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ABSTRACT

We consider the off-policy evaluation problem of reinforcement learning using
deep convolutional neural networks. We analyze the deep fitted Q-evaluation
method for estimating the expected cumulative reward of a target policy, when
the data are generated from an unknown behavior policy. We show that, by choos-
ing network size appropriately, one can leverage any low-dimensional manifold
structure in the Markov decision process and obtain a sample-efficient estimator
without suffering from the curse of high data ambient dimensionality. Specifically,
we establish a sharp error bound for fitted Q-evaluation, which depends on the in-
trinsic dimension of the state-action space, the smoothness of Bellman operator,
and a function class-restricted χ2-divergence. It is noteworthy that the restricted
χ2-divergence measures the behavior and target policies’ mismatch in the func-
tion space, which can be small even if the two policies are not close to each other
in their tabular forms. We also develop a novel approximation result for con-
volutional neural networks in Q-function estimation. Numerical experiments are
provided to support our theoretical analysis.

1 INTRODUCTION

Off-policy Reinforcement Learning (RL) [38, 40] is an important area in decision-making applica-
tions, when the data cannot be acquired with arbitrary policies. For example, in clinical decision-
making problems, experimenting new treatment policies on patients is risky and may raise ethical
concerns. Therefore, we are only allowed to generate data using certain policies (or sampling distri-
butions), which have been approved by medical professionals. These so-called ªbehavior policiesº
are unknown but could impact our problem of interest, resulting in distribution shift and insufficient
data coverage of the problem space. In general, the goal is to design algorithms that need as little
data as possible to attain desired accuracy.

A crucial problem in off-policy RL is policy evaluation. The goal of Off-Policy Evaluation (OPE) is
to estimate the value of a new target policy based on experience data generated by existing behavior
policies. Due to the mismatch between behavior and target policies, the off-policy setting is entirely
different from the on-policy one, in which policy value can be easily estimated via Monte Carlo.

A popular algorithm to solve OPE is the fitted Q-evaluation method (FQE), as an off-policy variant
of the fitted Q-iteration [28, 15, 75]. FQE iteratively estimates Q-functions by supervised regression
using various function approximation methods, e.g., linear function approximation, and has achieved
great empirical success [65, 20, 21], especially in large-scale Markov decision problems. Comple-
mentary to the empirical studies, several works theoretically justify the success of FQE. Under linear
function approximation, [31] show that FQE is asymptotically efficient, and [15] further provide a
minimax optimal non-asymptotic bound, and [47] provide a variance-aware characterization of the
distribution shift via a weighted variant of FQE. [75] analyze FQE with realizable, general differen-
tiable function approximation. [37, 64] tackle OPE for even more general function approximation,
but they require stronger assumptions such as full data coverage. [16] focus on on-policy estimation
and study a kernel least square temporal difference estimator.

Recently, deploying neural networks in FQE has achieved great empirical success, which is
largely due to networks’ superior flexibility of modeling in high-dimensional complex environments
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κ is defined in (1), and Õ(·) hides some constant depending on state-action space and a polynomial
factor in D.

We compare our results with several related works in Table 1. Both [15] and [75] consider paramet-
ric function approximation to the Q-function: [15] study linear function approximation, and [75] as-
sume third-order differentibility, which is not applicable to neural networks with non-smooth activa-
tion. On the other hand, [51] use feed-forward neural networks with ReLU activation to parametrize
nonparametric Q-functions, but they do not take any low-dimensional structures of the state-action
space into consideration. Therefore, their result suffer from the curse of dimension D. Moreover,
they characterize the distribution shift with the absolute density ratio between the experience data
distribution and the visitation distribution of target policy, which is strictly larger than our character-
ization in restricted χ2-divergences. As can be seen from our comparison, our result improves over
existing results. Moreover, since CNNs have been widely used in deep RL applications and also
retain state-of-the-art performance [48, 22], our consideration of CNNs is a further step of bridging
practice and theory.

Table 1: κ1 and κ2 are measures of distribution shift with respect to their respective regularity spaces;
Deff denotes the effective dimension of the function approximator in [75], which usually suffers
from the curse of dimensionality; κ3 is the absolute density ratio between the data distribution and
target policy’s visitation distribution; κ is defined in (1) and is no larger than and often substantially
smaller than κ3. See in-depth discussions in Section 4.

Work Regularity Approximation Estimation Error

[15] Linear None Õ
(
H2
√
κ1D/K

)

[75]
Third-time

differentiable None Õ
(
H2
√
κ2Deff/K

)

[51] Besov
Feed-Forward

ReLU Net Õ
(
H2−α/(2α+2D)κ3K

−α/(2α+2D)
)

This work Besov CNN Õ
(
H2κK−α/(2α+d)

)

Additional Related Work Besides FQE, there are other types of methods in the OPE literature.
One popular type is using importance sampling to reweigh samples by the distribution shift ratio
[56], but importance sampling suffers from large variance, which is exponential in the length of
the horizon in the worst case. To address this issue, some variants with reduced variance such as
marginal importance sampling (MIS) [68] and doubly robust estimation [35, 61] have been devel-
oped. For the tabular setting with complete data coverage, [72] show that MIS is an asymptotically
efficient OPE estimator, which matches the Cramer-Rao lower bound in [35]. Moreover, a line of
work [49, 50, 39, 74] focuses on policy evaluation without function approximation using MIS and
linear programming.

Notation For a scalar a > 0, ⌈a⌉ denotes the ceiling function, which gives the smallest integer
which is no less than a; ⌊a⌋ denotes the floor function, which gives the largest integer which is no
larger than a. For any scalars a and b, a ∨ b denotes max(a, b) and a ∧ b denotes min(a, b). For
a vector or a matrix, ∥·∥0 denotes the number of nonzero entries and ∥·∥∞ denotes the maximum

magnitude of entries. Given a function f : RD → R and a multi-index s = [s1, · · · , sD]⊤, ∂sf

denotes ∂|s|f

∂x
s1
1

···∂x
sD
D

. ∥f∥Lp denote the Lp norm of function f . We adopt the convention 0/0 = 0.

Given distributions p and q, if p is absolutely continuous with respect to q, the Pearson χ2-divergence

is defined as χ2(p, q) := Eq[(
dp
dq − 1)2].

2 PRELIMINARIES

2.1 TIME-INHOMOGENEOUS MARKOV DECISION PROCESS

We consider a finite-horizon time-inhomogeneous Markov Decision Process (MDP)
(S,A, {Ph}Hh=1, {Rh}Hh=1, H, ξ), where ξ is the initial state distribution. At time step
h = 1, · · · , H , from a state s in the state space S , we may choose action a from the action
space A and transition to a random next state s′ ∈ S according to the transition probability
distribution s′ ∼ Ph(· | s, a). Then, the system generates a random scalar reward r ∼ Rh(s, a) with
r ∈ [0, 1]. We denote the mean of Rh(s, a) by rh(s, a).
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A policy π = {πh}Hh=1 specifies a set of H distributions πh(· | s) for choosing actions at every
state s ∈ S and time step h. Given a policy π, the state-action value function, also known as the
Q-function, for h = 1, 2, · · · , H , is defined as

Qπ
h(s, a) := E

π

[ H∑

h′=h

rh′(sh′ , ah′)
∣∣∣ sh = s, ah = a

]
,

where ah′ ∼ πh′(· | sh′) and sh′+1 ∼ Ph′(· | sh′ , ah′). Moreover, let qπh denote the state-action
visitation distribution of π at step h, i.e., qπh(s, a) := P

π [sh = s, ah = a | s1 ∼ ξ].
For notational ease, we denote X := S × A. Let Pπ

h : RX → R
X denote the conditional transition

operator at step h:

Pπ
h f(s, a) := E[f(s′, a′) | s, a], ∀f : X → R,

where a′ ∼ πh(· | s′) and s′ ∼ Ph(· | s, a).
Denote the Bellman operator at time h under policy π as T π

h :

T π
h f(s, a) := rh(s, a) + Pπ

h f(s, a), ∀f : X → R.

The Bellman equation may be written as Qπ
h = T π

h Q
π
h+1.

2.2 RIEMANNIAN MANIFOLD

LetM be a d-dimensional Riemannian manifold isometrically embedded in R
D. A chart forM is

a pair (U, ϕ) such that U ⊂M is open and ϕ : U → R
d is a homeomorphism, i.e., ϕ is a bijection,

its inverse and itself are continuous. Two charts (U, ϕ) and (V, ψ) are called Ck compatible if and
only if

ϕ ◦ ψ−1 : ψ(U ∩ V )→ ϕ(U ∩ V ) and ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

are both Ck functions (k-th order continuously differentiable). A Ck atlas ofM is a collection of Ck
compatible charts {(Ui, ϕi)} such that

⋃
i Ui = M. An atlas ofM contains an open cover ofM

and mappings from each open cover to R
d.

Definition 1 (Smooth manifold). A manifoldM is smooth if it has a C∞ atlas.

We introduce the reach [19, 53] of a manifold to characterize the curvature ofM.

Definition 2 (Reach, Definition 2.1 in [1]). The medial axis ofM is defined as T (M), which is the
closure of

T (M) = {x ∈ R
D | ∃ x1 ̸= x2 ∈M, such that ∥x− x1∥2 = ∥x− x2∥2 = inf

y∈M
∥x− y∥2}.

The reach ω ofM is the minimum distance betweenM and T (M), i.e.

ω = inf
x∈T (M),y∈M

∥x− y∥2.

Roughly speaking, reach measures how fast a manifold ªbendsº. A manifold with a large reach
ªbendsº relatively slowly. On the contrary, a small ω signifies more complicated local geometric
structures, which are possibly hard to fully capture.

2.3 BESOV FUNCTIONS ON SMOOTH MANIFOLD

Through the concept of atlas, we are able to define Besov space on a smooth manifold.

Definition 3 (Modulus of Smoothness [12]). Let Ω ⊂ R
D. For a function f : RD → R be in Lp(Ω)

for p > 0, the r-th modulus of smoothness of f is defined by

wr,p(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥Lp , where

∆r
h(f)(x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) if x ∈ Ω, x+ rh ∈ Ω,

0 otherwise.
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Furthermore, F(M,L, J, I, τ1, τ2, V ) is defined as

F(M,L, J, I, τ1, τ2, V ) = {f ∈ F(M,L, J, I, τ1, τ2) | ∥f∥L∞ ≤ V } . (5)

Universal Approximation of Neural Networks There exists rich literature about using neural
networks to approximate functions supported on compact domain in Euclidean space, from early
asymptotic results [34, 23, 10, 33] to later quantitative results [3, 46, 44, 30, 71]. These results suf-
fer from the curse of dimensionality, in that to approximate a function up to certain error, the network
size grows exponentially in the data dimension. Recently, a line of work advances the approxima-
tion theory of neural network to functions supported on domains with intrinsic geometric structures
[8, 57, 60, 58, 7, 42]. They show that neural networks are adaptive to the intrinsic structures in data,
suggesting that to approximate a function up to certain error, it suffices to choose the network size
only depending on the intrinsic dimension, which is often much smaller than the representation di-
mension of the data. In addition to existing results, we prove a novel universal approximation theory
of CNN en route to our RL result.

3 NEURAL FITTED Q-EVALUATION

We consider the off-policy evaluation (OPE) problem of a finite-horizon time-inhomogeneous MDP.
The transition model {Ph}Hh=1 and reward function {Rh}Hh=1 are unknown, and we are only given
the access to an unknown behavior policy π0 to generate experience data from the MDP. Our objec-
tive is to evaluate the value of π from a fixed initial distribution ξ over horizon H , given by

vπ := E
π

[ H∑

h=1

rh(sh, ah)
∣∣∣ s1 ∼ ξ

]
,

where ah ∼ π(· | sh) and sh+1 ∼ Ph(· | sh, ah).
At time-step h, we generate data Dh := {(sh,k, ah,k, s′h,k, rh,k)}Kk=1. Specifically, {sh,k}Kk=1 are

i.i.d. samples from some state distribution. For each sh,k, we use the unknown behavior policy π0 to

generate ah,k ∼ π0(· | sh,k). More generally, we may view {(sh,k, ah,k)}Kk=1 as i.i.d. samples from
a sampling distribution qπ0

h . For each (sh,k, ah,k), we can further generate s′h,k ∼ Ph(· | sh,k, ah,k)
and rh,k ∼ Rh(sh,k, ah,k) independently for each k.

This assumption on data generation is the time-inhomogeneous analog of a standard data assump-
tion in time-homogeneous OPE, which assumes all data are i.i.d. samples from the same sampling
distribution [51, 74, 50, 69]. Moreover, our dataset is similar to one that comprises K independent
episodes generated by the behavior policy, as [41] introduce a subroutine whereby one can process
an episodic dataset and treat it as an i.i.d.-sampled dataset in any downstream algorithm.

To estimate vπ , neural FQE estimates Qπ
h in a backward, recursive fashion. Q̂π

h , our estimate at step

h, is taken as T̂ π
h

(
Q̂π

h+1

)
, whose update rule is based on the Bellman equation:

T̂ π
h

(
Q̂π

h+1

)
= argmin

f∈F

K∑

k=1

(
f(sh,k, ah,k)− rh,k −

∫

A

Q̂π
h+1(s

′
h,k, a)πh(a | s′h,k) da

)2

, (6)

where T̂ π
h is an intermediate estimate of the Bellman operator T π

h , Q̂π
h+1 is an intermediate estimate

of Qπ
h+1, and F denotes a class of convolutional neural networks as specified in (5) with proper

hyperparameters. The pseudocode for our algorithm is presented in Algorithm 1.

4 MAIN RESULTS

In this section, we prove an upper bound on the estimation error of vπ by Algorithm 1. First, let us
state two assumptions on our MDP of interest.

Assumption 1 (Low-dimensional state-action space). The state-action space X is a d-dimensional
compact Riemannian manifold isometrically embedded in R

D. There exists B > 0 such that
∥x∥∞ ≤ B for any x ∈ X . The reach of X is ω > 0.

Assumption 1 characterizes the low-dimensional structures of the MDP represented in high dimen-
sions. We say that the ªintrinsic dimensionº of X is d≪ D. Such a setting, as mentioned in Section
1, is common in practice, because the representation or feature people have access to are often ex-
cessive compared to the latent structures of the problem. For instance, images of a dynamical system
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Algorithm 1 Neural Fitted Q-Evaluation (Neural-FQE)

Input: Initial distribution ξ, target policy π, horizon H , effective sample size K, function class
F .
Init: Q̂π

H+1 := 0
for h = H,H − 1, · · · , 1 do

Sample Dh = {(sh,k, ah,k, s′h,k, rh,k)}Kk=1.

Update Q̂π
h ← T̂ π

h

(
Q̂π

h+1

)
by (6).

end for
Output: v̂π :=

∫
X
Q̂π

1 (s, a)ξ(s)π(a | s) ds da.

are widely believed to admit such low-dimensional latent structures [26, 32, 55]. People often take
the visual display of a computer game as its state representations, which are in pixels, but computer
only keeps a small number of parameters internally to represent the state of the game.

Assumption 2 (Bellman completeness). Under target policy π, for any time step h and any f ∈ F ,
we have T π

h f ∈ Bα
p,q(X ), where 0 < p, q ≤ ∞ and d/p + 1 ≤ α < ∞. Moreover, there exists a

constant c0 > 0 that satisfies ∥T π
h f∥Bα

p,q(X ) ≤ c0 for any time step h.

Bellman completeness assumption is about the closure of a function class under the Bellman opera-
tor. It has been widely adopted in RL literature [70, 14, 6, 69]. Some classic MDP settings implicitly
possess this property, e.g., linear MDP [36]. Note that [66] show the necessity of such an assump-
tion on the Bellman operator to regulate the Bellman residual: without such assumption, even in
the simple setting of linear function approximation with realizability, to solve OPE up to a constant
error, the lower bound on sample complexity is exponential in horizon.

The Besov family contains a large class of smooth functions, and has been widely adopted in existing
nonparametric statistics literature for various problems [24, 62, 63]. For MDP, Assumption 2 holds
for most common smooth dynamics, as long as certain regularity conditions on smoothness are
satisfied. For instance, [51] show a simple yet sufficient condition, under which for any time step
h and s′ ∈ S , the reward function rh(s, a) and the transition kernel Ph(s

′|s, a) are functions in
Bαp,q . This further implies Qπ

0 , · · · , Qπ
H ∈ Bαp,q(X ). In addition, Assumption 2 may be satisfied

even when the transition kernel is not smooth, examples of which are provided in [18].

Note that while most existing work on function approximation assumes Bellman completeness with
respect to the function approximator, which in our work is deep convolutional neural networks with
ReLU activation, we are only concerned with the closure of the Besov class Bαp,q(X ) under the
Bellman operator. This assumption is weaker than the previous work [75], which considers smooth
function approximation (excluding ReLU networks).

Our main result is summarized in Theorem 2, which relies on using CNNs to accurately represent
T π
h f for any f ∈ F . The following theorem provides a novel quantatitive analysis on how to

properly choose CNN classes for approximating T π
h f depending on the regularity of T π

h .

Theorem 1. Suppose Assumption 1 and 2 hold. For any positive integers I ∈ [2, D] and M̃, J̃ > 0,
we let

L = O
(
log(M̃J̃) +D + logD

)
, J = O(DJ̃), τ1 = (8ID)−1M̃− 1

L = O(1),

log τ2 = O
(
log2 M̃J̃ +D log M̃J̃

)
, M = O(M̃), (7)

Then CNN classF(M,L, J, I, τ1, τ2) in (4) can approximate T π
h f for any f ∈ F(M,L, J, I, τ1, τ2)

and h = 1, · · · , H , i.e., there exists f̂ ∈ F(M,L, J, I, τ1, τ2) with

∥f̂ − T π
h f∥∞ ≤ (M̃J̃)−

α
d . (8)

O(·) hides a constant depending on d, α, 2d
αp−d , p, q, ∥T π

h f∥Bα
p,q(X ), B, ω and surface area of X .

The proof is provided in Appendix B. As can be seen, the rate of approximation is free of the curse

of ambient dimension D. We remark that Theorem 1 allows an arbitrary rescaling of M̃ and J̃ , as
only their product is relevant to the approximation error. This is more flexible than conventional
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approximation theories [7, 54, 51], where the network width and depth have to maintain a fixed ratio

in terms of the desired approximation error. In Theorem 2, we choose a configuration of M̃ and J̃
that leads to the optimal statistical rate via a bias-variance tradeoff argument.

Theorem 2. Suppose Assumption 1 and 2 hold. By choosing

L = O(logK +D + logD), J = O(D), τ1 = O(1),

log τ2 = O(log2K +D logK), M = O(K
d

2α+d ), V = H (9)

with any integer I ∈ [2, D] in Algorithm 1, in which O(·) hides factors depending on d, α, 2d
αp−d , p,

q, c0, B, ω, and the surface area of X , we have

E |vπ − v̂π| ≤ CH2κK− α
2α+d log

5
2 K, (10)

in which the expectation is taken over the data, and C is a constant depending on D
3α

2α+d , d, α,
d

αp−d , p, q, c0, B, ω and the surface area of X . The distributional mismatch is captured by

κ =
1

H

H∑

h=1

√
χ2
Q(q

π
h , q

π0

h ) + 1,

in which qπh and qπ0

h are the visitation distributions of π and π0 at step h respectively and Q is
the Minkowski sum between the CNN function class in (5) and the Besov function class, i.e., Q =
{f + g | f ∈ Bαp,q(X ), g ∈ F(M,L, J, I, τ1, τ2, V )}.

We next compare our Theorem 2 with existing work:

(I) Tight characterization of distributional mismatch. The term κ depicts the distributional
mismatch between the target policy’s visitation distribution and data coverage via restricted χ2-
divergence. Note that the restricted χ2-divergence is always no larger than the commonly-used
absolute density ratio [51, 6, 67] and can often be substantially smaller. This is because probability
measures qπh and qπ0

h might differ a lot over some small regions in the sample space, while their
integrations of a smooth function in Q over the entire sample space could be close to each other.
The absolute density ratio measures the former and restricted χ2-divergence measures the latter.

More strikingly, when considering function approximation (e.g. state-action space is not countably
finite), the restricted χ2-divergence can still remain small even when absolute density ratio becomes
unbounded. For example, we consider two isotropic multivariate Gaussian distributions with dif-
ferent means. [52] has shown that Pearson χ2-divergence, which is always larger than or equal to
restricted χ2-divergence, has a finite expression:

χ2 (N (µ1, I),N (µ2, I)) = e∥µ1−µ2∥
2
2 − 1,

whereas one may find the absolute density ratio unbounded: for any µ1 ̸= µ2,∥∥∥∥
dN (µ1, I)

dN (µ2, I)

∥∥∥∥
∞

= sup
x

exp

(
x⊤(µ1 − µ2)−

1

2
∥µ1∥2 +

1

2
∥µ2∥2

)
=∞.

Such a stark comparison can also be observed in other common distributions that have support with
infinite cardinality, e.g. Poisson distribution.

Furthermore, when the state-action space exhibits small intrinsic dimensions, i.e., d ≪ D, the re-
stricted χ2-divergence adapts to such low-dimensional structure and characterizes the distributional
mismatch with respect toQ, which is a small function class depending on the intrinsic dimension. In
contrast, the absolute density ratio in [51] does not take advantage of the low-dimensional structure.

In summary, though the absolute density ratio is a tight in the tabular setting and some other special
classes of MDPs, in the general function approximation setting, it could easily become intractably
vacuous, and restricted χ2-divergence is tighter characterization of distributional mismatch.

(II) Adaptation to intrinsic dimension. Note that our estimation error is dominated by the intrinsic
dimension d, rather than the representation dimension D. Therefore, it is significantly smaller than
the error of methods oblivious to the problem’s intrinsic dimension such as [51].

Such a fast convergence owes to the adaptability of neural networks to the manifold structure in
the state-action space. With properly chosen width and depth, the neural network automatically
captures local geometries on the manifold through the empirical risk minimization in Algorithm 1
for approximating Q-functions.
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Sample Complexity Comparison. Given a pre-specified estimation error of policy value ϵ, our
algorithm requires a sample complexity of

Õ(H4+2d/ακ2+d/αϵ−2−d/α).
We next compare our result with [51], which among existing work is the most similar to ours.
Specifically, we reprove our result with feed-forward ReLU network so as to be in the same setting
as [51] (details in Theorem 3 of Appendix E).

When the experience data are allowed to be reused, they show a sample complexity of

Õ(H2+2D/ακ
2+2D/α
3 ϵ−2−2D/α).

As can be seen, our result is more efficient than theirs as long as H1−D−d
α ≤ ϵ−1−

D−d/2
α . Such a

requirement of the horizon can be satisfied in real applications, as d ≪ D and α is moderate. Note
that even with no consideration for low-dimensional structures, i.e., d = D, our result is still more
efficient, as κ is often substantially smaller than κ3. Moreover, when the experience data are used
just for one pass, our method is instantly more efficient, as their sample complexity becomes

Õ(H4+2D/ακ
2+D/α
3 ϵ−2−D/α).

5 EXPERIMENTS

We present numerical experiments for evaluating FQE with CNN function approximation on the
classic CartPole environment [4]. The CartPole problem has a 4-dimensional continuous intrinsic
state space. We consider a finite-horizon MDP with horizon H = 100 in this environment. In our
experiments, we solve the OPE problem with FQE (Algorithm 1). We take the visual display of
the environment as states. These images serve as a high-dimensional representation of CartPole’s
original 4-dimensional continuous state space. In our algorithm, we use a deep CNN to approximate
the Q-functions and solve the regression with SGD (see Appendix F.1 for details).

Table 2: Value estimation v̂π under high resolution and low resolution. The true vπ ≈ 65.2 is
computed via Monte Carlo rollout.

Sample size (A) No distribution shift (B) Off-policy
K High res Low res High res Low res

5000 64.6± 2.0 63.5± 1.9 60.4± 2.8 60.0± 3.3
10000 66.0± 1.3 66.5± 1.7 67.0± 1.8 68.0± 2.3
20000 65.1± 1.0 65.1± 1.2 65.0± 1.6 65.1± 2.0

We consider two settings with different visual resolutions (see Appendix F.1 for details): one in
high resolution (dimension 3× 40× 150) and the other in low resolution (dimension 3× 20× 75).
We use a policy trained for 200 iterations with REINFORCE as the target policy. We conduct this
experiment in two cases: (A) data are generated from the target policy itself; (B) data are generated
from a mixture policy of 0.8 target policy and 0.2 uniform distribution. (A) aims to verify the
performance’s dependence on data intrinsic dimension without the influence from distribution shift.

We observe that the performance of FQE on high-resolution and low-resolution data is similar, in
both the off-policy case and the easier case with no distribution shift. It shows that the estimation
error of FQE takes little influence from the representation dimension of the data but rather from the
intrinsic structure of the environment, which is the same regardless of resolution. We also observe
that the estimation becomes increasingly accurate as sample size K increases. These empirical
results confirm our upper bound in Theorem 2, which is only dominated by data intrinsic dimension.

6 CONCLUSION

This paper studies nonparametric off-policy evaluation in MDPs. We use CNNs to approximate Q-
functions. Our theory proves that when state-action space exhibits low-dimensional structures, the
finite-sample estimation error of FQE converges depending on the intrinsic dimension. In the esti-
mation error, the distribution mismatch between the data distribution and target policy’s visitation
distribution is quantified by a restricted χ2-divergence term, which is oftentimes much smaller than
the absolute density ratio. Our theory also reassures practitioners of the benignity of overrepresen-
tation in deep RL and provides insights into how to choose network hyperparameters properly in
presence of low intrinsic dimension. We support our theory with experiments. For future directions,
it would be of interest to adapt this low-dimensional analysis to time-homogeneous MDPs. It is
nontrivial to preserve the error rate with sample reuse in the presence of temporal dependency.
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A PROOF OF THEOREM 2

In this section, we provide a proof for the upper bound on the estimation error in Theorem 2. We
can tackle the sequential dependencies by recursively conditioning on the previous-step estimation
and the fact that the error in the previous steps accumulates linearly. The estimation error can be
decomposed into a sum of statistical error and approximation error. A tradeoff exists about the
network size: while a larger network reduces the approximation error, it leads to higher variance
in the statistical error. Consequently, we choose the network size and architecture appropriately to
balance the two types of error, which in turn minimizes the final estimation error.

Proof of Theorem 2. The goal is to bound

E |v̂π − vπ| = E

∣∣∣∣
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(
Qπ
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1
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.

To get an expression for that, we first expand it recursively. To illustrate the recursive relation, we
examine the quantity at step h:
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where C denotes a (varying) constant depending on D
3α

2α+d , d, α, d
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surface area of X .

In (a), note T π
h Q̂

π
h+1 ∈ Bαp,q(X ) by Assumption 2 and −T̂ π

h

(
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)
∈ F by our algorithm, so

T π
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π
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h

(
Q̂π

h+1
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∈ Q. Then we employ a change-of-measure argument and obtain this

inequality by invoking the following lemma.

Lemma 1. Given a function class Q that contains functions mapping from X to R and two proba-
bility distributions q1 and q2 supported on X , for any g ∈ Q,

Ex∼q1 [g(x)] ≤
√
Ex∼q2 [g

2(x)](1 + χ2
Q(q1, q2)).
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Proof of Lemma 1.

Ex∼q1 [g(x)] =
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2(x)]
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where the last step is by the definition of χ2
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Eq1 [f ]
2

Eq2
[f2] − 1.

In (b), we use Jensen’s inequality and the fact that square root is concave.

To obtain (c), we invoke Lemma 10, which provides an upper bound on the error of nonparametric
regression at each step of the FQE algorithm.

Specifically, we will invoke Lemma 10 when conditioning on Dh+1, · · · ,DH , i.e. the data from

time step h + 1 to time step H . Note that after conditioning, T π
h Q̂

π
h+1 becomes measurable and

deterministic with respect toDh+1, · · · ,DH . Also,Dh+1, · · · ,DH are independent fromDh, which
we use in the regression at step h.

To justify our use of this theorem, we need to cast our problem into a regression problem described
in the theorem. Since {(sh,k, ah,k)}Kk=1 are i.i.d. from qπ0

h , we can view them as the samples xi’s in

the lemma. We can view T π
h Q̂

π
h+1, which is measurable under our conditioning, as f0 in the lemma.

Furthermore, we let
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h Q̂
π
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In order to invoke Lemma 10 under the conditioning on Dh+1, · · · ,DH , we need to verify whether
three conditions are satisfied (conditioning on Dh+1, · · · ,DH ):

1. Sample {(sh,k, ah,k)}Kk=1 are i.i.d;

2. Sample {(sh,k, ah,k)}Kk=1 and noise {ζh,k}Kk=1 are uncorrelated;

3. Noise {ζh,k}Kk=1 are independent, zero-mean, subgaussian random variables.

In our setting, {(sh,k, ah,k)}Kk=1 are i.i.d. from qπ0

h . Due to the time-inhomogeneous setting, they

are independent from Dh+1, · · · ,DH , so {(sh,k, ah,k)}Kk=1 are still i.i.d. under our conditioning.
Thus, Condition 1 is clearly satisfied.

We may observe that under our conditioning, the transition from (sh,k, ah,k) to s′h,k is the only

source of randomness in ζh,k, besides (sh,k, ah,k) itself. The distribution of (sh,k, ah,k, s
′
h,k) is actu-

ally the product distribution between Ph(·|sh,k, ah,k) and qπ0

h , so a function of s′h,k, generated from

the transition distribution Ph(·|sh,k, ah,k), is uncorrelated with (sh,k, ah,k). Thus, (sh,k, ah,k)’s are
uncorrelated with ζh,k’s under our conditioning, and Condition 2 is satisfied.

Condition 3 can also be easily verified. Under our conditioning, the randomness in ζh,k only comes
from (sh,k, ah,k, s

′
h,k, rh,k), which are independent from (sh,k′ , ah,k′ , s′h,k′ , rh,k′) for any k′ ̸= k,

so ζh,k’s are independent from each other. As for the mean of ζh,k,
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= 0 + 0 = 0.

On the other hand,

∥∥∥Q̂π
h+1

∥∥∥
∞
≤ H almost surely, because it is a function in our CNN class F .

Thus, ζh,k is a bounded random variable with ζh,k ∈ [−2H, 2H] almost surely, so its variance is

bounded by 4H2. Its boundedness also implies it is a subgaussian random variable. Thus, Condition
3 is also satisfied.

Hence, Lemma 10 proves, for step h in our algorithm,

E

[∫

X

(
T π
h Q̂

π
h+1 − T̂ π

h

(
Q̂π

h+1

))2
(s, a) dqπ0

h (s, a) | Dh+1, · · · ,DH

]

≤ C ′(H2 + 4H2)K− 2α
2α+d log5K,

where C ′ depends on D
6α

2α+d , d, α, 2d
αp−d , p, q, c0, B, ω and the surface area of X .

Note that this upper bound holds for any Q̂π
h+1 or Dh+1, · · · ,DH . The sole purpose of our condi-

tioning is that we could view Q̂π
h+1 as a measurable or deterministic function under the conditioning

and then apply Lemma 10. Therefore,

E

[
E

[∫

X

(
T π
h Q̂

π
h+1 − T̂ π

h

(
Q̂π

h+1

))2
(s, a) dqπ0

h (s, a) | Dh+1, · · · ,DH

]]

≤ C ′(H2 + 4H2)K− 2α
2α+d log5K.

Finally, we carry out the recursion from time step 1 to time step H , and the final result is

E |vπ − v̂π| ≤ CH2K− α
2α+d log5/2K

(
1

H

H∑

h=1

√
χ2
Q(q

π
h , q

π0

h ) + 1

)
.

B PROOF OF THEOREM 1

For simplicity, let us denote f0 := T π
h f in the theorem statement. Note that f0 ∈ Bαp,q(X ). More-

over, let us define a class of single-block CNNs in the form of

f(x) =W · ConvW,B(x)

as

FSCNN(L, J, I, τ1, τ2) =
{
f | f(x) in the form of (3) with L layers. The number of filters per block

is bounded by L; filter size is bounded by I; the number of channels

is bounded by J ; max
m,l
∥W(l)

m ∥∞ ∨ ∥B(l)
m ∥∞ ≤ τ1, ∥W∥∞ ≤ τ2

}
.

(11)

We will refer to CNNs in this form as ªsingle-block CNNsº and use them as building blocks of our
final CNN approximation for the ground truth Besov function.

B.1 PROOF OVERVIEW OF THEOREM 1

Theorem 1 serves as a building block for Theorem 2, which establishes the relation between network
architecture and approximation error. For simplicity, denote c0 := ∥f0∥Bα

p,q(X ). Theorem 1 is proven

in the following steps:

STEP 1: DECOMPOSE f AS SUM OF LOCALLY SUPPORTED FUNCTIONS OVER MANIFOLD

Since manifold X is assumed compact (Assumption 1), we can cover it with a finite set of D-

dimensional open Euclidean balls {Bβ(ci)}CX
i=1, where ci denotes the center of the i-th ball and β is

its radius. We choose β < ω/2, and define Ui = Bβ(ci) ∩ X . Note that each Ui is diffeomorphic

17



Published as a conference paper at ICLR 2023

to an open subset of Rd (Lemma 5.4 in Niyogi et al. [53]); moreover, {Ui}CX
i=1 forms an open cover

for X . There exists a carefully designed open cover with cardinality CX ≤ ⌈A(X )
βd Td⌉, where A(X )

denotes the surface area of X and Td denotes the thickness of Ui’s, i.e., the average number of Ui’s
that contain a given point on X . Td is O(d log d) (Conway et al. [9]).

Moreover, for each Ui, we can define a linear transformation

ϕi(x) = aiV
⊤
i (x− ci) + bi,

where ai ∈ R is the scaling factor and bi ∈ R
d is the translation vector, both of which are chosen to

ensure ϕ(Ui) ⊂ [0, 1]d, and the columns of Vi ∈ R
D×d form an orthonormal basis for the tangent

space Tci
(X ). Overall, the atlas {(ϕi, Ui)}CX

i=1 transforms each local neighborhood on the manifold
to a d-dimensional cube.

Thus, we can decompose f0 using this atlas as

f0 =

CX∑

i=1

fi with fi = fρi, (12)

because there exists such a C∞ partition of unity {ρi}CX
i=1 with supp(ϕi) ⊂ Ui (Proposition 1 in Liu

et al. [42]). Since each fi is only supported on Ui, we can further write

f0 =

CX∑

i=1

(
fi ◦ ϕ−1

i

)
◦ ϕi × 1Ui with fi = fρi, (13)

where 1Ui is the indicator for membership in Ui.

Lastly, we extend fi ◦ ϕ−1
i to entire [0, 1]d with 0, which is a function in Bαp,q([0, 1]d) with

Bαp,q([0, 1]d) Besov norm at most Cc0 (Lemma 4 in Liu et al. [42]), where C is a constant de-
pending on α, p, q and d. This extended function is to be approximated with cardinal B-splines in
the next step.

STEP 2: APPROXIMATE EACH LOCAL FUNCTION WITH CARDINAL B-SPLINES

With most things connected with the intrinsic dimension d in the last step, we proceed an approxi-
mation of f0 on the low-dimensional manifold. With α ≥ d/p + 1 assumed in Assumption 2, we
can invoke a classic result of using cardinal B-splines to approximate Besov functions (Lemma 5),
by setting r = +∞ and m = ⌈α⌉ + 1 in the lemma. It states that there exists a weighted sum of

cardinal B-splines f̃i in the form

f̃i ≡
N∑

j=1

f̃i,j ≈ fi ◦ ϕ−1
i with f̃i,j = c

(i)
k,jg̃

d
k,j,m (14)

such that
∥∥∥f̃i − fi ◦ ϕ−1

i

∥∥∥
L∞
≤ Cc0N−α/d. (15)

In (14), c
(i)
k,j ∈ R is coefficient and g̃dk,j,m : [0, 1]d → R denotes a cardinal B-spline with index

k,m ∈ N
+, j ∈ R

d. k is a scaling factor, j is a shifting vector, m is the degree of the B-spline.

By (13) and (14), we now have a sum of cardinal B-splines

f̃ ≡
CX∑

i=1

f̃i ◦ ϕi × 1Ui
=

CX∑

i=1

N∑

j=1

f̃i,j ◦ ϕi × 1Ui
. (16)

which can approximate our target Besov function f0 with error
∥∥∥f̃ − f0

∥∥∥
L∞
≤ CCX c0N

−α/d. (17)
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STEP 3: APPROXIMATE EACH CARDINAL B-SPLINE WITH A COMPOSITION OF CNNS

Each summand in (16) is a composition of functions, each of which we can implement with a CNN.
Specifically, we do so with a special class of CNNs defined in (11), which we refer to as ºsingle-
block CNNsº.

The multiplication operation × can be approximated by a single-block CNN ×̂ with at most η error
in the L∞ sense (Proposition 1). ×̂ needs O(log 1

η ) layers and 6 channels. All weight parameters

are bounded by (c20 ∨ 1).

We consider each f̃i ◦ ϕi together, which we can approximate with a sum of N CNNs f̂SCNN
i,j ◦ ϕ̂i

up to δ error, namely,
∥∥∥∥∥∥

N∑

j=1

f̂SCNN
i,j − f̃i ◦ ϕ−1

i

∥∥∥∥∥∥
L∞

≤ δ.

In particular, we can use a single-block CNN f̂SCNN
i,j to approximate the B-spline f̃i,j up to δ/N

error. Moreover, since ϕi is linear, it can be expressed with a single-layer perceptron ϕ̂i. The

architecture and size of f̂SCNN
i,j and ϕ̂i are characterized in Proposition 2 as functions of δ.

1Ui
is an indicator for membership in Ui, so we need 1Ui

(x) = 1 if d2i (x) = ∥x− ci∥22 ≤ β2

and 1Ui
(x) = 0 otherwise. By this definition, we can write 1Ui

as a composition of a univariate
indicator 1[0,β2] and the distance function d2i :

1Ui(x) = 1[0,β2] ◦ d2i (x) for x ∈ X . (18)

Given θ ∈ (0, 1) and ∆ ≥ 8DB2θ, it turns out that 1[0,β2] and d2i can be approximated with two

single-block CNNs 1̂∆ and d̂2i respectively (Proposition 3) such that
∥∥∥d̂2i − d2i

∥∥∥
L∞
≤ 4B2Dθ (19)

and

1̂∆ ◦ d̂2i (x) =





1, if x ∈ Ui, d
2
i (x) ≤ β2 −∆,

0, if x /∈ Ui,

some value between 0 and 1, otherwise.

(20)

The architecture and size of 1̂∆ and d̂2i are characterized in Proposition 3 as functions of θ and ∆.

The above three approximations rely on the classic result of using CNN to approximate cardinal
B-splines (Lemma 10 in Liu et al. [42]; Lemma 1 in Suzuki [60]). Putting the above together, we
can develop a composition of single-block CNNs

f̄i,j ≡ ×̂
(
f̂SCNN
i,j ◦ ϕ̂i, 1̂∆ ◦ d̂2i

)
(21)

as an approximation for f̃i,j ◦ ϕi × 1Ui . The overall approximation error of f̄i,j can be written
as a sum of the three types of approximation error above. Details are provided in Appendix B.2.

Moreover, by Lemma 6, there exists a single-block CNN f̂i,j that can express f̄i,j .

STEP 4: EXPRESS THE SUM OF CNN COMPOSITIONS WITH A CNN

Finally, we can assemble everything into f̂

f̂ ≡
CX∑

i=1

N∑

j=1

f̂i,j , (22)

which serves as an approximation for f0. By choosing the appropriate network size in Lemma 2,

which the tradeoff between the approximation error of f̂i,j and its size, we can ensure that
∥∥∥f̂ − f0

∥∥∥
L∞
≤ N−α/d. (23)
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By Lemma 7, for M̃, J̃ > 0, we can write this sum of N · CX single-block CNNs as a sum of M̃
single-block CNNs with the same architecture, whose channel number upper bound J depends on

J̃ . This allows Theorem 1 to be more flexible with network architecture. By Lemma 4, this sum

of M̃ CNNs can be further expressed as one CNN in the CNN class (5). Finally, N will be chosen
appropriately as a function of network architecture parameters, and the approximation theory of
CNN is proven.

When Theorem 1 is applied in our problem setting, we will take the target function f0 above to be

T π
h Q̂

π
h+1 at each time step h, which is the ground truth of the regression at each step of Algorithm

1. For more details about this, please refer to the proof of Theorem 2 in Appendix A.

B.2 PROOF OF THEOREM 1

In the following, we provide the proof details for Theorem 1, which quantifies the tradeoff between
a CNN in the class of 11 and its approximation error for Besov functions on a low-dimensional

manifold. We start from the decomposition of the approximation error of f̂ , which is based on the
decomposition of the approximation error of f̄i,j in (21), and will proceed to the end of this proof.

Lemma 2. Let η be the approximation error of the multiplication operator ×̂(·, ·) as defined in Step
3 of Appendix B.1 and Proposition 1, δ be defined as in Step 3 of Appendix B.1 and Proposition 2,
∆ and θ be defined as in Step 3 of Appendix B.1 and Proposition 3. Assume N is chosen according

to Proposition 2. For any i = 1, ..., CX , we have

∥∥∥f̂ − f0
∥∥∥
L∞
≤∑CX

i=1(Ai,1 +Ai,2 +Ai,3) with

Ai,1 =
N∑

j=1

∥∥∥×̂(f̂SCNN
i,j ◦ ϕ̂i, 1̂∆ ◦ d̂2i )− f̂SCNN

i,j ◦ ϕ̂i × (1̂∆ ◦ d̂2i )
∥∥∥
L∞
≤ C ′′δ−d/αη,

Ai,2 =

∥∥∥∥∥∥




N∑

j=1

(
f̂SCNN
i,j ◦ ϕ̂i

)

× (1̂∆ ◦ d̂2i )− fi × (1̂∆ ◦ d̂2i )

∥∥∥∥∥∥
L∞

≤ δ,

Ai,3 = ∥fi × (1̂∆ ◦ d̂2i )− fi × 1Ui
∥L∞ ≤ c(π + 1)

β(1− β/ω)∆

for some constant C ′′ depending on d, α, p, q and some constant c. Furthermore, for any ε ∈ (0, 1),
setting

δ =
N−α/d

3CX
, η =

1

C ′′

N−1−α/d

(3CX )d/α
,∆ =

β(1− β/ω)N−α/d

3c(π + 1)CX
, θ =

∆

16B2D
(24)

gives rise to ∥∥∥f̂ − f0
∥∥∥
L∞
≤ N−α

d .

The choice in (24) satisfies the condition ∆ > 8B2Dθ in Proposition 3.

Proof of Lemma 2. As in Proposition 1, Ai,1 measures the error from ×̂:

Ai,1 =

N∑

j=1

∥∥∥×̂(f̂SCNN
i,j ◦ ϕ̂i, 1̂∆ ◦ d̂2i )− f̂SCNN

i,j ◦ ϕ̂i × (1̂∆ ◦ d̂2i )
∥∥∥
L∞
≤ Nη ≤ C ′′δ−d/αη,

for some constant C ′′ depending on d, α, p, q. The last inequality is due to the choice of N in
Proposition 2.

Ai,2 measures the error from CNN approximation of Besov functions. As in Proposition 2,Ai,2 ≤ δ.

Ai,3 measures the error from CNN approximation of the chart determination function. The bound

of Ai,3 can be derived using the proof of Lemma 4.5 in Chen et al. [7], since fi ◦ ϕ−1
i is a Lipschitz

function and its domain is in [0, 1]d.

In order to attain the error desired in Lemma 2, we need each network in f̄i,j with appropriate size.

The network size of the components in f̄i,j can be analyzed as follows:
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• 1̂i: The chart determination network 1̂i = d̂2i ◦ 1̂∆ is the composition of d̂2i and 1̂∆.

By Proposition 3, d̂2i is a single-block CNN with O(log 1
θ ) = O(αd logN + D + logD)

layers and width 6D; 1̂∆ is a single-block CNN with O(log(β2/∆)) = O(αd logN) layers
and width 2. In both subnetworks, all parameters are of O(1). By Lemma 6, the chart

determination network 1̂i is a single-block CNN with O(αd logN + D + logD) layers,
width 6D + 2 and all weight parameters are of O(1).

• ×̂: By Proposition 1, the multiplication network is a single-block CNN with O(log 1
η ) =

O((1 + α
d ) logN) layers and O(1) width. All weight parameters are bounded by (c20 ∨ 1).

• ϕ̂i: The projection ϕi is a linear one, so it can be expressed with a single-layer perceptron.
By Lemma 8 in Liu et al. [42], this single-layer perceptron can be expressed with a single-
block CNN with 2 +D layers and width d. All parameters are of O(1).

• f̂SCNN
i,j : by Proposition 2, each f̂SCNN

i,j is a single-block CNN with O(log 1
δ ) =

O(αd logN) layers and ⌈24d(α + 1)(α + 3) + 8d⌉ channels. All weight parameters are

in the order of O
(
δ−(log 2)( 2d

αp−d+c1d
−1)
)
= O

(
N (log 2)α

d ( 2d
αp−d+c1d

−1)
)

.

Next, we want to show f̄i,j , a composition of the aforementioned single-block CNNs, can be simply
expressed as a single-block CNN.

By Lemma 6, there exists a single-block CNN gi,j with O(logN + D) layers and ⌈24d(α +

1)(α + 3) + 9d⌉ width realizing f̂SCNN
i,j ◦ ϕ̂i. All weight parameters in gi,j are in the order of

O
(
N (log 2)α

d ( 2d
αp−d+c1d

−1)
)

. Moreover, recall that the chart determination network 1̂i is a single-

block CNN with O(logN + D + logD) layers and width 6D + 2, whose weight parameters are
of O(1). By Lemma 14 in Liu et al. [42], one can construct a convolutional block, denoted by ḡi,j ,
such that

ḡi,j(x) =

[
(gi,j(x))+ (gi,j(x))− (1̂i(x))+ (1̂i(x))−

⋆ ⋆ ⋆ ⋆

]
. (25)

Here ḡi,j has ⌈24d(α+ 1)(α+ 3) + 9d⌉+ 6D + 2 channels.

Since the input of ×̂ is

[
gi,j
1̂i

]
, by Lemma 15 in Liu et al. [42], there exists a CNN g̊i,j which takes

(25) as the input and outputs ×̂(gi,j , 1̂i).

Note that ḡi,j only contains convolutional layers. The composition g̊i,j ◦ ḡi,j , denoted by ĝSCNN
i,j , is

a CNN and for any x ∈ X , ĝSCNN
i,j (x) = f̄i,j(x). We have ĝSCNN

i,j ∈ FSCNN(L, J, I, τ, τ) with

L = O (logN +D + logD) , J = ⌈48d(α+ 1)(α+ 3) + 18d⌉+ 12D +O(1),

τ = O
(
N (log 2) d

α ( 2d
αp−d+c1d

−1)
)
, (26)

and I can be any integer in [2, D].

Therefore, we have shown that ĝSCNN
i,j is a single-block CNN that expresses f̄i,j , as we desired.

Furthermore, recall that f̂ can be written as a sum of CXN such SCNNs. By Lemma 7, for any

M̃, J̃ satisfying M̃J̃ = O(N), there exists a CNN architecture FSCNN(L, J, I, τ, τ) that gives rise

to a set of single-block CNNs {ĝi}M̃i=1 ∈ FSCNN(L, J, I, τ, τ) with

f̂ =

M̃∑

i=1

ĝi (27)

and

L = O (logN +D + logD) , J = O(DJ̃), τ = O
(
N (log 2) d

α ( 2d
αp−d+c1d

−1)
)
. (28)

By Lemma 3 below, we slightly adjust the CNN architecture by re-balancing the weight parameter
boundary of the convolutional blocks and that of the final fully connected layer. In particular, we
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rescale all parameters in convolutional layers of ĝi to be no larger than 1. While this procedure does
not change the approximation power of the CNN, it can make the CNN have a smaller covering
number, which is conducive to a smaller variance.

Lemma 3 (Lemma 16 in Liu et al. [42]). Let γ ≥ 1. For any g ∈ FSCNN(L, J, I, τ1, τ2), there
exists f ∈ FSCNN(L, J, I, γ−1τ, γLτ) such that g(x) = f(x).

In this case, we set γ = c′N (log 2) d
α ( 2d

αp−d+c1d
−1)(8ID)M̃

1
L , where c′ is a constant such that τ ≤

c′N (log 2) d
α ( 2d

αp−d+c1d
−1). With this γ, we have f̂i ∈ FSCNN(L, J, I, τ1, τ2) with

L = O(logN +D + logD), J = O(D), τ1 = (8ID)−1M̃− 1
L = O(1),

log τ2 = O
(
log M̃ + log2N +D logN

)
.

Finally, we prove that it suffices to use one CNN to realize the sum of single-block CNNs in (27).

Lemma 4. Let FSCNN(L, J, I, τ1, τ2) be any CNN architecture from R
D to R. Assume the weight

matrix in the fully connected layer ofFSCNN(L, J, I, τ1, τ2) has nonzero entries only in the first row.

For any positive integerM , there exists a CNN architecture F(M,L, J, I, τ1, τ2(1∨τ−1
1 )) such that

for any {f̂i(x)}Mi=1 ⊂ FSCNN(L, J, I, τ1, τ2), there exists f̂ ∈ F(M,L, 4 + J, I, τ1, τ2(1 ∨ τ−1
1 ))

with

f̂(x) =

M∑

m=1

f̂m(x).

Consequently, by Lemma 4, there exists a CNN that can express our sum of M̃ single-block CNNs
with architecture F(M,L, J, I, τ1, τ2) with

L = O(logN +D + logD), J = O(DJ̃), τ1 = (8ID)−1M̃− 1
L = O(1),

log τ2 = O
(
log M̃ + log2N +D logN

)
, M = O(M̃). (29)

and J̃ , M̃ satisfying

M̃J̃ = O(N), (30)

which is a requirement inherited from Lemma 7. This CNN is our final approximation for f0.

Applying this relation N = O(M̃J̃) to (29) gives
∥∥∥f̂ − f0

∥∥∥
L∞
≤ (M̃J̃)−

α
d (31)

and the network size

L = O
(
log(M̃J̃) +D + logD

)
, J = O(DJ̃), τ1 = (8ID)−1M̃− 1

L = O(1),

log τ2 = O
(
log2 M̃J̃ +D log M̃J̃

)
, M = O(M̃).

B.3 PROOF OF LEMMA 4

Denote the architecture of f̂m with

f̂m(x) =Wm · ConvWm,Bm
(x),

where Wm =
{
W(l)

m

}L

l=1
,Bm =

{
B

(l)
m

}L

l=1
. Furthermore, denote the weight matrix and bias in

the fully connected layer of f̂ with Ŵ , b̂ and the set of filters and biases in the m-th block of f̂ with

Ŵm and B̂m, respectively. The padding layer P̂ in f̂ pads the input x from R
D to R

D×4 with zeros.
Each column denotes a channel.

Let us first show that for each m, there exists some Conv
Ŵm,B̂m

: RD×4 → R
D×4 such that for any

Z ∈ R
D×4 with the form

Z = [(x)+ (x)− ⋆ ⋆] , (32)
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where (x)+ means applying (· ∨ 0) to every entry of x and (x)− means applying −(· ∧ 0) to every
entry of x, so all entries in Z are non-negative. We have

Conv
Ŵm,B̂m

(Z) =




τ1
τ2
(fm(x) ∨ 0) − τ1

τ2
(fm(x) ∧ 0)

0 0 ⋆ ⋆
...

...
⋆ ⋆


+ Z (33)

where ⋆’s denotes entries that do not affect this result and may take any different value.

For any m, the first layer of fm takes input in R
D. Thus, the filters inW(1)

m are in R
D. Again, we

pad these filters with zeros to get filters in R
D×4 and construct Ŵ(1)

m such that

(Ŵ(1)
m )1,:,: = [e1 0 0 0] ,

(Ŵ(1)
m )2,:,: = [0 e1 0 0] ,

(Ŵ(1)
m )3,:,: = [0 0 e1 0] ,

(Ŵ(1)
m )4,:,: = [0 0 0 e1] ,

(Ŵ(1)
m )4+j,:,: =

[
(W(1)

m )j,:,: (−W(1)
m )j,:,: 0 0

]
,

where we use the fact thatW(1)
m ∗ (x)+−W(1)

m ∗ (x)− =W(1)
m ∗x. The first four output channels at

the end of this first layer is a copy of Z. For the filters in later layers of f̂m and all biases, we simply
set

(Ŵ(l)
m )1,:,: = [e1 0 0 0 · · · 0] for l = 2, . . . , L,

(Ŵ(l)
m )2,:,: = [0 e1 0 0 · · · 0] for l = 2, . . . , L,

(Ŵ(l)
m )3,:,: = [0 0 e1 0 · · · 0] for l = 2, . . . , L− 1,

(Ŵ(l)
m )4,:,: = [0 0 0 e1 · · · 0] for l = 2, . . . , L− 1,

(Ŵ(l)
m )4+j,:,: =

[
0 0 0 0 (W(l)

m )j,:,:

]
for l = 2, . . . , L− 1,

(B̂(l)m )j,:,: =
[
0 0 0 0 (B(l)m )j,:,:

]
for l = 1, . . . , L− 1.

In Conv
Ŵm,B̂m

, an additional convolutional layer is constructed to realize the fully connected layer

in f̂m. By our assumption, only the first row of Wm is nonzero. Furthermore, we set B̂(L)
m = 0 and

ŴL
m as size-one filters with three output channels in the form of

(Ŵ(L)
m )3,:,: =

[
0 0 e1 0 τ1

τ2
(Wm)1,:

]
,

(Ŵ(L)
m )4,:,: =

[
0 0 0 e1 − τ1

τ2
(Wm)1,:

]
.

Under such choices, (33) is proved and all parameters in Ŵm, B̂m are bounded by τ1.

By composing all convolutional blocks, we have

(Conv
ŴM ,B̂M

) ◦ · · · ◦ (Conv
Ŵ1,B̂1

) ◦ P (x) =




τ1
τ2

∑M
m=1(f̂m ∨ 0) − τ1

τ2

∑M
m=1(f̂m ∧ 0)

(x)+ (x)− ⋆ ⋆
...

...
⋆ ⋆


 .

Lastly, the fully connect layer can be set as

W̃ =

[
0 0 τ2

τ1
− τ2

τ1
0 0 0 0

]
, b̃ = 0.

Note that the weights in the fully connected layer are bounded by τ2(1 ∨ τ−1
1 ).

The above construction gives

f̂(x) =

M∑

m=1

(f̂m(x) ∨ 0) +

M∑

m=1

(f̂m(x) ∧ 0) =

M∑

m=1

f̂m(x).
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B.4 SUPPORTING LEMMAE FOR THEOREM 1

Before stating Lemma 5, we provide a brief definition of cardinal B-splines.

Definition 5 (Cardinal B-spline). Let ψ(x) = 1[0,1](x) be the indicator function for membership in

[0, 1]. The cardinal B-spline of order m is defined by taking m+ 1-times convolution of ψ:

ψm(x) = (ψ ∗ ψ ∗ · · · ∗ ψ︸ ︷︷ ︸
m+1 times

)(x)

where f ∗ g(x) ≡
∫
f(x− t)g(t)dt.

Note that ψm is a piecewise polynomial with degree m and support [0,m+ 1]. It can be expressed
as [45]

ψm(x) =
1

m!

m+1∑

j=0

(−1)j
(
m+ 1

j

)
(x− j)m+ .

For any k, j ∈ N, let g̃k,j,m(x) = ψm(2kx − j), which is the rescaled and shifted cardinal B-

spline with resolution 2−k and support 2−k[j, j + (m + 1)]. For k = (k1, . . . , kd) ∈ N
d and j =

(j1, . . . , jd) ∈ N
d, we define the d dimensional cardinal B-spline as g̃dk,j,m(x) =

∏d
i=1 ψm(2kixi−

ji). When k1 = . . . = kd = k ∈ N, we denote g̃dk,j,m(x) =
∏d

i=1 ψm(2kxi − ji).

B.4.1 APPROXIMATING BESOV FUNCTIONS WITH CARDINAL B-SPLINES

For any m ∈ N, let J(k) = {−m,−m+ 1, . . . , 2k − 1, 2k}d and the quasi-norm of the coefficient
{ck,j} for k ∈ N, j ∈ J(k) be

∥{ck,j}∥bαp,q =



∑

k∈N


2k(α−d/p)


 ∑

j∈J(k)

|ck,j|p



1/p



q


1/q

. (34)

We can state the following lemma, from DeVore & Popov [13], Dung [17], which provides an upper
bound on the error of using cardinal B-splines to approximate functions in Bαp,q([0, 1]d).
Lemma 5 (Lemma 2 in Suzuki [60]; DeVore & Popov [13], Dung [17]). Assume that 0 < p, q, r ≤
∞ and 0 < α <∞ satisfying α > d(1/p− 1/r)+. Let m ∈ N be the order of the cardinal B-spline
basis such that 0 < α < min(m,m−1+1/p). For any f ∈ Bαp,q([0, 1]d), there exists fN satisfying

∥f − fN∥Lr([0,1]d) ≤ CN−α/d∥f∥Bα
p,q([0,1]

d)

for some constant C with N ≫ 1. f is in the form of

fN (x) =

H∑

k=0

∑

j∈J(k)

ck,jg̃
d
k,j,m(x) +

H∗∑

k=K+1

nk∑

i=1

ck,ji g̃
d
k,ji,m(x), (35)

where {ji}nk
i=1 ⊂ J(k), H = ⌈c1 log(N)/d⌉, H∗ = ⌈ν−1 log(λN)⌉+H+1, nk = ⌈λN2−ν(k−H)⌉

for k = H + 1, . . . , H∗, u = d(1/p− 1/r)+ and ν = (α− u)/(2u). The real numbers c1 > 0 and

λ > 0 are two absolute constants chosen to satisfy
∑H

k=1(2
k +m)d +

∑H∗

k=H+1 nk ≤ N , which

are to N . Moreover, we can choose the coefficients {ck,j} such that

∥{ck,j}∥bαp,q ≤ C1∥f∥Bα
p,q([0,1]

d)

for some constant C1.

B.4.2 APPROXIMATING CARDINAL B-SPLINES AND OTHERS WITH SINGLE-BLOCK CNNS

The following Proposition 1 quantifies the tradeoff between the size of a single-block CNN and its
approximation error for the multiplication operator.

Proposition 1. Let × be defined as in (13). For any η ∈ (0, 1), there exists a single-block CNN

×̂(·, ·) such that ∥∥a× b− ×̂(a, b)
∥∥
L∞ ≤ η,
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where a, b are functions uniformly bounded by c0.

×̂ is a single-block CNN approximation of× and is in FSCNN(L, J, I, τ, τ) with L = O(log 1/η)+
D layers, J = 24 channels and any 2 ≤ I ≤ D. All parameters are bounded by τ = (c20 ∨ 1).
Furthermore, the weight matrix in the fully connected layer of ×̂ has nonzero entries only in the first
row.

Proof of Proposition 1. First, let us define a particular class of feed-forward ReLU networks of the
form

f(x) =WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL, (36)

as

F(L, J, τ) = {f | f(x) in the form (36) with L layers and width at most J ,

∥Wi∥∞,∞ ≤ τ, ∥bi∥∞ ≤ τ for i = 1, · · · , L}. (37)

By Proposition 3 in Yarotsky, there exists a feed-forward ReLU network that can approximate the
multiplication operation between values with magnitude bounded by c0, with η error. Such feed-
forward network has O(log 1/η) layers, whose width is all bounded by 6, and all its parameters are
bounded by c20. Therefore, such a feed-forward network is sufficient to approximate × with η error
in L∞-norm, because the arguments of × are uniformly bounded c0 by Assumption 2.

Furthermore, by Lemma 8 in Liu et al. [42], we can express the aforementioned feed-forward net-
work with a single-block CNN in FSCNN(L, J, I, τ, τ), where L, J, I, τ are as specified in the state-
ment of the proposition.

Proposition 2 quantifies the tradeoff between the size of a single-block CNN and its approximation
error for the cardinal B-spline fi ◦ ϕ−1

i .

Proposition 2 (Proposition 3 in Liu et al. [42]). Let fi◦ϕ−1
i be defined as in (13). For any δ ∈ (0, 1),

set N = C1δ
−d/α. For any 2 ≤ I ≤ D, there exists a set of single-block CNNs

{
f̂SCNN

}N

j=1
such

that ∥∥∥∥∥∥

N∑

j=1

f̂SCNN
i,j − fi ◦ ϕ−1

i

∥∥∥∥∥∥
L∞

≤ δ,

where C1 is a constant depending on α, p, q and d.

f̂SCNN
i,j is a single-block CNN approximation of f̃i,j (defined in (14)) in FSCNN(L, J, I, τ, τ) with

L = O (log(1/δ)) , J = ⌈24d(α+ 1)(α+ 3) + 8d⌉, τ = O
(
δ−(log 2)( 2d

αp−d+c1d
−1)
)
.

The constant hidden in O(·) depends on d, α, 2d
αp−d , p, q, c0.

Proposition 3 quantifies the tradeoff between the size of the sub-networks for the chart determination
network and its approximation error for the chart determination indicators and the distance function
d2i .

Proposition 3 (Lemma 9 in Liu et al. [42]). Let d2i and 1[0,β2] be defined as in (18). For any

θ ∈ (0, 1) and ∆ ≥ 8B2Dθ, there exists a single-block CNN d̂2i approximating d2i such that

∥d̂2i − d2i ∥L∞ ≤ 4B2Dθ,

and a CNN 1̂∆ approximating 1[0,β2] with

1̂∆(x) =





1, if a ≤ (1− 2−k)(β2 − 4B2Dθ),

0, if a ≥ β2 − 4B2Dθ,

2k((β2 − 4B2Dθ)−1a− 1), otherwise.

for x ∈ X . The single-block CNN for d̂2i has O(log(1/θ)) layers, 6D channels and all weights

parameters are bounded by 4B2. The single-block CNN for 1̃∆ has
⌈
log(β2/∆)

⌉
layers, 2 channels.

All weight parameters are bounded by max(2, |β2 − 4B2Dθ|).
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As a result, for any x ∈ X , 1̂∆ ◦ d̂2i (x) gives an approximation of 1Ui
satisfying

1̂∆ ◦ d̂2i (x) =





1, if x ∈ Ui and d2i (x) ≤ β2 −∆;

0, if x /∈ Ui;

between 0 and 1, otherwise.

B.4.3 LEMMAE ABOUT SUMMATION AND COMPOSITION OF CNN

Lemma 6 states that the composition of two single-block CNNs can be expressed as one single-block
CNN with augmented architecture.

Lemma 6. Let FSCNN
1 (L1, J1, I1, τ1, τ1) be a CNN architecture from R

D → R and
FSCNN

2 (L2, J2, I2, τ2, τ2) be a CNN architecture from R → R. Assume the weight matrix in the
fully connected layer of FSCNN

1 (L1, J1, I1, τ1, τ1) and FSCNN
2 (L2, J2, I2, τ2, τ2) has nonzero en-

tries only in the first row. Then there exists a CNN architecture FSCNN(L, J, I, τ, τ) from R
D → R

with

L = L1 + L2, J = max(J1, J2), I = max(I1, I2), τ = max(τ1, τ2)

such that for any f1 ∈ FSCNN(L1, J1, I1, τ1, τ1) and f2 ∈ FSCNN(L2, J2, I2, τ2, τ2), there exists
f ∈ FSCNN(L, J, I, τ, τ) such that f(x) = f2 ◦ f1(x). Furthermore, the weight matrix in the fully
connected layer of FSCNN(L, J, I, τ, τ) has nonzero entries only in the first row.

Lemma 7 states that the sum of n0 single-block CNNs with the same architecture can be expressed
as the sum of n1 single-block CNNs with modified width.

Lemma 7 (Lemma 7 in Liu et al. [43]). Let {fi}n0

i=1 be a set of single-block CNNs with architecture

FSCNN(L0, J0, I0, τ0, τ0). For any integers 1 ≤ n ≤ n0 and J̃ satisfying nJ̃ = O(n0J0) and

J̃ ≥ J0, there exists an architecture FSCNN(L, J, I, τ, τ) that gives a set of single-block CNNs
{gi}ni=1 such that

n∑

i=1

gi(x) =

n0∑

i=1

fi(x).

Such an architecture has

L = O(L0), J = O(J̃), I = I0, τ = τ0.

Furthermore, the fully connected layer of f has nonzero elements only in the first row.

C PROOF OF CNN CLASS COVERING NUMBER

In this section, we prove a bound on the covering number of the convolutional neural network class
used in Algorithm 1.

Lemma 8. Given δ > 0, the δ-covering number of the neural network classF(M,L, J, I, τ1, τ2, V )
satisfies

N (δ,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞) ≤
(
2(τ1 ∨ τ2)Λ1δ

−1
)Λ2

, (38)

where

Λ1 = (M + 3)JD(1 ∨ τ2)(1 ∨ τ1)ρ̃ρ̃+, Λ2 =ML(J2I + J) + JD + 1

with ρ̃ = ρM , ρ̃+ = 1 +MLρ+, ρ = (JIτ1)
L and ρ+ = (1 ∨ JIτ1)L.

With a network architecture as stated in Theorem 1, we have

logN (δ,F(M,L, J, I, τ1, τ2, V ) = O

(
M̃J̃2D3 log5(M̃J̃) log

1

δ

)
,

where O(·) hides constant depending on d, α, 2d
αp−d , p, q, c0, B, ω and the surface area of X .
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C.1 SUPPORTING LEMMAE AND PROOFS

Proposition 4 below provides an upper bound on the L∞-norm of a series of convolutional neural
network blocks in terms of its architecture parameters, e.g. number of layers, number of channels,
etc.

Let J
(i)
m be the number of channels in i-th layer of the m-th block, and let I

(i)
m be the filter size of

i-th layer in the m-th block. Q[i,j] is defined as

Q[i,j](x) =
(
ConvWj ,Bj

)
◦ · · · ◦ (ConvWi,Bi

) (x).

Proposition 4. For m = 1, 2, · · · ,M and x ∈ [−1, 1]D, we have

∥∥Q[1,m](x)
∥∥
∞
≤ (1 ∨ τ1)




m∏

j=1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1



(
1 +

m∑

k=1

Lk

Lk∏

i=1

(1 ∨ J (i−1)
k I

(i)
k τ1)

)
.

Proof.
∥∥Q[1,m](x)

∥∥
∞

=
∥∥ConvWm,Bm

(Q[1,m−1](x))
∥∥
∞

≤
Lm∏

i=1

J (i−1)
m I(i)m τ1

∥∥Q[1,m−1](x)
∥∥
∞

+ τ1Lm

Lm∏

i=1

(1 ∨ J (i−1)
m I(i)m τ1)

≤ ∥P (x)∥∞
m∏

j=1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1 + τ1

m∑

k=1

Lk

Lk∏

i=1

(1 ∨ J (i−1)
k I

(i)
k τ1)

m∏

l=j+1

Ll∏

i=1

J
(i−1)
l I

(i)
l τ1

≤ ∥x∥∞
m∏

j=1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1 + τ1

m∑

k=1

Lk

Lk∏

i=1

(1 ∨ J (i−1)
k I

(i)
k τ1)

m∏

l=j+1

Ll∏

i=1

J
(i−1)
l I

(i)
l τ1

≤ (1 ∨ τ1)




m∏

j=1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1



(
1 +

m∑

k=1

Lk

Lk∏

i=1

(1 ∨ J (i−1)
k I

(i)
k τ1)

)
,

where the first two inequalities are obtained by applying Proposition 9 from Oono & Suzuki [54]
recursively.

Lemma 9 quantifies the sensitivity of a CNN with respect to small changes in its weight parameters.
This will be used to create a discrete covering for the CNN class.

Lemma 9. For f, f ′ ∈ F(M,L, J, I, τ1, τ2, V ) such that for ϵ > 0, ∥W −W ′∥∞ ≤ ϵ,

∥b− b′∥∞ ≤ ϵ,
∥∥∥W(l)

m −W(l)
m

′
∥∥∥
∞
≤ ϵ and

∥∥∥B(l)m − B(l)m

′
∥∥∥
∞
≤ ϵ for all m and l, where

(W, b, {{(W(l)
m ,B(l)m )}Lm

l=1}Mm=1) and (W ′, b′, {{(W(l)
m

′
,B(l)m

′
)}Lm

l=1}Mm=1) are the parameters of f
and f ′ respectively, we have

∥f − f ′∥∞ ≤ Λ1ϵ,

where Λ1 is defined in Lemma 8.

Proof. For any x ∈ [−1, 1]D,

|f(x)− f ′(x)|
= |W ⊗Q(x) + b−W ′ ⊗Q′(x)− b′|
= |(W −W ′)⊗Q(x) + b− b′ +W ′ ⊗ (Q(x)−Q′(x))|
= |(W −W ′)⊗Q(x) + b− b′ +W ′ ⊗ (Q(x)− ConvWM ,BM

(Q′(x)) + ConvWM ,BM
(Q′(x))−Q′(x))|

=

∣∣∣∣∣(W −W
′)⊗Q(x) + b− b′ +

M∑

m=1

W ′ ⊗Q[m+1,M ] ◦
(
ConvWm,Bm − ConvW′

m,B′
m

)
◦Q′

[0,m−1]

∣∣∣∣∣
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≤ |(W −W ′)⊗Q(x; θ) + b− b′|+
M∑

m=1

∣∣∣W ′ ⊗Q[m+1,M ] ◦
(
ConvWm,Bm

− ConvW′
m,B′

m

)
◦Q′

[0,m−1]

∣∣∣

(a)

≤ (3 +M)JD(1 ∨ τ1)(1 ∨ τ2)




M∏

j=1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1



(
1 +

M∑

k=1

Lk

Lk∏

i=1

(1 ∨ J (i−1)
k I

(i)
k τ1)

)
ϵ,

where (a) is obtained through the following reasoning.

The first term in (a) can be bounded as

|(W −W ′)⊗Q(x) + b− b′|
≤ (∥W∥0 + ∥W ′∥0) ∥W −W ′∥∞ ∥Q(x)∥∞ + ∥b− b′∥∞
≤ 2JDϵ ∥Q(x)∥∞ + ϵ

≤ 3JDϵ ∥Q(x)∥∞

≤ 3JDmax{1, τ1}




M∏

j=1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1



(
1 +

M∑

k=1

Lk

Lk∏

i=1

(1 ∨ J (i−1)
k I

(i)
k τ1)

)
ϵ,

where the first inequality uses Proposition 8 from Oono & Suzuki [54] and the last inequality is
obtained by invoking Proposition 4.

For the second term in (a), it is true that for any m = 1, · · · ,M , we have∣∣∣W ′ ⊗Q[m+1,M ] ◦
(
ConvWm,Bm

− ConvW′
m,B′

m

)
◦Q′

[1,m−1]

∣∣∣
(b)

≤ ∥W ′∥0 τ2
∥∥∥Q[m+1,M ] ◦

(
ConvWm,Bm

− ConvW′
m,B′

m

)
◦Q′

[1,m−1]

∥∥∥
∞

(c)

≤ JDτ2




M∏

j=m+1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1



∥∥∥
(
ConvWm,Bm − ConvW′

m,B′
m

)
◦Q′

[1,m−1]

∥∥∥
∞

(d)

≤ JDτ2




M∏

j=m+1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1



(

Lm∏

i=1

J (i−1)
m I(i)m τ1

∥∥∥Q′
[1,m−1]

∥∥∥
∞
ϵ

)

(e)

≤ JDτ2




M∏

j=m+1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1



(

Lm∏

i=1

J (i−1)
m I(i)m τ1

)

(1 ∨ τ1)




m∏

j=1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1



(
1 +

m∑

k=1

Lk

Lk∏

i=1

(1 ∨ J (i−1)
k I

(i)
k τ1)

)
ϵ

≤ JDτ2




M∏

j=1

Lj∏

i=1

J
(i−1)
j I

(i)
j τ1


 (1 ∨ τ1)

(
1 +

M∑

k=1

Lk

Lk∏

i=1

(1 ∨ J (i−1)
k I

(i)
k τ1)

)
ϵ,

where (b) is by Proposition 7 from Oono & Suzuki [54], (c) is by Proposition 2 and 4 from Oono &
Suzuki [54], (d) is by Proposition 2 and 5 from Oono & Suzuki [54], and (e) is obtained by invoking
Proposition 4.

C.2 PROOF OF LEMMA 8

Proof of Lemma 8. We grid the range of each parameter into subsets with width Λ−1
1 δ, so there are at

most 2(τ1 ∨ τ2)Λ1δ
−1 different subsets for each parameter. In total, there are

(
2(τ1 ∨ τ2)Λ1δ

−1
)Λ2

bins in the grid. For any f, f ′ ∈ F(M,L, J, I, τ1, τ2, V ) within the same grid, by Lemma 9, we

have ∥f − f ′∥∞ ≤ δ. We can construct the ϵ-covering with cardinality
(
2(τ1 ∨ τ2)Λ1δ

−1
)Λ2

by
selecting one neural network from each bin in the grid.

Taking log and plugging in the network architecture parameters in Lemma 1, we have

logN (δ,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞) = O
(
Λ2 log

(
(τ1 ∨ τ2) Λ1δ

−1
))
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≤ O
(
M̃DD2J̃2 log(M̃J̃) log2(M̃J̃) log2(M̃J̃) log

1

δ

)

= O

(
M̃J̃2D3 log5(M̃J̃) log

1

δ

)
,

where the inequality is due to Λ2 = O(M̃DD2J̃2 log(M̃J̃)). By plugging in the choice of τ1,
ρ = (1/2)LM−1 ≤M−1, so ρ̃ = (1 +M−1)M ≤ e. Moreover, ρ̃+ = 1 +ML.

D STATISTICAL RESULT OF CNN-BESOV APPROXIMATION (LEMMA 10)

In this section, we derive the statistical estimation error for using a CNN empirical MSE minimizer
to estimate a Besov ground truth function over an i.i.d. dataset. We need to choose the appropriate
CNN architecture and size in order to balance the approximation error from Theorem 1 and variance.
Thsi statistical estimation error can be decomposed into the error of using CNN to approximate
Besov function (Theorem 1), terms that grow with the covering number of our CNN class, and the
error of using the discrete covering to approximate our CNN class.

In Theorem 2, we expand the estimation error v̂π − vπ over time steps and upper-bound the amount
of estimation error in each time step with Lemma 10. Details of Theorem 2 are in Appendix A.

Lemma 10. Let X be a d-dimensional compact Riemannian manifold that satisfies Assumption 1.
We are given a function f0 ∈ Bαp,q(X ), where s, p, q satisfies Assumption 2. We are also given

samples Sn = {(xi, yi)}ni=1, where xi are i.i.d. sampled from a distribution Px on X and yi =
f0(xi) + ζi. ζi’s are i.i.d. sub-Gaussian random noise with variance σ2, uncorrelated with xi’s. If
we compute an estimator

f̂n = argmin
f∈F

1

n

n∑

i=1

(f(xi)− yi)2 ,

with the neural network class F = F(M,L, J, I, τ1, τ2, V ) such that

L = O(log n+D + logD), J = O(D), τ1 = O(1), log τ2 = O(log2 n+D log n),

M = O(n
d

2α+d ), V = ∥f0∥∞ , (39)

with any integer I ∈ [2, D] and M̃, J̃ > 0 satisfying M̃J̃ = O(n
d

2α+2d ), then we have

E

[∫

X

(
f̂n(x)− f0(x)

)2
dPx(x)

]
≤ c

(
V 2
F + σ2

)
n− 2α

2α+d log5 n, (40)

where VF = ∥f0∥∞ and the expectation is taken over the training sample Sn, and c is a constant

depending on D
6α

2α+2d , d, α, 2d
αp−d , p, q, c0, B, ω and the surface area of X . O(·) hides constant

depending on d, α, 2d
αp−d , p, q, c0, B, ω and the surface area of X .

First, note that the nonparametric regression error can be decomposed into two terms:

E

[∫

X

(
f̂n(x)− f0(x)

)2
dDx(x)

]
= 2E

[
1

n

n∑

i=1

(f̂n(xi)− f0(xi))2
]

︸ ︷︷ ︸
T1

+ E

[∫

X

(
f̂n(x)− f0(x)

)2
dDx(x)

]
− 2E

[
1

n

n∑

i=1

(f̂n(xi)− f0(xi))2
]

︸ ︷︷ ︸
T2

,

where T1 reflects the squared bias of using neural networks to approximate ground truth f0, which
is related to Theorem 1, and T2 is the variance term.

D.1 SUPPORTING LEMMAE

Lemma 11 (Lemma 5 in Chen et al. [7]). Fix the neural network class F(M,L, J, I, τ1, τ2, V ). For
any constant δ ∈ (0, 2V ), we have

T1 ≤ 4 inf
f∈F(M,L,J,I,τ1,τ2,V )

∫

X

(f(x)− f0(x))2dPx(x)
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+ 48σ2 logN (δ,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞) + 2

n

+ (8
√
6

√
logN (δ,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞) + 2

n
+ 8)σδ,

where N (δ,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞) denotes the δ-covering number of
F(M,L, J, I, τ1, τ2, V ) with respect to the ℓ∞ norm, i.e., there exists a discretization of
F(M,L, J, I, τ1, τ2, V ) into N (δ,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞) distinct elements, such that for

any f ∈ F , there is f̄ in the discretization satisfying
∥∥f̄ − f

∥∥
∞
≤ ϵ.

Lemma 12 (Lemma 6 in Chen et al. [7]). For any constant δ ∈ (0, 2R), T2 satisfies

T2 ≤
104V 2

3n
logN (δ/4V,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞) +

(
4 +

1

2V

)
δ.

D.2 PROOF OF LEMMA 10

Proof of Lemma 10. Recall that the bias and variance decomposition of

E

[∫
X

(
f̂n(x)− f0(x)

)2
dPx(x)

]
as

E

[∫

X

(
f̂n(x)− f0(x)

)2
dPx(x)

]
= E

[
2

n

n∑

i=1

(f̂n(xi)− f0(xi))2
]

︸ ︷︷ ︸
T1

+ E

[∫

X

(
f̂n(x)− f0(x)

)2
dPx(x)

]
− E

[
2

n

n∑

i=1

(f̂n(xi)− f0(xi))2
]

︸ ︷︷ ︸
T2

.

Applying the upper bounds of T1 and T2 in Lemmas 11 and 12 respectively, we can derive

E

[∫

X

(
f̂n(x)− f0(x)

)2
dPx(x)

]
≤ 4 inf

f∈F(M,L,J,I,τ1,τ2,V )

∫

X

(f(x)− f0(x))2dPx(x)

+ 48σ2 logN (δ,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞) + 2

n

+ 8
√
6

√
logN (δ,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞) + 2

n
σδ

+
104V 2

F

3n
logN (δ/4V,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞)

+

(
4 +

1

2VF
+ 8σ

)
δ.

We need there to exist a network in F(M,L, J, I, τ1, τ2, V ) which can yield a function f satisfying
∥f − f0∥∞ ≤ ϵ for ϵ ∈ (0, 1). ϵ will be chosen later to balance the bias-variance tradeoff. In order

to achieve such ϵ-error, we set M̃J̃ = ϵ−d/α, so we now have our network architecture as specified
in Theorem 1 in terms of ϵ. Then, we can use the parameters in this architecture to invoke the upper
bound of the covering number in Lemma 8:

logN (δ,F(M,L, J, I, τ1, τ2, V ), ∥·∥∞) = O
(
Λ2 log

(
(τ1 ∨ τ2) Λ1δ

−1
))

≤ O
(
M̃J̃2D3 log5(M̃J̃) log

1

δ

)

= O

(
ϵ−d/αD3 log5 ϵ log

1

δ

)
,

where O(·) hides constant depending on logD, d, α, 2d
αp−d , p, q, c0, B, ω and the surface area of X .

Plugging it in, we have

E

[∫

X

(
f̂n(x)− f0(x)

)2
dDx(x)

]
≤ 4ϵ2 +

48σ2

n

(
c′′ϵ−d/αD3 log5 ϵ log

1

δ
+ 2

)
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+ 8
√
6c′′

√
ϵ−d/αD3 log5 ϵ log 1

δ

n
σδ

+
104V 2

3n
ϵ−d/αD3 log5 ϵ log

1

δ

+

(
4 +

1

2VF
+ 8σ

)
δ

= Õ

(
ϵ2 +

V 2
F + σ2

n
ϵ−

d
αD3 log5 ϵ log

1

δ

+ σδ

√
ϵ−

d
αD3 log5 ϵ log 1

δ

n
+ σδ +

σ2

n

)
. (41)

Finally we choose ϵ to satisfy ϵ2 = 1
nD

3ϵ−
d
α , which gives ϵ = D

3α
2α+dn−

α
2α+d . It suffices to pick

δ = 1
n . Substituting both ϵ and δ into (41), we deduce the desired estimation error bound

E

[∫

X

(
f̂n(x)− f0(x)

)2
dDx(x)

]
≤ c(V 2

F + σ2)n− 2α
2α+d log5 n,

where constant c depends on D
6α

2α+d , d, α, 2d
αp−d , p, q, c0, B, ω and the surface area of X .

E A RESULT FOR FEED-FORWARD RELU NEURAL NETWORK

E.1 FEED-FORWARD RELU NEURAL NETWORK

We consider multi-layer ReLU (Rectified Linear Unit) neural networks [25]. ReLU activation is
popular in computer vision, natural language processing, etc. because the vanishing gradient issue
is less severe with it, which is nonetheless common with its counterparts like sigmoid or hyperbolic
tangent activation [25, 27]. An L-layer ReLU neural network can be expressed as

f(x) =WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL, (42)

in whichW1, · · · ,WL and b1, · · · , bL are weight matrices and vectors and ReLU(·) is the entrywise
rectified linear unit, i.e. ReLU(a) = max{0, a}. The width of a neural network is defined as the
number of neurons in its widest layer. For notational simplicity, we define a class of neural networks

F(L, p, I, τ, V ) = {f | f(x) in the form (42) with L layers and width at most p,

∥f∥∞ ≤ V,
L∑

i=1

∥Wi∥0 + ∥bi∥0 ≤ I, ∥Wi∥∞,∞ ≤ τ, ∥bi∥∞ ≤ τ for i = 1, · · · , L}.

(43)

E.2 POLICY EVALUATION ERROR AND ITS PROOF

From this point, we denote the function class F(L, p, I, τ, V ), whose parameters L, p, I, τ, V are
chosen according to Theorem 3, with the shorthand F . In this section, this F is used in Algorithm
1, instead of the CNN class in (11).

Theorem 3. Suppose Assumption 1 and 2 hold. By choosing

L = O (logK) , p = O
(
K

d
2α+d

)
, I = O

(
K

d
2α+d logK

)
,

τ = max{B,H,
√
d, ω2}, V = H

(44)

in Algorithm 1, in which O(·) hides factors depending on α, d and logD, we have

E |vπ − v̂π| ≤ CH2κ
(
K− α

2α+d +
√
D/K

)
log

3
2 K, (45)

in which the expectation is taken over the data, and C is a constant depending on logD, α, B, d, ω,
the surface area of X and c0. The distributional mismatch is captured by

κ =
1

H

H∑

h=1

√
χ2
Q(q

π
h , q

π0

h ) + 1,

in which Q is the Minkowski sum between the ReLU function class and the Besov function class,
i.e., Q = {f + g | f ∈ Bαp,q(X ), g ∈ F}.
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Proof of Theorem 3. The goal is to bound

E |v̂π − vπ| = E

∣∣∣∣
∫

X

(
Qπ

1 − Q̂π
1

)
(s, a) dqπ1 (s, a)

∣∣∣∣ ≤ E

[∫

X

∣∣∣Qπ
1 − Q̂π

1

∣∣∣ (s, a) dqπ1 (s, a)
]
.

To get an expression for that, we first expand it recursively. To illustrate the recursive relation, we
examine the quantity at step h:

E

[∫

X

∣∣∣Qπ
h − Q̂π

h

∣∣∣ (s, a) dqπh(s, a)
]

= E

[∫

X

∣∣∣T π
h Q

π
h+1 − T̂ π

h

(
Q̂π

h+1

)∣∣∣ (s, a) dqπh(s, a)
]

≤ E

[∫

X

∣∣∣T π
h Q

π
h+1 − T π

h Q̂
π
h+1

∣∣∣ (s, a) dqπh(s, a)
]
+ E

[∫

X

∣∣∣T π
h Q̂

π
h+1 − T̂ π

h

(
Q̂π

h+1

)∣∣∣ (s, a) dqπh(s, a)
]

= E

[∫

X

∣∣∣Qπ
h+1 − Q̂π

h+1

∣∣∣ (s, a) dqπh+1(s, a)

]

+ E

[
E

[∫

X

∣∣∣T π
h Q̂

π
h+1 − T̂ π

h

(
Q̂π

h+1

)∣∣∣ (s, a) dqπh(s, a) | Dh+1, · · · ,DH

]]

(a)

≤ E

[∫

X

∣∣∣Qπ
h+1 − Q̂π

h+1

∣∣∣ (s, a) dqπh+1(s, a)

]

+ E

[
E

[√∫

X

(
T π
h Q̂

π
h+1 − T̂ π

h

(
Q̂π

h+1

))2
(s, a) dqπ0

h (s, a)
√
χ2
Q(q

π
h , q

π0

h ) + 1 | Dh+1, · · · ,DH

]]

(b)

≤ E

[∫

X

∣∣∣Qπ
h+1 − Q̂π

h+1

∣∣∣ (s, a) dqπh+1(s, a)

]

+

√
E

[
E

[∫

X

(
T π
h Q̂

π
h+1 − T̂ π

h

(
Q̂π

h+1

))2
(s, a) dqπ0

h (s, a) | Dh+1, · · · ,DH

]]√
χ2
Q(q

π
h , q

π0

h ) + 1

(c)

≤
∫

X

∣∣∣Qπ
h+1 − Q̂π

h+1

∣∣∣ (s, a) dqπh+1(s, a) +

√
c(5H2)

(
K− 2α

2α+d +
D

K

)
log3K

√
χ2
Q(q

π
h , q

π0

h ) + 1

≤
∫

X

∣∣∣Qπ
h+1 − Q̂π

h+1

∣∣∣ (s, a) dqπh+1(s, a) + CH

(
K− α

2α+d +

√
D

K

)
log3/2K

√
χ2
Q(q

π
h , q

π0

h ) + 1,

where C denotes a (varying) constant depending on logD, α, B, d, ω, the surface area of X and c0.

In (a), note T π
h Q̂

π
h+1 ∈ Bαp,q(X ) by Assumption 2 and −T̂ π

h

(
Q̂π

h+1

)
∈ F by our algorithm, so

T π
h Q̂

π
h+1 − T̂ π

h

(
Q̂π

h+1

)
∈ Q. Then we obtain this inequality by invoking the following lemma.

In (b), we use Jensen’s inequality and the fact that square root is concave.

To obtain (c), we invoke the following lemma, which provides an upper bound on the regression
error.

Specifically, we will use Lemma 13 when conditioning on Dh+1, · · · ,DH , i.e. the data from time

step h + 1 to time step H . Note that after conditioning, T π
h Q̂

π
h+1 becomes measurable and deter-

ministic with respect to Dh+1, · · · ,DH . Also, Dh+1, · · · ,DH are independent from Dh, which we
use in the regression at step h.

To justify our use of Lemma 13, we need to cast our problem into a regression problem described
in the lemma. Since {(sh,k, ah,k)}Kk=1 are i.i.d. from qπ0

h , we can view them as the samples xi’s in

the lemma. We can view T π
h Q̂

π
h+1, which is measurable under our conditioning, as f0 in the lemma.

Furthermore, we let

ζh,k := rh,k +

∫

A

Q̂π
h+1(s

′
h,k, a)π(a | s′h,k) da− T π

h Q̂
π
h+1(sh,k, ah,k).

In order to invoke Lemma 13 under the conditioning on Dh+1, · · · ,DH , we need to verify whether
three conditions are satisfied (conditioning on Dh+1, · · · ,DH ):
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1. Sample {(sh,k, ah,k)}Kk=1 are i.i.d;

2. Sample {(sh,k, ah,k)}Kk=1 and noise {ζh,k}Kk=1 are uncorrelated;

3. Noise {ζh,k}Kk=1 are independent, zero-mean, subgaussian random variables.

In our setting, {(sh,k, ah,k)}Kk=1 are i.i.d. from qπ0

h . Due to the time-inhomogeneous setting, they

are independent from Dh+1, · · · ,DH , so {(sh,k, ah,k)}Kk=1 are still i.i.d. under our conditioning.
Thus, Condition 1 is clearly satisfied.

We may observe that under our conditioning, the transition from (sh,k, ah,k) to s′h,k is the only

source of randomness in ζh,k, besides (sh,k, ah,k) itself. The distribution of (sh,k, ah,k, s
′
h,k) is actu-

ally the product distribution between Ph(·|sh,k, ah,k) and qπ0

h , so a function of s′h,k, generated from

the transition distribution Ph(·|sh,k, ah,k), is uncorrelated with (sh,k, ah,k). Thus, (sh,k, ah,k)’s are
uncorrelated with ζh,k’s under our conditioning, and Condition 2 is satisfied.

Condition 3 can also be easily verified. Under our conditioning, the randomness in ζh,k only comes
from (sh,k, ah,k, s

′
h,k, rh,k), which are independent from (sh,k′ , ah,k′ , s′h,k′ , rh,k′) for any k′ ̸= k,

so ζh,k’s are independent from each other. As for the mean of ζh,k,

E [ζh,k | Dh+1, · · · ,DH ]

= E

[
rh,k +

∫

A

Q̂π
h+1(s

′
h,k, a)π(a | s′h,k) da− rh(sh,k, ah,k)− Pπ

h Q̂
π
h+1(sh,k, ah,k) | Dh+1, · · · ,DH

]

= E

[
rh,k − rh(sh,k, ah,k) +

∫

A

Q̂π
h+1(s

′
h,k, a)π(a | s′h,k) da

− Es′∼Ph(·|sh,k,ah,k)

[∫

A

Q̂π
h+1(s

′, a)π(a | s′) da | sh,k, ah,k,Dh+1, · · · ,DH

]
| Dh+1, · · · ,DH

]

= 0 + 0 = 0.

On the other hand,

∥∥∥Q̂π
h+1

∥∥∥
∞
≤ H almost surely, because it is a function in our ReLU network class

F . Thus, ζh,k is a bounded random variable with ζh,k ∈ [−2H, 2H] almost surely, so its variance is

bounded by 4H2. Its boundedness also implies it is a subgaussian random variable. Thus, Condition
3 is also satisfied.

Hence, Lemma 13 proves, for step h in our algorithm,

E

[∫

X

(
T π
h Q̂

π
h+1 − T̂ π

h

(
Q̂π

h+1

))2
(s, a) dqπ0

h (s, a) | Dh+1, · · · ,DH

]

≤ c(H2 + 4H2)

(
K− 2α

2α+d +
D

K

)
log3K.

Note that this upper bound holds for any Q̂π
h+1 or Dh+1, · · · ,DH . The sole purpose of our condi-

tioning is that we could view Q̂π
h+1 as a measurable or deterministic function under the conditioning

and then apply Lemma 13. Therefore,

E

[
E

[∫

X

(
T π
h Q̂

π
h+1 − T̂ π

h

(
Q̂π

h+1

))2
(s, a) dqπ0

h (s, a) | Dh+1, · · · ,DH

]]

≤ c(H2 + 4H2)

(
K− 2α

2α+d +
D

K

)
log3K.

Finally, we carry out the recursion from time step 1 to time step H , and the final result is

E |vπ − v̂π| ≤ CH2

(
K− α

2α+d +

√
D

K

)
log3/2K

(
1

H

H∑

h=1

√
χ2
Q(q

π
h , q

π0

h ) + 1

)
.
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E.3 LEMMA 13 AND ITS PROOF

Lemma 13. Let X be a d-dimensional compact Riemannian manifold isometrically embedded in
R

D with reach ω. There exists a constant B > 0 such that for any x ∈ X , |xj | ≤ B for all
j = 1, · · · , D. We are given a function f0 ∈ Bα

p,q(X ) and samples Sn = {(xi, yi)}ni=1, where xi
are i.i.d. sampled from a distribution Px on X and yi = f0(xi) + ζi. ζi’s are i.i.d. sub-Gaussian
random noise with variance σ2, uncorrelated with xi’s. If we compute an estimator

f̂n = argmin
f∈F

1

n

n∑

i=1

(f(xi)− yi)2 ,

with the neural network class F = F(L, p, I, τ, V ) such that

L = O (log n) , p = O
(
n

d
2α+d

)
, I = O

(
n

d
2α+d log n

)
,

τ = max{B, VF ,
√
d, ω2}, V = VF , (46)

then we have

E

[∫

X

(
f̂n(x)− f0(x)

)2
dPx(x)

]
≤ c

(
V 2
F + σ2

)(
n−

2α
2α+d +

D

n

)
log3 n, (47)

where VF = ∥f0∥∞ and the expectation is taken over the training sample Sn, and c is a constant
depending on logD, α, B, d, ω, the surface area of X and c0.

Proof of Lemma 13. Recall that the bias and variance decomposition of

E

[∫
X

(
f̂n(x)− f0(x)

)2
dPx(x)

]
as

E

[∫

X

(
f̂n(x)− f0(x)

)2
dPx(x)

]
= E

[
2

n

n∑

i=1

(f̂n(xi)− f0(xi))2
]

︸ ︷︷ ︸
T1

+ E

[∫

X

(
f̂n(x)− f0(x)

)2
dPx(x)

]
− E

[
2

n

n∑

i=1

(f̂n(xi)− f0(xi))2
]

︸ ︷︷ ︸
T2

.

Applying the upper bounds of T1 and T2 in Lemmas 11 and 12 respectively, we can derive

E

[∫

X

(
f̂n(x)− f0(x)

)2
dPx(x)

]
≤ 4 inf

f∈F(L,p,I,τ,V )

∫

X

(f(x)− f0(x))2dPx(x)

+ 48σ2 logN (δ,F(L, p, I, τ, V ), ∥·∥∞) + 2

n

+ 8
√
6

√
logN (δ,F(L, p, I, τ, V ), ∥·∥∞) + 2

n
σδ

+
104V 2

F

3n
logN (δ/4V,F(L, p, I, τ, V ), ∥·∥∞)

+

(
4 +

1

2VF
+ 8σ

)
δ.

We need there to exist a network in F(L, p, I, τ, V ) which can yield a function f satisfying
∥f − f0∥∞ ≤ ϵ for ϵ ∈ (0, 1). ϵ will be chosen later to balance the bias-variance tradeoff. By
Lemma 2 of Nguyen-Tang et al. [51], in order to achieve such ϵ-error, we need

L = O

(
log

1

ϵ

)
, p = O

(
ϵ−

d
α

)
, I = O

(
ϵ−

d
α log

1

ϵ

)
,

τ = max{B, VF ,
√
d, ω2}, V = VF ,

where O(·) hides factors of logD, α, d and the surface area of X , so we now have our network
architecture as specified in Theorem 1 in terms of ϵ. Then, we can use the architecture parameters
in (13) to invoke the upper bound of the covering number in Lemma 7 of Chen et al. [7]:

logN (δ,F(L, p, I, τ, V ), ∥·∥∞) = log

(
2L2(pB + 2)τLpL+1

δ

)I
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≤ c′′ϵ− d
α log3

1

ϵ
log

1

δ
,

where c′′ is a constant depending on logB, ω and log log n.

Plugging it in, we have

E

[∫

X

(
f̂n(x)− f0(x)

)2
dDx(x)

]
≤ 4ϵ2 +

48σ2

n
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ϵ log
1
δ
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σδ
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104V 2

F

3n
ϵ−d/α log3

1

ϵ
log

1

δ

+

(
4 +

1

2VF
+ 8σ

)
δ

= Õ

(
ϵ2 +

V 2
F + σ2

n
ϵ−

d
α log3

1

ϵ
log

1

δ

+ σδ

√
ϵ−

d
α log3 1

ϵ log
1
δ

n
+ σδ +

σ2

n

)
. (48)

Finally we choose ϵ to satisfy ϵ2 = 1
nϵ

− d
α , which gives ϵ = n− α

2α+d . It suffices to pick δ = 1
n .

Substituting both ϵ and δ into (48), we deduce the desired estimation error bound

E

[∫

X

(
f̂n(x)− f0(x)

)2
dDx(x)

]
≤ c(V 2

F + σ2)

(
n− 2α

2α+d +
D

n

)
log3 n,

where constant c depends on logD, d, α, 2d
αp−d , p, q, c0, B, ω and the surface area of X .

F SUPPLEMENT FOR EXPERIMENTS

F.1 DETAILS FOR EXPERIMENTS WITH CARTPOLE

We use the CartPole environment from OpenAI gym. We consider it as a time-inhomogeneous
finite-horizon MDP by setting a time limit of 100 steps. We turn the terminal states in the original
CartPole into absorbing states, so if a trajectory terminates before 100 steps, the agent would keep
receiving zero reward in its terminal state until the end. The target policy is a policy trained for 200
iterations using REINFORCE, in which each iteration samples for 100 trajectories with truncation
after 150 time steps. The target policy value vπ is estimated to be 65.2117, which we obtain by
Monte Carlo rollout from the initial state distribution.

For a given behavior policy, to obtain dataset Dh at time step h, we sample for K independent
episodes under the behavior policy and only take the (s, a, s′, r) tuple from the h-th transition in
each episode. This is an excessive way to guarantee the independence among these K samples;
in practice, we could directly sample from a sampling distribution. We sample for Dh for each
h = 1, · · · , 100.

We use the render function in OpenAI gym for the visual display of CartPole. We downsample
images to the desired resolution via cubic interpolation. A high-resolution image (see Figure 3) is
represented as a 3× 40× 150 RGB array; a low-resolution image (see Figure 4) is represented as a
3× 20× 75 RGB array.

For the function approximator in FQE, we use a neural network that comprises 3 convolutional layers
each with output channel size 16, 32 and 32 and a final linear layer. These layers are interleaved with
ReLU activation and batch norm layers for weight normalization. For high resolution input, we use
kernel size 5 and stride 2; for low resolution input, we use kernel size 3 and stride 1. For experiments
with high resolution, in each step of FQE, we solve the regression by training the network via
stochastic gradient descent with batch size 256 for 20 epochs. In high-resolution experiments, we
use 0.01 learning rate; in low-resolution experiments, we use 0.001 learning rate. We compute the
average and standard deviation of FQE’s result over 5 random seeds.
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