIME GLOBAL CONVERGENCE OF
INDEPENDENT NATURAL PoOLICY GRADIENT
METHODS

A popular approach in the game theory literature
to find an NE of a potential game is for each agent
to switch to the best or better response policy, one
at a time, and is generally referred to as best-response
dynamics. This approach converges to an NE in finite
iterations [40] and underlies the algorithm design of a
considerable number of works on, e.g., cut games [10],
congestion games [9], weakly acyclic games [49], and,
more recently, their extensions in the Markovian setting
[45], [4]. It is noted, however, that this approach isolates
itself from the independent learning paradigm as the
update sequence needs to be scheduled in a centralized
manner that is not often possible. Therefore, it is greatly
desirable to design independent update rules, where
each agent updates simultaneously without observing the
payoffs of other agents, that achieves faster convergence.
In this section, we answer this call by developing the
independent natural policy gradient method to solve
(entropy-regularized) potential games with finite-time
global convergence guarantees.

A. Independent natural policy gradient method

In policy optimization, it is common practice to pa-
rameterize the policy class in a way that obviates the
need for tackling probability simplex constraint. We
consider the standard softmax parameterization, where
every agent ¢ generates its own policy my, parameterized
with 6; € R4 through the softmax transform:

0.
o, () = < OO
2acaexp(0i(a))
Every agent ¢ evaluates and updates its policy indepen-

dently using the natural policy gradient (NPG) method
[22]:

0; + 0; +n(FO) Vg u; - (1), (4)

where (F%)T denotes the Moore-Penrose pseudo-inverse
of the Fisher information matrix F?% , which is defined as

Fli = ]anrei(_) [(V@i log g, (a))(Ve, logm, (a))T ,

and n > 0 is the learning rate. Moreover, the gradient
Vo, ui,~(m) can be expressed as

Vo, uir(m) =717 —Tlogm; —71.

It turns out that with some algebra, the NPG update
rule (4) can be equivalently rewritten with respect to
the policies in use [7]:

t+1 t - t
@) s (@) exp(r (@), (5)
where ’/Tl(t) denotes agent 4’s policy in the t-th iteration,
and rgt) =77 ® denotes the marginalized utility of 7(*)

(cf. (2)). The complete procedure is summarized in Al-
gorithm 1.

Algorithm 1: Independent NPG for Entropy-
regularized Potential Games

1 Input: Regularization parameter 7 > 0, step size
for policy update n > 0.

2 Initialization: Set ’/T,EO) as uniform policy for all
i€ [N].

3 for t=0,1,--- do

4 for all agent i € [N] do in parallel

(t)

i

5 Observe agent i’s marginalized utility r
6 Perform policy update

7" (@) el (@) exp () (a)).

To better understand the update rule (5) as well as
~ . . *(t)
prepare for follow-up analysis, we introduce m; to
denote agent i’s best-response policy in the t-th iteration,
which is the policy that obeys
*(t)

i (m; wgf) = m@xuiﬁ(ﬁg, wgf) (6)

k3

It is easily seen that
71 (@) o< exp(r( (a)/7). (7)

Therefore, the updated policy in (5) can be regarded as
a multiplicative combination of the current policy F,Et)
and the best-response policy W:(t), where the weight is
controlled by the learning rate 7. Note that the un-
regularized counterpart of the method is equivalent to
Multiplicative Weights Update method (MWU) [27], [3]
or Hedge [17].

B. Finite-time global convergence

We are now ready to present our main theorem con-
cerning the finite-time global convergence of independent
NPG for solving entropy-regularized potential games. We
introduce

NE-gap(7) = [wi (g, m—i) = wi(mi, m—3)]

max
i€[N],m,eA(A)
and

QRE-gap, (7) = (i 7 (7}, i) — wi 7 (i, 7))

max
i€[N],m €A(A)

to characterize how close the joint policy 7 is to an
equilibrium. A joint policy 7 is said to be an eQRE
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(resp. e-NE) when QRE-gap(7) < € (resp. NE-gap(7) <¢).
For notational simplicity, we denote

o) = q, (r®)),

and NE-gap() := NE-gap(7 ().

Our main theorem is as follows, whose proof is deferred
to [6].

Theorem 3.1: Suppose that the learning rate 7 satis-
fles n < 2(min{\/ﬁ,12<1>max}+r)’ then for independent NPG
updates (5), it holds that

1 T
72 GRE-gap”
t=1

QRE-gap!” = QRE-gap, (")),

2

< (7‘ Hlogw(o) —log7*(©) HOO + \/QUT(@(TT) - <I>$°))).

— T
Theorem 3.1 suggests that the average iterate of inde-
pendent NPG converges to an e-QRE at a sublinear rate
when we initialize it via uniform policies, as indicated in
the following corollary. The proof can be found in [6].
Corollary 3.2: Assume the independent NPG method
is initialized with uniform policies at all agents. Setting
the learning rate n = 1/(2(min{v/N,2® ., } + 7)) and
7= 0(1), then independent NPG updates ensure that
% Zthl QRE—gap(Tt) < e with at most

T—0 (mm{\/ﬁ, (I)max}q)max>

7262

iterations.

a) Finding approzimate NFEs: It is possible to lever-
age the entropy-regularized potential game to find an
approximate NE by setting the regularization parameter
sufficiently small. Note that

NE-gap(m) = ax [wi(mfym—i) = wi(mi, )]

m
i€[N],m[eA(A)

< max

A
Wi, (T, T—i) — WU 7 (T4, T—4
_ie[N],ngeA(.A)[ il ) ( )]

+ —TH(m}) + TH(m
ie[N]Iﬁlr?gA(A)[ TH(m) + ()]

< QRE-gap,. (7) + Tlog | Al.

Therefore, by setting the entropy regularization at 7=
m, Wlth at most

~ (mln{ \/N; (I)max}q)max )

T=0
o

iterations, we can ensure &3 [ NE-gap(®) < e.

b) Comparisons with prior art: Importantly, our
iteration complexities do not depend on the size of the
action space (up to logarithmic factors), which is in
sharp contrast to existing analyses of potential games
using other policy gradient approaches, such as direct
PG [53], [24], [14], [31] and NPG with log-barrier regu-
larization [52], where the iteration complexity scales as
O (N\A|<I>max/e2) to find an e-approximate NE. In com-

parison, while our rate O (min{\/ﬁ, (I)max}q)max/€4) is

worse in terms of €, it is almost independent of the
size |A| of the action space, as well as exhibits only
a sublinear dependency with the number of agents IV,
thus can be beneficial for problems with large action
spaces and a large number of agents. Furthermore, for
the special case of identical-interest games [39] where
P,ax = 1, the convergence rate of our method simplifies

to .
0(&)’

which leads to the first method that achieves a
dimension-free iteration complexity (up to a logarithmic
factor) for finding an e-NE without imposing any isola-
tion assumptions.

IV. CONCLUSIONS AND DISCUSSIONS

This paper studies independent NPG methods for
entropy-regularized potential games and develops a sub-
linear rate of convergence to quantum response equilib-
rium, which is independent of the size of the action spaces
up to logarithmic factors and grows only sublinearly with
respect to the number of agents. In addition, the method
achieves the first dimension-free convergence rate for the
important special case of identical-interest games, where
the rate is independent of both the size of the action
space and the number of agents. The approach can also
be used as a smoothing technique to find Nash equilibria
by setting the regularization parameter sufficiently small,
without imposing the isolation assumption as often re-
quired in prior works. This work leaves open a number
of interesting questions:

o Can we tighten the convergence rate in terms of the
dependencies on €7

e Can we extend the analysis to establish finite-time
global convergence for Markov potential games?

We leave the answers to future work.

REFERENCES

[1] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan.
Optimality and approximation with policy gradient methods
in Markov decision processes. In Conference on Learning
Theory, pages 64-66. PMLR, 2020.

[2] I. Anagnostides, C. Daskalakis, G. Farina, M. Fishelson,
N. Golowich, and T. Sandholm. Near-optimal no-regret learn-
ing for correlated equilibria in multi-player general-sum games.
arXiv preprint arXiv:2111.06008, 2021.

[3] S. Arora, E. Hazan, and S. Kale. The multiplicative weights
update method: a meta-algorithm and applications. Theory
of Computing, 8(1):121-164, 2012.

[4] G. Arslan and S. Yiiksel. Decentralized g-learning for stochas-
tic teams and games. I[IEEE Transactions on Automatic
Control, 62(4):1545-1558, 2016.

(5] J. Bhandari and D. Russo. Global optimality guarantees for
policy gradient methods. arXiv preprint arXiv:1906.01786,
2019.

6] S. Cen, F. Chen, and Y. Chi. Independent natural pol-
icy gradient methods for potential games: Finite-time global
convergence with entropy regularization. arXiv preprint
arXiv:2204.05466, 2022.

[7] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi. Fast global
convergence of natural policy gradient methods with entropy
regularization. Operations Research, 2021.

2837

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 03,2023 at 02:23:03 UTC from IEEE Xplore. Restrictions apply.



(8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

19]

[20]
(21]

(22]

23]

[24]

[25]

[26]

27]

(28]

29]

(30]

(31]

S. Cen, Y. Wei, and Y. Chi. Fast policy extragradient methods
for competitive games with entropy regularization. Advances
in Neural Information Processing Systems, 34, 2021.

S. Chien and A. Sinclair. Convergence to approximate nash
equilibria in congestion games. Games and Economic Behav-
ior, 71(2):315-327, 2011.

G. Christodoulou, V. S. Mirrokni, and A. Sidiropoulos. Con-
vergence and approximation in potential games. In Annual
Symposium on Theoretical Aspects of Computer Science, pages
349-360. Springer, 2006.

C. Daskalakis. On the complexity of approximating a Nash
equilibrium. ACM Transactions on Algorithms (TALG),
9(3):1-35, 2013.

C. Daskalakis, M. Fishelson, and N. Golowich. Near-optimal
no-regret learning in general games. Advances in Neural
Information Processing Systems, 34, 2021.

C. Daskalakis, D. J. Foster, and N. Golowich. Independent
policy gradient methods for competitive reinforcement learn-
ing. In Advances in Neural Information Processing Systems,
volume 33, pages 5527-5540, 2020.

D. Ding, C.-Y. Wei, K. Zhang, and M. R. Jovanovié. Indepen-
dent policy gradient for large-scale markov potential games:
Sharper rates, function approximation, and game-agnostic
convergence. arXiv preprint arXiv:2202.04129, 2022.

M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global con-
vergence of policy gradient methods for the linear quadratic
regulator. In International Conference on Machine Learning,
pages 1467-1476, 2018.

R. Fox, S. McAleer, W. Overman, and I. Panageas. Inde-
pendent natural policy gradient always converges in Markov
potential games. arXiv preprint arXiv:2110.10614, 2021.

Y. Freund and R. E. Schapire. Adaptive game playing using
multiplicative weights. Games and Economic Behavior, 29(1-
2):79-103, 1999.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learn-
ing with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

A. Heliou, J. Cohen, and P. Mertikopoulos. Learning with
bandit feedback in potential games. Advances in Neural
Information Processing Systems, 30, 2017.

H. Jeffreys. The theory of probability. OUP Oxford, 1998.

C. Jin, Q. Liu, Y. Wang, and T. Yu. V-learning-a simple,
efficient, decentralized algorithm for multiagent RL. arXiv
preprint arXiv:2110.14555, 2021.

S. M. Kakade. A natural policy gradient. Advances in neural
information processing systems, 14, 2001.

G. Lan. Policy mirror descent for reinforcement learning:
Linear convergence, new sampling complexity, and generalized
problem classes. arXiv preprint arXiv:2102.00135, 2021.

S. Leonardos, W. Overman, I. Panageas, and G. Piliouras.
Global convergence of multi-agent policy gradient in Markov
potential games. arXiv preprint arXiv:2106.01969, 2021.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end
training of deep visuomotor policies. The Journal of Machine
Learning Research, 17(1):1334-1373, 2016.

G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen. Softmax policy
gradient methods can take exponential time to converge. arXiv
preprint arXiv:2102.11270, 2021.

N. Littlestone and M. K. Warmuth. The weighted majority
algorithm.  Information and computation, 108(2):212-261,
1994.

Y. Liu, K. Zhang, T. Basar, and W. Yin. An improved
analysis of (variance-reduced) policy gradient and natural
policy gradient methods. Advances in Neural Information
Processing Systems, 33, 2020.

R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and
I. Mordatch. Multi-agent actor-critic for mixed cooperative-
competitive environments. Advances in neural information
processing systems, 30, 2017.

W. Mao and T. Basar. Provably efficient reinforcement
learning in decentralized general-sum markov games. Dynamic
Games and Applications, pages 1-22, 2022.

W. Mao, L. Yang, K. Zhang, and T. Basar. On improving
model-free algorithms for decentralized multi-agent reinforce-

(32]

(33]

(34]

(35]

(36]

(37)

(38]

39]

[40]
[41]

42]

[43]

[44]

(45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

2838

ment learning. In International Conference on Machine
Learning, pages 15007-15049. PMLR, 2022.

J. R. Marden, G. Arslan, and J. S. Shamma. Regret based
dynamics: convergence in weakly acyclic games. In Proceed-
ings of the 6th international joint conference on Autonomous
agents and multiagent systems, pages 1-8, 2007.

J. R. Marden, H. P. Young, G. Arslan, and J. S. Shamma.
Payoff-based dynamics for multiplayer weakly acyclic games.
SIAM Journal on Control and Optimization, 48(1):373-396,
2009.

R. D. McKelvey and T. R. Palfrey. Quantal response equi-
libria for normal form games. Games and economic behavior,
10(1):6-38, 1995.

J. Mei, C. Xiao, B. Dai, L. Li, C. Szepesvéri, and D. Schuur-
mans. Escaping the gravitational pull of softmax. Advances
in Neural Information Processing Systems, 33, 2020.

J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans. On
the global convergence rates of softmax policy gradient meth-
ods. In International Conference on Machine Learning, pages
6820-6829. PMLR, 2020.

P. Mertikopoulos and W. H. Sandholm. Learning in games via
reinforcement and regularization. Mathematics of Operations
Research, 41(4):1297-1324, 2016.

A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori,
S. Wang, Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi, et al. A
graph placement methodology for fast chip design. Nature,
594(7862):207-212, 2021.

D. Monderer and L. S. Shapley. Fictitious play property for
games with identical interests. Journal of economic theory,
68(1):258-265, 1996.

D. Monderer and L. S. Shapley. Potential games. Games and
economic behavior, 14(1):124-143, 1996.

J. Nash. Non-cooperative games. Annals of mathematics,
pages 286-295, 1951.

G. Palaiopanos, I. Panageas, and G. Piliouras. Multiplicative
weights update with constant step-size in congestion games:
Convergence, limit cycles and chaos. Advances in Neural
Information Processing Systems, 30, 2017.

R. Selten. Evolution, learning and economic behavior. 1989.
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneer-
shelvam, M. Lanctot, et al. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484—
489, 2016.

Z. Song, S. Mei, and Y. Bai. When can we learn general-
sum Markov games with a large number of players sample-
efficiently? arXiv preprint arXiv:2110.04184, 2021.

L. Wang, Q. Cai, Z. Yang, and Z. Wang. Neural policy gradient
methods: Global optimality and rates of convergence. arXiv
preprint arXiv:1909.01150, 2019.

C.-Y. Wei, C.-W. Lee, M. Zhang, and H. Luo. Last-iterate con-
vergence of decentralized optimistic gradient descent/ascent
in infinite-horizon competitive Markov games. arXiv preprint
arXi:2102.04540, 2021.

L. Xiao. On the convergence rates of policy gradient methods.
arXiv preprint arXiv:2201.07443, 2022.

H. P. Young. Strategic learning and its limits. OUP Oxford,
2004.

H. P. Young. Individual strategy and social structure. In
Individual Strategy and Social Structure. Princeton University
Press, 2020.

W. Zhan, S. Cen, B. Huang, Y. Chen, J. D. Lee, and Y. Chi.
Policy mirror descent for regularized reinforcement learning: A
generalized framework with linear convergence. arXiv preprint
arXiv:2105.11066, 2021.

R. Zhang, J. Mei, B. Dai, D. Schuurmans, and N. Li. On
the effect of log-barrier regularization in decentralized soft-
max gradient play in multiagent systems. arXiv preprint
arXiv:2202.00872, 2022.

R. Zhang, Z. Ren, and N. Li. Gradient play in stochastic
games: stationary points, convergence, and sample complexity.
arXiv preprint arXiv:2106.00198, 2021.

Y. Zhao, Y. Tian, J. D. Lee, and S. S. Du. Provably effi-
cient policy gradient methods for two-player zero-sum Markov
games. arXiv preprint arXiv:2102.08903, 2021.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 03,2023 at 02:23:03 UTC from IEEE Xplore. Restrictions apply.



