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Abstract—Advancements in the ability to collect, store, and
access astronomical data have made a major impact on astron-
omy research in the past two decades. These changes reinforced
the need for methodology that can analyze large and complex
astronomical databases. One of the common tools used to
approach that task is machine learning (ML), and specifically
artificial neural networks (ANN). One of the primary downsides
of ANNs is that they follow complex and non-intuitive data-driven
rules, making it virtually impossible to formally describe the
way they analyze the data. Here we analyze possible systematic
biases that can affect the results observed when applying ANNs
to photometry data. The results show that ANNs can lead to
systematic biases in the annotation of the data. These biases are
difficult to detect and profile, and can behave in a non-intuitive
manner. Therefore, catalogs and data products annotated by
neural networks should be used with extra caution.

Index Terms—ML bias, artificial neural networks, photometry,
galaxy morphology, sky surveys

I. INTRODUCTION

The information era has made a revolutionary impact on
astronomy research. For instance, autonomous digital sky
surveys have enabled the collection of very large astronomical
databases, enabling unprecedented discovery power [1], and
that trend is bound to continue [2].

One of the primary outcomes of the data collected by
digital sky surveys is photometry. Photometry data for each
astronomical object includes measurements such as its color,
brightness, size, and more.

Due to the large amounts of data collected by digital
sky surveys, manual analysis becomes impractical. Given the
complexity and high-dimensionality of the data, one of the
common ways to approach the analysis of astronomical data
is ML. By using existing ML algorithms, researchers can
annotate merely a small part of the data, and apply the
algorithms to analyze large datasets by allowing the ML
algorithm to extract complex rules driven by the data it was
trained with. The purpose of this study is to test possible biases
when using neural network analysis of photometry data.

II. DATA

We use photometry data from the Sloan Digital Sky Survey
(SDSS) for objects that were identified as galaxies. These
galaxies were separated into spiral and elliptical galaxies [3].
The SDSS records photometric measurements for the u, g,
r , i, and z bands. Color features can be obtained by taking the
difference of values in adjacent bands (subtracting the longer
wavelength from the shorter one), such as g −  r  and
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r  −  i. We compute these color features for the exponential,
de Vaucouleurs, and Petrosian profiles to use as inputs for our
neural networks. In addition, we include the r-band magnitude
and radius for each profile, as well as the radii containing 50%
and 90% of the Petrosian flux. Our SDSS data correspond to
entries in the Galaxy view of data release 17 with the clean
photometry flag set. We use 247,427 galaxies, of which
126,110 are labeled as elliptical and 121,317 as spiral.

III. METHODOLOGY

Assuming that the Universe is isotropic, the distribution of
spiral and elliptical galaxies is expected to be the same
regardless of the direction of observation. Here we test whether
uneven distribution of the training set in the sky can lead
to a bias, reflected by differences in the distribution of the
network’s elliptical and spiral annotations.

The neural network architecture is determined by comparing
models with one to four layers, with each layer having either
16, 32, 48, or 64 artificial neurons, creating 340 different
candidate architectures with varying width and depth. Each
layer uses rectified linear unit (ReLU) activation function and
is strongly regularized with dropout at a rate of 20% in the
first layer, and 50% in subsequent hidden layers. At the end of
every model is a 2-neuron softmax output layer, corresponding
to the two morphological classes.

After selecting a network architecture, we analyze whether
the distribution of the training samples in the sky affects the
accuracy and distribution of predicted class labels. The dataset
is divided into three regions of the sky - the constellations
Virgo, Hercules, and Cetus. Neural networks are trained and
tested with data from different combinations of these regions.

The number of galaxies of each morphological type within
the selected areas is described in Table I. To avoid over-
representing any particular region, we select 6,000 galaxies
of each type within each area.

TABLE I: Breakdown of Samples by Region and Class

Virgo Hercules Cetus
Elliptical 8,527          7,463 6,759

Spiral 8,295 6,675 7,016
Total          16,822        14,138        13,775

The predictions of the trained models are compared using
the binomial test with the null hypothesis that a change in
training set location should not significantly alter the distribu-
tion of the model’s annotations. That assumption is based on
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the fact that the data are taken from the same survey and that
the annotations are taken from the same catalog, and since the
Universe is isotropic the location of the galaxies in the training
set should not impact the annotations.

IV. RESULTS

The network architecture selection process resulted in a
four-layer model with 64, 48, 32, and 32 artificial neurons,
respectively, containing a total of 7, 154 trainable parameters.
We chose to use 2,000 samples (1,000 of each morphological
class) for training, allowing us to reserve a total of 10,000
samples per region for model evaluation and comparison.

To determine if the area of the sky that the training data
are selected from induces bias in this model, we train neural
networks with the same architecture from scratch using dif-
ferent combinations of training data from each constellation.
For example, one model is trained with data taken only
from the area of Hercules (Table II), while another is trained
with elliptical galaxies from Virgo and spiral galaxies from
Hercules (Table III), and so on. The resulting nine models
are then evaluated by predicting class labels for the reserved
test set from each region. These models all obtained a test-set
accuracy between 96% and 99%.

TABLE II: Hercules Test Set Confusion Matrix by the Model
Trained with Hercules Ellipticals and Spirals

Elliptical Spiral
Elliptical 4929            71
Spiral                147           4853

TABLE III: Hercules Test Set Confusion Matrix by the Model
Trained with Virgo Ellipticals and Hercules Spirals

Elliptical Spiral
Elliptical 4798           202
Spiral                 48            4952

Table IV lists the two-tailed p-values from applying the
binomial test to each pair of homogeneous annotations (i.e.
when the training set region is the same as the test set
region) and non-homogeneous annotations for the same test
set. Statistically significant values (p <  0.05) are highlighted
in bold. Although most of these values suggest an insignificant
variance, others suggest that some parts of the Universe have

a different distribution of elliptical and spiral galaxies. These
differences are driven by a bias in the neural network, and do
not reflect the real sky. However, a researcher using a catalog
that was annotated by using a neural network might not be
aware of such bias, as the bias is unexpected and not intuitive.

V. CONCLUSION

The information era has changed astronomy research by
enabling data-driven research enabled by the analysis of very
large astronomical databases. Instruments generating vast as-
tronomical pipelines reinforce the need for automatic methods
that can annotate the data.

While neural networks are very common in modern astron-
omy, they should also be analyzed for potential downsides.
Here we analyze the potential bias driven by the source of
the training samples. Experimental results show that despite
using a training set from the same survey, the distribution of
the locations of the training samples in the sky affects the
annotations. To notice these subtle yet statistically significant
biases, the user of the data product needs to be familiar with
the specifics of how the model was trained. Therefore, a user of
a data product annotated using a neural network might not be
aware of such bias, and might therefore reach conclusions that
are driven by the bias rather than the real sky.

Biases in data collected by digital sky surveys is a known
characteristic of these powerful instruments. For instance,
extinction and limiting magnitude are not constant in all
directions. The use of neural networks adds an additional bias
that is not yet fully known, and can make such biases more
complex and more difficult to identify and quantify.

While neural networks provide a useful solution to the
annotation of very large astronomical databases, they also have
several downsides. Since biases are difficult to identify and
profile, data products prepared using neural networks alone
should be used with caution.
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TABLE IV: SDSS Binomial Test P-Values

Training Region
Ellipticals Spirals

Virgo
Elliptical Spiral

Evaluation Region
Hercules

Elliptical Spiral
Cetus

Elliptical Spiral

Virgo
Virgo
Virgo
Hercules
Hercules
Hercules
Cetus
Cetus
Cetus

Virgo
Hercules
Cetus
Virgo
Hercules
Cetus
Virgo
Hercules
Cetus

—
7.11 · 10−1

4.01 · 10−1

6.89 · 10−1

1.8 · 10−1

2.71 · 10−1

7.79 · 10−1

4.18 · 10−1

6.67 · 10−1

—
4.96 · 10−1

2.42 · 10−1

7.34 · 10−1

8.18 · 10−2

1.04 ·  1 0 − 2

7.19 · 10−1

4.71 · 10−1

1.56 · 10−1

9.1 · 10−2

8.79 ·  1 0 − 3

4.29 · 10−1

2.5 · 10−1

—
6.53 · 10−1

3.94 ·  1 0 − 2

7.24 ·  1 0 − 4

5.81 ·  1 0 − 4

1.93 · 10−1

4.87 ·  1 0 − 2

6.89 · 10−1

2.38 · 10−1

—
3.32 · 10−1

1.8 · 10−1

6.14 · 10−2

2.99 ·  1 0 − 2

5.75 · 10−1

9.52 · 10−1

1.87 · 10−1

3.9 · 10−1

1.19 · 10−1

2.0 · 10−1

5.22 · 10−1

8.49 · 10−1

—

3.03 · 10−1

6.97 · 10−1

2.78 ·  1 0 − 2

3.95 · 10−1

3.73 ·  1 0 − 3

1.37 ·  1 0 − 3

3.42 · 10−1

4.9 · 10−1

—
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