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Do We Need a New Foundation to Use Deep Learning to Monitor
Weld Penetration?

Edison Mucllari, Rui Yu, Yue Cao, Qiang Ye, YuMing Zhang, Fellow, IEEE

Abstract — Deep learning has been successfully used to automate
the modeling process that trains a network/model from a given
experimental dataset to calculate the output directly using high-
dimensional complex raw data. However, the trained network is
an inverse of the welding process (forward process) that
produces the welding phenomena/measured raw data as the
output with the penetration as the input of the forward process.
Now the question is in addition to the current state of the weld
penetration to be estimated if the forward process also has other
inputs to determine its output. If it has, then the inverse model
has to be constructed accordingly. This will call for a new
foundation for deep learning-based monitoring of penetration.
This letter proposed a novel innovative generative adversarial
network (GAN) with GRU (Gated Recurrent Unit) in the
generator, i.e., GRU-GAN, to model the extremely complex
forward process to generate the observed topside welding image
(output of the forward process) from the backside images (as
comprehensive quantification of weld penetration). It is found
that the produced topside welding image is not only determined
by the current backside image but also by its history. A new
foundation thus must be established to guide deep learning-
based monitoring of weld penetration. The prediction
model/network as an inverse model must be in compliance with
the forward process that includes the history of the state of the
weld penetration as its input.
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I. INTRODUCTION

This letter aims at answering a basic question related to
monitoring the weld penetration using a deep learning
approach. As the weld penetration currently can only be
assured by skilled human welders, the question is
fundamental in robotizing/automating welding processes for
challenging applications. Analysis of literature suggests that
almost all, if not all, of efforts in the area share a similarity:
using the measured welding phenomena as the raw
information source/sources to correlate to the weld
penetration [1]. Our question is if this has been based on a
solid foundation and if its foundation has flaws. Answering
this question will guide new directions, or call for establishing
new and more solid foundations to solve this long-standing
technical challenge, possibly in various ways.

Welding joins two members of materials together by
melting their facing edges and weld penetration quantifies this
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melting, typically either by the weld pool depth (penetration
depth) for incomplete/partial penetration or by the backside
bead width for complete/full penetration (Fig. 1). As the
penetration is unobservable occurring underneath, almost all
existing methods, if not all of them, are to find promising
measurable information sources and correlate their “right
features™ to the penetration. Various measurables have been
proposed as promising raw information sources [1] including
pool oscillation [2], infrared images [3], acoustic signals [4],
weld pool [5], weld pool geometrical appearance [6], 3D weld
pool surface [7]. While conventional methods have been
based on features hand-crafted from the raw information
sources resulting in an un-automated, trial-and-error process
consisting of a number of separate sub-processes, deep
learning provides a revolutionary solution by optimizing the
features to allow automating the entire process. Since the
occurrence of the first peer reviewed publication [8] in 2019,
there have been approximately 100 records in Web of Science
in Deep Learning AND weld AND penetration by the end of
year 2022 [1].

Deep learning revolutionized the area of weld penetration
monitoring by providing a way to directly link the raw
information/sources to the weld penetration so that their
relationship/mapping can be obtained through an automated
process. This revolution is due to the development of deep
learning but our efforts in this area have been in the
application domain. They used raw information sources from
previous physics/mechanisms-based studies as represented in
[2-7]. Improved methods to measure raw information sources
may have been used and major contributions have been
limited to use different deep learning networks to
accommodate different raw information sources/multiple
information sources [9-15], as inputs of the networks whose
outputs are the weld penetration state.

This letter will hypothesize that using raw information to
directly link the penetration is not flawless and test this
hypothesis to call the need for new foundations. Section II
will provide and analyze the background to propose the
hypothesis. Section III will outline how the hypothesis will be
tested and Section IV is devoted to experiments in particular
for what are the actual dataset. Section V proposes a
generative adversarial network (GAN) to model the forward
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process that generates the topside weld pool image as the
“observed welding phenomena”. In Section VI Results,
Discussion and Improvement, we show that the current state
of the weld penetration is not sufficient in producing the
topside image, but the sufficiency is improved by including
the history of the penetration state. We also proposed an
improved network to model the forward process by better
using the history. Conclusions are summarized in Section VII.
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Figure 1: Illustration of weld penetration. Blue dash: weld pool of incomplete
penetration with depth d,,; red solid: weld pool of complete penetration with
backside bead width wy,.

II. BACKGROUND AND HYPOTHESIS

Fig. 1 can be used as an example to illustrate the weld
penetration. (More comprehensive introduction on weld
penetration topic is presented in [16].) The autogenous gas
tungsten arc welding (GTAW) in the figure is for illustration
purpose and other processes can be used. The weld pool with
red lines as the boundary shows complete joint penetration
(also referred to as full penetration) with a backside weld bead
width wy, . If the weld pool has the blue dashes as the
boundary, the workpiece is not completely melted to the
bottom surface forming an incomplete joint penetration (also
referred to as partial penetration) being characterized by d,,.
wy, and d,, are critical for the respective penetration case:
being less than designed/desired results in unacceptable
defect and being larger than designed/desired results in
increases in materials properties degradation, heat input,
residual stress and distortion [16]. The problem of penetration
monitoring to be solved by research community is to use
sensors, referred to as top sensors, that can be carried by the
torch to obtain process measurables to estimate wy, or d,,,
rather than using sensors that may directly view them. We use
the state of penetration x for either w,, or d,, depending on
the application.

Top sensors obtain process feedback or observed
phenomena Z (which may be complex) which are believed to
have sufficient information to determine the penetration x per
previous physics/mechanism-based studies. Existing efforts
train a model x = f(E). Earlier and most efforts in deep
learning fit x(k) = f(E(k)) and some fit x(k) = f(E()'s)
(j < k) [15]. This letter questions the soundness of the
foundation for x(k) = f(E(k)) based approaches.

First of all, = are behaviors of the welding process. As
welding process is complex, there has been no single study to
prove theoretically that particular £ being used may have
sufficient information to determine the penetration. The

“proofs” reported are based on experimental data and are not
real. Second, an estimation model x(k) = f(Z(k)) may be
considered an inverse of the process model Z(k) = g(x(k)).
The estimation model x(k) = f(2(k)) may be reasonable
only if the process model Z(k) = g(x(k)) is reasonable.

The process model is more fundamental than an
estimation model in catching the mechanism and essence. We
question the process model EZ(k) = g(x(k)) from two
angles: (1) if there are other factors n in addition to the
penetration state x that also affect the welding process and
thus affect part of its observation Z; (2) even if there are no
other factors such as in a condition that is close to the nominal
one, it is a question if Z(k) is only determined by the current
state x(k) of the penetration without being affected by its
history x(j)(j < k). A definite answer to either question will
justify the need for a new foundation. As such, this letter
focuses, and can just focus, on the second question although
the first question also deserves attention (but it is more
application dependent while the second question has more
general implications independently from applications).

In a process model Z(k) = g(x(k)), x is the cause and
is the consequence. This is a causal process where x occurs
first and can be considered the input of a system with Z as its
output. It is apparent that this system must be dynamic as there
is apparently a transition time from the penetration to affect
the process behaviors. It is likely that this transition is not a
simple, ideal delay but a gradual process. As such, a
penetration state affects the process behaviors not just in one
instant but in a period. This suggests that Z(k) =
gx()'s)(j < k), or (k) = g(X(k)) where X(k) € R™ is
formed by x(j) (k —n <j < k), must be in general more
reasonable than Z(k) = g(x(k)). This is the hypothesis, that
calls for a new foundation for deep learning-based monitoring
of weld penetration, to be tested in this letter.

III. PROPOSED METHOD OF TEST

While there may be other ways to test the hypothesis
concerned, this letter will test it by building networks that use
x to generate E to see if the generated E, denoted as £, can
well match with the measured Z. That is, the network will
function as the mapping g from x to = as a model of the
underlying physical welding process with the specific concern
for its partial behaviors represented by Z. Theoretically, if the
network structure is right (determined by network type and
the number of adjustable parameters) and the training dataset
is large and diverse enough, we will be able to catch the
deterministic correlation from x to Z. The modeling errors
(training and test) reflect either model structure insufficiency,
inaccuracy of the input (x) in determining = and the effect
from other uncontrolled factors but not the dataset’s diversity
that affects the error in application of the trained network. The
average error as reflected by the variance will reflect the
former two. If we have the same datasets and similar model
structure to compare E(k) = g(x(k)) with E(k) = g(X(k)),
we will be able to see if x(k) alone is sufficient and if there is
a need to include some history of x, i.e., x(j)(j < k).

In most deep learning applications, a complex/high
dimension signal such as = is used as the input of a network
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which outputs a low-dimension quantity such as x. A variant
of convolutional neural network (CNN) is the typical choice
for such applications. For this application to test our
hypothesis, we need generating the high dimension
phenomena =, which is a kind of image from the weld pool,
from the lower dimension input x as shown in Fig. 2 which
illustrates the proposed network to test the hypothesis. In
particular in Fig. 2, I(x(k)) and I(X(k)) are the raw
information to calculate respective x and can provide more
comprehensive information on the weld penetration state than
the simplified quantity x (w, or d,,). The dimensions of the
extracted features from I(x(k)) and I(X(k)), i.e., @(x(k))

and <p(X(k)), are the same, i.e., D(go(x(k)))=

D(@(X(k)). The Generator Network generates E(k) from
@(x(k)) or (X (k)). Its structure MUST be the same despite
the input, either ¢ (x(k)) or ¢ (X(k)), for a fair comparison
but the network will be trained separately. The structures for
the Featuring Networks for the two kinds of inputs, I(x(k))
and I(X(k)), cannot be exactly the same but should be
similar. The Featuring Networks will also be trained
separately. As will be discussed below, I(x(k)) and I(X(k))
will be images captured from the backside of the workpieces
during welding. The Featuring Network thus should be a
variant of CNN. The Generator Network should be a GAN.
The details of the network design will be discussed later.

1(x(K)) or ™ Featuring ‘P(X(k))if Generator Generated
I(X(k)) Network (X)) Network Z(k)/Image

Figure 2: Proposed network structure to test the hypothesis.

IV. EXPERIMENTS AND DATASET

Gas tungsten arc welding (GTAW) is the primary process
used to produce welds with assured complete penetration
required in most critical applications. In this letter, an
experimental system at the University of Kentucky Welding
Research Laboratory is used to conduct GTAW experiments
[15]. This experiment system has two cameras (Fig. 1) with
Camera 1 to view the weld pool as = (topside image) and
Camera 2 to view the backside of the work piece as I(x)
(backside image) from which x can be calculated as in [15].
The backside image provides complete raw information for
the penetration status and x as defined in this letter is just a
simplified measure. Using the backside image as the input to
represent the weld penetration to test the hypothesis is thus
more accurate and appropriate. Fig. 3 shows a pair of topside
and backside images captured at the same time. The topside
camera (Camera 1) is an Xiris camera of XVC-1100, a high
dynamic range camera designed to view melt pools despite
the presence of strong radiation from arc, laser, metal vapors,
etc. The back-side camera (Camera 2) is a regular CCD
because of the absence of strong radiation. The cameras
capture the images simultaneously from both sides of the
workpieces at 60 Hz.

To generate a meaningful dataset, four experiments have
been conducted using real time randomly varying welding
current and welding speed, the two most important welding
parameters determining the weld penetration, to generate a
diverse set of highly dynamic weld penetration x/back-side

image I (x) and topside images (process phenomena ). In the
experiments, the welding current varied from 70A to 130A
and speed from 1.2mm/s to 2mm/s. With them being changed
each 2 seconds randomly, conditions were created to generate
highly dynamic and “extremely difficult to predict” topside
images/welding behaviors. The captured images from all the
experiments allow us to obtain dataset (I (x(k)), Z(k))’s and
(I(X(k),ZE(k))’s. 4,760 pairs can be collected from each
experiment for both datasets to have the size for datasets as
4,760*%4=19,040. After removing the data from the beginning
of each experiment, the size of the datasets being actually
used is 18,567. The data is then split into training and testing,
where 80% corresponds to the training data and 20% is for the
test.

Figure 3: Paired topside (left) and backside (right) images.

V.WELDING GENERATIVE ADVERSARIAL NETWORKS

This work models the forward/welding process by Generative
Adversarial Networks (GANSs) [17]. Since their introduction
in 2014, GANs have seen a wide range of applications. The
proposed neural network incorporates the usage of a minimax
type architecture in between a generative model (generator)
and a discriminative model (discriminator). GANs take as an
input a vector z from a random distribution and the task is to
approximate the distribution of the real topside images by
using backpropagation to train the generator and
discriminator. The discriminator takes inputs from both the
real images and the generated images, referred to as fake
images, and it is trained to distinguish real images from the
fake ones. The stronger the discriminator is, the better the
generator has to become to be able to fool the discriminator.
There has been tremendous work in improving the generator
and discriminator of GANs due to the training instability. For
image generation, Deep Convolutional Generative
Adversarial Networks (DCGANs) [18] successfully
introduced convolutions into GANs and they provide some
architectural constraints and also the most effective
hyperparameters they retrieve from their experiments to
ensure a more stable training.

We have integrated several features and hyperparameters
of DCGAN into our model. These hyperparameters are as
follows: Instead of using pooling layers as it is usually
suggested in CNN models, in our architecture, we implement
strided convolutions for the discriminator and fractional-



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. XX XX, 2023 4

strided convolutions for the generator as in DCGANSs. Our
model consists of only convolution layers, since we avoid the
fully-connected layers, as mentioned in [18]. Applying batch
normalization in every layer improves the performance and
the corresponding activation functions for the generator and
discriminator are ReLU and Leaky ReLU (with 0.2),
respectively. Furthermore, the output of the generator uses
tanh activation and the output of the discriminator uses a
sigmoid activation function. All weights are initialized from
a Normal Distribution with mean 0 and standard deviation
0.02. The learning rate is set to 3 * 10—4 with Adam optimizer
[19] and the model is trained for 200 epochs.
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Figure 4: Welding GAN. n: the number of bottom images used.
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Figure 5: Pre-input generator architecture. Upper: Using eight bottom images;
lower: Using a single bottom image

The proposed GAN model for this work is illustrated in
Fig. 4. We require our model to have two properties. First, we
need the generator to be able to generate images with a similar
probability distribution as the top images by incorporating the
bottom/backside ones. Second, the generated image should be
as close as possible to the corresponding real topside image.
We propose using a number (1) of most recent consecutive
bottom images, i.e., X (k) € R", to generate the topside image
E(k). Thus, we incorporate the usage of Conditional
Generative Adversarial Nets [20]. Using a similar idea as in
Conditional GANs, we perform conditioning by feeding X (k),
as well as the vector z, which comes from a random
distribution. Since we need our generated image Z(k) and
Z(k) to be as close as possible, the implemented generator loss
function considers the generator loss and the loss due to ||

Z(k) — E(k) Il. Our proposed model has more of a semi-
supervised learning architecture, since we introduce || Z(k) —
Z(k) Il based loss function as well to enforce the newly
generated images to be similar to the experimental images.

As has been mentioned, we condition the model based on
n consecutive bottom images. The hyperparameter n affects
the capability of our proposed model and there should be an
optimal n* where our model performs the best. However, to
test the hypothesis, any n that shows a significant
improvement in the model accuracy would be sufficient. An
optimal n is thus not necessary and searching for such optimal
n* dilutes the focus on the new concept. As such, we use n=8
to count for a dynamic period which is slightly over 0.1 second
(8/60=0.13 second). As such, we need a pre-input generator as
illustrated in Fig. 5. First, we stack all eight bottom images to
derive a single tensor with dimension 64x64x8 (where 8
corresponds to the number of channels) (Fig. 5(a)). We apply
a three-layer Convolution Neural Network (CNN) to extract
more features from the concatenated images before we feed it
into the GAN generator. The kernel size and the stride for the
first two layers are the same and they are set to 4 and 2. The
third CNN layer has a kernel size of 6 and a stride of 4.
Moreover, the padding size is 0 for all layers. The output of
the CNN model is then reshaped intoa 32 X 1 (16 X 1) vector
as part of the generator input. The pre-input generator for using
one backside image is illustrated in Fig. 5(b).
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Figure 6: Generator architecture. PG: output vector from the pre-input
generator.

The outputted 32x1 ( 16 X1 ) vector will be
concatenated with a randomly distributed 100 X 1 vector z
together to form the input of the generator that is illustrated in
Fig. 6. In our case, the GAN uses eight backside images to
generate a top image. These eight images are considered model
input in conventional definition but in GAN, including its
advanced Conditional GAN, they are referred to as the
condition and form GAN’s input together with a random
vector z as the noise [21]. The importance of the random
vector z as an input to GAN is well acknowledged [21]; that
is, without z, GAN may still learn from the condition but it
would produce deterministic outputs so that it would fail to
match any distribution other than a delta function [22]. In
different GAN architectures there are different ways to
introduce random noise. In our work, we use Gaussian vector
z. The generator has five layers where strided convolutions as
in DCGANs [18] are applied to increase the dimension to
64x64x1. The channel dimension for each layer is 256, 128,
64, 32 and 1. Since the image dimension coming from the real
data is 64x64x1, we need to have the same dimension for the
generated images as well. Batch normalization is applied in
every CNN layer except for the input and output.

For the discriminator, we also use the same bottom images
as the condition as adapted from Conditional GANs [20]. We
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feed the same eight bottom images into the input discriminator
by concatenating it with the real top image into a single tensor
of dimension 64x64x9. The same is applied to the generated
images when fed into the discriminator. The discriminator
CNN model has four hidden layers and an output with a single
element. The kernel size for all convolutional layers is 4 and
the stride is 2, except for that the last one has a kernel size of
6 and a stride of 4. Similar to the generator, batch
normalization is implemented in every layer, except for the
input and the output. The number of channels for each
convolution is 9, 16, 32, 64, 128 and 1. Figure 7 illustrates the
proposed discriminator.
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Figure 7: Discriminator architecture: n: # of consecutive bottom images.

Based on our experiments, Wasserstein loss, introduced at
Wasserstein GAN [23], is the best loss function that resulted
in better generated images when the generator architecture is
as given in Figure 6. We implement the Wasserstein loss
function for the discriminator as in [24]. The generator loss
function is modified to incorporate the loss in between the
generated image and the corresponding real top image. After
conducting many experiments comparing the real and fake
images using pixel to pixel mean squared error, mean absolute
error, etc., we conclude that Structural Similarity Index
Measurement (SSIM) [25] produced better results, since it
considers the luminance, contrast, and the structure in between
both images. The SSIM loss function is given by:
_ uxpy+C1)(20xy + C3)

SSIMGGY) = Gz ey oErat 1 M
where, [y, iy, 0y, 0, denote the mean and standard deviation
of both images x and y, C; = (K;L)? and C, = (K,L)? with
Ki, K, < 1 and L = max value. C; and C, are constants and
they are included to avoid instability when u, + u, and o, +
oy are very close to zero. As stated in [25], for image quality
assessment, it is suggested to apply the SSIM function locally
rather than globally into the entire image. We compare the real
and generated images using the SSIM index locally, by
considering an 11 x 11 square window and the corresponding
mean and standard deviation are computed within the local
window. Then, we apply the mean of every SSIM index to
evaluate the entire image quality.

The discriminator and generator are trained by alternate

maximization and minimization of the loss functions
Ly and L respectively given as below:
L = Ex-pggeaoD)] = E;, [D(6())] @)
£ =02+ (~E,-p, DG+

+0.8 x (1 — SSIM (generated, real)) 3)

where pgyqtq 18 the topside image probability distribution and
p, is the Gaussian distribution. Another loss function that
resulted in better image generation in our work is the Hinge

loss [26]. The generator loss does not change but the
discriminator loss is given as below:

Lp = Expyoeaco[min(0, =1+ D(x,y))] -
—E, ,[min (0,—1-D(G(2),y)] (4)

VI. RESULTS AND DISCUSSION

After performing many experiments, we obtained results as
shown in Figure 8. The images on the right column are the
generated topside images (£(k/X (k)) using eight consecutive
bottom images and those in the left column are generated
( E(k/x(k))) by using only one bottom image. When
comparing the results with the real topside images (middle),
right ones generated by eight bottom images are significantly
closer. This implies one bottom image does not have the
needed information to generate the topside image (Z) but 8
images have. To quantitatively assess their difference, we use
the SSIM that allows us to focus on the luminance, contrast
and structure [25] among the comparative images. The SSIM
scores on the test data are given in Table 2. As the best SSIM
score is 1, using eight consecutive backside images improved
significantly over from using just one backside image. We also
record the SSIM loss for every epoch for both GAN models
and the results are shown in Figure 9. We can distinguish the
improvement of using eight images over using one image in
every epoch. (SSIM loss is just 1-SSIM score). To further
show such improvement, we also present the RMSE loss, as
the average of all images’ pixel to pixel differences between
generated images and their respective counterparts, in Table 1.
Based on our results, we can see the improvement obtained
from using eight bottom images. Thus, the conditional GAN
architecture, where the condition is based on eight consecutive
bottom images, better generates the top images. The
hypothesis in question is thus tested and a new foundation is
needed to construct the inverse model for the monitoring of the
weld penetration.

Table 1: RMSE loss on the generated images

Number of Backside Consecutive RMSE loss
Images (n)

Eight Images (n=8) 0.105
One Image (n=1) 0.140

-

Figure 8: Comparison of generated results. Left: Z(x); Middle: E; right: £(X)
withn =8
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Table 2: SSIM score on the generated images

Number of Backside Consecutive SSIM score
Images (n)

Eight Images (n=8) 0.906

One Image (n=1) 0.799
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Figure 9: SSIM loss of GAN using eight images and one image
VII. IMPROVEMENT

While we have tested the hypothesis through comparison of
results among using n =1 and n =8, we note that the
forward process may be better modeled as the SSIM score is
not one yet. To this end, we propose using a Recurrent Neural
Network (RNN) to model the dynamics of the input sequence
of images. Specifically, we use the Gated Recurrent Unit
(GRU).
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Figure 10: GRU generator architecture.

Generator Structure: Since we are working with
consecutive images, it would be expected that a sequential
architecture may help the GAN to gain more information, that
already exists in the bottom consecutive images. Gated
Recurrent Units (GRUs) [23] is one of the most popular
sequential/language models with many practical applications.
There are works in combining sequence models with GANs
[19] to obtain better text generation as shown in [17]. In our
case, we need to generate images similar to top ones and the
order of bottom images is of utmost significance in improving
the generated images. We expect a correlation in between the
bottom images and considering the input as a sequence of
images, allowing our model to get a better understanding
regarding the welding process and thus generating more
accurate images. As such, we propose to use the GRU

Generator illustrated in Fig. 10 with more details to follow. In
this proposed new sequential GAN architecture, referred to as
GRU-GAN, we only change the generator and we use the
same discriminator as used earlier.
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Figure 11: CNN Embedding architecture for every input image.

Before we feed the sequence of bottom images into the
GRU model, we apply a CNN Embedding model architecture
to extract the most important image features for each image.
The CNN Embedding model consists of three convolution
layers where kernel size, stride and padding are the same in
every layer and they are set to 4, 2, 1, respectively. The
number of channels for every convolution layer is 4, 8 and 16
and the input image has only one channel. Based on our
experiments, employing the learning rate decay every 40
epochs with coefficient 0.7 and batch normalization [20] in
between every layer resulted in a better performance. The
CNN Embedding model takes one image of dimension
64 X 64 X 1 at one time step, since we incorporate this model
in the same manner as an Embedding layer works in a
language model. The output of the CNN Embedding model is
reshaped into a vector of dimension 1024 and is viewed as one
element of the input sequence for the GRU model. The
architecture is illustrated in Figure 11.

GRU Generator: As has been mentioned, we apply the
same CNN Embedding model into eight consecutive bottom
images and the CNN Embedding output is the input sequence
that is fed into the GRU model. In the new generator
architecture (GRU Generator), we still consider a Conditional
GANS [24] type architecture. Thus, the initial hidden state is
initialized using a random distribution and is considered as
the z vector that was suggested and used at the previous
generator model. The hidden state dimension for the GRU is
set to 256. In the GRU architecture, each GRU cell takes (1)
the output of its respective CNN Embedding and (2) the
output from the previous GRU cell, referred to as hidden state,
as its input. Its output is the updated hidden state to be used in
the next GRU cell. The output of the GRU structure is the
output of the last GRU cell. In our case, this architecture
allows the flow of information coming from every time step,
(i.e., hi-ho). The output is then reshaped into a 16x16x1 image
and a series of two fractionally-strided convolutions are
applied to convert this high-level representation into a
64x64x1 image, which is the generated image. The applied
loss function that has better results is the Hinge function,
whose mathematical formulation is given in Section 5.

Improvement Results: As shown in Figure 13, the
generated images (right) are difficult to distinguish from the
real one (middle). To get a better insight about the difference
between employing eight consecutive images and one image
in GRU GAN, we can check on Figure 12, where the SSIM
loss (between the generated and real top image) is recorded
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for every epoch. For a dynamic process, the effect of timing
and order are also critical. The GRU model provides a
mechanism to discriminate bottom images per timing/order
and is thus able to more effectively grasp information due to
the sequential architecture. As such, the generated images do
not have noticeable differences from the real ones. The
resultant SSIM scores on the test dataset given in Table 3
quantifies the improvements. Furthermore, in Table 4, we
present the RMSE loss in between the generated image from
the GRU-GAN (using eight images and one image) with the
experimental top images. Our results on SSIM score, RMSE
loss and the graph of the SSIM loss function in Figure 12, all
show an improvement from employing eight images and
using GRU-GAN. Hence, the GRU-GAN has more accurately
modeled the forward process. This improvement is apparently
due to an effective use of the sequential information that has
been in the used history and this information was not used in
our previous model in Section 5.

Table 3: SSIM score on the images using GRU-GAN

Number of Backside Consecutive SSIM score
Images (n)

Eight Images (n=8) 0.925

One Image (n=1) 0.837
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Figure 12: SSIM loss of GRU GAN using eight images and one image

Figure 13: Comparison of generated results with GRU-GAN. Left: £(x);
Middle: E; right: 2(X) withn = 8

Table 4: RMSE loss on the images using GRU-GAN

Number of Backside Consecutive RMSE loss

Images (n)

Eight Images (n=8) 0.079

One Image (n=1) 0.011
VIII.  Conclusions

This letter answered a fundamental question of whether the
forward welding process is dynamic, i.e., the influence of the
weld pool as partially represented by the state of the weld
penetration on the welding process phenomena is dynamic.
To this end, we proposed a GAN to model the forward process
and found that the current state of the weld penetration
(current weld pool) is not sufficient to determine the currently
observed welding phenomena. As such, the theoretical
foundation on which the current efforts in deep learning-
based weld penetration monitoring are based is challenged! A
new foundation is thus needed.

We also proposed a GRU-GAN to utilize the sequential
information in the penetration history to model the forward
welding process more accurately and found that the generated
images have no noticeable differences with the real ones. The
sequential nature in general dynamic systems/processes is
thus fundamental in the forward welding process. It is thus
also fundamental in establishing the new foundation for deep
learning-based monitoring of weld penetration.
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