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ABSTRACT

We consider the off-policy evaluation problem of reinforcement learning using
deep convolutional neural networks. We analyze the deep fitted Q-evaluation
method for estimating the expected cumulative reward of a target policy, when
the data are generated from an unknown behavior policy. We show that, by choos-
ing network size appropriately, one can leverage any low-dimensional manifold
structure in the Markov decision process and obtain a sample-efficient estimator
without suffering from the curse of high data ambient dimensionality. Specifically,
we establish a sharp error bound for fitted Q-evaluation, which depends on the in-
trinsic dimension of the state-action space, the smoothness of Bellman operator,
and a function class-restricted y2-divergence. It is noteworthy that the restricted
x2-divergence measures the behavior and target policies’ mismatch in the func-
tion space, which can be small even if the two policies are not close to each other
in their tabular forms. We also develop a novel approximation result for con-
volutional neural networks in Q-function estimation. Numerical experiments are
provided to support our theoretical analysis.

1 INTRODUCTION

Off-policy Reinforcement Learning (RL) [38, 40] is an important area in decision-making applica-
tions, when the data cannot be acquired with arbitrary policies. For example, in clinical decision-
making problems, experimenting new treatment policies on patients is risky and may raise ethical
concerns. Therefore, we are only allowed to generate data using certain policies (or sampling distri-
butions), which have been approved by medical professionals. These so-called “behavior policies”
are unknown but could impact our problem of interest, resulting in distribution shift and insufficient
data coverage of the problem space. In general, the goal is to design algorithms that need as little
data as possible to attain desired accuracy.

A crucial problem in off-policy RL is policy evaluation. The goal of Off-Policy Evaluation (OPE) is
to estimate the value of a new target policy based on experience data generated by existing behavior
policies. Due to the mismatch between behavior and target policies, the off-policy setting is entirely
different from the on-policy one, in which policy value can be easily estimated via Monte Carlo.

A popular algorithm to solve OPE is the fitted Q-evaluation method (FQE), as an off-policy variant
of the fitted Q-iteration [28, 15, 75]. FQE iteratively estimates Q-functions by supervised regression
using various function approximation methods, e.g., linear function approximation, and has achieved
great empirical success [65, 20, 21], especially in large-scale Markov decision problems. Comple-
mentary to the empirical studies, several works theoretically justify the success of FQE. Under linear
function approximation, [31] show that FQE is asymptotically efficient, and [15] further provide a
minimax optimal non-asymptotic bound, and [47] provide a variance-aware characterization of the
distribution shift via a weighted variant of FQE. [75] analyze FQE with realizable, general differen-
tiable function approximation. [37, 64] tackle OPE for even more general function approximation,
but they require stronger assumptions such as full data coverage. [16] focus on on-policy estimation
and study a kernel least square temporal difference estimator.

Recently, deploying neural networks in FQE has achieved great empirical success, which is
largely due to networks’ superior flexibility of modeling in high-dimensional complex environments
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[65, 20, 21]. Nonetheless, the theory of FQE using deep neural networks has not been fully under-
stood. While there are existing results on FQE with various function approximators [28, 15, 75],
many of them are not immediately applicable to neural network approximation. [18] focus on the
online policy learning problem and studies DQN with feed-forward ReLU network; a concurrent
work [73] studies offline policy learning with realizable, general differentiable function approxima-
tion. Notably, a recent study [51] provide an analysis of the estimation error of nonparametric FQE
using feed-forward ReLU network, yet this error bound grows quickly when data dimension is high.
Moreover, their result requires full data coverage, i.e., every state-action pair has to eventually be
visited in the experience data. Precisely, besides universal function approximation, there are other
properties that contribute to the success of neural networks in supervised learning, for example,
its ability to adapt to the intrinsic low-dimensional structure of data. While these properties
are actively studied in the deep supervised learning literature, they have not been reflected in RL
theory. Hence, it is of interest to examine whether these properties still hold in a problem with
sequential nature under standard assumptions and how neural networks can take advantage of such
low-dimensional structures in OPE.

Main results. This paper establishes sample complexity bounds of deep FQE using convolutional
neural networks (CNNs). Different from existing results, our theory exploits the intrinsic geomet-
ric structures in the state-action space. This is motivated by the fact that in many practical high-
dimensional applications, especially image-based ones [59, 11, 76], the data are actually governed
by a much smaller number of intrinsic free parameters [2, 55, 32]. See an example in Figure 1.

Figure 1: An example of state-action space with low-dimensional structures. The states of OpenAl

Gym Bipedal Walker can be visually displayed in high resolution (e.g., 200 x 300), while they are
internally represented by a 24-tuple [29].

Consequently, we model the state-action space as a d-dimensional Riemannian manifold embedded
in RP with d < D. Under some standard regularity conditions, we show CNNs can efficiently
approximate Q-functions and allow for fast-rate policy value estimation—free of the curse of am-
bient dimensionality D. Moreover, our results do not need strong data coverage assumptions. In
particular, we develop a function class-restricted y-divergence to quantify the mismatch between
the visitation distributions induced by behavior and target policies. The function class can be viewed
as a smoothing factor of the distribution mismatch, since the function class may be insensitive to cer-
tain differences in the two distributions. Our approximation theory and mismatch characterization
significantly sharpen the dimension dependence of deep FQE. In detail, our theoretical results are
summarized as follows:

(I) Given a target policy 7, we measure the distribution shift between the experience data distribution
{g**2} L and the visitation distribution of target policy {qF }_, by

H
1
_ 2 dat
K= EZ\/XQ(qﬁ,qha M) +1, (D

h=1

where XQQ(q,T{, qgata) is the restricted x2-divergence between q;, and qgata defined as
2
data qu [f]

xo(ah, ap*™) = sup —1

reQ Eqauea[f?]

with Q being a function space relevant to our algorithm.
(II) We prove that the value estimation error of a target policy 7 is
Elv™ — 77| = O (kH?*K %74 )

where K is the effective sample size of experience data sampled by the behavior policy (more details
in Section 3), H is the length of the horizon, « is the smoothness parameter of the Bellman operator,
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k is defined in (1), and o (+) hides some constant depending on state-action space and a polynomial
factor in D.

We compare our results with several related works in Table 1. Both [15] and [75] consider paramet-
ric function approximation to the Q-function: [15] study linear function approximation, and [75] as-
sume third-order differentibility, which is not applicable to neural networks with non-smooth activa-
tion. On the other hand, [51] use feed-forward neural networks with ReLLU activation to parametrize
nonparametric Q-functions, but they do not take any low-dimensional structures of the state-action
space into consideration. Therefore, their result suffer from the curse of dimension D. Moreover,
they characterize the distribution shift with the absolute density ratio between the experience data
distribution and the visitation distribution of target policy, which is strictly larger than our character-
ization in restricted y2-divergences. As can be seen from our comparison, our result improves over
existing results. Moreover, since CNNs have been widely used in deep RL applications and also
retain state-of-the-art performance [48, 22], our consideration of CNNGs is a further step of bridging
practice and theory.

Table 1: k1 and k9 are measures of distribution shift with respect to their respective regularity spaces;
D.g denotes the effective dimension of the function approximator in [75], which usually suffers
from the curse of dimensionality; x3 is the absolute density ratio between the data distribution and
target policy’s visitation distribution; x is defined in (1) and is no larger than and often substantially
smaller than k3. See in-depth discussions in Section 4.

Work Regularity Approximation Estimation Error
[15] Linear None 1) (H2\/,‘€1D/K)
Third-time N
[75] | differentiable None o (H% /k2 Dot /K)
Feed-Forward _
[51] Besov ReLU Net O (H?~o/(2042D) 5y |{ —o/(2042D))
This work Besov CNN O (H2k K~/ Catd)

Additional Related Work Besides FQE, there are other types of methods in the OPE literature.
One popular type is using importance sampling to reweigh samples by the distribution shift ratio
[56], but importance sampling suffers from large variance, which is exponential in the length of
the horizon in the worst case. To address this issue, some variants with reduced variance such as
marginal importance sampling (MIS) [68] and doubly robust estimation [35, 61] have been devel-
oped. For the tabular setting with complete data coverage, [72] show that MIS is an asymptotically
efficient OPE estimator, which matches the Cramer-Rao lower bound in [35]. Moreover, a line of
work [49, 50, 39, 74] focuses on policy evaluation without function approximation using MIS and
linear programming.

Notation For a scalar @ > 0, [a] denotes the ceiling function, which gives the smallest integer
which is no less than a; |a] denotes the floor function, which gives the largest integer which is no
larger than a. For any scalars a and b, a \V b denotes max(a, b) and a A b denotes min(a, b). For
a vector or a matrix, [|-||, denotes the number of nonzero entries and |[|-||  denotes the maximum

magnitude of entries. Given a function f : RP — R and a multi-index s = [s1,--- ,sp]", 9°f
s . .
denotes m. | f]| » denote the L” norm of function f. We adopt the convention 0/0 = 0.
1 Ytp

Given distributions p and g, if p is absolutely continuous with respect to ¢, the Pearson y2-divergence
is defined as x%(p, q) == Eq[(% —1)2,

2 PRELIMINARIES
2.1 TIME-INHOMOGENEOUS MARKOV DECISION PROCESS

We consider a finite-horizon time-inhomogeneous Markov Decision Process (MDP)
(S, AP ML {Ry}L | H,€), where ¢ is the initial state distribution. At time step
h = 1,--- H, from a state s in the state space S, we may choose action a from the action
space A and transition to a random next state s € S according to the transition probability
distribution s’ ~ Pp,(- | s,a). Then, the system generates a random scalar reward r ~ Ry, (s, a) with
r € [0, 1]. We denote the mean of Ry, (s, a) by (s, a).
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A policy m = {m,}}L | specifies a set of H distributions 7 (- | s) for choosing actions at every
state s € S and time step h. Given a policy 7, the state-action value function, also known as the
QO-function, for h = 1,2,--- | H, is defined as

H
Qr(s,a) = E”[ Z The(Shyan) | sp = S,ap = a}
h'=h
where apr ~ mp (- | spr) and spr41 ~ Pu(- | snr, apns). Moreover, let g7 denote the state-action
visitation distribution of m at step h, i.e., ¢ (s,a) :=P7 [sp = s,ap, = a | 51 ~ &].

For notational ease, we denote X' := S x A. Let P : RY — RY denote the conditional transition
operator at step h:

Pl f(s,a) :=E[f(s',d") ]| s,a], Vf: X =R,
where a’ ~ (- | 8') and s’ ~ Pp(- | s,a).
Denote the Bellman operator at time h under policy 7 as 7
T f(s,a) :==ru(s,a) + P} f(s,a), Vf: X = R.

The Bellman equation may be written as QF = 7,7 Q7 ;.

2.2 RIEMANNIAN MANIFOLD

Let M be a d-dimensional Riemannian manifold isometrically embedded in RP. A chart for M is
a pair (U, ¢) such that U C M is open and ¢ : U — R? is a homeomorphism, i.e., ¢ is a bijection,
its inverse and itself are continuous. Two charts (U, ¢) and (V) are called C¥ compatible if and
only if
pop™Lip(UNV) = oUNV) and Yog™t:p(UNV)—=p(UNV)

are both C* functions (k-th order continuously differentiable). A C* atlas of M is a collection of C*
compatible charts {(U;, ¢;)} such that | J, U; = M. An atlas of M contains an open cover of M
and mappings from each open cover to R.

Definition 1 (Smooth manifold). A manifold M is smooth if it has a C* atlas.

We introduce the reach [19, 53] of a manifold to characterize the curvature of M.

Definition 2 (Reach, Definition 2.1 in [1]). The medial axis of M is defined as 7 (M), which is the
closure of

T(M) ={z cR” | Tz, # 25 € M, suchthat ||z — z1|jo = ||z — 222 = ylél/a lz —yll5}-

The reach w of M is the minimum distance between M and T (M), i.e.

w= _ inf |z — yll2.
z€T (M),yeM

Roughly speaking, reach measures how fast a manifold “bends”. A manifold with a large reach
“bends” relatively slowly. On the contrary, a small w signifies more complicated local geometric
structures, which are possibly hard to fully capture.

2.3 BESOV FUNCTIONS ON SMOOTH MANIFOLD

Through the concept of atlas, we are able to define Besov space on a smooth manifold.
Definition 3 (Modulus of Smoothness [12]). Let 2 C R”. For a function f : R — R be in LP ()
for p > 0, the r-th modulus of smoothness of f is defined by

wrp(fit) = sup [|AL(f)||z», where
[[hll2<t

) S O ()i (4 gh) i w e Qutrheq,
An(f)(z) = {0 Y otherwise.
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Definition 4 (Besov functions on M). Let M be a compact manifold of dimension d with a finite
atlas {(U;, ¢;)}. A function f : M + R belongs to the Besov space By (M), if on any chart U;,
it holds

1By iy = Nl oy + 1y ) < 00
where
171155,y = {(fooo(t_awlajﬂ,p(ﬁ o ita <
paai SUPy~ ot W o) 41,p(f> 1) if ¢ = oo.
Further, the Besov norm of f is defined as Hf||8&q(M) =3, ||fHB;q(Ui). We occasionally omit M
in the Besov norm when it is clear from the context.

2.4 CONVOLUTIONAL NEURAL NETWORK

We consider one-sided stride-one convolutional neural networks (CNNs) with rectified linear unit
(ReLU) activation function (ReLU(z) = max(z,0)). Specifically, a CNN we consider consists of a
padding layer, several convolutional blocks, and finally a fully connected output layer.

Given an input vector € RP, the network first applies a padding operator P : RP — RP*C for
some integer C' > 1 such that

Z=Px)=[x 0 - 0] €eRP*C,
Then the matrix Z is passed through M convolutional blocks. We will denote the input matrix to
the m-th block as Z,,, and its output as Z,,,4; (i.e., Z; = 2).

Let us define the convolution operation in

Equation (2). Let W = {W;,;} € RO’ *IxC J-th column

be a filter where C’ is the output channel size, I i
is the filter size and C is the input channel size. g:E
For Z € RP*C the convolution of W with Z, Wz + D
denoted with W * Z, results in Y € RP xC' F!
with -
I C C’
Yieg ; ; Wit Zizi i Figure 2: Convolution of W Z. W;..isal x C

where we set Zpsi_14 = Ofork +i—1> D. matrix for the j-th output channel.

In the m-th convolutional block, let W,,, = {Wf,p, vy W,(,LLM)} and ,, = {B,@, - BS,LL’")} be a
collection of filters and biases of proper sizes. The m-th block maps its input matrix 7, € RP*¢
t0 Zymy1 € RPXC by

Zmi1 = ReLU (W,(,fm) % %ReLU (ng % Ty + B;p) N BfnLM) 2)

with ReLU applied entrywise. For notational simplicity, we denote this series of operations in the
m-th block with a single operator from RP*¢ to RP*€ with Convyy,, g, ,s0 (2) can be abbreviated
as

Zmt1 = Convw,, B, (Zm).

Overall, we denote the mapping from input x to the output of the M -th convolutional block as
G(z) = (Convw,,.B,,) 0 --- o (Convw, B,) o P(z). 3)
Given (3), a CNN applies an additional fully connected layer to GG and outputs
flx) =W G(z) + b,

where W € RP*C and b € R are a weight matrix and a bias, respectively, and ® denotes sum of
entrywise product, i.e. W ® G(z) = 3=, ; W; j[G(2)]; ;. Thus, we define a class of CNNs of the
same architecture as

]:(M,L, J,I,Tl,Tg) =

{f1f(@)=W®Q(z)+ bwith |[W||s V |b] < 72, G(z) in the form of (3) with M blocks.

The number of filters per block is bounded by L; filter size is bounded by I; the number of

channels is bounded by J; max IWO oo VI BD oo < 71} 4)
m,
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Furthermore, 7 (M, L, J, I, 7,72, V) is defined as
f(MaL7J7]7TlvTQaV) = {f € ‘F(MaLa‘LIlevTQ) | HfHLOO S V} (5)

Universal Approximation of Neural Networks There exists rich literature about using neural
networks to approximate functions supported on compact domain in Euclidean space, from early
asymptotic results [34, 23, 10, 33] to later quantitative results [3, 46, 44, 30, 71]. These results suf-
fer from the curse of dimensionality, in that to approximate a function up to certain error, the network
size grows exponentially in the data dimension. Recently, a line of work advances the approxima-
tion theory of neural network to functions supported on domains with intrinsic geometric structures
[8, 57, 60, 58, 7, 42]. They show that neural networks are adaptive to the intrinsic structures in data,
suggesting that to approximate a function up to certain error, it suffices to choose the network size
only depending on the intrinsic dimension, which is often much smaller than the representation di-
mension of the data. In addition to existing results, we prove a novel universal approximation theory
of CNN en route to our RL result.

3 NEURAL FITTED Q-EVALUATION

We consider the off-policy evaluation (OPE) problem of a finite-horizon time-inhomogeneous MDP.
The transition model { P, }L | and reward function { R, }/L | are unknown, and we are only given
the access to an unknown behavior policy 7y to generate experience data from the MDP. Our objec-
tive is to evaluate the value of 7 from a fixed initial distribution £ over horizon H, given by

H
v =E" [Zrh(sh,ah) ) 51~ 5],
h=1

where ap ~ 71'(' ‘ Sh) and Sh+1 ™~ Ph( | Shy ah).

At time-step h, we generate data Dy, := {(Sh.k, Gn.k, ), 4 Th.k) } ey Specifically, {sp .}/, are
1.i.d. samples from some state distribution. For each sy, ;,, we use the unknown behavior policy g to
generate ap,  ~ mo(- | Sp,x). More generally, we may view { (s, ah,7k)}kK:1 as i.i.d. samples from
a sampling distribution ¢;,°. For each (sp_, an k), we can further generate sjb,k ~ Py | Sh.k, Gh k)
and rp, i ~ Ry (s k, an k) independently for each k.

This assumption on data generation is the time-inhomogeneous analog of a standard data assump-
tion in time-homogeneous OPE, which assumes all data are i.i.d. samples from the same sampling
distribution [51, 74, 50, 69]. Moreover, our dataset is similar to one that comprises K independent
episodes generated by the behavior policy, as [41] introduce a subroutine whereby one can process
an episodic dataset and treat it as an i.i.d.-sampled dataset in any downstream algorithm.

To estimate v™, neural FQE estimates ()7 in a backward, recursive fashion. Q7 , our estimate at step

h, is taken as ﬁ” (@Z +1) , whose update rule is based on the Bellman equation:

K 2
Us (QZH) = afgf}éi;l; <f(sh,k,ah,k) —Thk — /AQZH(SZ,;WG)M(G | Sk,k)da> )

where 7A'h” is an intermediate estimate of the Bellman operator 7,”, @7{ 1 18 an intermediate estimate
of @}, and F denotes a class of convolutional neural networks as specified in (5) with proper
hyperparameters. The pseudocode for our algorithm is presented in Algorithm 1.

4 MAIN RESULTS

In this section, we prove an upper bound on the estimation error of v™ by Algorithm 1. First, let us
state two assumptions on our MDP of interest.

Assumption 1 (Low-dimensional state-action space). The state-action space X is a d-dimensional
compact Riemannian manifold isometrically embedded in RP. There exists B > 0 such that
|||, < B forany x € X. The reach of X is w > 0.

Assumption 1 characterizes the low-dimensional structures of the MDP represented in high dimen-
sions. We say that the “intrinsic dimension” of X is d < D. Such a setting, as mentioned in Section
1, is common in practice, because the representation or feature people have access to are often ex-
cessive compared to the latent structures of the problem. For instance, images of a dynamical system
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Algorithm 1 Neural Fitted Q-Evaluation (Neural-FQE)
Input: Initial distribution &, target policy =, horizon H, effective sample size K, function class

F.
Init: Q% ,, :==0
forh=H,H—1,---,1do
Sample Dh = {(Shk, Qp ks S;L,k’ Th,k)}k{(zl'
Update QF « 77 (Q;; +1) by (6).

end for R
Output: 7™ := [, QT (s, a){(s)m(a | s)dsda.

are widely believed to admit such low-dimensional latent structures [26, 32, 55]. People often take
the visual display of a computer game as its state representations, which are in pixels, but computer
only keeps a small number of parameters internally to represent the state of the game.

Assumption 2 (Bellman completeness). Under target policy w, for any time step h and any f € F,
we have T, f € By (X), where 0 < p,q < oo and d/p +1 < a < co. Moreover, there exists a

constant co > 0 that satisfies ||T," f|| 5o (x) < co for any time step h.
p.q

Bellman completeness assumption is about the closure of a function class under the Bellman opera-
tor. It has been widely adopted in RL literature [70, 14, 6, 69]. Some classic MDP settings implicitly
possess this property, e.g., linear MDP [36]. Note that [66] show the necessity of such an assump-
tion on the Bellman operator to regulate the Bellman residual: without such assumption, even in
the simple setting of linear function approximation with realizability, to solve OPE up to a constant
error, the lower bound on sample complexity is exponential in horizon.

The Besov family contains a large class of smooth functions, and has been widely adopted in existing
nonparametric statistics literature for various problems [24, 62, 63]. For MDP, Assumption 2 holds
for most common smooth dynamics, as long as certain regularity conditions on smoothness are
satisfied. For instance, [51] show a simple yet sufficient condition, under which for any time step
h and s’ € S, the reward function (s, a) and the transition kernel Py (s'|s, a) are functions in
By - This further implies QF,--- ,QF € By ,(X). In addition, Assumption 2 may be satisfied
even when the transition kernel is not smooth, examples of which are provided in [18].

Note that while most existing work on function approximation assumes Bellman completeness with
respect to the function approximator, which in our work is deep convolutional neural networks with
ReLU activation, we are only concerned with the closure of the Besov class By (X)) under the
Bellman operator. This assumption is weaker than the previous work [75], which considers smooth
function approximation (excluding ReLU networks).

Our main result is summarized in Theorem 2, which relies on using CNNs to accurately represent
T, f for any f € F. The following theorem provides a novel quantatitive analysis on how to
properly choose CNN classes for approximating 7," f depending on the regularity of 7.

Theorem 1. Suppose Assumption 1 and 2 hold. For any positive integers I € [2, D] and M , J >0,
we let

L=0 (1og(z\7f) +D+ logD) , J=0(DJ), m = (8ID)"'M~t = 0(1),
log 7o = O (log2 MJ + Dlog Mf) , M = O(M), )
Then CNN class F (M, L, J, I, 71, 12) in(4) can approximate T, f forany f € F(M,L,J,I,1,Ts)

~

andh=1,--- H,ie., thereexists f € F(M,L,J, I,71,73) with
1F = T flloso < (MJ)~%. )
T fll 5o (x) B, w and surface area of X.

O(+) hides a constant depending on d, «, a P @

The proof is provided in Appendix B. As can be seen, the rate of approximation is free of the curse

of ambient dimension D. We remark that Theorem 1 allows an arbitrary rescaling of M and J, as
only their product is relevant to the approximation error. This is more flexible than conventional
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approximation theories [7, 54, 51], where the network width and depth have to maintain a fixed ratio

in terms of the desired approximation error. In Theorem 2, we choose a configuration of M and J
that leads to the optimal statistical rate via a bias-variance tradeoff argument.

Theorem 2. Suppose Assumption 1 and 2 hold. By choosing
L=0(ogK + D +1logD), J=0(D),  =0(1),
log, = O(log? K + Dlog K), M = O(K%7), V. = H 9)
with any integer I € [2, D] in Algorithm 1, in which O(-) hides factors depending on d, o, %, D
q, co, B, w, and the surface area of X, we have
E o™ — 97| < CH2xK ™77 log? K, (10)

. . . . . . _3a
in which the expectation is taken over the data, and C' is a constant depending on DZ+d, d, «,

ﬁ, P, q, co, B, w and the surface area of X. The distributional mismatch is captured by

H
1 iy
k= Xl ar) +1
h=1

in which qf and q;° are the visitation distributions of m and my at step h respectively and Q is
the Minkowski sum between the CNN function class in (5) and the Besov function class, i.e., Q =
{f+g | f € B[(iq(‘)()ag € ‘F(MaLa ijleaTQaV)}'

We next compare our Theorem 2 with existing work:

(I) Tight characterization of distributional mismatch. The term « depicts the distributional
mismatch between the target policy’s visitation distribution and data coverage via restricted y2-
divergence. Note that the restricted y2-divergence is always no larger than the commonly-used
absolute density ratio [51, 6, 67] and can often be substantially smaller. This is because probability
measures ¢ and ¢;° might differ a lot over some small regions in the sample space, while their
integrations of a smooth function in Q over the entire sample space could be close to each other.
The absolute density ratio measures the former and restricted x2-divergence measures the latter.

More strikingly, when considering function approximation (e.g. state-action space is not countably
finite), the restricted x?-divergence can still remain small even when absolute density ratio becomes
unbounded. For example, we consider two isotropic multivariate Gaussian distributions with dif-
ferent means. [52] has shown that Pearson x?2-divergence, which is always larger than or equal to
restricted x2-divergence, has a finite expression:

2
X2 (N (1, 1), N (o, T)) = ellmmrallz — 1,
whereas one may find the absolute density ratio unbounded: for any p1 # puo,
‘ AN, 1)
dN (2, 1) || o

Such a stark comparison can also be observed in other common distributions that have support with
infinite cardinality, e.g. Poisson distribution.

1 2 1 2
—supexp (o7 (e = p2) — 5 Il + 5 al) = .

x

Furthermore, when the state-action space exhibits small intrinsic dimensions, i.e., d < D, the re-
stricted x2-divergence adapts to such low-dimensional structure and characterizes the distributional
mismatch with respect to Q, which is a small function class depending on the intrinsic dimension. In
contrast, the absolute density ratio in [51] does not take advantage of the low-dimensional structure.

In summary, though the absolute density ratio is a tight in the tabular setting and some other special
classes of MDPs, in the general function approximation setting, it could easily become intractably
vacuous, and restricted y2-divergence is tighter characterization of distributional mismatch.

(II) Adaptation to intrinsic dimension. Note that our estimation error is dominated by the intrinsic
dimension d, rather than the representation dimension D. Therefore, it is significantly smaller than
the error of methods oblivious to the problem’s intrinsic dimension such as [51].

Such a fast convergence owes to the adaptability of neural networks to the manifold structure in
the state-action space. With properly chosen width and depth, the neural network automatically
captures local geometries on the manifold through the empirical risk minimization in Algorithm 1
for approximating Q-functions.
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Sample Complexity Comparison. Given a pre-specified estimation error of policy value €, our
algorithm requires a sample complexity of

6(H4+2d/aﬁ;2+d/a6—2—d/a).
We next compare our result with [51], which among existing work is the most similar to ours.
Specifically, we reprove our result with feed-forward ReLU network so as to be in the same setting
as [51] (details in Theorem 3 of Appendix E).

When the experience data are allowed to be reused, they show a sample complexity of
6(H2+2D/aﬁ2+2D/067272D/a)
3 .

. . . _D—d 1 D—d/2
As can be seen, our result is more efficient than theirs as long as H 1= < ¢! > . Sucha

requirement of the horizon can be satisfied in real applications, as d < D and « is moderate. Note

that even with no consideration for low-dimensional structures, i.e., d = D, our result is still more

efficient, as k is often substantially smaller than k3. Moreover, when the experience data are used

just for one pass, our method is instantly more efficient, as their sample complexity becomes
O(H4+2D/aK§+D/OL€—2—D/a).

5 EXPERIMENTS

We present numerical experiments for evaluating FQE with CNN function approximation on the
classic CartPole environment [4]. The CartPole problem has a 4-dimensional continuous intrinsic
state space. We consider a finite-horizon MDP with horizon H = 100 in this environment. In our
experiments, we solve the OPE problem with FQE (Algorithm 1). We take the visual display of
the environment as states. These images serve as a high-dimensional representation of CartPole’s
original 4-dimensional continuous state space. In our algorithm, we use a deep CNN to approximate
the Q-functions and solve the regression with SGD (see Appendix F.1 for details).

Table 2: Value estimation ¥™ under high resolution and low resolution. The true v™ ~ 65.2 is
computed via Monte Carlo rollout.

Sample size | (A) No distribution shift (B) Off-policy
K High res Low res High res Low res
5000 64.6£20 | 63.5+£1.9 | 60.4+2.8 | 60.0+3.3
10000 66.0£1.3 | 66.5£1.7 | 67.0+1.8 | 68.0+2.3
20000 65.1£1.0 | 65.1£1.2 | 65.0+£1.6 | 65.1 £2.0

We consider two settings with different visual resolutions (see Appendix F.1 for details): one in
high resolution (dimension 3 x 40 x 150) and the other in low resolution (dimension 3 x 20 x 75).
We use a policy trained for 200 iterations with REINFORCE as the target policy. We conduct this
experiment in two cases: (A) data are generated from the target policy itself; (B) data are generated
from a mixture policy of 0.8 target policy and 0.2 uniform distribution. (A) aims to verify the
performance’s dependence on data intrinsic dimension without the influence from distribution shift.

We observe that the performance of FQE on high-resolution and low-resolution data is similar, in
both the off-policy case and the easier case with no distribution shift. It shows that the estimation
error of FQE takes little influence from the representation dimension of the data but rather from the
intrinsic structure of the environment, which is the same regardless of resolution. We also observe
that the estimation becomes increasingly accurate as sample size K increases. These empirical
results confirm our upper bound in Theorem 2, which is only dominated by data intrinsic dimension.

6 CONCLUSION

This paper studies nonparametric off-policy evaluation in MDPs. We use CNNs to approximate Q-
functions. Our theory proves that when state-action space exhibits low-dimensional structures, the
finite-sample estimation error of FQE converges depending on the intrinsic dimension. In the esti-
mation error, the distribution mismatch between the data distribution and target policy’s visitation
distribution is quantified by a restricted y2-divergence term, which is oftentimes much smaller than
the absolute density ratio. Our theory also reassures practitioners of the benignity of overrepresen-
tation in deep RL and provides insights into how to choose network hyperparameters properly in
presence of low intrinsic dimension. We support our theory with experiments. For future directions,
it would be of interest to adapt this low-dimensional analysis to time-homogeneous MDPs. It is
nontrivial to preserve the error rate with sample reuse in the presence of temporal dependency.
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A PROOF OF THEOREM 2

In this section, we provide a proof for the upper bound on the estimation error in Theorem 2. We
can tackle the sequential dependencies by recursively conditioning on the previous-step estimation
and the fact that the error in the previous steps accumulates linearly. The estimation error can be
decomposed into a sum of statistical error and approximation error. A tradeoff exists about the
network size: while a larger network reduces the approximation error, it leads to higher variance
in the statistical error. Consequently, we choose the network size and architecture appropriately to
balance the two types of error, which in turn minimizes the final estimation error.

Proof of Theorem 2. The goal is to bound

" o7 =8| [ (Qf - Q) (o) dafs.0)

<& |[ [or - a1l o).

To get an expression for that, we first expand it recursively. To illustrate the recursive relation, we
examine the quantity at step h:
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where C' denotes a (varying) constant depending on D2++4, d, a, ﬁ, P, q, co, B, w and the
surface area of X.

In (a), note 7," A;{H € By ,(X) by Assumption 2 and —ﬁ” (AZH) € F by our algorithm, so

7}1”@2 11— ﬁ” (AZ +1) € Q. Then we employ a change-of-measure argument and obtain this
inequality by invoking the following lemma.

Lemma 1. Given a function class Q that contains functions mapping from X to R and two proba-
bility distributions ¢; and g2 supported on X, for any g € Q,

By [902)] < /Baan[02(@))(1+ X (01, 02)).
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Proof of Lemma 1.

Euva [9(@)] = \/ Eang, [g%xnm

< \/Ewqu[g ( )] fEIQ) EZNqQ[fQ(x)]

= \Eana [2(@)](1 + X (01,02),

2
where the last step is by the definition of ng (q1,q2) = supseg % — 1. O
a2

In (b), we use Jensen’s inequality and the fact that square root is concave.

To obtain (c), we invoke Lemma 10, which provides an upper bound on the error of nonparametric
regression at each step of the FQE algorithm.
Specifically, we will invoke Lemma 10 when conditioning on Dj 41, -+ , Dy, i.e. the data from

time step h + 1 to time step H. Note that after conditioning, 7,7 Q7 ; becomes measurable and
deterministic with respectto Dy, 1, - - , Dgr. Also, D11, - - - , Dy are independent from Dy, which
we use in the regression at step h.

To justify our use of this theorem, we need to cast our problem into a regression problem described
in the theorem. Since {(sp k, an,k) He , are i.i.d. from ¢;°, we can view them as the samples z;’s in

the lemma. We can view 7,7 Q7 1 which is measurable under our conditioning, as fj in the lemma.
Furthermore, we let

G = g + /A OF 11 (s @)@ | 8 ) da — T QE 41 (5150 an ).

In order to invoke Lemma 10 under the conditioning on Dy, 1, - - , Dy, we need to verify whether
three conditions are satisfied (conditioning on Dy, 1, -+, Dg):

1. Sample {(sp k, an i)}, areii.d;
2. Sample {(sp k, an k), and noise {Cp x }1_, are uncorrelated;

3. Noise {¢ h, k}szl are independent, zero-mean, subgaussian random variables.

In our setting, {(spk,an k) e, are i.i.d. from ¢J°. Due to the time-inhomogeneous setting, they

are independent from Dy, 41, -+ , D, 50 {(Sh.k, ank) i, are still ii.d. under our conditioning.
Thus, Condition 1 is clearly satisfied.

We may observe that under our conditioning, the transition from (sp k, an,x) to sj,  is the only
source of randomness in (j, , besides (sy, i, an 1) itself. The distribution of (sp,_ k., an k, s;hk) is actu-
ally the product distribution between P, (-|sp k., an,x) and ¢;°, so a function of 3;17 &> generated from
the transition distribution Py, (-|sp k, @n k), is uncorrelated with (sp i, an k). Thus, (sp i, an,k)’s are
uncorrelated with (3, ;s under our conditioning, and Condition 2 is satisfied.

Condition 3 can also be easily verified. Under our conditioning, the randomness in (j, ;, only comes
from (sp k, Gn k. sﬁl_’k, T,k ), Which are independent from (s, 7, ap k-, sﬁl’k/,rhk/) for any k' # k,
so (p 1 s are independent from each other. As for the mean of ¢}, j,

E[¢hk | Dhtt, -+ » Dl
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=0+0=0.

On the other hand,

Thus, Cp. is a bounded random variable with (1 € [-2H,2H] almost surely, so its variance is
bounded by 4H?2. Its boundedness also implies it is a subgaussian random variable. Thus, Condition
3 is also satisfied.

’@Z 41 H < H almost surely, because it is a function in our CNN class F.
oo

Hence, Lemma 10 proves, for step / in our algorithm,
~ - 2
E [ | (700 -7 (@7)) (5,047 5,0) | Disa, -+ D
X
< C'(H? + 4H?) K~ 7% log’ K,
where C’ depends on D?Sid, d, o, %, P, q, co, B, w and the surface area of X.

Note that this upper bound holds for any @Z 4108 Dy, -+, Dy. The sole purpose of our condi-

tioning is that we could view @;{ 1 as ameasurable or deterministic function under the conditioning
and then apply Lemma 10. Therefore,

- PPN 2
E {E [/ ( w1 —Tir (QZ+1)) (5,0) dg™ (s, a) | Dhsr, - ,DH”
X
< C'(H? + 4H?) K~ 2% log® K.
Finally, we catry out the recursion from time step 1 to time step H, and the final result is

H
o 5 1
]E|UW_AW|§CH2K‘Mlog"/2K<H E XQQ(‘I;{"IZU)‘Fl)'
h=1

B PROOF OF THEOREM 1

For simplicity, let us denote fy := 7, f in the theorem statement. Note that fo € B q(X ). More-
over, let us define a class of single-block CNNss in the form of

f(z) =W - Convyy g(x)
as
FSONN(L J. 1,71, 75) ={f | f(z) in the form of (3) with L layers. The number of filters per block
is bounded by L; filter size is bounded by /; the number of channels
is bounded by .J; max WPl VBP0 < 71, [W]loo < T2}
(11

We will refer to CNNss in this form as “single-block CNNs” and use them as building blocks of our
final CNN approximation for the ground truth Besov function.

B.1 PROOF OVERVIEW OF THEOREM 1

Theorem 1 serves as a building block for Theorem 2, which establishes the relation between network
architecture and approximation error. For simplicity, denote co := || fol|go (- Theorem 1is proven
pP,q

in the following steps:

STEP 1: DECOMPOSE f AS SUM OF LOCALLY SUPPORTED FUNCTIONS OVER MANIFOLD

Since manifold X" is assumed compact (Assumption 1), we can cover it with a finite set of D-
dimensional open Euclidean balls { Bs(c;) iC:Xl, where c; denotes the center of the i-th ball and 5 is
its radius. We choose 5 < w/2, and define U; = Bg(c;) N X. Note that each Uj is diffeomorphic
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to an open subset of R? (Lemma 5.4 in Niyogi et al. [53]); moreover, {UZ}IC:"*1 forms an open cover

for X'. There exists a carefully designed open cover with cardinality Cy < [A/gf) Ty], where A(X)
denotes the surface area of X’ and T;; denotes the thickness of U,’s, i.e., the average number of U;’s
that contain a given point on X. Ty is O(dlog d) (Conway et al. [9]).

Moreover, for each U;, we can define a linear transformation
T
QZSL(.Z‘) = CLLV; (.T — Ci) + bi,

where a; € R is the scaling factor and b; € R? is the translation vector, both of which are chosen to
ensure ¢(U;) C [0,1]¢, and the columns of V; € RP>*4 form an orthonormal basis for the tangent
space Te, (X). Overall, the atlas {(¢;, U;)}<% transforms each local neighborhood on the manifold
to a d-dimensional cube.

Thus, we can decompose fj using this atlas as

Cx
fo=Y_fi with f;=fpi, (12)

i=1

because there exists such a C'* partition of unity {p; lC:Xl with supp(¢;) C U; (Proposition 1 in Liu
et al. [42]). Since each f; is only supported on U;, we can further write

Cx
fo=> (fiog; ") odi x 1y, with fi= fpi, (13)
i=1
where 1y, is the indicator for membership in U;.

Lastly, we extend f; o ¢; "

;' to entire [0,1]7 with 0, which is a function in BZ ([0,1]%) with
B2 ,([0,1]*) Besov norm at most C'cy (Lemma 4 in Liu et al. [42]), where C' is a constant de-
pending on «, p, ¢ and d. This extended function is to be approximated with cardinal B-splines in

the next step.

STEP 2: APPROXIMATE EACH LOCAL FUNCTION WITH CARDINAL B-SPLINES

With most things connected with the intrinsic dimension d in the last step, we proceed an approxi-
mation of fy on the low-dimensional manifold. With o« > d/p + 1 assumed in Assumption 2, we
can invoke a classic result of using cardinal B-splines to approximate Besov functions (Lemma 5),
by setting 7 = 400 and m = [a] + 1 in the lemma. It states that there exists a weighted sum of

cardinal B-splines f; in the form

N
=Y Figm~fioor! with fij=clghs (14)
j=1
such that
’ Fi—fio ¢;1HL < CegN—9/4, (15)

In (14), c,(f?] € R is coefficient and ﬁfij’m : [0, 1]d — R denotes a cardinal B-spline with index
k,m € N*t,j € R? Fkis a scaling factor, j is a shifting vector, m is the degree of the B-spline.

By (13) and (14), we now have a sum of cardinal B-splines

" Cx " Cx N "
F=) fiogixly, =Y Y fijod x 1y, (16)
i=1 i=1 j=1

which can approximate our target Besov function f with error

|7 5| . <coxan-er an
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STEP 3: APPROXIMATE EACH CARDINAL B-SPLINE WITH A COMPOSITION OF CNNS

Each summand in (16) is a composition of functions, each of which we can implement with a CNN.
Specifically, we do so with a special class of CNNs defined in (11), which we refer to as “single-
block CNNs”.

The multiplication operation x can be approximated by a single-block CNN X with at most 7 error
in the L*° sense (Proposition 1). X needs O(log %) layers and 6 channels. All weight parameters

are bounded by (c3 V 1).

We consider each fZ o ¢; together, which we can approximate with a sum of N CNNs fSCNN gbz
up to J error, namely,

N
Z AZSJCNN ¢i_1 <4
= .

In particular, we can use a single-block CNN fSCNN to approximate the B-spline f; ; up to §/N

error. Moreover, since ¢; is linear, it can be expressed with a single-layer perceptron ¢;. The
architecture and size of J%CNN and ¢; are characterized in Proposition 2 as functions of §.

1y, is an indicator for membership in U;, so we need 1y, (z) = 1 if d2(z) = ||z — ¢;|3 < 52
and 1y, (z) = 0 otherwise. By this definition, we can write 1, as a composition of a univariate
indicator 1y g2) and the distance function d?:

Ly,(z) =1 gz odi(z) for z€X. (18)

Given 6 € (0,1) and A > 8DB?, it turns out that Lo g2 and d7 can be approximated with two
single-block CNNs 1A and d respectively (Proposition 3) such that

,dZZ

B < 4B%D# (19)

and
1, ifx € U, d?(z) < B2 — A,
Taod(z) =10, ifz ¢ U;, (20)
some value between 0 and 1, otherwise.

The architecture and size of 1A and d are characterized in Proposition 3 as functions of § and A.

The above three approximations rely on the classic result of using CNN to approximate cardinal
B-splines (Lemma 10 in Liu et al. [42]; Lemma 1 in Suzuki [60]). Putting the above together, we
can develop a composition of single-block CNNs

i = % (PN 0 6 Tao &) @

as an approximation for f, j © ¢; x 1y,. The overall approximation error of fi j can be written
as a sum of the three types of approximation error above. Details are provided in Appendix B.2.

Moreover, by Lemma 6, there exists a single-block CNN fz _; that can express fi g
STEP 4: EXPRESS THE SUM OF CNN COMPOSITIONS WITH A CNN
Finally, we can assemble everything into f

P Cx N ~
fEZZfi,j7 (22)

i=1j=1
which serves as an approximation for fy. By choosing the appropriate network size in Lemma 2,
which the tradeoff between the approximation error of f; ; and its size, we can ensure that

) I 23)
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By Lemma 7, for M. , J > 0, we can write this sum of IV - C'y single-block CNNs as a sum of M
single-block CNNs with the same architecture, whose channel number upper bound .J depends on

j. This allows Theorem 1 to be more flexible with network architecture. By Lemma 4, this sum
of M CNNs can be further expressed as one CNN in the CNN class (5). Finally, N will be chosen

appropriately as a function of network architecture parameters, and the approximation theory of
CNN is proven.

When Theorem 1 is applied in our problem setting, we will take the target function f above to be

Tr @;{ 41 at each time step h, which is the ground truth of the regression at each step of Algorithm
1. For more details about this, please refer to the proof of Theorem 2 in Appendix A.

B.2 PROOF OF THEOREM 1

In the following, we provide the proof details for Theorem 1, which quantifies the tradeoff between
a CNN in the class of 11 and its approximation error for Besov functions on a low-dimensional

manifold. We start from the decomposition of the approximation error of f, which is based on the
decomposition of the approximation error of f; ; in (21), and will proceed to the end of this proof.

Lemma 2. Let ) be the approximation error of the multiplication operator % (+,-) as defined in Step
3 of Appendix B.1 and Proposition 1, § be defined as in Step 3 of Appendix B.1 and Proposition 2,
A and 0 be defined as in Step 3 of Appendix B.1 and Proposition 3. Assume N is chosen according

to Proposition 2. For any i = 1, ...,Cx, we have f— foH < ZZC:XI (Aiq+ Ao + A, 3) with
LQC

Ay = H (N 0 6, a0 d) = FNN 0 i x (Taod})| < Cmaon,
N ~
A= [ (BN 08) | x @ao®) ~ fix Asod)| <6
Jj=1 Loo
+1)
Ai = i X ]l O/? I (ﬂ- — A

for some constant C"' depending on d, o, p, q and some constant c. Furthermore, for any ¢ € (0,1),
setting

5 N—/d - i N—1-a/d _ ﬁ(l _B/W)Nfa/d _ A
c” (3CX)d/O" 36(77 + I)CX ’ 16B2D

3Cx
‘ f- foHLw <N,
The choice in (24) satisfies the condition A > 8 B2D@ in Proposition 3.

(24)

gives rise to

Proof of Lemma 2. As in Proposition 1, A; ; measures the error from X:

zl—ZH (JESNN 0 6, 1n 0d?) — [P§"N 0 6 x (Ta 0 d?)

’ S N77 § CI/(;*d/an,
LOO

for some constant C” depending on d, o, p, q. The last inequality is due to the choice of N in
Proposition 2.

A; 2 measures the error from CNN approximation of Besov functions. As in Proposition 2, 4; o < 6.

A; 3 measures the error from CNN approximation of the chart determination function. The bound
of A; 3 can be derived using the proof of Lemma 4.5 in Chen et al. [7], since f; o gbi_l is a Lipschitz
function and its domain is in [0, 1]%. O

In order to attain the error desired in Lemma 2, we need each network in f;, j with appropriate size.
The network size of the components in f; ; can be analyzed as follows:
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. iiz The chart determination network ii = c/i? o iA is the composition of ch and ﬁA.
By Proposition 3, (ff is a single-block CNN with O(log 3) = O(%log N + D + log D)
layers and width 6.D; 1 A is a single-block CNN with O(log(3%/A)) = O(5 log N) layers
and width 2. In both subnetworks, all parameters are of O(1). By Lemma 6, the chart
determination network 1; is a single-block CNN with O(§log N + D + log D) layers,
width 6D + 2 and all weight parameters are of O(1).

* X: By Proposition 1, the multiplication network is a single-block CNN with O(log %) =

O((1+ %)log N) layers and O(1) width. All weight parameters are bounded by (c§ V 1).
. @ The projection ¢; is a linear one, so it can be expressed with a single-layer perceptron.

By Lemma 8 in Liu et al. [42], this single-layer perceptron can be expressed with a single-
block CNN with 2 + D layers and width d. All parameters are of O(1).

. J?SJCNN : by Proposition 2, each ﬁ]cNN is a single-block CNN with O(log}) =
O(4 log N) layers and [24d(« + 1)(a + 3) + 8d] channels. All weight parameters are

in the order of O (57(1@2)(“52“1{1)) =0 (N(logQ)%(“%dJrad_l)).

Next, we want to show f; ;, a composition of the aforementioned single-block CNNs, can be simply
expressed as a single-block CNN.

By Lemma 6, there exists a single-block CNN g; ; with O(log N + D) layers and [24d(a +
1)(a + 3) + 9d] width realizing fffNN o ¢;. All weight parameters in g; ; are in the order of

a 2d —1 . . = . .
O (N (log2) 3 (5p=g +e1d )). Moreover, recall that the chart determination network 1; is a single-

block CNN with O(log N + D + log D) layers and width 6D + 2, whose weight parameters are
of O(1). By Lemma 14 in Liu et al. [42], one can construct a convolutional block, denoted by g;, s
such that

giyj(x):|:(gi7j($))+ (gi,(z)) - (T;(x))+ (ii(z))_. 05

* * * *
Here g, ; has [24d(o + 1)(a + 3) + 9d] + 6D + 2 channels.

Since the input of X is {%j ] , by Lemma 15 in Liu et al. [42], there exists a CNN ¢, ; which takes

(25) as the input and outputs X (93,5, ﬁl)

Note that g; ; only contains convolutional layers. The composition §; ; © g ;. denoted by gF§NN, is
a CNN and for any = € X, §§JCNN (z) = fi;(x). We have @S?NN € FSONN(L, J, I,7,7) with

L=0(logN +D+logD), J=[48d(a+ 1)(a+ 3) + 18d] + 12D + O(1),
r =0 (NUs2 R ad), (26)

and I can be any integer in [2, D).

Therefore, we have shown that @SSNN

is a single-block CNN that expresses f_m-, as we desired.

Furthermore, recall that fcan be written as a sum of C'xy N such SCNNs. By Lemma 7, for any
M, J satisfying M.J = O(N), there exists a CNN architecture FSCNN(L, J, I, 7, 7) that gives rise
to a set of single-block CNNs {g; }M, € FSCNN([, J I, 7,7) with

M
F=>G 27)
=1

and

L=0(ogN +D+logD), J=0(DJ), 7=0 (Nﬂog?)%(aifﬁqd”)) . 28)

By Lemma 3 below, we slightly adjust the CNN architecture by re-balancing the weight parameter
boundary of the convolutional blocks and that of the final fully connected layer. In particular, we
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rescale all parameters in convolutional layers of g; to be no larger than 1. While this procedure does
not change the approximation power of the CNN, it can make the CNN have a smaller covering
number, which is conducive to a smaller variance.

Lemma 3 (Lemma 16 in Liu et al. [42]). Let v > 1. For any g € FSNN(L, J, I, 7y, 72), there
exists f € FSONN(L, J, I, v~ Y1, ~E1) such that g(x) = f(x).

In this case, we set v = ¢ 1 N log2) 5 (Gt +end” )(SID) M1, where ¢ is a constant such that T <
2d

¢/ Noe D5 (G55 e1d™) Wit this +, we have f; € }‘SCNN(L J,I,71,75) with
L=0(logN + D +logD), J=0(D), 7, = (8ID)"'M~% = O(1),
logo = 0O (logﬂ—l—logQN—i—DlogN) .

Finally, we prove that it suffices to use one CNN to realize the sum of single-block CNNs in (27).

Lemma 4. Let F5°NN(L, J, I, 71, 75) be any CNN architecture from RP to R. Assume the weight
matrix in the fully connected layer of FSNN(L, J, I, 71, 72) has nonzero entries only in the first row.

For any positive integer M, there exists a CNN architecture F(M, L, J, 1,1, 75(1\V 71 1)) such that
for any {fi(x)}M, ¢ FSONN(L, J I,71,75), there exists f € F(M, L, 4+ J, I,7,72(1V 1))

with
M N
= Z fm(2)

m=1

Consequently, by Lemma 4, there exists a CNN that can express our sum of M single-block CNNs
with architecture (M, L, J, I, 71, T2) with

L=0(ogN +D+logD), J=0(DJ), 7 = (8ID)"'M~1 = O(1),
long:O<logM—|—log2N+DlogN>7M:O(M). (29)
and J, , M satisfying
MJ = O(N), (30)
which is a requirement inherited from Lemma 7. This CNN is our final approximation for fy.
Applying this relation N = O(M J) to (29) gives
|7-5||, . <@ (3D
and the network size
L=0 (1og(J\7]) + D +log D) , J=0(DJ), 7 = (8ID)"'M~ = O(1),

log 7> = O (log? MJ + Dlog M.J ) , M = O(M),

B.3 PROOF OF LEMMA 4

Denote the architecture of fm with

fn(x) = Wiy - Convyy,, 5, (@),

where W,,, = { (l)} { } . Furthermore, denote the weight matrix and bias in

the fully connected layer of f with W b and the set ¢ of filters and biases in the m-th block of f with

W and Bm, respectively. The padding layer Pin f pads the input = from R? to RP** with zeros.
Each column denotes a channel.

Let us first show that for each m, there exists some Coan B¢ RDPx*4 _y RD x4 gych that for any
7 € RP*4 with the form

Z=[@s (@- » o, (32)
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where () means applying (- V 0) to every entry of x and (z)_ means applying —(- A 0) to every
entry of x, so all entries in Z are non-negative. We have

7 (fm(2) V0) =2 (fim(2) A O)
0 0 * *
Conv, 5, (2) = ; 7 @
* *
where x’s denotes entries that do not affect this result and may take any different value.

For any m, the first layer of f,, takes input in RP. Thus, the filters in W\ are in RP. Again, we
pad these filters with zeros to get filters in R”*# and construct Wfé ) such that

Wi =ler 0 0 0],
W)z =10 e 0 0],
W)s..=[0 0 e 0],
Wi)ase=[0 0 0 e,
V)i = | VD) (WD) 0 0],
where we use the fact that W,(nl ) & ()4 — anl ) & ()_ = ﬁr} ) & z. The first four output channels at

the end of this first layer is a copy of Z. For the filters in later layers of fm and all biases, we simply
set

W) ..=[e1 0 0 0 0] fori=2,...,L,
(Wy(,é))Q,:, 0 e 0 O 0] forl =2,...,L,
(Wv(é))&:, =[0 0 e 0 0] fori=2,...,L—1,
WD), =[0 0 0 e --- 0 forl=2,...,L—1,
(Wv(pi))4+j,:,: = {0 0 0 0 ( ,(,ZL))“:] forl=2,...,L—1,
(BY)iw=[0 0 0 0 BY),.] forl=1,....,L — 1.

In Convys; 5z, an additional convolutional layer is constructed to realize the fully connected layer

in f,,,. By our assumption, only the first row of W, is nonzero. Furthermore, we set Z/S’\fnL ) — 0and
WL as size-one filters with three output channels in the form of

(Wr(r{/))&:,: = [0 0 e O %(Wm)l,:] y
(Wﬁr{‘))&:,: = [0 00 €1 _%(Wm)l] .
Under such choices, (33) is proved and all parameters in Wm, Em are bounded by 7.

By composing all convolutional blocks, we have

T M N T M N
?;Zmzl(fmvo) _é m:l(fm/\o)

(COHVWMBM) 0---0 (CODVVAVL&) o P(z) = ()4 (o) % -

Lastly, the fully connect layer can be set as

— [0 0 = _m] ~
W:[Ooé 0]’b:0'

Note that the weights in the fully connected layer are bounded by 75(1 V 74 h.

The above construction gives

R M R M R M R
Fl@) =Y (fm@VO) + > (fnl2) AO) = > fn(a).
m=1 m=1 m=1
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B.4 SUPPORTING LEMMAE FOR THEOREM 1

Before stating Lemma 5, we provide a brief definition of cardinal B-splines.

Definition 5 (Cardinal B-spline). Let 1)(x) = 1[g11(x) be the indicator function for membership in
[0, 1]. The cardinal B-spline of order m is defined by taking m + 1-times convolution of \:

U (x) = (P xpx-- xY)(2)
.
m-+1 fimes

where [ x g(x) = [ f(xz —t)g(t)dt.

Note that ¢, is a piecewise polynomial with degree m and support [0, m + 1]. It can be expressed

as [45]
m+1
+1 .
nie) = 1y 3 ("

For any k,j € N, let gi jm(z) = ’(/)m(QkiL‘ — J), which is the rescaled and shifted cardinal B-
spline with resolution 2~* and support 27%[4, j + (m + 1)]. Fork = (ki,...,ks) € N?and j =
(j1s- -, Ja) € N% we define the d dimensional cardinal B-spline as g ; () = T, o (2Fia; —
ji). When ky = ... = kg = k € N, we denote §ZJm(x) = H?Zl Y (2825 — ji).

B.4.1 APPROXIMATING BESOV FUNCTIONS WITH CARDINAL B-SPLINES

For any m € N, let J(k) = {—m, —m +1,...,2¥ — 1,2%}4 and the quasi-norm of the coefficient
{ck ;}fork € N,j € J(k) be
1/p7 9\ Y4

Heratllog, = [ D |27 > lewgl?

keN jeJ(k)

(34)

We can state the following lemma, from DeVore & Popov [13], Dung [17], which provides an upper
bound on the error of using cardinal B-splines to approximate functions in By ([0, 1]9).

Lemma 5 (Lemma 2 in Suzuki [60]; DeVore & Popov [13], Dung [17]). Assume that 0 < p,q,r <

oo and 0 < a < oo satisfying & > d(1/p — 1/r)4. Let m € N be the order of the cardinal B-spline

basis such that 0 < a < min(m, m —1+1/p). Forany f € By ([0, 1]9), there exists fy satisfying
If = Fnllor o < CN~/4 Hf||5a L(0,1])

for some constant C with V > 1. fisin the form of

Z Z kg m(@ Z chmgm“ (35)

k=0jeJ(k k=K+1 i=1
where {j;}1*, C J(k) H=[c¢ log( )/d], H* = [v~ og(AN)]+ H +1,np, = [AN27V (= H)]
fork = H + 1,....,H*u=d(1/p—1/r); and v = (o — w)/(2u). The real numbers ¢; > 0 and

A > 0 are two absolute constants chosen to satisfy Zle(Qk +m)? + Zkl,{:HH ni < N, which
are to N. Moreover, we can choose the coefficients {c, ;} such that

{eritlog,, < Cillfllsg , (0,1)9)
for some constant C1.

B.4.2 APPROXIMATING CARDINAL B-SPLINES AND OTHERS WITH SINGLE-BLOCK CNNSs

The following Proposition 1 quantifies the tradeoff between the size of a single-block CNN and its
approximation error for the multiplication operator.

Proposition 1. Let x be defined as in (13). For any n € (0,1), there exists a single-block CNN
X (-, -) such that

Haxb—xabHL <,
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where a, b are functions uniformly bounded by cy.

X is a single-block CNN approximation of x and is in FSCNN(L, J, I, 7,7) with L = O(log 1 /1) +
D layers, J = 24 channels and any 2 < I < D. All parameters are bounded by 7 = (c2 V 1).
Furthermore, the weight matrix in the fully connected layer of X has nonzero entries only in the first
row.

Proof of Proposition 1. First, let us define a particular class of feed-forward ReL.U networks of the
form
flx) =W -ReLU(Wp_1---ReLUW iz +b1)---+ br—1) + bz, (36)
as
F(L,J,7) ={f| f(x) in the form (36) with L layers and width at most J,

Willo oo <75 [Ibill o < TfOri=1,--- L} 37
By Proposition 3 in Yarotsky, there exists a feed-forward ReL.U network that can approximate the
multiplication operation between values with magnitude bounded by ¢y, with 1 error. Such feed-
forward network has O(log 1/n) layers, whose width is all bounded by 6, and all its parameters are
bounded by c3. Therefore, such a feed-forward network is sufficient to approximate x with 7 error
in L°°-norm, because the arguments of X are uniformly bounded ¢y by Assumption 2.

Furthermore, by Lemma 8 in Liu et al. [42], we can express the aforementioned feed-forward net-
work with a single-block CNN in FSCNN (L, J,I,7,7),where L, J, I, 7 are as specified in the state-
ment of the proposition. O

Proposition 2 quantifies the tradeoff between the size of a single-block CNN and its approximation
error for the cardinal B-spline f; o ¢, L

Proposition 2 (Proposition 3 in Liu et al. [42]). Let f;o¢p; Y be defined as in (13). Forany § € (0,1),

N

set N = C16~4*. Forany 2 < I < D, there exists a set of single-block CNNs {fSCNN} such
j=1

that

N
STEON_fogt| <4,

Jj=1 Lo

where C is a constant depending on o, p, q and d.

:%CNN is a single-block CNN approximation ofﬁd (defined in (14)) in FSCNN(L, J, I, 7,7) with

L =0 (log(1/8)),J = [24d(a + 1)(a +3) + 8d],7 = O (5*00%2)%5%“101‘1)) .
The constant hidden in O(-) depends on d, a, %ﬁd,p, q, Co.

Proposition 3 quantifies the tradeoff between the size of the sub-networks for the chart determination
network and its approximation error for the chart determination indicators and the distance function
L.

Proposition 3 (Lemma 9 in Liu et al. [42]). Let d? and 1o g2) be defined as in (18). For any
0 € (0,1) and A > 8B2 D0, there exists a single-block CNN c/l? approximating d? such that
|2 — d?|| 1~ < 4B>D#,

and a CNN 15 approximating 1jg g2} with

17 zfaS (1727}6)(5274B2D0)5
Ta(z) =<0, ifa > B? - 4B%D@,

2F((B%2 —4B2?D0)'a — 1), otherwise.
for x € X. The single-block CNN for é? has O(log(1/0)) layers, 6D channels and all weights

parameters are bounded by 4B2. The single-block CNN for 1A has {log( B2/ A)] layers, 2 channels.
All weight parameters are bounded by max(2, |3 — 4B?D6)|).

25



Published as a conference paper at ICLR 2023

As a result, forany x € X, Tao (%(x) gives an approximation of 1y, satisfying
1, ifr € Uy and d?(x) < B2 — A;
Taodi(z) =10, ifr ¢ Us;
between 0 and 1,  otherwise.

B.4.3 LEMMAE ABOUT SUMMATION AND COMPOSITION OF CNN

Lemma 6 states that the composition of two single-block CNNss can be expressed as one single-block
CNN with augmented architecture.

Lemma 6. Let Fy°NN(Ly,Jy,1),7,7) be a CNN architecture from RP — R and
]—'QSCNN (La, Jo, I, T2, T2) be a CNN architecture from R — R. Assume the weight matrix in the
fully connected layer of FYNN(Ly, Jy, Iy, 71,71) and FSONN(Ly, Jo, Iz, 72, T2) has nonzero en-
tries only in the first row. Then there exists a CNN architecture FS°NN(L, J, I, 1,7) from RP — R
with

L=1L1+ Ly, J =max(J1, J2), I = max(ly,Iz), 7 = max(r, 7o)
such that for any f, € FSONN(Ly, Jy, 11, 71,71) and fo € FSNN(Lgy, Jo, Iy, 72, 72), there exists

f e FSCNN(L J I,7,7) such that f(x) = fy o fi(x). Furthermore, the weight matrix in the fully
connected layer of FSNN(L, J, I, 7,T) has nonzero entries only in the first row.

Lemma 7 states that the sum of ng single-block CNNs with the same architecture can be expressed
as the sum of n; single-block CNNs with modified width.

Lemma 7 (Lemma 7 in Liu et al. [43]). Let {f;}.°, be a set of single-block CNNs with architecture
FSCNN(Lo. Jo, Io, T0,70). For any integers 1 < n < ng and jsatisfying nJ = O(noJo) and
J > Jo, there exists an architecture FSCNN (L, J,I,7,7) that gives a set of single-block CNNs
{gi}7 such that

Zgi(x) = Z fi(z).

Such an architecture has

L= O(Lo),J: O(J),I: Io,T: T0-

Furthermore, the fully connected layer of f has nonzero elements only in the first row.

C PROOF OF CNN CLASS COVERING NUMBER

In this section, we prove a bound on the covering number of the convolutional neural network class
used in Algorithm 1.

Lemma 8. Given § > 0, the 6-covering number of the neural network class F(M, L, J, I,71,72,V)
satisfies

Ag

N((S, JT‘.(M7L,J, I, Tl,TQ,V) ) S (2(7‘1 \/Tg)Al(sil) 5 (38)

oo

where
Ay =(M+3)JDAV )1V T)ppT, Ao = ML(J*T+J)+JD +1
withp = pM pY =1+ MLp*,p= (JIT)" and p* = (1 Vv JIT)~.

With a network architecture as stated in Theorem 1, we have
~ ~ ~ ~ 1
log N'(6, F(M, L, J, I, 7,7,V) =0 <MJ2D3 log® (M J) log 5) ,

where O(-) hides constant depending on d, «, %, P, q, co, B, w and the surface area of X'.
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C.1 SUPPORTING LEMMAE AND PROOFS

Proposition 4 below provides an upper bound on the L..-norm of a series of convolutional neural
network blocks in terms of its architecture parameters, e.g. number of layers, number of channels,
etc.

Let Jr(rf) be the number of channels in ¢-th layer of the m-th block, and let L(,i) be the filter size of
i-th layer in the m-th block. Q[; ; is defined as

Qp.j(x) = (Conijﬁj) o---o0 (Convy, p,) ().

Proposition 4. Form = 1,2,--- ,M and x € [—1,1]P, we have
1Qum @)l < @V m) HHJZ U <1+ZLkH 1y D0 )>
] 1i=1 i=1
Proof.
Qum @)l
= ||COHVWm,Bm(Q[meu(l‘))Hm
L, Lo
< T2 V197 | Qum—n(@)||  + 7L [V IS D10 7))
i=1 i=1
<||P(z 1_[1_[:](Z 1)I()T +TlZLkH 1\/J(l U1 H HJ(z 1)1()
Jj=li=1 i= l=j+1i=1
m L
< Hf”||ooHHJ7 1)1-(1 m +T1ZLkH 1\/J(z 1)1() H HJl(i—nIl(i)Tl
j=1li=1 i= l:j+1i:1
m
(1v ) HHJ”I“ <1+ZL,€H1\/J(z V1T )>,
j=1li=1 i

where the first two inequalities are obtained by applying Proposition 9 from Oono & Suzuki [54]
recursively. O

Lemma 9 quantifies the sensitivity of a CNN with respect to small changes in its weight parameters.
This will be used to create a discrete covering for the CNN class.

Lemma 9. For f,f' € F(M,L,J,I,71,72,V) such that for ¢ > 0, |[W-W'|_ < ¢
! !
lo—=b', < e ’W,(,? — Wf,ll) < € and HB(I) — (l) H < € for all m and 1, where

(W, b, {{( 75?,8(“) LAM_ Y and (WY {{(W ) ,B(l) W ¥M_) are the parameters of f
and f’ respectively, we have

If = Flloo < Ase,

where A1 is defined in Lemma 8.

Proof. Forany x € [—1,1]P
|f(z) = f'(2)|
=[WeQ@) +b-W' Q' (z) -V
=|(W-W)eQ()+b-t+W ®(Qx) - Q'(z))|
= |(W w’ ) ( ) +b-0+W'e (Q(x) - COHVWM,BM (Q/(LE)) + COHVWJVLBZM (Q,(l‘)) -

=|(W-W)eQ(x)+b—b + Z W' @ Qp+1,m) © (Convy,, 5,, — Conviyy 5 ) © Qfg
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M
<|(W-=W)@Q(x;0) +b—1V| + Z ’W’ @ Qpnt1,m) © (Convyy,, 5, — Convyy:, 5 ) o Ql[O,m—l]’

m?

(a) M Lk ) .
< 34+ M)JD(1V 7)1V 1) HHJ’ DL <1+ZL,€H(1VJ,$1)I,$)71)> €,
k=1 =1

j=1li=1

where (a) is obtained through the following reasoning.

The first term in (a) can be bounded as
(W —-=W')@Q(z)+b—1
< (W1l + W) W = W N1Q(@) | + 16— ¥[l
<2JDe||Q(z),, +€
< 3JDe|Q(z)l

M L; M Ly
< 3JDmax{l,7} H H J;271)1§2)7'1 (1 + ZLk H(l vV J,gznl,gl)rl)) €,
k=1 =1

j=1li=1

where the first inequality uses Proposition 8 from Oono & Suzuki [54] and the last inequality is
obtained by invoking Proposition 4.

For the second term in (a), it is true that forany m = 1,--- , M, we have

‘W/ ® Q[m—i—l,M] © (COHVW77L7B‘VYI - COHVWJn,vB;n) °© Qfl,m—l]’

)
< Wl 72 HQ[m+1,M] o (Convyy,, B, — Convyy, ) o Q/[Lm,l]Hoo

LA
(c) J ) )
2 IDr H HJJ(FI)IJ('Z)TI H(COHVW,”,B,,L — COHVW,'WB;L) o Q’[mel]H

j=m-+41li=1

(d) M L _ Lm 4

<o | I 147080 | (116200 @ e
j=m-+1i=1 i=1 °

() Mo Li Im
<Jpm | ] 170 V17 ( Jr(;_l)fr(,?7j>

j=1li=1 k=1 i=1
M Lj _ ,
< JDm HHJ“ VIO | @vm) <1+ZLkH 1vJ,§“”I,§%)> €.
j=1li=1 i=1

where (b) is by Proposition 7 from Oono & Suzuki [54], (c) is by Proposition 2 and 4 from Oono &
Suzuki [54], (d) is by Proposition 2 and 5 from Oono & Suzuki [54], and (e) is obtained by invoking
Proposition 4. O

C.2 PROOF OF LEMMA 8

Proof of Lemma 8. We grid the range of each parameter into subsets with width A} 15, so there are at

most 2(71 V 72)A1 6! different subsets for each parameter. In total, there are (2(7; V 72)A10 ’1)A2
bins in the grid. For any f, f' € F(M, L, J,I,71,72, V) within the same grid, by Lemma 9, we
have ||f — f'||., < 0. We can construct the e-covering with cardinality (2(r; V 72)A1(5_1)A2 by
selecting one neural network from each bin in the grid.

Taking log and plugging in the network architecture parameters in Lemma 1, we have

10g./\/(5, .7:(]\4,117 J,I,Tl,TQ,V), HHOO) =0 (A2 IOg ((7‘1 \Y 7'2) Aléfl))
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— e — —~ 1
<0 (MDD2J2 log(M J) log?(M.J)log?(M.J) log 5)
— —~ 1
=0 (MJ2D3 log® (M .J) log 5) ,

where the inequality is due to Ay = O(MDD2j2 log(Mj)). By plugging in the choice of 7,
p=(1/2)tMt <M~ s0p=(1+M )M < e. Moreover, p* =1+ ML. O

D STATISTICAL RESULT OF CNN-BESOV APPROXIMATION (LEMMA 10)

In this section, we derive the statistical estimation error for using a CNN empirical MSE minimizer
to estimate a Besov ground truth function over an i.i.d. dataset. We need to choose the appropriate
CNN architecture and size in order to balance the approximation error from Theorem 1 and variance.
Thsi statistical estimation error can be decomposed into the error of using CNN to approximate
Besov function (Theorem 1), terms that grow with the covering number of our CNN class, and the
error of using the discrete covering to approximate our CNN class.

In Theorem 2, we expand the estimation error ™ — v™ over time steps and upper-bound the amount
of estimation error in each time step with Lemma 10. Details of Theorem 2 are in Appendix A.

Lemma 10. Let X be a d-dimensional compact Riemannian manifold that satisfies Assumption 1.
We are given a function fo € By, (X), where s,p,q satisfies Assumption 2. We are also given
samples S, = {(x;,y:) Y, where x; are i.i.d. sampled from a distribution P, on X and y; =
fo(zi) + . (s are ii.d. sub-Gaussian random noise with variance o2, uncorrelated with x;’s. If

we compute an estimator
n

7o = argmin - > (fle) =),

feEF N
with the neural network class F = F(M, L, J, I, T1, T2, V') such that
L=0(ogn+ D +log D), J=0(D), 7, = O(1), logs = O(log”> n + Dlogn),

M = O0(n=51), V = || ol - (39)

with any integer I € [2, D] and M, J > 0 satisfying M.J = O(nﬁ) then we have
E { / (Fut@) - fo(g;))2 dPi(m)] < c(VE+02) n~ =5 log® n, (40)
where Vr = || fol| O:an the expectation is taken over the training sample S, and c is a constant

depending on szfm, d, «, %d—d’ D, ¢, co, B, w and the surface area of X. O(-) hides constant
depending on d, «, %, D, G, co, B, w and the surface area of X.

First, note that the nonparametric regression error can be decomposed into two terms:

B | [ (f0) - fo)) " ap.)| =28 ii(fn(xi) - fom))ﬂ

T

EUX (Fule) ~ o) @D }QE [jlz Falws) — foe))?|.

T
where T} reflects the squared bias of using neural networks to approximate ground truth fj, which
is related to Theorem 1, and 75 is the variance term.

D.1 SUPPORTING LEMMAE

Lemma 11 (Lemma 5 in Chen et al. [7]). Fix the neural network class 7 (M, L, J, I, 11,72, V). For
any constant § € (0,2V), we have

<4 inf / (F(x) — fol))2dPy(x)

feFrF(M,L,J,I,m1,72,V) Jx
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log N (6, F(M, L, J, I, 71,72, V), |||l o) + 2
n

logN (8, F(M, L, J,I,71,72,V),|- 2

+ (8\/6\/ 0g ( ( nTl T2 ) || Hoo) + +8)O’5,

where  N(6, F(M,L,J,I,71,7,V),||,) denotes the d-covering number  of

F(M,L,J,I,7,7,V) with respect to the ¢, norm, i.e., there exists a discretization of

F(M,L,J,I,11,72,V) into N(6, F(M,L,J, I, 7,7,V),|||,) distinct elements, such that for
any f € F, there is f in the discretization satisfying || f—f HOC <e

+ 4802

Lemma 12 (Lemma 6 in Chen et al. [7]). For any constant 6 € (0, 2R), T» satisfies
104V2
n

T <

1
logN((s/Zl‘/vf(MvL? J;I;TlvT27V)7 ||Hoo) + <4+ 2‘/) J.

D.2 PROOF OF LEMMA 10

Proof of Lemma 10. Recall that the bias and variance decomposition of

[y (7o) - o) et

B| [ (7)) apato)| =B

23 (Gl - fom))?]

=1

T

+E {/X (J?n(x) - fo(ﬂc))2 de(x)} —-E li i(ﬁl(xi) — folw:))?

T>
Applying the upper bounds of 77 and 75 in Lemmas 11 and 12 respectively, we can derive

Bl [ (- @) apw| <4 e (@) - fl)2pa)

feFr(M,L,
I M,L J 1 . 2
+ 1 N6 FOLL T, V) ) +
n
1 1) M,L,J 1 Vo, I 2
+8\/6\/OgN(’]:( L, LT, T, V) ] o) o8
n
104V2
+ Snf10gN(5/4V,]—"(M,L7J,I,Tl7T27V)7H'”oo)

1
+ |44+ —+8c )4
( 2VF >

We need there to exist a network in F(M, L, J, I, 1, 72, V) which can yield a function f satisfying
lf — folloo < €eforee (0,1). e will be chosen later to balance the bias-variance tradeoff. In order
to achieve such e-error, we set MJ = e~ %%, so0 we now have our network architecture as specified
in Theorem 1 in terms of €. Then, we can use the parameters in this architecture to invoke the upper
bound of the covering number in Lemma 8§:

log N (8, F(M, L, J,I, 71,72, V), |||l ) (Aglog (11 V m2) A1671))

=0
<0 |(MJ*D? logs(]T/[/j) log ;)

=0 <ed/aD3 log® elog (15) ,

2d

where O(-) hides constant depending on log D, d, «, o

P, q, co, B, w and the surface area of X'.

Plugging it in, we have

. [/X (fn@:) a fo(m))2 dDw(m)] A 48702 (c//e_d/C“D3 log” elog% + 2)
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—d/a 5 1
+8\/@\/€ HeDRlog clog s
n

10412 1
%e*d/aD3 log® elogg
1
40—
+ < + 5y + 80) 1)

2 2
~ . 1
= O<€2 + V:F%e*%Ds log® elogg

d

—a D31og® elog L 2

+05\/6 Og6°g5+aa+a>. (41)
n n

3a e
Finally we choose € to satisfy €2 = %D?’e*g, which gives ¢ = D?2a+dn™~ 2a+d. It suffices to pick
o= % Substituting both € and ¢ into (41), we deduce the desired estimation error bound

E [ /X (Ful@) ~ fol))” dDz(x)] < (V2 + 0%)n~ =% log ,

2d

6
where constant ¢ depends on Dze+4, d, o, —=%,
ap—d

D, q, co, B, w and the surface area of X. O

E A RESULT FOR FEED-FORWARD RELU NEURAL NETWORK

E.1 FEED-FORWARD RELU NEURAL NETWORK

We consider multi-layer ReLU (Rectified Linear Unit) neural networks [25]. ReLU activation is
popular in computer vision, natural language processing, etc. because the vanishing gradient issue
is less severe with it, which is nonetheless common with its counterparts like sigmoid or hyperbolic
tangent activation [25, 27]. An L-layer ReLU neural network can be expressed as

f(.%‘) =Wy - ReLU(WL,1 cee ReLU(W1$ + bl) SR bL,1> +br, 42)
inwhich Wy, --- Wy and by, - - - , by, are weight matrices and vectors and ReLLU(+) is the entrywise
rectified linear unit, i.e. ReLU(a) = max{0,a}. The width of a neural network is defined as the
number of neurons in its widest layer. For notational simplicity, we define a class of neural networks

F(L,p,I,7,V)={f| f(z) in the form (42) with L layers and width at most p,
L
1l < V2 Do IWillg +l1billg < I, 1Willag oo <75 billo < 7fori=1,--- L},

00,00 —
=1

(43)

E.2 PoLIiCcY EVALUATION ERROR AND ITS PROOF

From this point, we denote the function class (L, p, I, 7, V), whose parameters L,p, I, 7,V are
chosen according to Theorem 3, with the shorthand F. In this section, this F is used in Algorithm
1, instead of the CNN class in (11).

Theorem 3. Suppose Assumption 1 and 2 hold. By choosing
L=0(ogK), p=O(K=), [=0(K=logk),
T =max{B, H,Vd,w?}, V=H
in Algorithm 1, in which O(-) hides factors depending on a, d and log D, we have
E|v" — 97| < CH?k (K*ﬁ + D/K) log? K, (45)

in which the expectation is taken over the data, and C' is a constant depending on log D, «, B, d, w,
the surface area of X’ and c(. The distributional mismatch is captured by

H
1 vy
k= D Xl ar) +1
h=1
in which Q is the Minkowski sum between the ReLU function class and the Besov function class,
ie,Q={f+g|fe€ Bg‘,q(/'\?),g e F}.

(44)
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Proof of Theorem 3. The goal is to bound
E[5" — 7| = E \/ (07 - @) (s.0) daf (5.0)
x

<k | [ Jor - @t ars.a).

To get an expression for that, we first expand it recursively. To illustrate the recursive relation, we
examine the quantity at step h:

B | [ |or - i a0

=E /X ThﬂQZ-s-l - ﬁw (@ZH)

(5.0) da (5.0

<E /X Ty Qhs1 — Eﬂégﬂ’ (s,a)dqr (s, a)] +E {/X ‘E”@ZH — ﬁﬂ (@ZH)’ (s,a)dgf (s, a)]

=E / QZ+1 - @ZJA‘ (s,a) dq}71r+1(37 a)]
LJx

8 [8 | [ 70 - T (@F0)| (0261 (5.0) | Dhs -+ D]
X

(a) ~
2e| [ |0t - Gia| .o a0
X

~ ~ ~ 2
\//); (7;17‘— Z+1_7;L7F< ;“Lr+1>> (Sva‘)dqzo(s7a‘)\/XQQ(qg7qZO)+1|Dh+15"' aDH‘|‘|
(b)

<E {/ ‘QZH - @ZH
X

+E|E

(s,a)dgp (s, a)}

~ SN 2
+\/IE B[ [ (705~ (@) (.0 0000 | D D] | Nalarain) 1
(C) T AT T 2 — 2o D 3 2 T T
= ’Qh+1*Qh+1 (s,a)dgpy(s,a) + [ c(BH?) [ K~ 2ota +? log K\/XQ(Qh’qh )+1
X
~ _ e /D / ™
S/ ‘QZH—QZH’(S,CL)dq;{H(s,a)—!—CH (K Satd | K) 1og3/2K ng(qg7%(>)_|_17
X

where C' denotes a (varying) constant depending on log D, «, B, d, w, the surface area of X" and cg.

In (a), note E”@ZH € By ,(X) by Assumption 2 and fﬁ” (AZH) € F by our algorithm, so
T ©Z+1 _ 777 (@g +1) € Q. Then we obtain this inequality by invoking the following lemma.
In (b), we use Jensen’s inequality and the fact that square root is concave.

To obtain (c), we invoke the following lemma, which provides an upper bound on the regression
error.
Specifically, we will use Lemma 13 when conditioning on Dy 1, - -- , Dy, i.e. the data from time

step h + 1 to time step H. Note that after conditioning, 7,7 Q7 , ; becomes measurable and deter-
ministic with respect to Dp41, -+ ,Dg. Also, Dy 41, - - - , Dy are independent from Dj,, which we
use in the regression at step h.

To justify our use of Lemma 13, we need to cast our problem into a regression problem described
in the lemma. Since {(sp, ahwk)},[f:l are i.i.d. from ¢;°, we can view them as the samples xz;’s in

the lemma. We can view 7,7 Q7 , , which is measurable under our conditioning, as f in the lemma.
Furthermore, we let

Gk = g + /A 05 o1 (5 o a)(a | $)) da — T O 1 ($150 0 k).

In order to invoke Lemma 13 under the conditioning on Dy 41, - - - , D, we need to verify whether
three conditions are satisfied (conditioning on Dy, 41, -+ ,Dg):
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1. Sample {(sp k, an k) e, areiid;
2. Sample {(sp, ath)}f:l and noise {Ch,k}szl are uncorrelated;

3. Noise {Q“k}kK:l are independent, zero-mean, subgaussian random variables.

In our setting, {(sn .k, an )} | areiid. from q;°. Due to the time-inhomogeneous setting, they
are independent from Dy 41, , Dy, s0 {(sn.k, ah,k)}le are still i.i.d. under our conditioning.
Thus, Condition 1 is clearly satisfied.

We may observe that under our conditioning, the transition from (sh,k, ank) to 5;1 i 1s the only
source of randomness in (p, ;, besides (sp i, ap ) itself. The distribution of (sp , ahyk,' s;hk) is actu-
ally the product distribution between P, (-|sp i, an,x) and ¢;°, so a function of sﬁ% «» generated from
the transition distribution Py, (-|sy, k, @n,x ), is uncorrelated with (sp k., an k). Thus, (sp g, an.k)’s are
uncorrelated with ¢, ,,’s under our conditioning, and Condition 2 is satisfied.

Condition 3 can also be easily verified. Under our conditioning, the randomness in (j, ;, only comes
from (Sp,k, @k, S}, x> Th.k)> Which are independent from (sp k', @n ;s S}, s Thokr) for any & # k,
so0 Cp s are independent from each other. As for the mean of (3, z,

E [Ch,k | Dh-‘,—h e 7DH]

=E [Th,k +/ Qr 1 (shpa)m(a| sy ) da —ru(snk, ank) — PrQpoi(shk,ank) | Dhyt,- - »DH]
A
= E[Th,k — h(Shk Gh,k) +/ Q\Z+1(S;L,ka a)m(a | Slhk) da
A

- Es’~Ph(~|Sh,k,ah,k) |:/ Q;Lr+1(3/7a)7r(a | 3/) da | Sh,ks ah,k;Dh-‘rla e aDH | Dh+17 T 7DH:|
A

=04+0=0.

On the other hand,

F. Thus, ¢, i is a bounded random variable with ¢, , € [—2H, 2H] almost surely, so its variance is
bounded by 4H?2. Its boundedness also implies it is a subgaussian random variable. Thus, Condition
3 is also satisfied.

Qn 1 H < H almost surely, because it is a function in our ReLU network class
o0

Hence, Lemma 13 proves, for step / in our algorithm,
. ~ [~ 2
£ [ | (7@ 77 (@) (50046 (5,0) | Dy, D
x
2 2 _ _2a D 3
< o(H? +am?) (K55 4+ 2 ) o' K.

Note that this upper bound holds for any @Z 4106 Dy, -+, Dy. The sole purpose of our condi-

tioning is that we could view @;{ 1 as ameasurable or deterministic function under the conditioning
and then apply Lemma 13. Therefore,

A -~ ~ 2
E {E [/ (77{TQZ+1 - Ty (QZJA)) (s,a)dg;°(s,a) | Dpyq, -+ ’DHH
X
S C(H2 +4H2) <K2§id + ID(> 10g3K.

Finally, we carry out the recursion from time step 1 to time step H, and the final result is

H
™ -~ — 2 D 3/2 1 T
E|v™ — 37| < CH? (K 2a+d+\/K> log®/ K(th_:l ng(qh,qho)+1>.
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E.3 LEMMA 13 AND ITS PROOF

Lemma 13. Let X be a d-dimensional compact Riemannian manifold isometrically embedded in
RP with reach w. There exists a constant B > 0 such that for any v € X, z;| < B for all
Jj=1,---,D. We are given a function fo € By (X) and samples S, = {(x;,y;)}j—,, where x;
are i.i.d. sampled from a distribution P, on X and y; = fo(x;) + (. (i’s are ii.d. sub-Gaussian

random noise with variance o2, uncorrelated with ;’s. If we compute an estimator
n

~ 1 2
fn = arg min g (f(wi) —wi)”,

with the neural network class F = F(L,p, I, 7, V) such that
L=0(logn),p=0 (n%) I=0 (n% logn> ,

7 = max{B, Vr, Vd,w?},V = Vg, (46)
then we have

E [/X (Ful@)— fol))” de(x)} <c(VZ+o?) <n_+ 4 i) log®n,  (47)

where Vr = || fo||, and the expectation is taken over the training sample S, and c is a constant
depending onlog D, «, B, d, w, the surface area of X and c.

Proof of Lemma 13. Recall that the bias and variance decomposition of

B [ [y (Fue) — fo) " 2P o) s
E [ /X (Ful@) - fo(x))2 de(x)} —E

% Z(ﬁz(xi) - fo(l‘i))Q]

i=1

T

+E [/ (Ful@) - f0<x>)2 d%(x)} ~E lfl fj(fnm) — fo(x:))
X =1

T
Applying the upper bounds of 77 and 7% in Lemmas 11 and 12 respectively, we can derive
- 2
E - d <4 inf - *d
[ (R = @) apao| <0 it (@) - s 2ap o
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+ 4802
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104V2
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We need there to exist a network in F(L,p,I,7,V) which can yield a function f satisfying
Ilf = folloo < €efore € (0,1). e will be chosen later to balance the bias-variance tradeoff. By
Lemma 2 of Nguyen-Tang et al. [51], in order to achieve such e-error, we need

1 d d 1
L=0 <log€> ,p:O(e_F) ,I=0 (e_alog€>,

T = maX{B7V]:a \/&,(J.}Q},V = V]:a
where O(-) hides factors of log D, «, d and the surface area of X', so we now have our network
architecture as specified in Theorem 1 in terms of €. Then, we can use the architecture parameters
in (13) to invoke the upper bound of the covering number in Lemma 7 of Chen et al. [7]:

2L2%(pB + 2)rLpl+t > !
1)

+<4+1+80>5.

log N (0, F(Lyp, 1,7, V), ) = log (
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1 1
< 'e & log® - log =,
€ )
where ¢’ is a constant depending on log B, w and log log n.

Plugging it in, we have
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log® = log =~
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+06 egfg§+aa+g>. (48)

n n
Finally we choose ¢ to satisfy €2 = %e‘g, which gives € = n~ zard . It suffices to pick § = %

Substituting both € and ¢ into (48), we deduce the desired estimation error bound
A 2 9 2 _ _2a D 3
E / (Ja@) = fo(@))" dDu(@)| < c(VE+02) (075 + 2 ) log™n,
X n

where constant ¢ depends on log D, d, a, a;d_ 7> P 4> Cos B, w and the surface area of X. ]

F SUPPLEMENT FOR EXPERIMENTS

F.1 DETAILS FOR EXPERIMENTS WITH CARTPOLE

We use the CartPole environment from OpenAl gym. We consider it as a time-inhomogeneous
finite-horizon MDP by setting a time limit of 100 steps. We turn the terminal states in the original
CartPole into absorbing states, so if a trajectory terminates before 100 steps, the agent would keep
receiving zero reward in its terminal state until the end. The target policy is a policy trained for 200
iterations using REINFORCE, in which each iteration samples for 100 trajectories with truncation
after 150 time steps. The target policy value v™ is estimated to be 65.2117, which we obtain by
Monte Carlo rollout from the initial state distribution.

For a given behavior policy, to obtain dataset D;, at time step h, we sample for K independent
episodes under the behavior policy and only take the (s, a,s’,r) tuple from the h-th transition in
each episode. This is an excessive way to guarantee the independence among these K samples;
in practice, we could directly sample from a sampling distribution. We sample for D;, for each
h=1,---,100.

We use the render function in OpenAl gym for the visual display of CartPole. We downsample
images to the desired resolution via cubic interpolation. A high-resolution image (see Figure 3) is
represented as a 3 x 40 x 150 RGB array; a low-resolution image (see Figure 4) is represented as a
3 x 20 x 75 RGB array.

For the function approximator in FQE, we use a neural network that comprises 3 convolutional layers
each with output channel size 16, 32 and 32 and a final linear layer. These layers are interleaved with
ReLU activation and batch norm layers for weight normalization. For high resolution input, we use
kernel size 5 and stride 2; for low resolution input, we use kernel size 3 and stride 1. For experiments
with high resolution, in each step of FQE, we solve the regression by training the network via
stochastic gradient descent with batch size 256 for 20 epochs. In high-resolution experiments, we
use 0.01 learning rate; in low-resolution experiments, we use 0.001 learning rate. We compute the
average and standard deviation of FQE’s result over 5 random seeds.
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Figure 3: CartPole in high resolution. Figure 4: CartPole in low resolution.

F.2 EXPERIMENTS WITH LUNARLANDER

In addition to our CartPole experiments, we present numerical experiments for evaluating FQE with
CNN function approximation on the LunarLander environment [5]. The LunarLander problem has a
8-dimensional continuous intrinsic state space. We consider a finite-horizon MDP with horizon H =
100 in this environment. In our experiments, we solve the OPE problem with FQE (Algorithm 1).
We take the visual display of the environment as states. These images serve as a high-dimensional
representation of LunarLander’s original 8-dimensional continuous state space. In our algorithm,
we use a deep CNN to approximate the Q-functions and solve the regression with SGD. The results
are report in Table 3.

Table 3: Value estimation ¥™ under high resolution and low resolution. The true v™ =~ 55.982 is
computed via Monte Carlo rollout.

Sample size | (A) No distribution shift (B) Off-policy
K High res Low res High res Low res
5000 55.9£3.8 | 55.5+3.6 | 55.5+5.5 | 55.0£5.9
10000 55.1+2.7 | 55.7£2.9 | 55.8 4.0 | 55.4 £ 3.9
20000 55.4+£1.9 | 55.6 £2.0 | 56.3+3.1 | 56.0£ 3.5

The experiment setup is almost the same as our CartPole experiments. We conduct this experiment in
two cases: (A) data are generated from the target policy itself; (B) data are generated from a mixture
policy of 0.9 target policy and 0.1 uniform distribution. A high-resolution image (see Figure 5) is
represented as a 3 X 40 x 70 RGB array; a low-resolution image (see Figure 6) is represented as a
3 x 20 x 35 RGB array.

Figure 5: LunarLander in high resolution. Figure 6: LunarLander in low resolution.

F.3 ERROR DECAY RATE IN CARTPOLE
We plot the relative error of FQE in our CartPole experiments from Section 5. Figure 7 and 8 show

that the estimation error follows an exponential decay. We also plot this relative error in log-log
plots (Figure 9 and 10). We can observe that the curves are linear, which confirms the form of our
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theoretical bound in Theorem 2. Moreover, we can observe that the slope, which represents the
decay rate of the estimation error, is generally the same between high-resolution and low-resolution
experiments. This confirms our theory that the decay rate takes little influence from the ambient
dimension.
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Figure 7: On-policy CartPole. Figure 8: Off-policy CartPole.
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Figure 9: On-policy CartPole (log-log plot). Figure 10: Off-policy CartPole (log-log plot).
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