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Abstract – Deep learning has been successfully used to automate 

the modeling process that trains a network/model from a given 

experimental dataset to calculate the output directly using high-

dimensional complex raw data. However, the trained network is 

an inverse of the welding process (forward process) that 

produces the welding phenomena/measured raw data as the 

output with the penetration as the input of the forward process. 

Now the question is in addition to the current state of the weld 

penetration to be estimated if the forward process also has other 

inputs to determine its output. If it has, then the inverse model 

has to be constructed accordingly. This will call for a new 

foundation for deep learning-based monitoring of penetration. 

This letter proposed a novel innovative generative adversarial 

network (GAN) with GRU (Gated Recurrent Unit) in the 

generator, i.e., GRU-GAN, to model the extremely complex 

forward process to generate the observed topside welding image 

(output of the forward process) from the backside images (as 

comprehensive quantification of weld penetration). It is found 

that the produced topside welding image is not only determined 

by the current backside image but also by its history. A new 

foundation thus must be established to guide deep learning-

based monitoring of weld penetration. The prediction 

model/network as an inverse model must be in compliance with 

the forward process that includes the history of the state of the 

weld penetration as its input.    
Keywords: weld, weld penetration, deep learning, GAN, GRU 

I. INTRODUCTION 

This letter aims at answering a basic question related to 

monitoring the weld penetration using a deep learning 

approach. As the weld penetration currently can only be 

assured by skilled human welders, the question is 

fundamental in robotizing/automating welding processes for 

challenging applications. Analysis of literature suggests that 

almost all, if not all, of efforts in the area share a similarity: 

using the measured welding phenomena as the raw 

information source/sources to correlate to the weld 

penetration [1]. Our question is if this has been based on a 

solid foundation and if its foundation has flaws. Answering 

this question will guide new directions, or call for establishing  

new and more solid foundations to solve this long-standing 

technical challenge, possibly in various ways.  

Welding joins two members of materials together by 

melting their facing edges and weld penetration quantifies this 
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melting, typically either by the weld pool depth (penetration 

depth) for incomplete/partial penetration or by the backside 

bead width for complete/full penetration (Fig. 1). As the 

penetration is unobservable occurring underneath, almost all 

existing methods, if not all of them, are to find promising 

measurable information sources and correlate their “right 

features” to the penetration. Various measurables have been 

proposed as promising raw information sources [1] including 

pool oscillation [2], infrared images [3], acoustic signals [4], 

weld pool [5], weld pool geometrical appearance [6], 3D weld 

pool surface [7]. While conventional methods have been 

based on features hand-crafted from the raw information 

sources resulting in an un-automated, trial-and-error process 

consisting of a number of separate sub-processes, deep 

learning provides a revolutionary solution by optimizing the 

features to allow automating the entire process. Since the 

occurrence of the first peer reviewed publication [8] in 2019, 

there have been approximately 100 records in Web of Science 

in Deep Learning AND weld AND penetration by the end of 

year 2022 [1].   

Deep learning revolutionized the area of weld penetration 

monitoring by providing a way to directly link the raw 

information/sources to the weld penetration so that their 

relationship/mapping can be obtained through an automated 

process. This revolution is due to the development of deep 

learning but our efforts in this area have been in the 

application domain. They used raw information sources from 

previous physics/mechanisms-based studies as represented in 

[2-7]. Improved methods to measure raw information sources 

may have been used and major contributions have been 

limited to use different deep learning networks to 

accommodate different raw information sources/multiple 

information sources [9-15], as inputs of the networks whose 

outputs are the weld penetration state.   

This letter will hypothesize that using raw information to 

directly link the penetration is not flawless and test this 

hypothesis to call the need for new foundations. Section II 

will provide and analyze the background to propose the 

hypothesis. Section III will outline how the hypothesis will be 

tested and Section IV is devoted to experiments in particular 

for what are the actual dataset. Section V proposes a 

generative adversarial network (GAN) to model the forward 
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process that generates the topside weld pool image as the 

“observed welding phenomena”. In Section VI Results, 

Discussion and Improvement, we show that the current state 

of the weld penetration is not sufficient in producing the 

topside image, but the sufficiency is improved by including 

the history of the penetration state. We also proposed an 

improved network to model the forward process by better 

using the history. Conclusions are summarized in Section VII.  
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Figure 1: Illustration of weld penetration. Blue dash: weld pool of incomplete 

penetration with depth 𝑑𝑤; red solid: weld pool of complete penetration with 

backside bead width 𝑤𝑏. 

 

II. BACKGROUND AND HYPOTHESIS 

Fig. 1 can be used as an example to illustrate the weld 

penetration. (More comprehensive introduction on weld 

penetration topic is presented in [16].)  The autogenous gas 

tungsten arc welding (GTAW) in the figure is for illustration 

purpose and other processes can be used. The weld pool with 

red lines as the boundary shows complete joint penetration 

(also referred to as full penetration) with a backside weld bead 

width 𝑤𝑏 . If the weld pool has the blue dashes as the 

boundary, the workpiece is not completely melted to the 

bottom surface forming an incomplete joint penetration (also 

referred to as partial penetration) being characterized by 𝑑𝑤 . 
𝑤𝑏  and 𝑑𝑤  are critical for the respective penetration case: 

being less than designed/desired results in unacceptable 

defect and being larger than designed/desired results in 

increases in materials properties degradation, heat input, 

residual stress and distortion [16]. The problem of penetration 

monitoring to be solved by research community is to use 

sensors, referred to as top sensors, that can be carried by the 

torch to obtain process measurables to estimate 𝑤𝑏  or 𝑑𝑤 , 

rather than using sensors that may directly view them. We use 

the state of penetration 𝑥 for either 𝑤𝑏  or 𝑑𝑤  depending on 

the application.   

Top sensors obtain process feedback or observed 

phenomena Ξ (which may be complex) which are believed to 

have sufficient information to determine the penetration 𝑥 per 

previous physics/mechanism-based studies. Existing efforts 

train a model 𝑥 = 𝑓(Ξ) . Earlier and most efforts in deep 

learning fit 𝑥(𝑘) = 𝑓(Ξ(𝑘)) and some fit 𝑥(𝑘) = 𝑓(Ξ(𝑗)′s) 

(𝑗 ≤ 𝑘)  [15]. This letter questions the soundness of the 

foundation for 𝑥(𝑘) = 𝑓(Ξ(𝑘)) based approaches. 

First of all, Ξ are behaviors of the welding process. As 

welding process is complex, there has been no single study to 

prove theoretically that particular Ξ  being used may have 

sufficient information to determine the penetration. The 

“proofs” reported are based on experimental data and are not 

real. Second, an estimation model 𝑥(𝑘) = 𝑓(Ξ(𝑘)) may be 

considered an inverse of the process model Ξ(𝑘) = 𝑔(𝑥(𝑘)). 

The estimation model 𝑥(𝑘) = 𝑓(Ξ(𝑘))  may be reasonable 

only if the process model Ξ(𝑘) = 𝑔(𝑥(𝑘)) is reasonable. 

The process model is more fundamental than an 

estimation model in catching the mechanism and essence. We 

question the process model Ξ(𝑘) = 𝑔(𝑥(𝑘))  from two 

angles: (1) if there are other factors 𝜂  in addition to the 

penetration state 𝑥 that also affect the welding process and 

thus affect part of its observation Ξ; (2) even if there are no 

other factors such as in a condition that is close to the nominal 

one, it is a question if Ξ(𝑘) is only determined by the current 

state 𝑥(𝑘) of the penetration without being affected by its 

history 𝑥(𝑗)(𝑗 < 𝑘). A definite answer to either question will 

justify the need for a new foundation. As such, this letter 

focuses, and can just focus, on the second question although 

the first question also deserves attention (but it is more 

application dependent while the second question has more 

general implications independently from applications).  

In a process model Ξ(𝑘) = 𝑔(𝑥(𝑘)), 𝑥 is the cause and Ξ 

is the consequence. This is a causal process where 𝑥 occurs 

first and can be considered the input of a system with Ξ as its 

output. It is apparent that this system must be dynamic as there 

is apparently a transition time from the penetration to affect 

the process behaviors. It is likely that this transition is not a 

simple, ideal delay but a gradual process. As such, a 

penetration state affects the process behaviors not just in one 

instant but in a period. This suggests that Ξ(𝑘) =
𝑔(𝑥(𝑗)′𝑠)(𝑗 ≤ 𝑘) , or Ξ(𝑘) = 𝑔(𝑋(𝑘))  where 𝑋(𝑘) ∈ 𝑅𝑛  is 

formed by 𝑥(𝑗) (𝑘 − 𝑛 ≤ 𝑗 ≤ 𝑘), must be in general more 

reasonable than Ξ(𝑘) = 𝑔(𝑥(𝑘)). This is the hypothesis, that 

calls for a new foundation for deep learning-based monitoring 

of weld penetration, to be tested in this letter.      

III. PROPOSED METHOD OF TEST 

While there may be other ways to test the hypothesis 

concerned, this letter will test it by building networks that use 

𝑥 to generate Ξ to see if the generated Ξ, denoted as Ξ̂, can 

well match with the measured Ξ. That is, the network will 

function as the mapping 𝑔  from 𝑥  to Ξ  as a model of the 

underlying physical welding process with the specific concern 

for its partial behaviors represented by Ξ. Theoretically, if the 

network structure is right (determined by network type and 

the number of adjustable parameters) and the training dataset 

is large and diverse enough, we will be able to catch the 

deterministic correlation from 𝑥  to Ξ. The modeling errors 

(training and test) reflect either model structure insufficiency, 

inaccuracy of the input (𝑥) in determining Ξ and the effect 

from other uncontrolled factors but not the dataset’s diversity 

that affects the error in application of the trained network. The 

average error as reflected by the variance will reflect the 

former two. If we have the same datasets and similar model 

structure to compare Ξ(𝑘) = 𝑔(𝑥(𝑘)) with Ξ(𝑘) = 𝑔(𝑋(𝑘)), 

we will be able to see if 𝑥(𝑘) alone is sufficient and if there is 

a need to include some history of 𝑥, i.e., 𝑥(𝑗)(𝑗 < 𝑘).   

In most deep learning applications, a complex/high 

dimension signal such as Ξ is used as the input of a network 
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which outputs a low-dimension quantity such as 𝑥. A variant 

of convolutional neural network (CNN) is the typical choice 

for such applications. For this application to test our 

hypothesis, we need generating the high dimension 

phenomena Ξ, which is a kind of image from the weld pool, 

from the lower dimension input 𝑥 as shown in Fig. 2 which 

illustrates the proposed network to test the hypothesis. In 

particular in Fig. 2, 𝐼(𝑥(𝑘))  and 𝐼(𝑋(𝑘))  are the raw 

information to calculate respective 𝑥 and can provide more 

comprehensive information on the weld penetration state than 

the simplified quantity 𝑥 (𝑤𝑏 or 𝑑𝑤). The dimensions of the 

extracted features from 𝐼(𝑥(𝑘)) and 𝐼(𝑋(𝑘)), i.e.,  𝜑(𝑥(𝑘)) 

and 𝜑(𝑋(𝑘)),  are the same, i.e., 𝐷 (𝜑(𝑥(𝑘))) =

𝐷(𝜑(𝑋(𝑘)) . The Generator Network generates Ξ(𝑘)  from 

𝜑(𝑥(𝑘)) or 𝜑(𝑋(𝑘)). Its structure MUST be the same despite 

the input, either 𝜑(𝑥(𝑘)) or 𝜑(𝑋(𝑘)), for a fair comparison 

but the network will be trained separately. The structures for 

the Featuring Networks for the two kinds of inputs, 𝐼(𝑥(𝑘)) 

and 𝐼(𝑋(𝑘)) , cannot be exactly the same but should be 

similar. The Featuring Networks will also be trained 

separately. As will be discussed below, 𝐼(𝑥(𝑘)) and 𝐼(𝑋(𝑘)) 

will be images captured from the backside of the workpieces 

during welding. The Featuring Network thus should be a 

variant of CNN. The Generator Network should be a GAN. 

The details of the network design will be discussed later.  

     

Featuring 

Network

Generator

Network

I(x(k)) or

I(X(k))

φ(x(k)) or

φ(X(k)) 
Generated

Ξ(k)/Image  
Figure 2: Proposed network structure to test the hypothesis.  

IV. EXPERIMENTS AND DATASET  

Gas tungsten arc welding (GTAW) is the primary process 

used to produce welds with assured complete penetration 

required in most critical applications. In this letter, an 

experimental system at the University of Kentucky Welding 

Research Laboratory is used to conduct GTAW experiments 

[15]. This experiment system has two cameras (Fig. 1) with 

Camera 1 to view the weld pool as Ξ (topside image) and 

Camera 2 to view the backside of the work piece as 𝐼(𝑥) 

(backside image) from which 𝑥 can be calculated as in [15]. 

The backside image provides complete raw information for 

the penetration status and 𝑥 as defined in this letter is just a 

simplified measure. Using the backside image as the input to 

represent the weld penetration to test the hypothesis is thus 

more accurate and appropriate. Fig. 3 shows a pair of topside 

and backside images captured at the same time. The topside 

camera (Camera 1) is an Xiris camera of XVC-1100, a high 

dynamic range camera designed to view melt pools despite 

the presence of strong radiation from arc, laser, metal vapors, 

etc. The back-side camera (Camera 2) is a regular CCD 

because of the absence of strong radiation. The cameras 

capture the images simultaneously from both sides of the 

workpieces at 60 Hz.   

To generate a meaningful dataset, four experiments have 

been conducted using real time randomly varying welding 

current and welding speed, the two most important welding 

parameters determining the weld penetration, to generate a 

diverse set of highly dynamic weld penetration 𝑥/back-side 

image 𝐼(𝑥) and topside images (process phenomena Ξ). In the 

experiments, the welding current varied from 70A to 130A 

and speed from 1.2mm/s to 2mm/s. With them being changed 

each 2 seconds randomly, conditions were created to generate 

highly dynamic and “extremely difficult to predict” topside 

images/welding behaviors. The captured images from all the 

experiments allow us to obtain dataset (𝐼(𝑥(𝑘)), Ξ(𝑘))’s and 

(𝐼(𝑋(𝑘), Ξ(𝑘) )’s. 4,760 pairs can be collected from each 

experiment for both datasets to have the size for datasets as 

4,760*4=19,040. After removing the data from the beginning 

of each experiment, the size of the datasets being actually 

used is 18,567. The data is then split into training and testing, 

where 80% corresponds to the training data and 20% is for the 

test.      

 
Figure 3: Paired topside (left) and backside (right) images.  

 

V. WELDING GENERATIVE ADVERSARIAL NETWORKS 

This work models the forward/welding process by Generative 

Adversarial Networks (GANs) [17]. Since their introduction 

in 2014, GANs have seen a wide range of applications. The 

proposed neural network incorporates the usage of a minimax 

type architecture in between a generative model (generator) 

and a discriminative model (discriminator). GANs take as an 

input a vector z from a random distribution and the task is to 

approximate the distribution of the real topside images by 

using backpropagation to train the generator and 

discriminator. The discriminator takes inputs from both the 

real images and the generated images, referred to as fake 

images, and it is trained to distinguish real images from the 

fake ones. The stronger the discriminator is, the better the 

generator has to become to be able to fool the discriminator. 

There has been tremendous work in improving the generator 

and discriminator of GANs due to the training instability. For 

image generation, Deep Convolutional Generative 

Adversarial Networks (DCGANs) [18] successfully 

introduced convolutions into GANs and they provide some 

architectural constraints and also the most effective 

hyperparameters they retrieve from their experiments to 

ensure a more stable training.  

We have integrated several features and hyperparameters 

of DCGAN into our model. These hyperparameters are as 

follows: Instead of using pooling layers as it is usually 

suggested in CNN models, in our architecture, we implement 

strided convolutions for the discriminator and fractional-
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strided convolutions for the generator as in DCGANs. Our 

model consists of only convolution layers, since we avoid the 

fully-connected layers, as mentioned in [18]. Applying batch 

normalization in every layer improves the performance and 

the corresponding activation functions for the generator and 

discriminator are ReLU and Leaky ReLU (with 0.2), 

respectively. Furthermore, the output of the generator uses 

tanh activation and the output of the discriminator uses a 

sigmoid activation function. All weights are initialized from 

a Normal Distribution with mean 0 and standard deviation 

0.02. The learning rate is set to 3 ∗ 10−4 with Adam optimizer 

[19] and the model is trained for 200 epochs. 

 
Figure 4: Welding GAN. 𝑛: the number of bottom images used. 

 

 
Figure 5: Pre-input generator architecture. Upper: Using eight bottom images; 

lower: Using a single bottom image         
 
The proposed GAN model for this work is illustrated in 

Fig. 4. We require our model to have two properties. First, we 

need the generator to be able to generate images with a similar 

probability distribution as the top images by incorporating the 

bottom/backside ones. Second, the generated image should be 

as close as possible to the corresponding real topside image. 

We propose using a number (𝑛) of most recent consecutive 

bottom images, i.e., 𝑋(𝑘) ∈ 𝑅𝑛, to generate the topside image 

Ξ(𝑘).  Thus, we incorporate the usage of Conditional 

Generative Adversarial Nets [20]. Using a similar idea as in 

Conditional GANs, we perform conditioning by feeding 𝑋(𝑘), 

as well as the vector 𝑧 , which comes from a random 

distribution. Since we need our generated image Ξ̂(𝑘)  and 

Ξ(𝑘) to be as close as possible, the implemented generator loss 

function considers the generator loss and the loss due to ∥

Ξ̂(𝑘) − Ξ(𝑘) ∥ . Our proposed model has more of a semi-

supervised learning architecture, since we introduce ∥ Ξ̂(𝑘) −
Ξ(𝑘) ∥  based loss function as well to enforce the newly 

generated images to be similar to the experimental images.  

As has been mentioned, we condition the model based on 

𝑛 consecutive bottom images. The hyperparameter 𝑛 affects 

the capability of our proposed model and there should be an 

optimal 𝑛∗ where our model performs the best. However, to 

test the hypothesis, any 𝑛  that shows a significant 

improvement in the model accuracy would be sufficient. An  

optimal 𝑛 is thus not necessary and searching for such optimal 

𝑛∗ dilutes the focus on the new concept. As such, we use 𝑛=8 

to count for a dynamic period which is slightly over 0.1 second 

(8/60=0.13 second). As such, we need a pre-input generator as 

illustrated in Fig. 5. First, we stack all eight bottom images to 

derive a single tensor with dimension 64x64x8 (where 8 

corresponds to the number of channels) (Fig. 5(a)). We apply 

a three-layer Convolution Neural Network (CNN) to extract 

more features from the concatenated images before we feed it 

into the GAN generator. The kernel size and the stride for the 

first two layers are the same and they are set to 4 and 2. The 

third CNN layer has a kernel size of 6 and a stride of 4. 

Moreover, the padding size is 0 for all layers. The output of 

the CNN model is then reshaped into a 32 × 1 (16 × 1) vector 

as part of the generator input. The pre-input generator for using 

one backside image is illustrated in Fig. 5(b).  

 
Figure 6: Generator architecture. PG: output vector from the pre-input 

generator. 

The outputted 32 × 1  ( 16 × 1 ) vector will be 

concatenated with a randomly distributed 100 × 1 vector z 

together to form the input of the generator that is illustrated in 

Fig. 6. In our case, the GAN uses eight backside images to 

generate a top image. These eight images are considered model 

input in conventional definition but in GAN, including its 

advanced Conditional GAN, they are referred to as the 

condition and form GAN’s input together with a random 

vector 𝑧  as the noise [21]. The importance of the random 

vector 𝑧 as an input to GAN is well acknowledged [21]; that 

is, without z, GAN may still learn from the condition but it 

would produce deterministic outputs so that it would fail to 

match any distribution other than a delta function [22]. In 

different GAN architectures there are different ways to 

introduce random noise. In our work, we use Gaussian vector 

z. The generator has five layers where strided convolutions as 

in DCGANs [18] are applied to increase the dimension to 

64x64x1. The channel dimension for each layer is 256, 128, 

64, 32 and 1. Since the image dimension coming from the real 

data is 64x64x1, we need to have the same dimension for the 

generated images as well. Batch normalization is applied in 

every CNN layer except for the input and output.    

For the discriminator, we also use the same bottom images 

as the condition as adapted from Conditional GANs [20]. We 
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feed the same eight bottom images into the input discriminator 

by concatenating it with the real top image into a single tensor 

of dimension 64x64x9. The same is applied to the generated 

images when fed into the discriminator. The discriminator 

CNN model has four hidden layers and an output with a single 

element. The kernel size for all convolutional layers is 4 and 

the stride is 2, except for that the last one has a kernel size of 

6 and a stride of 4. Similar to the generator, batch 

normalization is implemented in every layer, except for the 

input and the output. The number of channels for each 

convolution is 9, 16, 32, 64, 128 and 1. Figure 7 illustrates the 

proposed discriminator. 

 
Figure 7: Discriminator architecture: 𝑛: # of consecutive bottom images. 

 
Based on our experiments, Wasserstein loss, introduced at 

Wasserstein GAN [23], is the best loss function that resulted 

in better generated images when the generator architecture is 

as given in Figure 6. We implement the Wasserstein loss 

function for the discriminator as in [24]. The generator loss 

function is modified to incorporate the loss in between the 

generated image and the corresponding real top image. After 

conducting many experiments comparing the real and fake 

images using pixel to pixel mean squared error, mean absolute 

error, etc., we conclude that Structural Similarity Index 

Measurement (SSIM) [25] produced better results, since it 

considers the luminance, contrast, and the structure in between 

both images. The SSIM loss function is given by: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+ 𝐶1)(𝜎𝑥
2+𝜎𝑦

2 + 𝐶2)
                                  (1)  

where, 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦 denote the mean and standard deviation 

of both images x and y, 𝐶1 = (𝐾1𝐿)2 and 𝐶2 = (𝐾2𝐿)2 with 

𝐾1, 𝐾2 ≪ 1 and L = max value. 𝐶1 and 𝐶2 are constants and 

they are included to avoid instability when  𝜇𝑥 + 𝜇𝑦 and 𝜎𝑥 +

𝜎𝑦 are very close to zero. As stated in [25], for image quality 

assessment, it is suggested to apply the SSIM function locally 

rather than globally into the entire image. We compare the real 

and generated images using the SSIM index locally, by 

considering an 11 x 11 square window and the corresponding 

mean and standard deviation are computed within the local 

window. Then, we apply the mean of every SSIM index to 

evaluate the entire image quality. 

The discriminator and generator are trained by alternate 

maximization and minimization of the loss functions 

ℒ𝐷 𝑎𝑛𝑑 ℒ𝐺  𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 given as below: 

ℒ𝐷 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝐷(𝑥)] − 𝐸𝑧~𝑝𝑧
[𝐷(𝐺(𝑧))]                       (2) 

ℒ𝐺 = 0.2 ∗ (−𝐸𝑧~𝑝𝑧
[𝐷(𝐺(𝑧))])+ 

           +0.8 ∗ (1 − 𝑆𝑆𝐼𝑀(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑, 𝑟𝑒𝑎𝑙))                     (3)                   

where 𝑝𝑑𝑎𝑡𝑎 is the topside image probability distribution and 

𝑝𝑧  is the Gaussian distribution. Another loss function that 

resulted in better image generation in our work is the Hinge 

loss [26]. The generator loss does not change but the 

discriminator loss is given as below: 

ℒ𝐷 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑋)[min(0, −1 + 𝐷(𝑥, 𝑦))] − 

−𝐸𝑧~𝑝𝑧
[min (0, −1 − 𝐷(𝐺(𝑧), 𝑦)]      (4)         

                              
VI. RESULTS AND DISCUSSION 

After performing many experiments, we obtained results as 
shown in Figure 8. The images on the right column are the 

generated topside images (Ξ̂(𝑘/𝑋(𝑘)) using eight consecutive 
bottom images and those in the left column are generated 

( Ξ̂(𝑘/𝑥(𝑘)))  by using only one bottom image. When 
comparing the results with the real topside images (middle), 
right ones generated by eight bottom images are significantly 
closer. This implies one bottom image does not have the 
needed information to generate the topside image (Ξ) but 8 
images have. To quantitatively assess their difference, we use 
the SSIM that allows us to focus on the luminance, contrast 
and structure [25] among the comparative images. The SSIM 
scores on the test data are given in Table 2. As the best SSIM 
score is 1, using eight consecutive backside images improved 
significantly over from using just one backside image. We also 
record the SSIM loss for every epoch for both GAN models 
and the results are shown in Figure 9. We can distinguish the 
improvement of using eight images over using one image in 
every epoch. (SSIM loss is just 1-SSIM score). To further 
show such improvement, we also present the RMSE loss, as 
the average of all images’ pixel to pixel differences between 
generated images and their respective counterparts, in Table 1. 
Based on our results, we can see the improvement obtained 
from using eight bottom images. Thus, the conditional GAN 
architecture, where the condition is based on eight consecutive 
bottom images, better generates the top images. The 
hypothesis in question is thus tested and a new foundation is 
needed to construct the inverse model for the monitoring of the 
weld penetration. 

Table 1: RMSE loss on the generated images 

Number of Backside Consecutive 
Images (𝒏) 

RMSE loss  

Eight Images  (𝒏=8) 0.105 

One Image  (𝒏=1) 0.140 

 

   
Figure 8: Comparison of generated results. Left: Ξ̂(𝑥); Middle: Ξ; right: Ξ̂(𝑋) 

with 𝑛 = 8      



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. XX XX, 2023                                                                                                                                        6 
     

Table 2: SSIM score on the generated images 

Number of Backside Consecutive 
Images (𝒏) 

SSIM score 

Eight Images  (𝒏=8) 0.906 

One Image  (𝒏=1) 0.799 

 

 

Figure 9: SSIM loss of GAN using eight images and one image 

VII. IMPROVEMENT 

While we have tested the hypothesis through comparison of 

results among using 𝑛 = 1  and 𝑛 = 8 , we note that the 

forward process may be better modeled as the SSIM score is 

not one yet. To this end, we propose using a Recurrent Neural 

Network (RNN) to model the dynamics of the input sequence 

of images. Specifically, we use the Gated Recurrent Unit 

(GRU).    

 
Figure 10: GRU generator architecture. 

Generator Structure: Since we are working with 

consecutive images, it would be expected that a sequential 

architecture may help the GAN to gain more information, that 

already exists in the bottom consecutive images. Gated 

Recurrent Units (GRUs) [23] is one of the most popular 

sequential/language models with many practical applications. 

There are works in combining sequence models with GANs 

[19] to obtain better text generation as shown in [17]. In our 

case, we need to generate images similar to top ones and the 

order of bottom images is of utmost significance in improving 

the generated images. We expect a correlation in between the 

bottom images and considering the input as a sequence of 

images, allowing our model to get a better understanding 

regarding the welding process and thus generating more 

accurate images. As such, we propose to use the GRU 

Generator illustrated in Fig. 10 with more details to follow. In 

this proposed new sequential GAN architecture, referred to as 

GRU-GAN, we only change the generator and we use the 

same discriminator as used earlier.  

 
Figure 11: CNN Embedding architecture for every input image. 

 
Before we feed the sequence of bottom images into the 

GRU model, we apply a CNN Embedding model architecture 

to extract the most important image features for each image. 

The CNN Embedding model consists of three convolution 

layers where kernel size, stride and padding are the same in 

every layer and they are set to 4, 2, 1, respectively. The 

number of channels for every convolution layer is 4, 8 and 16 

and the input image has only one channel. Based on our 

experiments, employing the learning rate decay every 40 

epochs with coefficient 0.7 and batch normalization [20] in 

between every layer resulted in a better performance. The 

CNN Embedding model takes one image of dimension 

64 × 64 × 1 at one time step, since we incorporate this model 

in the same manner as an Embedding layer works in a 

language model. The output of the CNN Embedding model is 

reshaped into a vector of dimension 1024 and is viewed as one 

element of the input sequence for the GRU model. The 

architecture is illustrated in Figure 11. 

GRU Generator: As has been mentioned, we apply the 

same CNN Embedding model into eight consecutive bottom 

images and the CNN Embedding output is the input sequence 

that is fed into the GRU model. In the new generator 

architecture (GRU Generator), we still consider a Conditional 

GANs [24] type architecture. Thus, the initial hidden state is 

initialized using a random distribution and is considered as 

the 𝑧  vector that was suggested and used at the previous 

generator model. The hidden state dimension for the GRU is 

set to 256. In the GRU architecture, each GRU cell takes (1) 

the output of its respective CNN Embedding and (2) the 

output from the previous GRU cell, referred to as hidden state, 

as its input. Its output is the updated hidden state to be used in 

the next GRU cell. The output of the GRU structure is the 

output of the last GRU cell. In our case, this architecture 

allows the flow of information coming from every time step,  

(i.e., h1-h9). The output is then reshaped into a 16x16x1 image 

and a series of two fractionally-strided convolutions are 

applied to convert this high-level representation into a 

64x64x1 image, which is the generated image. The applied 

loss function that has better results is the Hinge function, 

whose mathematical formulation is given in Section 5.  

Improvement Results: As shown in Figure 13, the 

generated images (right) are difficult to distinguish from the 

real one (middle). To get a better insight about the difference 

between employing eight consecutive images and one image 

in GRU GAN, we can check on Figure 12, where the SSIM 

loss (between the generated and real top image) is recorded 
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for every epoch. For a dynamic process, the effect of timing 

and order are also critical. The GRU model provides a 

mechanism to discriminate bottom images per timing/order 

and is thus able to more effectively grasp information due to 

the sequential architecture. As such, the generated images do 

not have noticeable differences from the real ones. The 

resultant SSIM scores on the test dataset given in Table 3 

quantifies the improvements. Furthermore, in Table 4, we 

present the RMSE loss in between the generated image from 

the GRU-GAN (using eight images and one image) with the 

experimental top images. Our results on SSIM score, RMSE 

loss and the graph of the SSIM loss function in Figure 12, all 

show an improvement from employing eight images and 

using GRU-GAN. Hence, the GRU-GAN has more accurately 

modeled the forward process. This improvement is apparently 

due to an effective use of the sequential information that has 

been in the used history and this information was not used in 

our previous model in Section 5.  

Table 3: SSIM score on the images using GRU-GAN 

Number of Backside Consecutive 
Images (𝒏) 

SSIM score 

Eight Images  (𝒏=8) 0.925 

One Image  (𝒏=1) 0.837 

 

 

Figure 12: SSIM loss of GRU GAN using eight images and one image 

 

 
Figure 13: Comparison of generated results with GRU-GAN. Left: Ξ̂(𝑥); 

Middle: Ξ; right: Ξ̂(𝑋) with 𝑛 = 8      

Table 4: RMSE loss on the images using GRU-GAN 

Number of Backside Consecutive 
Images (𝒏) 

RMSE loss 

Eight Images  (𝒏=8) 0.079 

One Image  (𝒏=1) 0.011 

 

VIII. Conclusions  

This letter answered a fundamental question of whether the 

forward welding process is dynamic, i.e., the influence of the 

weld pool as partially represented by the state of the weld 

penetration on the welding process phenomena is dynamic. 

To this end, we proposed a GAN to model the forward process 

and found that the current state of the weld penetration 

(current weld pool) is not sufficient to determine the currently 

observed welding phenomena. As such, the theoretical 

foundation on which the current efforts in deep learning-

based weld penetration monitoring are based is challenged! A 

new foundation is thus needed. 

We also proposed a GRU-GAN to utilize the sequential 

information in the penetration history to model the forward 

welding process more accurately and found that the generated 

images have no noticeable differences with the real ones. The 

sequential nature in general dynamic systems/processes is 

thus fundamental in the forward welding process. It is thus 

also fundamental in establishing the new foundation for deep 

learning-based monitoring of weld penetration.  
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