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Abstract

Generative networks have experienced great empirical successes in distribution
learning. Many existing experiments have demonstrated that generative networks
can generate high-dimensional complex data from a low-dimensional easy-to-
sample distribution. However, this phenomenon can not be justified by existing
theories. The widely held manifold hypothesis speculates that real-world data sets,
such as natural images and signals, exhibit low-dimensional geometric structures.
In this paper, we take such low-dimensional data structures into consideration by
assuming that data distributions are supported on a low-dimensional manifold. We
prove statistical guarantees of generative networks under the Wasserstein-1 loss.
We show that the Wasserstein-1 loss converges to zero at a fast rate depending on
the intrinsic dimension instead of the ambient data dimension. Our theory leverages
the low-dimensional geometric structures in data sets and justifies the practical
power of generative networks. We require no smoothness assumptions on the data
distribution which is desirable in practice.

1 Introduction

Deep generative models, such as generative adversarial networks (GANs) [Goodfellow et al., 2014,
Arjovsky et al., 2017] and variational autoencoder [Kingma and Welling, 2013, Mohamed and
Wierstra, 2014], utilize neural networks to generate new samples which follow the same distribution as
the training data. They have been successful in many applications including producing photorealistic
images, improving astronomical images, and modding video games [Reed et al., 2016, Ledig et al.,
2017, Schawinski et al., 2017, Brock et al., 2018, Volz et al., 2018, Radford et al., 2015, Salimans
et al., 2016].

To estimate a data distribution (), generative models solve the following optimization problem

ming,eg discrepancy((gs)sp, Q), (1)
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where p is an easy-to-sample distribution, G is a class of generating functions, discrepancy is some
distance function between distributions, and (gg)3p denotes the pushforward measure of p under
go- In particular, when we obtain a sample z from p, we let gy(z) be the generated sample, whose
distribution follows (ga)yp.

There are many choices of the discrepancy function in literature among which Wasserstein distance
attracts much attention. The so-called Wasserstein generative models [Arjovsky et al., 2017] consider
the Wasserstein-1 distance defined as

Wi(pv) = sup  Exu[f(X)] = Ey < [f(Y)], 2
feLipy (RP)

where y, v are two distributions and Lip, (R”) consists of 1-Lipschitz functions on R”. The
formulation in (2) is known as the Kantorovich-Rubinstein dual form of Wasserstein-1 distance and
can be viewed as an integral probability metric [Miiller, 1997].

In deep generative models, the function class G is often parameterized by a deep neural network class
Gnn- Functions in Gy can be written in the following compositional form

gg(x) =Wy - U(WL,1 . ..J(Wl.%' + b1) + ...+ bLfl) + b, 3)

where the W;’s and b;’s are weight matrices and intercepts/biases of corresponding dimensions,
respectively, and o is ReLU activation applied entry-wise: o(a) = max(a,0). Here § = {W,, b},
denotes the set of parameters.

Solving (1) is prohibitive in practice, as we only have access to a finite collection of samples,
iid

X1,..., X, ~ Q. Replacing @ by its empirical counterpart @Q,, = % >, 0x,, we end up with
gn = argmln Wy ((QG)ﬁpa Qn)~ 4
9oEGNN

Note that (4) is also known as training deep generative models under the Wasserstein loss in existing
deep learning literature [Frogner et al., 2015, Genevay et al., 2018]. It has exhibited remarkable
ability in learning complex distributions in high dimensions, even though existing theories cannot
fully explain such empirical successes. In literature, statistical theories of deep generative models
have been studied in Arora et al. [2017], Zhang et al. [2017], Jiang et al. [2018], Bai et al. [2018],
Liang [2017, 2018], Uppal et al. [2019], Chen et al. [2020], Lu and Lu [2020], Block et al. [2021],
Luise et al. [2020], Schreuder et al. [2021]. Due to the well-known curse of dimensionality, the
sample complexity in Liang [2017], Uppal et al. [2019], Chen et al. [2020], Lu and Lu [2020] grows
exponentially with respect to underlying the data dimension. For example, the CIFAR-10 dataset
consists of 32 x 32 RGB images. Roughly speaking, to learn this data distribution with accuracy
¢, the sample size is required to be e~” where D = 32 x 32 x 3 = 3072 is the data dimension.
Setting € = 0.1 requires 103°72 samples. However, GANs have been successful with 60, 000 training
samples [Goodfellow et al., 2014].

A common belief to explain the aforementioned gap between theory and practice is that practical data
sets exhibit low-dimensional intrinsic structures. For example, many image patches are generated
from the same pattern by some transformations, such as rotation, translation, and skeleton. Such a
generating mechanism induces a small number of intrinsic parameters. It is plausible to model these
data as samples near a low dimensional manifold [Tenenbaum et al., 2000, Roweis and Saul, 2000,
Peyré, 2009, Coifman et al., 2005].

To justify that deep generative models can adapt to low-dimensional structures in data sets, this paper
focuses (from a theoretical perspective) on the following fundamental questions of both distribution
approximation and estimation:

Q1: Can deep generative models approximate a distribution on a low-dimensional manifold by rep-
resenting it as the pushforward measure of a low-dimensional easy-to-sample distribution?

Q2: Ifthe representation in Q1 can be learned by deep generative models, what is the statistical rate
of convergence in terms of the sample size n?

This paper provides positive answers to these questions. We consider data distributions supported on a
d-dimensional compact Riemannian manifold M isometrically embedded in R”. The easy-to-sample
distribution p is uniform on (0, 1)4*1. To answer Q1, our Theorem 1 proves that deep generative



models are capable of approximating a transportation map which maps the low-dimensional uniform
distribution p to a large class of data distributions on M. To answer Q2, our Theorem 2 shows
that the Wasserstein-1 loss in distribution learning converges to zero at a fast rate depending on the
intrinsic dimension d instead of the data dimension D. In particular we prove that

EW1((gn)zp. Q) < Cn~ 7T
for all § > 0 where C'is a constant independent of n and D.

Our proof proceeds by constructing an oracle transportation map g* such that gfp = Q. This
construction crucially relies on a cover of the manifold by geodesic balls, such that the data distribution
@ is decomposed as the sum of local distributions supported on these geodesic balls. Each local
distribution is then transported onto lower dimensional sets in R? from which we can apply optimal
transport theory. We then argue that the oracle g* can be efficiently approximated by deep neural
networks.

‘We make minimal assumptions on the network, only requiring that gy belongs to a neural network
class (labelled Gny) with size depending on some accuracy e. Further, we make minimal assumptions
on the data distribution (), only requiring that it admits a density that is upper and lower bounded.
Standard technical assumptions are made on the manifold M.

2 Preliminaries

We establish some notation and preliminaries on Riemannian geometry and optimal transport theory
before presenting our proof.

Notation. For = € R?, ||z|| is the Euclidean norm, unless otherwise specified. Bx (0,) is the open
ball of radius r in the metric space X. If unspecified, we denote B(0,r) = Bga(0, ). For a function
f:R? > R%and A < R?, f~1(A) denotes the pre-image of A under f. 0 denotes the differential
operator. For 0 < o < 1, we denote by C“ the class of Holder continuous functions with Holder
index a. | - ||oo denotes the co norm of a function, vector, or matrix (considered as a vector). For any
positive integer N € N, we denote by [N] the set {1,2,..., N}.

2.1 Riemannian Geometry

Let (M, g) be a d-dimensional compact Riemannian manifold isometrically embedded in R.
Roughly speaking a manifold is a set which is locally Euclidean i.e. there exists a function ¢
continuously mapping a small patch on M into Euclidean space. This can be formalized with open
sets and charts. At each point x € M we have a tangent space T, M which, for a manifold embedded
in RP, is the d-dimensional plane tangent to the manifold at x. We say M is Riemannian because it
is equipped with a smooth metric g, : T, M x T, M — R (where x is a basepoint) which can be
thought of as a local inner product. We can define the Riemannian distance dpq : M x M — R on
M as

dp(z,y) = inf{L(y)|yis a C* (M) curve such that v(0) = z,v(1) = y},

i.e. the length of the shortest path or geodesic connecting x and y. An isometric embedding of the
d-dimensional M in RP is an embedding that preserves the Riemannian metric of M, including the
Riemannian distance. For more rigorous statements, see the classic reference Flaherty and do Carmo
[2013].

We next define the exponential map at a point x € M going from the tangent space to the manifold.

Definition 1 (Exponential map). Let x € M. For all tangent vectors v € T, M, there is a unique
geodesic v that starts at x with initial tangent vector v, i.e. 7(0) = x and 7' (0) = v. The exponential
map centered at x is given by exp,(v) = v(1), for all v € T, M.

The exponential map takes a vector v on the tangent space T, M as input. The output, exp,, (v), is
the point on the manifold obtained by travelling along a geodesic curve that starts at = and has initial
direction v (see Figure 1 for an example).

It is well known that for all x € M, there exists a radius J such that the exponential map restricted
to B, pm(0, 6) is a diffeomorphism onto its image, i.e. it is a smooth map with smooth inverse. As



Figure 1: Exponential map on M. Figure 2: Manifolds with large and small reach.

the sufficiently small §-ball in the tangent space may vary for each € M, we define the injectivity
radius of M as the minimum § over all z € M.

Definition 2 (Injectivity radius). For all x € M, we define the injectivity radius at x to be inj ,(x) =
sup{d > 0| exp, : Br,m(0,6) € T, M — M is a diffeomorphism}. Then the injectivity radius of
M is defined as

inj(M) = inf{inj \((x)|z € M}.

For any x € M, the exponential map restricted to a ball of radius inj(M) in T, M is a well-defined
diffeomorphism. Within the injectivity radius, the exponential map is a diffeomorphism between the
tangent space and a patch of M, with exp ! denoting the inverse. Controlling a quantity called reach
allows us to lower bound the manifold’s injectivity radius.

Definition 3 (Reach). The reach T of a manifold M is defined as the quantity (Federer [1959])

T=inf{r >0:3z #ye M,ve RP suchthatr = ||z —v| = |y —v| = in/\f/t [z —wv]}.
zZE

Intuitively, if the distance of a point  to M is smaller than the reach, then there is a unique point in
M that is closest to . However, if the distance between x and M is larger than the reach, then there
will no longer be a unique closest point to = in M. For example, the reach of a sphere is its radius. A
manifold with large and small reach is illustrated in Figure 2. The reach gives us control over the
injectivity radius inj(M); in particular, we know inj(M) > 77 (see Aamari and Levrard [2019] for
proof).

2.2 Optimal Transport Theory

Let 4, v be absolutely continuous measures on the sets X, Y < R< respectively. We say a function
f X — Y transports pyonto v if fyy = v. In words, for all measurable sets A € Y we have

v(A) = fyn(A) = u(f71(4)),
where f~1(A) is the pre-image of A under f.

Optimal transport studies the problem of transporting source measures p on X to target measures
v on Y while minimizing a cost ¢ : X x Y — R>(. However, the results are largely restricted to
transport between measures on the same dimensional Euclidean space. In this paper, we will make
use of the main theorem in Caffarelli [1992], in the form presented in Villani [2008].

Proposition 1. Let c(z,y) = |z — y|? in R x R and let 1, Qo be nonempty, connected, bounded,
open subsets of R, Let fy, f» be probability densities on 0, and Qs respectively, with f1, fo bounded
from above and below. Assume further that Q)5 is convex. Then there exists a unique optimal transport
map T : Q1 — Qo for the associated probability measures (dx) = f1(x) dx and v(dy) = f2(y) dy,
and the cost c. Furthermore, we have that T € C%(€1) for some a € (0, 1)

This proposition allows to produce Holder transport maps which can be further approximated with
neural networks with size depending on a given accuracy.

To connect optimal transport and Riemannian manifolds, we first define the volume measure on a
manifold M and establish integration on M.

Definition 4 (Volume measure). Let M be a compact d-dimensional Riemannian manifold. We
define the volume measure yirq on M as the restriction of the d-dimensional Hausdorff measure H.



A definition for the restriction of the Hausdorff measure can be found in Federer [1959].

We say that the distribution @) has density ¢ if the Radon-Nikodym derivative of ) with respect
to paq is g. According to Evans and Gariepy [1992]), for any continuous function f : M — R
supported within the image of the ball By, A4(0, €) under the exponential map for € < inj(M), we
have

J fdQ = f(fq> djipt = (fa) o exp, (v)y /et g5 (v) do. 5)
B, am(0,€)

Here g;;(v) = (0 exp,(v)[e;], 0 exp,(v)[e;]) with (e1, ..., eq) an orthonormal basis of T, M.

3 Main Results

We will present our main results in this section, including an approximation theory for a large class
of distributions on a Riemannian manifold (Theorem 1), and a statistical estimation theory of deep
generative networks for distribution learning (Theorem 2).

We make some regularity assumptions on a manifold M and assume the target data distribution Q) is
supported on M. The easy-to-sample distribution p is taken to be uniform on (0, 1)?+1,

Assumption 1. M is a d-dimensional compact Riemannian manifold isometrically embedded in
ambient dimension RP. Via compactness, M is bounded: there exists M > 0 such that | z|,, < M,
Vo € M. Further suppose M has a positive reach T > 0.

Assumption 2. Q is supported on M and has a density q with respect to the volume measure on M.
Further we assume boundedness of q i.e. there exists some constants ¢,C > 0 such that ¢ < q < C.

To justify the representation power of feedforward ReLU networks for learning the target distribution
Q, we explicitly construct a neural network generator class, such that a neural network function in
this generator class can pushfoward p to a good approximation of Q).

Consider the following generator class Gy
O (L, p, k) = {9 = [91,...,gp] : R4T! — RD|gj in form (3) with at most L layers
and max width p, while ||W;]|, < &, |||, < xforallie [L],j € [D]},
where | - || is the maximum magnitude in a matrix or vector. The width of a neural network is the

largest dimension (i.e. number of rows/columns) among the W;’s and b;’s.

Theorem 1 (Approximation Power of Deep Generative Models). Suppose M and Q satisfy Assump-
tions 1 and 2 respectively. The easy-to-sample distribution p is taken to be uniform on (0,1)%+1,
Then there exists a constant 0 < o < 1 (independent of D) such that for any 0 < € < 1, there exists
a go € Gan(L, p, k) with parameters

L=0 <log (1)) p:o(De—%), k=M

Wi((g0)sp, Q) < e.

that satisfies

Theorem 1 demonstrates the representation power of deep neural networks for distributions @ on M,
which answers Question Q1. For a given accuracy e, there exists a neural network gy which pushes
the uniform distribution on (0, 1)%** forward to a good approximation of @) with accuracy e. The
network size is exponential in the intrinsic dimension d.

We next present a statistical estimation theory to answer Question Q2.

Theorem 2 (Statistical Guarantees of Deep Wasserstein Learning). Suppose M and Q satisfy
Assumption 1 and 2 respectively. The easy-to-sample distribution p is taken to be uniform on

(0,1)4*1, Let n be the number of samples of X; ~ Q. Choose any § > 0. Set ¢ = n~ @5 in Theorem
1 so that the network class G (L, p, k) has parameters

L =0 (log (nd%ﬁ)>, p=0 (Dnm), k=M.



Then the empirical risk minimizer §,, given by (4) has rate

EW: ((9n)2p, Q) < Cn™ 753,

where C'is a constant independent of n and D.

Additionally this result can be easily extended to the noisy case. Suppose we are given n noisy

i.i.d. samples Xl, - Xn of the form Xi = X; + &, for X; S Q@ and &; distributed according to
some noise distribution. The optimization in (4) is performed with the noisy empirical distribution
Qn = 3 iy 0%, Then the minimizer g,, satisfies

EW: ((9n)1p: Q) < Cn™ 75 + 24/V,

where V¢ = E|¢||3 is the variance of the noise distribution.

Comparison to Related Works. To justify the practical power of generative networks, low-
dimensional data structures are considered in Luise et al. [2020], Schreuder et al. [2021], Block et al.
[2021], Chae et al. [2021]. These works consider the generative models in (1). They assume that the
high-dimensional data are parametrized by low-dimensional latent parameters. Such assumptions
correspond to the manifold model where the manifold is globally homeomorphic to Euclidean space,
i.e. the manifold has a single chart.

In Luise et al. [2020], the generative models are assumed to be continuously differentiable up
to order s. By jointly training of the generator and the latent distributions, they proved that the
Sinkhorn divergence between the generated distribution and data distribution converges, depending
on data intrinsic dimension. Chae et al. [2021] and Schreuder et al. [2021] assume the special case
where the manifold has a single chart. More recently, Block et al. [2021] proposed to estimate the
intrinsic dimension of data using the Holder IPM between some empirical distributions of data. This
theory is based on the statistical convergence of the empirical distribution to the data distribution.
As an application to GANSs, [Block et al., 2021, Theorem 23] gives the statistical error while the
approximation error is not studied. In these works, the single chart assumption is very strong while a
general manifold can have multiple charts.

Recently, Yang et al. [2022], Huang et al. [2022] showed that GANs can approximate any data
distribution (in any dimension) by transforming an absolutely continuous 1D distribution. The
analysis in Yang et al. [2022], Huang et al. [2022] can be applied to the general manifold model.
Their approach requires the GAN to memorize the empirical data distribution using ReL.U networks.
Thus it is not clear how the designed generator is capable of generating new samples different from
the training data.

In contrast, we explicitly construct an oracle transport map which transforms the low-dimensional
easy-to-sample distribution to the data distribution. Our work provides insights about how distribu-
tions on a manifold can be approximated by a neural network pushforward of a low-dimensional
easy-to-sample distribution without exactly memorizing the data. In comparison, the single-chart
assumption in earlier works assumes that an oracle transport naturally exists. Our work is novel in the
construction of the oracle transport for a general manifold with multiple charts, and the approximation
theory by deep neural networks.

4 Proof of Main Results

4.1 Proof of Approximation Theory in Theorem 1

To prove Theorem 1, we explicitly construct an oracle transport g* pushing p onto @, i.e. gg“p =Q.
Further this oracle will be piecewise a-Holder continuous for some « € (0,1).
Lemma 1. Suppose M and Q) satisfy Assumption I and 2 respectively. The easy-to-sample distribu-

tion p is taken to be uniform on (0,1)%*1. Then there exists a function g* : (0,1)*! — M such
that Q = gg‘ p where

g*(2) = 31 Ly mpy (@1) g (22:041) (6)

for some a-Holder (0 < o < 1) continuous functions g5, . .., g% and some constants 0 = 7y <
m<---<my=1



Proof. We construct a transport map g* : (0,1)%*! — M that can be approximated by neural
networks. First, we decompose the manifold into overlapping geodesic balls. Next, we pull these
local distributions on these balls back to tangent space, which produces d-dimensional tangent
distributions. Then, we apply optimal theory on these tangent distributions to produce maps between
the source distributions on (0, 1)? to the appropriate local (geodesic ball) distributions on the manifold.
Finally, we glue together these local maps with indicators functions and a uniform random sample
from (0, 1). We proceed with the first step of decomposing the manifold.

Step 1: Overlapping ball decomposition. Recall that M is a compact manifold with reach 7 > 0.
Then the injectivity radius of M is greater than or equal to 7w7 (Aamari et al. [2019]). Setr = %~ For
each ¢ € M, define an open set U. = exp,.(Br, m(0,7)) S M. Since the collection {U.. : x € M}
forms an open cover of M (in R?), by the compactness of M we can extract a finite subcover which

we denote as {U, }7_,. For convenience, we will write U; = U.,.

Step 2: Defining local lower-dimensional distributions. On each U;, we define a local distribution
Q; with density g; via

0,(a) = i1 o)

Set K(x) = Z}]=1 1y, () as the number of balls U; containing 2. Note 1 < K(x) < J for all
x € M. Now define the distribution @j with density g, given by

7.(2) *ay e (@)1y, (2)
g:(z) = ———7.
! Su, 7oy @i(2)dH
Write K; = §, ﬁqj(x)d’ﬂ as the normalizing constant. — Define §;(v) = (g; o

expcj)(v) det ;2 (v) where g;} is the Riemannian at ¢;. This quantity can be thought of as
the Jacobian of the exponential map, denoted by |Jexp, (v)| in the following step. Then ¢; is a
J

density on U; = expc’j1 (Uj), which is a ball of radius % since

L= | B = | e e @)= | g

Let Q ; be the distribution in R? with density ;. By construction, we can write
Q; = (exp,):Q;- ()

Step 3: Constructing the local transport. We have that expc_j1 is bi-Lipschitz on U; and hence its

Jacobian is upper bounded. Since |Jexp_ (v)| = ‘Jilz”’ we know that |Jey,, | lower bounded.

expg .t (
“J
Since g; is lower bounded (away from 0), this means ¢; is also lower bounded. Now the distribution

pj supported on [7 j = B(0, IF) fulfills the requirements for our optimal transport result: (1) Its
density p; is lower and upper bounded; (2) The support B(0, &) is convex. Taking our cost to be

clz,y) = %HCB — y|? (i.e. squared Euclidean distance), via Proposition 1 we can find an optimal
transport map 7; such that

(T3)spa = Q; ®)
where pg is uniformly distributed on (0, 1). Furthermore, T; € C% for some a;; € (0,1). Then we
can construct a local transport onto U; via

g; = exp,, oT} ©)

which pushes pg forward to @j. Since g;!‘ is a composition of a Lipschitz map with an o; Holder
continuous maps, it is hence «; Holder continuous.

Step 4: Assembling the global transport. It remains to patch together the local distributions @j to
form Q. Define n; = K;Q(U;). Notice



Qj = (gj)gpd

Figure 3: Local transport g;‘ in (9) mapping pg on (0, 1)? to a local distribution @j supported on Uj.

J J 1
_ _ K(m)qj(f)]lUJ(x) B K(m)q(m)]]'Uj(‘r)
];mq](x) _;KJQ(UJ) Kj _;Q(Uj) Q(U])
J J
- 3 F 1O @) = 4@ g7 D @) = a(o)

Hence it must be that Z;]:l n; = 1. Set & = minje[ ;) a;. We can now define the oracle g*. Let
z e (0,1)+, Write
J
9% (@) = 21 Limy s ) (@1) 95 (2:041), (10)

where x; is the first coordinate and 2.4, are the remaining coordinates with 7; = Zf;ll n;. Let
Z ~ p. Then g(Z) ~ Q. We see this as follows. For A € M we can compute

J J

Z P(T(j_l < Zl < ﬂj)]P)(g;:(ZQ:d-&-l) eANn U]) = Z T]]@J(A N U])
J J

;nj L ;(z)dH = L]Z:lnjqj (z)dH = L q(z)dH = Q(A)

P(g*(Z) € A) =

which completes the proof. O

We have found an oracle g* which is piecewise Holder continuous such that gg‘ p = Q. We can design

a neural network gy to approximate this oracle g*. Now in order to minimize W1 ((g¢)sp, Q) =
Wi((g0)2p, 9 p), we show it suffices to have gy approximate g* in Li(p).

Lemma 2. Let yi be an absolutely continuous probability distribution on a set Z < R, and let
f,9: Z — R™ be transport maps. Then
Wi(feps i) < Clf — gl

for some C' > 0.

The proof can be found in Section B.1 in the appendix. We now prove Theorem 1.

Proof of Theorem 1. By Lemma 1, there exists a transformation g¢*(x) =
ijl Lix; m)(21)9] (T2:041) such that gfp = Q. By Lemma 2, it suffices to approxi-
mate g* with a neural network gy € Gun(L,p, k) in L' norm, with a given accuracy € > 0. Let
(g*)® denote the ith component of the vector valued function g*. Then it suffices to approximate

J
(")) = > Un,yimp) (@) (65) D (2:041)

Jj=1



foreach 1 < i < D, where (g;‘)(i) denotes the ith component of the function g7. We construct the
approximation of (g*)(®) by the function

J
i AENE i
(90)P () = 3 %™ (102 o) @) (62 D (@2ai)) ()
j=1
where %°* is a ReLU network approximation to the multiplication operation with do accuracy,
Zs)

(75 1,75) is a ReLU network approximation to the indicator function with ¢; accuracy, and ( g§39)(i)
J—1%7 )

is a ReLU network approximation to ( g;?‘)(i) with d3 accuracy. We construct these using the approxi-
mation theory outlined in Appendix A.

01
(mj—1,75)
of Lemma 7. Finally, we discuss 9?,39- Let j € [J]. To approximate the Holder function g;?‘, we use
the following Lemma 3 that is proved in Appendix A. Similar approximation results can be found in
Shen et al. [2022] and Ohn and Kim [2019] as well. In Lemma 3, our approximation error is in Lt
norm and all weight parameters are upper bounded by a constant. In comparison, the error in Ohn
and Kim [2019] is in L® norm and the weight parameter increases as e decreases.

. i . o . =& L
First, we obtain 1 via an application of Lemma 9. Next, we obtain x> from an application

Lemma 3. Fix M > 2. Suppose f € C*([0,1]%), a € (0,1], with | f|r= < M. Let0 < ¢ < 1.
Then there exists a function ® implementable by a ReLU network such that

If =@l <e.

The ReLU network has depth at most c; log (%) width at most 0267%, and weights bounded by M
(where c1 and co are constants independent of ).

We can apply Lemma 3 to (g;‘)(i) foralll < j < Jand 1 < i < D, since they are all elements
of C%(0,1)? and elements of C®(0, 1)¢ can be extended to C*[0, 1]¢. Thus there exists a neural
network (g?f’e)(i) € Gun(L, p, k) with parameters given as above such that

1)@ = (955) Pl < 6.

The goal is now to show the L' distance between gy (as defined in (11)) and g* is small. We have
lg* — gollr < DJ(Md1 + 02 + d3)

where 6 is the neural network approximation error of indicator functions in L!, &5 is the approxima-
tion error of multiplication, and d5 is the approximation error of our a-Holder local transport maps.
We carefully argue in Appendix A.4 that each of these components can be approximated with the
appropriately sized network. To complete the proof we conclude gy can be exactly represented by a
neural network in Gyn (L, p, k) with parameters

L=0 <log (1)) p=o(De*%), K= M.

4.2 Proof of Statistical Estimation Theory in Theorem 2

The proof of Theorem 2 is facilitated by the common bias-variance inequality, presented here as a
lemma.

Lemma 4. Under the same assumptions of Theorem 2, we have

EW1((gn)sp, Q) < qsienngN Wi((g0)sp, Q) + 2EW1(Qn, Q) 12)

where Q,, is the empirical distribution.



Proof. We compute recalling the definition of §,, as the empirical risk minimizer.

EW1 (3056, Q) < EWL((Gn)sp, @n) + EW1(Qn, Q)
=E_inf Wil(g0)i0Qn) +EW(Qn: Q)

<E inf Wi((g0)tp; Q) + 2EW1(Qn, Q)

where we recall Wi ((gn)sp, Qn) = infg,egnn Wi((96)zp, @) from (4).
O

The bias term can be controlled via Theorem 1. To control convergence of the empirical distribution
Q@ to @ we leverage the existing theory [Weed and Bach, 2019] to obtain the following lemma.

Lemma 5. Under the same assumptions of Theorem 2, for all 6 > 0, 3Cs > 0 such that
E[W1(Q. Q)] < Csn™ 5. (13)

This follows directly from Theorem 1 from [Weed and Bach, 2019]. We attach a full proof in Section
B.2 of the appendix. Finally, we prove our statistical estimation result in Theorem 2.

Proof of Theorem 2. Choose § > 0. Recall from Lemma 4 we have

Wal(@):0.Q) <E_inf Wil(g0)sp. Q) +2EWi(Qn. Q)

The first term is the approximation error which can be controlled within an arbitrarily small accuracy
€. Theorem 1 shows the existence of a neural network function gg with O (1og ( %)) layers and

O(De%*]og(1)) neurons such that Wi ((ge)zp, Q) < € for any € > 0. We choose € = n= T to
optimally balance the approximation error and the statistical error. The second term is the statistical

error for which we recall from Lemma 5 that E [Wl (Qn, Q)] < anfd%é for some constant Cs.

Thus we have
EWl((gn)ﬁpv Q) < 77/7%*5 + 205n7ﬁ = Cnfd%ré
by setting C' = 1 4+ 2C'. This concludes the proof. 0

We remark the above proof proceeds similarly in the noisy case, which is presented in Section B.3 of
the appendix.

5 Conclusion

We have established approximation and statistical estimation theories of deep generative models for
estimating distributions on a low-dimensional manifold. The statistical convergence rate in this paper
depends on the intrinsic dimension of data. In light of the manifold hypothesis, which suggests many
natural datasets lie on low dimensional manifolds, our theory rigorously explains why deep generative
models defy existing theoretical sample complexity estimates and the curse of dimensionality. In fact,
deep generative models are able to learn low-dimensional geometric structures of data, and allow for
highly efficient sample complexity independent of the ambient dimension. Meanwhile the size of the
required network scales exponentially with the intrinsic dimension.

Our theory imposes very little assumption on the target density ), requiring only that it admit a
density g with respect to the volume measure and that q is upper and lower bounded. In particular
we make no smoothness assumptions on g. This is practical, as we do not expect existing natural
datasets to exhibit high degrees of smoothness.

In this work, we assume access to computation of the W; distance. However during GAN training
a discriminator is trained for this purpose. It would be of interest for future work to investigate the
low-dimensional role of such discriminator networks which approximate the W, distance in practice.
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See our conclusion.

(c) Did you discuss any potential negative societal impacts of your work? We dont
foresee any negative societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] They are attached in
the appendix
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [IN/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A |

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

14



	Introduction
	Preliminaries
	Riemannian Geometry
	Optimal Transport Theory

	Main Results
	Proof of Main Results
	Proof of Approximation Theory in Theorem 1
	Proof of Statistical Estimation Theory in Theorem 2

	Conclusion

