

1 TITLE: Developing an empirical model for spillover and emergence: Orsay virus host range in
2 *Caenorhabditis*

3

4 AUTHOR LIST:

5 Clara L. Shaw¹ Department of Biology, The Pennsylvania State University, University Park, PA 16802

6 David A. Kennedy² Department of Biology, The Pennsylvania State University, University Park, PA 16802

7

8 Corresponding Author: David A. Kennedy

9 cls6630@psu.edu

10 dak30@psu.edu

11

12 ABSTRACT

13 A lack of tractable experimental systems in which to test hypotheses about the ecological and
14 evolutionary drivers of disease spillover and emergence has limited our understanding of these
15 processes. Here we introduce a promising system: *Caenorhabditis* hosts and Orsay virus, a positive-
16 sense single-stranded RNA virus that naturally infects *C. elegans*. We assayed species across the
17 *Caenorhabditis* tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44
18 species. Confirming patterns documented in other systems, we detected effects of host phylogeny on
19 susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by
20 transplanting exposed hosts and determining whether they transmitted infection to conspecifics during
21 serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in
22 all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at
23 least 1 replicate), and evidence of sustained transmission in 6 strains (including all 3 experimental *C.*
24 *elegans* strains) in at least 1 replicate. Transmission was strongly associated with viral amplification in
25 exposed populations. Variation in Orsay virus susceptibility and transmission among *Caenorhabditis*
26 strains suggests that the system could be powerful for studying spillover and emergence.

27

28 KEYWORDS: host range, spillover, emergence, *Caenorhabditis*, Orsay virus, host jump

29

30 INTRODUCTION

31 Disease spillover and emergence can have catastrophic consequences for the health of humans and
32 other species. For example, SARS-CoV-2 spilled over into human populations [1] and became pandemic,
33 killing more than 6 million people when this study was published [2]. Moreover, the frequency of

34 spillover events and the rate of new disease emergence has been increasing in the recent past [3],
35 endowing urgency to the task of understanding drivers of spillover and the progression of emergence.
36 Studies in wild systems with ongoing spillover have provided substantial insights into the spillover and
37 emergence process [4–6], but experimental manipulation to test hypotheses in these systems can be
38 impractical due to ethical and logistical concerns. Moreover, disease emergence is so rare that it
39 typically can only be studied retrospectively. Therefore, it remains a challenge to understand what
40 factors facilitate emergence and how evolution proceeds in emerging pathogens.

41 Spillover requires that pathogens have the opportunity and the ability to exploit a new host;
42 emergence requires that this opportunity and ability persist through time [5,7]. Opportunity could occur
43 if hosts share habitats or resources. Ability may arise through mutations or pre-exist due to pathogen
44 plasticity or host similarity. Studies of natural spillover and emergence events have identified
45 characteristics of pathogens, hosts, and their interactions that generally support the above. For
46 example, pathogens that successfully spill over are likely to be RNA viruses with large host ranges [8,9].
47 Likewise, hosts with close phylogenetic relationships are more likely to share pathogens than more
48 distantly related hosts [9–14]. In addition, geographic overlap between hosts is associated with sharing
49 pathogens [12], meaning that changes in host population distributions that bring new species into
50 contact could potentially promote spillover and emergence events [9,15–17].

51 Ecological factors (e.g. host densities, distributions, diversity, condition, and behavior) can
52 promote or hinder spillover by modulating host exposure risk or host susceptibility [5,7]. Likewise, it is
53 believed that ecological factors can promote or hinder emergence through the modulation of onward
54 transmission in spillover hosts, which determines whether pathogens meet dead ends in novel hosts,
55 transmit in stuttering chains, or adapt and persist [18–20]. Conclusively demonstrating the influence of
56 ecological factors, however, requires experimental manipulation, and it has so far been difficult to
57 perform such studies.

58 Experimental model systems have been essential for testing hypotheses about infectious
59 disease biology [21–23]. Indeed, major discoveries in immunity, pathogenesis, and pathogen ecology
60 and evolution come from model systems such as *Mus musculus* [24], *Drosophila melanogaster* [25],
61 *Daphnia* species [21], *Arabidopsis thaliana* [27], and *Caenorhabditis elegans* [28]. However, few model
62 systems exist to study the ecology and evolution of disease spillover and emergence, and the systems
63 that do exist lack key features known to drive disease dynamics (e.g. host behavior or transmission
64 ecology). A perfect model system would have large host population sizes, naturally transmitting, fast-
65 evolving pathogens (e.g. viruses), and multiple potential host species with variable susceptibility and
66 transmission.

67 *Caenorhabditis* nematode species are appealing model host candidates. Indeed, *C. elegans* and
68 various bacterial and microsporidian parasites are staples of evolutionary disease ecology [22,28].
69 Specifically, the trivial manipulation and sampling of laboratory host populations means that population-
70 level processes like disease transmission and evolution can be observed, and the tractable replication of
71 large populations makes possible the observation of rare events such as spillover and emergence.
72 However, until 2011, there were no known viruses of any nematodes including *C. elegans*. That changed
73 with the discovery of Orsay virus [29].

74 Orsay virus, a natural gut pathogen of *C. elegans*, is a bipartite, positive-sense, single-stranded
75 RNA (+ssRNA) virus that transmits readily in laboratory *C. elegans* populations through the fecal-oral
76 route [29]. This virus is an appealing model pathogen candidate since +ssRNA viruses have high
77 mutation rates [30] and typically evolve quickly [31]. Moreover, since Orsay virus transmits between
78 hosts in the lab, this system allows transmission itself to evolve, a critical component of emergence
79 [28,31–33] that cannot be readily studied in other animal laboratory systems of disease emergence. To
80 develop *Caenorhabditis* hosts and Orsay virus as a system for studying spillover and emergence, it is
81 necessary to know the extent to which the virus can infect and transmit in non-*elegans* *Caenorhabditis*

82 species. So far, such exploration been limited to one other species, *C. briggsae*, which was determined
83 to be refractory to infection [29]. Notably, an ancestral virus likely crossed at least one host species
84 boundary in the past since *C. briggsae* has been found to be susceptible to three related viruses [29,32–
85 34].

86 To explore the suitability of the *Caenorhabditis*-Orsay virus system for studies of disease
87 spillover and emergence, we first test a suite of *Caenorhabditis* species for susceptibility to Orsay virus,
88 and then we test the extent to which susceptible host species can transmit the virus. We establish lower
89 bounds for both susceptibility and transmission ability, and we test for effects of host phylogeny on
90 these traits. Though host ranges of pathogens have been studied by infection assays (e.g. [35–38]) or by
91 sampling infected hosts from natural systems (e.g. [11,39]), these studies do not typically distinguish
92 between dead-end infections, stuttering chains of transmission, and sustained transmission. We found
93 that nematodes varied in susceptibility to the virus and their ability to transmit it, affirming the promise
94 of this system for future studies of spillover and emergence.

95

96 METHODS

97 Susceptibility Assays

98 We assayed susceptibility of *Caenorhabditis* species to Orsay virus by measuring virus RNA in
99 virus-exposed host populations using quantitative PCR (qPCR). We obtained 84 wild isolate strains
100 belonging to 44 *Caenorhabditis* species (1–3 strains per species) from the *Caenorhabditis* Genetics
101 Center (CGC) and from Marie-Anne Félix. We tested each strain for Orsay virus susceptibility using 8
102 experimental blocks (Table 1, Table S1). Species identities were confirmed by sequencing the small
103 ribosomal subunit internal transcribed spacer ITS2 and/or by mating tests. For each *Caenorhabditis*
104 strain, we initiated three replicate populations with five adult animals. For sexual species, we used five

105 mated females, and for hermaphroditic species, we used five hermaphrodites. All populations were
106 maintained on nematode growth medium (NGM) in 60 mm diameter plates with a lawn of bacterial
107 food (lawns were seeded with 200 μ L *E. coli* strain OP50 in Luria-Bertani (LB) broth and allowed to grow
108 at room temperature for approximately 24 hours [40]). We exposed populations to virus by pipetting 3
109 μ L of Orsay virus filtrate, prepared as described in [29], onto the center of the bacterial lawn. We
110 determined the concentration of the filtrate to be 428.1 (95% CI: 173.4-972.3) \times the median tissue
111 culture infectious dose (TCID50) per μ L (Supplemental Information A) [41]. We maintained populations
112 at 20 °C until freshly starved (i.e. plates no longer had visible bacterial lawns). Depending on the strain,
113 this took anywhere from 3 to 28 days (Table S1). While this meant that strains may have experienced
114 variable numbers of generations, this method ensured that all the exposure virus was consumed. We
115 collected nematodes from freshly starved plates by washing plates with 1,800 μ L of water and
116 transferring suspended animals to 1.7 mL microcentrifuge tubes. We centrifuged tubes at 1000 \times g for 1
117 minute to pellet nematodes. We removed the supernatant down to 100 μ L (including the pellet of
118 nematodes) and ‘washed’ external virus from nematodes by adding 900 μ L of water and removing it 5
119 times, centrifuging at 1000 \times g for 1 minute between each wash. After the five washes, we lysed the
120 nematodes by transferring the nematode pellet along with 500 μ L water to 2 mL round-bottom snap cap
121 tubes, adding approximately 100 μ L of 0.5 mm silica beads, and shaking in a TissueLyser II (Qiagen) for 2
122 minutes at a frequency of 30 shakes per second. We then removed debris with two centrifugation steps
123 of 17,000 \times g for 5 minutes, each time keeping the supernatant and discarding the pellet. Samples were
124 stored at -80 °C.

125 We used qPCR to measure viral RNA in these samples. Primers and probe were: Forward: GTG
126 GCT GTG CAT GAG TGA ATT T, Reverse: CGA TTT GCA GTG GCT TGC T, Probe: 6-FAM-ACT TGC TCA GTG
127 GTC C-MGB. We performed 10 μ L reactions composed of 1.12X qScript XLT One-Step RT-qPCR ToughMix
128 (Quantabio), 200 nM each of forward and reverse primers and probe, and 2 μ L of sample. Reaction

129 conditions were: 50 °C (10 min), 95 °C (1 min), followed by 40 cycles of 95 °C (3 sec), 60 °C (30 sec).
130 Assays were run on a 7500 Fast Real-Time qPCR System (Thermo Fisher Scientific, Applied Biosystems).
131 Cycle threshold (Ct) values were determined using the auto-baseline and auto-threshold functions of the
132 7500 Fast Real-Time software (Thermo Fisher Scientific, Applied Biosystems).

133 Each experimental block also contained five sets of controls and benchmarks (Table 2). Control 1
134 was a negative control where *C. elegans* laboratory strain N2 was exposed to water instead of virus.
135 Controls 2 and 3 were positive controls where *C. elegans* strains known to have moderate (N2) and high
136 (JU1580) susceptibility were exposed (control 2, strain N2: mean(Ct)=15.7, sd(Ct)=2.0; control 3, strain
137 JU1580: mean(Ct)=12.7, sd(Ct)=2.2). Benchmark 4 was used to determine a Ct threshold for overt
138 infection (i.e. susceptibility); we added virus to OP50-seeded NGM plates without nematodes and
139 treated them identically to our plates with exposed nematodes during extractions. Therefore, these
140 plates were used to quantify the amount of exposure virus that remains after the washing and
141 extraction procedure (benchmark 4: mean(Ct)=38.4, sd(Ct)=2.6). Benchmark 5 was used to quantify the
142 maximum amount of virus that could be present without replication (benchmark 5: mean(Ct)=22.0,
143 sd(Ct=0.6), and thus to generate a highly conservative Ct threshold for infection; it was determined by
144 diluting 3 µL of exposure virus into 497 µL water, which corresponds to the final volume of our
145 extractions. Samples with more virus than benchmark 5 therefore give unequivocal evidence of virus
146 amplification. In practice, benchmark 5 is overly conservative as a threshold for determining infection
147 because virus is expected to be washed away during the wash steps, extractions are likely to be less than
148 100% efficient, and the virus may degrade between exposure and extraction. We therefore used
149 benchmark 4 and the within-strain standard deviation in Ct among plates to set a threshold for
150 determining infection status based on Ct. We calculated variance in the Cts for each strain (with
151 undetectable virus assigned a Ct of 40), found the mean variance, and took the square root; the result
152 ($\sqrt{\text{var(Ct)}}=4.1$) is equivalent to the standard deviation in Ct values within a strain. We set a threshold

153 of one standard deviation more virus than the maximum amount of virus detected in benchmark 4
154 plates ($C_t=33.6$), yielding a threshold of $C_t<29.5$. Strains were considered susceptible if at least one
155 replicate population had more virus than this threshold. Note that had we used benchmark 5 rather
156 than benchmark 4 to determine infection status, only 4 of 21 strains would have changed susceptibility
157 designation (JU2837, JU4056, JU4088, JU4096). To confirm that virus was replicating within novel hosts
158 deemed to be susceptible, we measured virus levels over time in three of our susceptible, novel host
159 strains (Supplemental Information B; Supplemental Figure B1).

160

161 Transmission Assays

162 We conducted transmission assays for all strains where at least one replicate population was
163 determined to be infected in our susceptibility assay. First, three replicate populations were initiated as
164 above and exposed to 3 μ L of virus filtrate. At the same time, we initiated three replicate positive
165 control populations of *C. elegans* laboratory strain N2 exposed to 3 μ L of virus filtrate and three
166 replicate negative control populations of N2s exposed to 3 μ L of water. When populations were recently
167 starved, 20 adult nematodes (mated females for sexual species or hermaphrodites for hermaphroditic
168 species) were chosen at random and passaged to virus-free plates with fresh food (*E. coli* strain OP50
169 lawns prepared as above). Remaining animals were washed from the starved plates, virus was extracted,
170 and viral RNA quantified via qPCR as above (Table S2). We passaged each replicate line 5 times, or until
171 there was no detectable viral RNA by qPCR. Controls were passaged 5 times regardless of virus
172 detection.

173 We assigned each passage line a transmission score of 0, 1, 2, or 3 based on detection of viral
174 RNA through the passages. A value of 0 was assigned when viral RNA was not detected in the exposure
175 population; a value of 1 was assigned when viral RNA was detected in the exposure population but not

176 in the first passage population; a value of 2 was assigned when viral RNA was detected in the first
177 passage population but became undetectable on or before the fifth passage population; and a value of 3
178 was assigned when viral RNA was still detectable in the fifth passage population.

179

180 Statistical Analysis

181 We quantified phylogenetic relationships among nematode species using data from the most
182 recent published phylogeny of *Caenorhabditis* [45]. We rooted the phylogeny with *Diploscapter pachys*
183 as the outgroup and constrained the tree to be ultrametric (i.e. tips are all equidistant from the root – a
184 requirement for our downstream analysis) using the ‘chronos’ function in the ‘ape’ package [46]. We
185 selected a strict clock model since this method yielded the best ultrametric tree determined by the Phi
186 Information Criterion [47].

187 We then fit suites of Bayesian phylogenetic mixed effects models to the susceptibility and
188 transmission data using the ‘MCMCglmm’ package [36,42,43] in R [44] (Table 3, Table 4). Within each
189 suite, models were compared using the Deviance Information Criterion (DIC) to determine which model
190 best explains the data (lowest DIC) and which model components are most important for describing
191 patterns (see below) [48]. Best models according to DIC were used to draw additional conclusions about
192 the significance of model components (see below). Data from controls and benchmarks were excluded
193 from analyses of both the susceptibility and transmission data.

194 Two model components were included or excluded to generate our suite of models for the
195 susceptibility data (Table 3): a fixed effect of phylogenetic distance from *C. elegans* (calculated for each
196 species with the ‘cophenetic.phylo’ function in ‘ape’ [46]) and a random effect of the inverse relatedness
197 matrix between species pairs (i.e. the inverse of the matrix that contains the distance from the root to
198 the common ancestor of any two species, calculated by the function ‘inverseA’ within the package

199 'MCMCglmm' [42,49]). The inverse relatedness matrix (hereafter referred to as "phylogenetic distance
200 between pairwise sets of species") accounts for variation explained by phylogenetic relationships
201 assuming a Brownian model of evolution [36]. An additional random effect of species accounts for
202 differences among species that are not explained by phylogeny, and was included in all models. Since
203 our susceptibility data are binomial, we fit them using logistic regression with a logit link. In practice this
204 was achieved by setting family to 'multinomial2'.

205 Three model components were included or excluded to generate our suite of models for the
206 transmission data (Table 4). Our most complicated transmission model included the two phylogenetic
207 factors described above as well as an additional fixed effect of viral amplification in the primary
208 exposure population measured as Ct, which was determined to likely be important upon plotting our
209 data during preliminary analyses. All transmission models also included a random effect of species to
210 account for differences between species that are not explained by phylogeny and a random effect of
211 strain to account for replication at the strain level (Table 4). Our transmission data are continuous, and
212 we fit them using linear regression by setting family to 'gaussian'.

213 We used the MCMCglmm default priors for fixed effects (normal distribution with mean = 0 and
214 variance = 10^8) and parameter expanded priors for random effects that result in scaled multivariate F
215 distributions with V=1, nu=1, alpha.mu=0, alpha.V=1000 [50]. Residuals were assigned inverse Wishart
216 priors with V=1 n=0.002 [50]. We ran models for 10,000,000 iterations with a burn in of 30,000 and
217 thinning interval of 5,000. We visualized traces to affirm convergence of MCMC chains and confirmed
218 stationarity with the test 'heidel.diag' in the package 'coda' [51]. The handful of models that had not
219 converged were rerun with more iterations and larger thinning intervals to achieve convergence.

220 We compared models using DIC to select the best model. For the best model, we report
221 posterior means and central posterior density 95% credible intervals as well as MCMC p-values for the

222 fixed effects. Because p-values cannot be obtained for random effects, we also report the R^2 values
 223 (calculated as described in [52]) for all model components included in our best model. We additionally
 224 used DIC to describe the relative support of each model and to further understand the importance of
 225 model components [48]. We calculated DIC weights for each model, each model component, and the
 226 phylogenetic components combined [53]. The DIC weight of a model, calculated as $\frac{e^{-\Delta DIC/2}}{\sum_j e^{-\Delta DIC/2}}$ where j is
 227 the set of all models, gives the relative support for each model. Similarly, the DIC weight of a model
 228 component, calculated as $\frac{\sum_i e^{-\Delta DIC/2}}{\sum_j e^{-\Delta DIC/2}}$ where i refers to the set of models that includes a given parameter
 229 and j is the set of all models, is the posterior probability that a given component is included in the 'true'
 230 model assuming the 'true' model has been designated. Thus, model components with DIC weights
 231 greater than 0.5 are more likely than not to be included in the 'true' model.

232 Table 1. Strains assayed for susceptibility to Orsay virus with the number of replicates processed in each
 233 block. When strains were assayed in multiple blocks, replicate numbers are given in the respective order
 234 of the blocks. Strains were acquired from the *Caenorhabditis* Genetics Center (University of Minnesota)
 235 and from Marie-Anne Felix (IBENS).

Strain	Species	Block	Number of Replicates	Strain	Species	Block	Number of Replicates
JU1199	<i>C. afra</i>	2	3	JU2613	<i>C. portoensis</i>	7	3
JU1198	<i>C. afra</i>	4	3	JU2745	<i>C. quiockensis</i>	2	3
JU1593	<i>C. afra</i>	7	3	MY28	<i>C. remanei</i>	2	3
NIC1040	<i>C. astrocarya</i>	3	1	PB206	<i>C. remanei</i>	6	3
QG704	<i>C. becei</i>	2	3	JU1082	<i>C. remanei</i>	6	3
SB280	<i>C. brenneri</i>	1	3	JU1201	<i>C. sinica</i>	1	3
SB129	<i>C. brenneri</i>	6	3	JU4053	<i>C. sinica</i>	4	3
LKC28	<i>C. brenneri</i>	6	3	JU1202	<i>C. sinica</i>	6	3
JU1038	<i>C. briggsae</i>	1,2,3 ¹	3,3,3	JU2203	<i>C. sp. 8</i>	5	2
EG4181	<i>C. briggsae</i>	6	3	QG555	<i>C. sp. 24</i>	3	3
ED3083	<i>C. briggsae</i>	6	3	JU2867	<i>C. sp. 24</i>	5,7	1,3
JU1426	<i>C. castelli</i>	3,7	3,3	JU2837	<i>C. sp. 24</i>	6	3
JU1333	<i>C. doughertyi</i>	1	3	ZF1092	<i>C. sp. 25</i>	3	3
JU1328	<i>C. doughertyi</i>	4	3	QX2263	<i>C. sp. 27</i>	1,3	2,3
JU1331	<i>C. doughertyi</i>	5	3	DF5152	<i>C. sp. 30</i>	3	3
DF5112	<i>C. drosophilae</i>	3	3	NIC1070	<i>C. sp. 43</i>	2	3
GXW1	<i>C. elegans</i>	6	3	JU4050	<i>C. sp. 62</i>	5	3
JU1401	<i>C. elegans</i>	6	3	JU4045	<i>C. sp. 62</i>	7	3
ED3042	<i>C. elegans</i>	6	3	JU4056	<i>C. sp. 63</i>	6	3
NIC113	<i>C. guadaloupensis</i>	1	3	JU4061	<i>C. sp. 64</i>	6	3
EG5716	<i>C. imperialis</i>	3	3	JU4087	<i>C. sp. 65</i>	4	3
JU1905	<i>C. imperialis</i>	7	3	JU4093	<i>C. sp. 65</i>	5	3
NKZ35 ²	<i>C. inopinata</i>	3	3	JU4092	<i>C. sp. 65</i>	5	3
QG122	<i>C. kamaaina</i>	2	3	JU4094	<i>C. sp. 66</i>	4	3
VX80	<i>C. latens</i>	1	3	JU4096	<i>C. sp. 66</i>	4	3
JU3325	<i>C. latens</i>	4	3	JU4088	<i>C. sp. 66</i>	4	3

JU724	<i>C. latens</i>	5,7	1,3	SB454	<i>C. sulstoni</i>	2	3
JU1857	<i>C. macropsperma</i>	2	3	JU2774	<i>C. tribulationis</i>	1	3
JU1865	<i>C. macropsperma</i>	5	3	JU2776	<i>C. tribulationis</i>	5	3
JU1853	<i>C. macropsperma</i>	7	3	JU2775	<i>C. tribulationis</i>	5	3
JU2884 ³	<i>C. monodelphis</i>	8	3	JU1373	<i>C. tropicalis</i>	1	3
JU1667 ³	<i>C. monodelphis</i>	8	3	JU1428	<i>C. tropicalis</i>	2	3
JU1325	<i>C. nigoni</i>	1,2,3	2, 1, 3	JU2469	<i>C. uteleia</i>	2	3
JU2617	<i>C. nigoni</i>	4	3	JU2458	<i>C. uteleia</i>	4	3
EG5268	<i>C. nigoni</i>	6	3	JU1968	<i>C. virilis</i>	3	3
JU1825	<i>C. nouraguensis</i>	1	3	JU2758	<i>C. virilis</i>	5	3
JU1833	<i>C. nouraguensis</i>	5	3	NIC564	<i>C. waitukubuli</i>	1	3
JU1854	<i>C. nouraguensis</i>	6	3	JU1873	<i>C. wallacei</i>	1	3
QG702	<i>C. panamensis</i>	2	3	EG6142	<i>C. yunquensis</i>	3	3
JU2770	<i>C. parvicauda</i>	7	3	JU2156	<i>C. zanzibari</i>	1	3
EG4788	<i>C. portoensis</i>	1	3	JU3236	<i>C. zanzibari</i>	6	3
JU3126	<i>C. portoensis</i>	5	3	JU2161	<i>C. zanzibari</i>	7	3

236 ¹JU1038 was included in the first three blocks as a type of negative control since a previous study found
 237 that *C. briggsae* was not susceptible. We discontinued this practice given the number of strains we
 238 needed to test.

239 ²Strain NKZ35 was maintained at 23°C according to *Caenorhabditis* Genetics Center recommendation.

240 ³Populations were initiated with 12 juvenile animals due to challenges rearing animals with standard
 241 methods.

242

243 Table 2. Description of controls and benchmarks included in triplicate in each of the 8 blocks of the
 244 susceptibility assays.

Control/benchmark	Description	Type
1	Laboratory <i>C. elegans</i> strain N2 exposed to 3 µL water	Negative control
2	Laboratory <i>C. elegans</i> strain N2 exposed to 3 µL Orsay virus filtrate	Positive control
3	Highly susceptible <i>C. elegans</i> strain JU1580 exposed to 3 µL of Orsay virus filtrate	Positive control
4	3 µL Orsay virus filtrate pipetted on the center of bacterial lawn with no nematodes	Threshold ^a
5	3 µL Orsay virus filtrate added directly to 497 µL water, yielding the final extraction volume for experimental populations.	Threshold ^b

245 ^aThe purpose of this benchmark was to quantify exposure virus remaining in samples after 5 rounds of
 246 washing.

247 ^bThe purpose of this benchmark was to quantify the maximum amount of virus that could be present in
248 the absence of viral replication (i.e. total amount of virus added to each plate).

249

250

251 Table 3. Models compared for analysis of susceptibility patterns. All models included an intercept. The
252 random effect of species is retained in all models to avoid pseudo-replication.

Model	Δ DIC	DIC weight
Suscep. ~ fixed = phylo. dist., random = pairwise phylo. dist. + species	0	0.544
Suscep. ~ fixed = phylo. dist., random = species	1.731	0.229
Suscep. ~ fixed = random = pairwise phylo. dist. + species	2.370	0.166
Suscep. ~ fixed = random = species	4.368	0.061

253 'phylo. dist' indicates the effect of phylogenetic distance from *C. elegans* whereas 'pairwise phylo. dist.'
254 Indicates the effect of phylogenetic distance between species pairs.

255

256

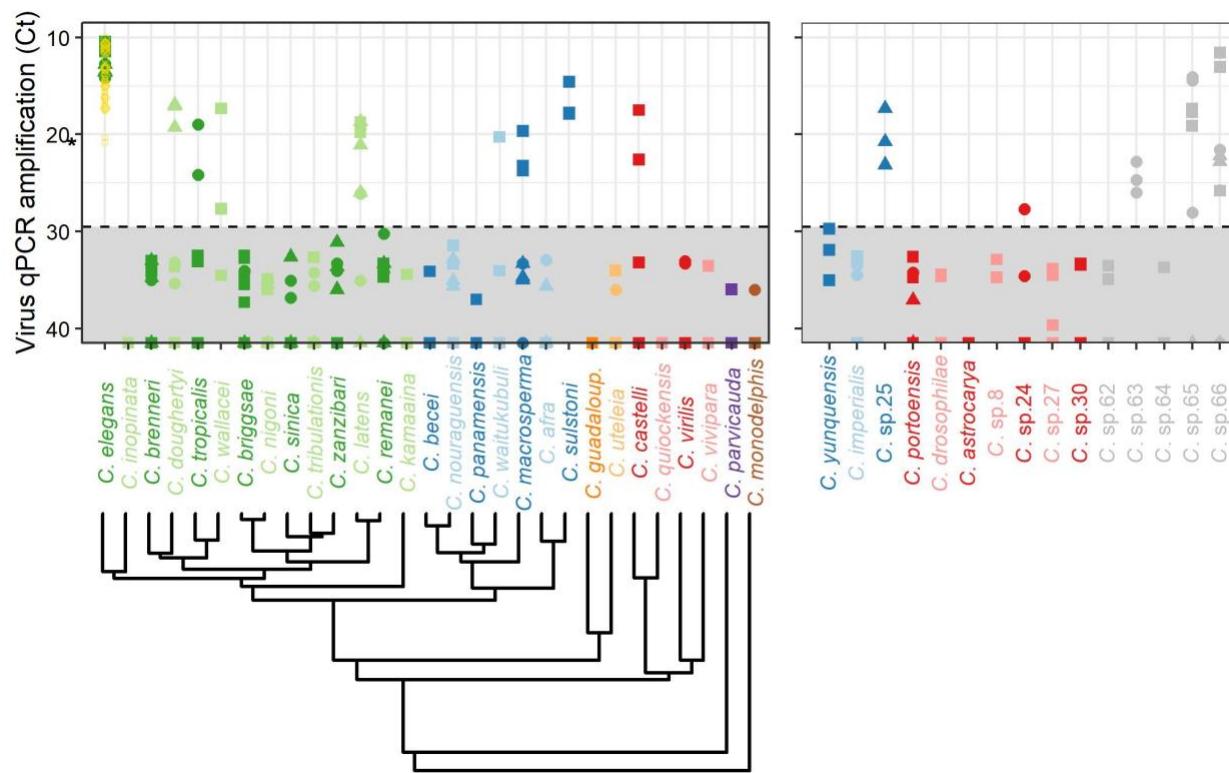
257 Table 4. Models compared for analysis of transmission scores. All models included an intercept. Random
258 effects of species and strain are retained in all models to avoid pseudo-replication.

Model	Δ DIC	DIC weight
Trans. ~ fixed = Ct + phylo. dist., random = pairwise phylo. dist. + species + strain	0	0.275
Trans. ~ fixed = Ct + phylo. dist., random = species + strain	0.518	0.212
Trans. ~ fixed = Ct , random = pairwise phylo. dist + species + strain	0.633	.200
Trans. ~ fixed = Ct , random = species + strain	0.908	0.174
Trans. ~ fixed = phylo. dist., random = pairwise phylo. dist. + species + strain	4.015	0.037
Trans. ~ fixed = phylo. dist., random = species + strain	4.166	0.034
Trans. ~ fixed = random = species + strain	4.205	0.034
Trans. ~ fixed = random = pairwise phylo. dist. + species + strain	4.205	0.034

259 'Ct' indicates viral amplification on primary exposure plates. 'phylo.dist' indicates the effect of
260 phylogenetic distance from *C. elegans* whereas 'pairwise phylo. dist.' Indicates the effect of phylogenetic
261 distance between species pairs.

262

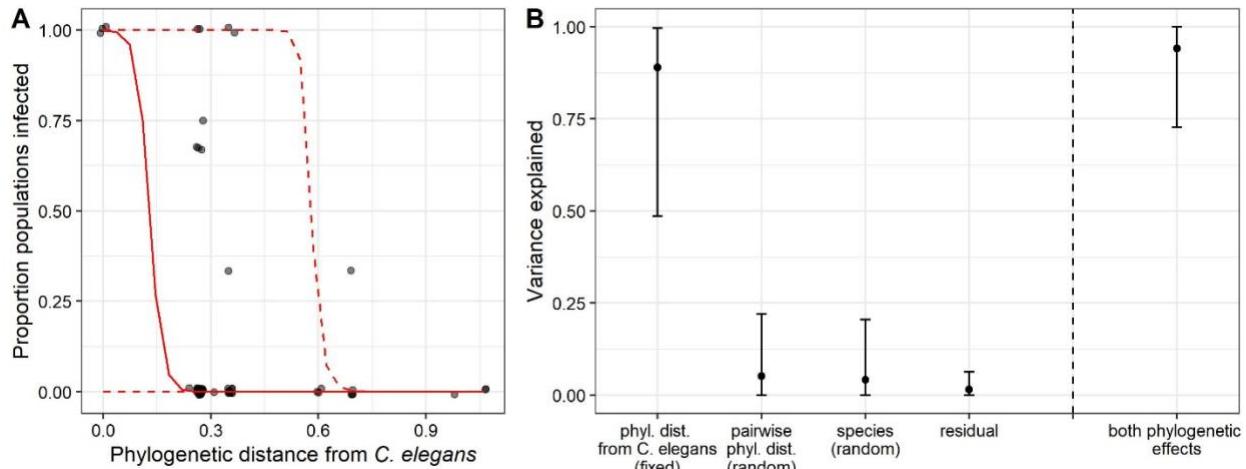
263 RESULTS


264 Susceptibility Assays

265 In our assays of host susceptibility to Orsay virus, we identified 21 susceptible *Caenorhabditis* strains of
266 the 84 experimental strains tested (Figure 1). These included three (non-control) strains of *C. elegans*
267 (note that one of these strains, JU1401, had been previously documented to be susceptible [54]) and 18
268 strains belonging to 13 other species. In total, we found that Orsay virus is capable of infecting hosts
269 from at least 14 of 44 *Caenorhabditis* species.

270 Our statistical analysis uncovered the importance of host phylogeny in explaining differences in
271 susceptibility. Our best model included both phylogenetic effects (Table 3). In this best model, the fixed
272 effect of phylogenetic distance from *C. elegans* was significant ($p_{MCMC} = 0.044$, posterior mean: -81.56;
273 95% CI=-272.31 - -1.61; Figure 2A). The importance of phylogenetic distance from *C. elegans* was also
274 supported by the observation that susceptible strains were less well distributed across the phylogenetic
275 tree than random (i.e. the mean distance from *C. elegans* of susceptible strains was 0.259 and ranged
276 from 0 to 0.687, while the mean distance from *C. elegans* of all strains was 0.367 and ranged from 0 to
277 1.06). We also used R^2 values from the best model and DIC weights calculated from the suite of models
278 to further explore the importance of phylogenetic effects. Phylogenetic distance from *C. elegans*
279 explained 89.0% (95% CI: 48.7% - 99.6%) of the variance in susceptibility (Figure 2B) and had a DIC
280 weight of 0.773. The random effect of pairwise phylogenetic distance explained 5.15% (95% CI: 0.0% -
281 22.0%) of the variance in susceptibility (Figure 2B) and had a DIC weight of 0.710. Importantly, both
282 phylogenetic effects together explained 94.1% (95% CI 72.8% - 100%) of the variance (Figure 2B), and

283 models that included at least one of these phylogenetic effects had a weight of 0.939. Further, the
 284 model lacking either phylogenetic effect had a low DIC weight of 0.061, demonstrating additional
 285 support for the importance of phylogenetic effects [55,56]. The species-level random effect explained
 286 4.2% (95% CI: 0.0% - 20.5%) of the variance in susceptibility (Figure 2B); we were not able to compute
 287 DIC weight for this component since it was included in all the susceptibility models.


288

289

290 Figure 1. Species across the *Caenorhabditis* phylogeny are susceptible to Orsay virus (i.e. Ct values
 291 smaller than the infection determination cut off (dashed line, see methods regarding 'benchmark 4').
 292 Note that smaller Ct values denote more virus). The asterisk on the left side of the y-axis shows the Ct
 293 value from the 'benchmark 5' sample with the most detectable virus (Table 2). The phylogeny (bottom
 294 left) is pruned from [56]. Many species currently have uncertain phylogenetic placement (right). Species
 295 for which a clade is hypothesized are color-coded accordingly. These hypotheses were obtained from
 296 [57]. However, clades are unknown for *C. sp. 62*, *C. sp. 63*, *C. sp. 64*, *C. sp. 65*, *C. sp. 66*. Shapes indicate
 297 different strains within a species, colors differentiate clades, but are otherwise only varied to aid
 298 visualization. Open gold circles and diamonds indicate Ct values for positive controls ('control 2' and
 299 'control 3' plates respectively; Table 2).

300

301

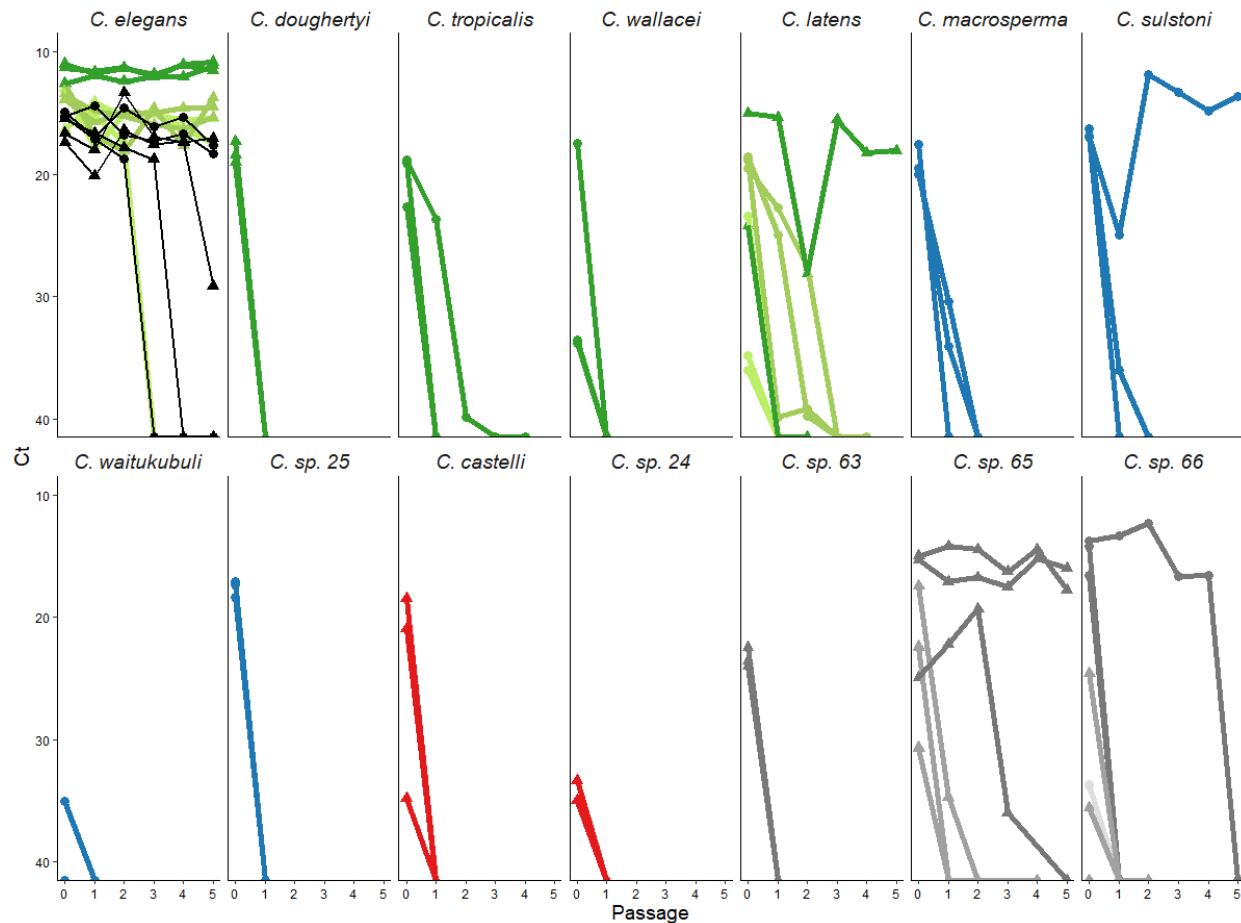
302 Figure 2. The best model for Orsay virus susceptibility included two phylogenetic components: a fixed
 303 effect of phylogenetic distance from the native host *C. elegans* and a random effect of phylogenetic
 304 distance between pairwise sets of species (Table 3). A) Slightly jittered points represent the proportion
 305 of exposed populations that became infected for a given strain plotted against the strains' phylogenetic
 306 distance from *C. elegans*. The solid red line shows the median model prediction. Dashed lines depict 95%
 307 credible intervals. B) Variance explained (R^2) by each factor in the best model [52].

308

309 Transmission Assays

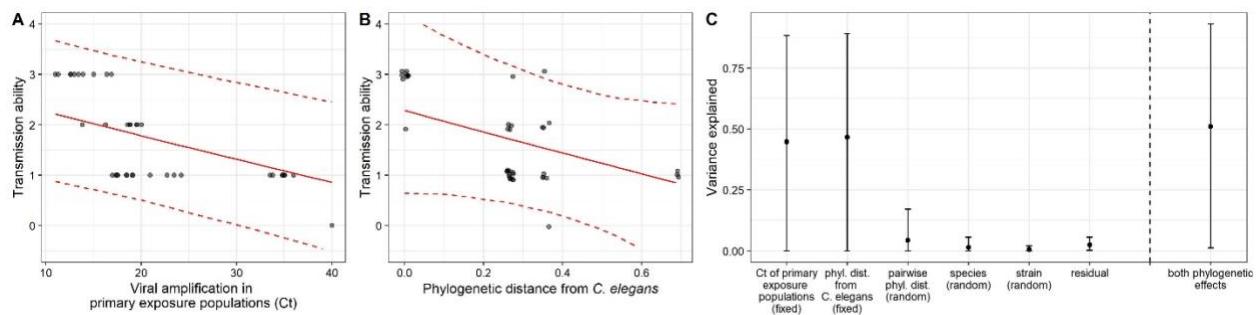
310 We used the strains we identified to be susceptible in a subsequent transmission assay, which was
 311 completed in 2 blocks. Most replicates of *C. elegans* strains as well as positive control replicates (*C.*
 312 *elegans* strain N2) maintained high levels of virus through five passages (Figure 2). However, virus was
 313 lost in 1 out of 3 control replicates in both blocks; in retrospect, this is unremarkable since the N2 strain
 314 used for controls is known to be less susceptible to Orsay virus than many other *C. elegans* strains [51].
 315 Non-*elegans* strains did not transmit the virus as well in most cases. Virus was undetectable in the first
 316 passage population in all replicates of *C. doughertyi*, *C. wallacei*, *C. latens* strain JU3325, *C. waitukubuli*,
 317 *C. sp. 25*, *C. castelli*, *C. sp. 24*, *C. sp. 63*, and *C. sp. 66* strains JU4088 and JU4096. Virus was also
 318 undetectable in the first passage population in one or two replicates of *C. tropicalis*, *C. latens* strain
 319 JU724, *C. macrosperma*, *C. sulstoni*, *C. sp. 65* strain JU4087, and *C. sp. 66* strain JU4094. Virus was

320 maintained for 1-4 passages in at least one replicate of strains of *C. tropicalis*, *C. latens* strain VX80, *C.*
321 *macroisperma*, *C. sulstoni*, *C. sp.* 65 strains JU4093 and JU4087, and *C. sp.* 66 strain JU4094. Virus was
322 detectable through the 5th passage in four non-*elegans* replicates belonging to three strains of different
323 species: 1 replicate of *C. sulstoni* strain SB454, 1 replicate of *C. latens* strain JU724, and 2 replicates of *C.*
324 *sp.* 65 strain JU4093 (Figure 3).


325 The primary exposure populations (passage 0) in our transmission assay were treated nearly
326 identically to populations in our susceptibility assay. As an internal control, we thus note high
327 concordance between Ct measures in both assays (correlation coefficient = 0.85). In a separate
328 experiment, we completed passages for additional replicates of 2 susceptible strains (*C. sulstoni* SB454
329 and *C. latens* VX80) for up to 12 passages, which yielded similar results to those in Figure 3
330 demonstrating repeatability of our data (Supplemental Information B, Figure B2).

331 As with the susceptibility data, we again identified factors associated with differences in
332 transmission through model analysis. Our best model included a significant effect of viral amplification
333 (Ct) in primary exposure populations (pMCMC=0.009; posterior mean: -0.04, 95% CI= -0.08 - -0.01), a
334 non-significant effect of phylogenetic distance from *C. elegans* (pMCMC=0.132; posterior mean: -2.16,
335 95% CI=-5.46 – 0.95; Figure 4A,C), and a random effect of phylogenetic distance between pairwise sets
336 of species. Notably, the fixed effects were moderately correlated (correlation coefficient = 0.477).

337 Viral amplification in primary exposure populations explained 44.8% (95% CI=0% - 88.3%; Figure
338 4B,C) of the variation in transmission ability and had a DIC weight of 0.862. Phylogenetic distance from
339 *C. elegans* explained 46.6% (95% CI=0% - 89.0%) of the variation in transmission ability and had a DIC
340 weight of 0.558, and pairwise phylogenetic distance between sets of species explained 4.3% (95%
341 CI=0%-17.1%; Figure 4C) of the variation in transmission and had a DIC weight of 0.546. Combined, the
342 phylogenetic effects explained 50.9% (95% CI=1.2%-93.0%) of the variation in transmission and models
343 including at least one of the phylogenetic effects had a weight of 0.792. The R² values and DIC weights


344 indicate strong support for an effect of viral amplification in primary exposure populations and at least
 345 some support for each phylogenetic effect in explaining transmission ability despite the non-significant
 346 effect of phylogenetic distance from *C. elegans* in the best model. Interestingly, in the second-best
 347 model (Table 4), which included phylogenetic distance from *C. elegans* and viral amplification in primary
 348 exposure populations but not the random effect of pairwise phylogenetic distance, phylogenetic
 349 distance from *C. elegans* was found to be marginally significantly associated with transmission ability
 350 (pMCMC=0.083, posterior mean: -1.88, 95% CI= -4.02 - 0.35). Little of the variation in transmission
 351 ability was explained by species ($R^2=1.4\%$, 95% CI=0%-5.6%) or strain ($R^2=0.5\%$, 95% CI=0%-2.1%).

352

353

354 Figure 3. Orsay virus persisted to different extents when susceptible hosts were sequentially passaged to
 355 virus-free plates. “Passage 0” denotes the primary exposure population. This experiment was carried out
 356 in two blocks indicated by shape (circle=block 1, triangle=block 2). N2 controls were present in both
 357 blocks, shown in black. Colors match color-coded phylogeny in Figure 1. Shades represent different
 358 strains within a species: *C. elegans* GXW1 (dark green), ED3042 (medium green), JU1401 (light green); *C.*
 359 *doughertyi* JU1331; *C. tropicalis* JU1428; *C. wallacei* JU1873; *C. latens* JU724 (dark green); one of the
 360 three replicate lines was removed from analysis due to bacterial contamination), VX80 (medium green),
 361 JU3325 (light green); *C. macroserperma* JU1857; *C. sulstoni* SB454; *C. waitukubuli* NIC564; *C. sp.* 25
 362 ZF1092, *C. castelli* JU1426; *C. sp.* 24 JU2837; *C. sp.* 63 JU4056; *C. sp.* 65 JU4093 (dark gray), JU4087
 363 (*medium gray*); *C. sp.* 66 JU4094 (dark gray), JU4088 (*medium gray*), JU4096 (*light gray*).
 364

365
 366 Figure 4. The best model for transmission ability included two fixed effects (viral amplification in primary
 367 exposure populations and phylogenetic distance from *C. elegans*) and three random effects
 368 (phylogenetic distance between pairwise sets of species, species, and strain) (Table 4). A) Transmission
 369 ability was negatively associated with the Ct of primary exposure populations (i.e. positively associated
 370 with viral amplification) and B) was negatively but non-significantly associated with phylogenetic
 371 distance from *C. elegans*. Note that points are jittered slightly. In A) and B), solid red lines depict the
 372 median effect size from the best model for how transmission ability declines with each fixed effect.
 373 Dashed lines represent central posterior density 95% credible intervals. C) Variance explained by
 374 components in the best model [52].
 375

376 DISCUSSION

377 In our study examining the host range of Orsay virus, we determined that at least 13
 378 *Caenorhabditis* species in addition to *C. elegans* are susceptible to Orsay virus infection, but even within
 379 a species, strains may differ in susceptibility and transmission ability. Specifically, we found 21
 380 susceptible *Caenorhabditis* strains (including 3 out of 3 *C. elegans* strains) out of 84 tested strains
 381 belonging to 44 species. When susceptible strains were assayed for transmission ability, 10 strains were

382 dead-end hosts in all replicates, and 6 strains (3 *C. elegans* strains, 1 *C. sulstoni* strain, 1 *C. latens* strain,
383 and 1 *C. sp. 65* strain) showed virus persistence for five passages in at least one replicate. The remaining
384 5 susceptible strains showed stuttering chains of transmission in at least one replicate. Our findings
385 constitute lower bounds for the number of species and strains that are susceptible and can transmit
386 Orsay virus; increased sampling of strains or increased replication could very well have identified more
387 instances of susceptibility or transmission especially since these phenomena may be the result of
388 stochastic ecological and evolutionary processes. Furthermore, we note that susceptibility and
389 transmission findings are likely dependent on experimental conditions as we expect aspects of ecology
390 such as dose and food quantity to impact spillover and emergence. Here, we found that susceptibility
391 was associated with two phylogenetic effects: distance from *C. elegans* and phylogenetic distance
392 between pairwise sets of species. Transmission ability was weakly associated with these phylogenetic
393 effects according to analysis of DIC weights but strongly positively associated with viral amplification in
394 primary exposure populations. Overall, we argue that the variation we observed among *Caenorhabditis*
395 species and strains in susceptibility and transmission ability primes the *Caenorhabditis*-Orsay virus
396 system to be valuable for experimental studies on the ecology and evolution of pathogen spillover and
397 emergence.

398 Replicating findings from several other experimental studies of host range [29,32–34], we found
399 evidence of phylogenetic effects on susceptibility. Host species more closely related to the native host *C.*
400 *elegans* were more likely to be susceptible to infection, and closely related hosts had more similar
401 susceptibilities regardless of their relationship to the native host. We expect that the importance of
402 phylogenetic effects would only become more readily detectable if our unplaced *Caenorhabditis* species
403 were placed on the phylogeny, since their lack of placement cost us statistical power. Importantly, we
404 recovered an effect of phylogenetic distance from *C. elegans* even though few species are closely
405 related to *C. elegans* (Figure 1, Figure 2). A phylogenetic effect of susceptibility to related viruses (e.g.

406 Santeuil, Le Blanc, and Melnik, [29,32–34]) might be even more readily detectable since the native host
407 *C. briggsae* is a member of a clade with more closely related species.

408 We also tested for effects of phylogeny on transmission ability. Although patterns consistent
409 with a phylogenetic effect on transmission have been identified [10,36,58], to the best of our
410 knowledge, this has not been empirically documented. Our DIC analysis suggests that phylogenetic
411 effects are important for transmission ability, but with weak statistical support likely resulting in part
412 from the small number of hosts tested and their distribution across the phylogenetic tree. In addition,
413 the moderate correlation between phylogenetic distance from *C. elegans* and our other focal fixed
414 effect, viral amplification in primary exposure populations, may have made a phylogenetic distance
415 effect more difficult to detect.

416 The use of DIC for model selection provided us with an objective tool for specifying a best
417 model, and analysis of DIC weights allowed us to assess the relative importance of each factor included
418 in our models. However, DIC is imperfect [59]. We elected to use it anyway because there was not a
419 feasible alternative in our case [59]. We note that despite the shortcomings of DIC, we believe our
420 conclusions from the DIC analysis are nevertheless robust. Notably, the average estimated effect for
421 each factor was in the same direction across all models regardless of DIC score, and our R^2 analysis
422 provided conclusions consistent with our DIC weight analysis regarding the relative importance of our
423 fixed and random effects.

424 Phylogenetic patterns in susceptibility may arise because closely related hosts likely have similar
425 receptors, within-host environments, and pathogen defenses [58,59]. Unfortunately, the receptor used
426 by Orsay virus to enter host cells is currently unknown [60], and little is known about phylogenetic
427 patterns in relevant within-host traits [61]. Exploring these traits may yield a more mechanistic
428 understanding of determinants of Orsay virus competence. Notably, the important pathogen defense
429 pathway RNA interference (RNAi) (i.e. where cellular machinery recognizes double stranded RNA

430 (dsRNA) and degrades corresponding viral RNA sequences) has been investigated across *Caenorhabditis*
431 species [62,63]. This work uncovered phylogenetic patterns in the ability to respond to ingested dsRNA
432 [62]. Importantly, most strains responded to some extent when dsRNA was injected [62], suggesting
433 potential to mount an RNAi response to viral infection. Whether the nature and strength of the RNAi
434 response is a mechanistic explanation for the patterns of susceptibility observed in our study remains to
435 be explored formally, although we observed no obvious pattern between our data on susceptibility and
436 the data on RNAi responses across species.

437 The strongest predictor of transmission ability in our study was viral amplification in primary
438 exposure populations. We can imagine at least three reasons why amplification in primary exposure
439 populations may matter for transmission. First, high levels of viral amplification may indicate that the
440 virus was somewhat “pre-adapted” and had the ability to infect and transmit among novel hosts without
441 requiring any additional evolutionary changes [64]. Indeed, the correlation between viral amplification
442 in primary exposure populations with phylogenetic distance from *C. elegans* is consistent with this idea.
443 Second, if hosts can shed the virus, high levels of viral amplification may be indicative of higher
444 shedding, meaning that hosts would encounter more virus, which could increase infection prevalence. If
445 this was the case in our experiment, nematodes passaged from primary exposure populations with more
446 viral amplification may have been more likely to have been infected. Third, larger virus populations may
447 harbor more genetic variation, increasing opportunities for adaptive evolution that could maintain
448 persistence of the virus in the spillover host. Indeed, evolutionary rescue theory has shown that larger
449 populations are more likely to persist in comparison to smaller ones [65].

450 We also found substantial intra-species variation in susceptibility to Orsay virus. This result was
451 somewhat expected because there is natural variation in susceptibility in the native host *C. elegans*
452 [54]. Recent work has shown that the variation in *C. elegans* susceptibility can be partially attributed to
453 genetic variation in two defense pathways: RNAi [54,66] and the intracellular pathogen response [66–

454 68]. Future work may explore how genetic variation in these or other defense pathways influences
455 Orsay virus susceptibility within novel host species. In addition to these known determinants of viral
456 susceptibility in *C. elegans*, variation in gut physiology, behavior, feeding rates, population density and
457 demography may impact host susceptibility since these factors affect host-pathogen interactions in
458 other systems (e.g. [69–72]).

459 Here we have documented spillover and transmission of Orsay virus in *Caenorhabditis* hosts. It is
460 important to note, however, that the patterns we see with our susceptibility and transmission assays
461 may not fully predict spillover and emergence patterns among *Caenorhabditis* hosts in the wild.
462 Exposure risk is a key determinant of spillover and emergence [68,69], but in our experiments, we
463 exposed all hosts equally. Orsay virus exposure risk for *Caenorhabditis* species in nature is unknown
464 since we know little about the distributions of *Caenorhabditis* species and their viruses [73,74]. The two
465 host species that have been most extensively studied in the wild, *C. elegans* and *C. briggsae*, do have
466 overlapping distributions [75], but appear to be refractory to each other's viruses [68]. However, the fact
467 that three viruses related to Orsay virus have been found in *C. briggsae* [69] suggests that at least one
468 host jump has occurred in the past, since the viruses appear to be much more closely related [71] than
469 *C. briggsae* and *C. elegans* [76].

470 The *Caenorhabditis*-Orsay virus system joins a small set of empirical systems suitable for
471 studying spillover and emergence. Prior studies using other systems have yielded useful insights into
472 these processes. For example, bacteria-phage systems have been used to show that the probability of
473 virus emergence is highest when host populations contain intermediate combinations of native and
474 novel hosts [77], that pathogen variation in reservoir hosts drives emergence in novel hosts [78], and
475 that mutations that allow phages to infect novel hosts also constrain further host range expansion [79].
476 Plant-virus systems have been used to document the effects of host species on the fitness distribution of
477 viral mutations [80], to determine the importance of dose, selection, and viral replication for adaptation

478 to resistant hosts [81], and to characterize how spillover can impact competition among host species
479 [82,83]. *Drosophila*-virus systems have been used to show that viruses evolve in similar ways when
480 passaged through closely related hosts [46] and to show that spillover dynamics can depend on
481 temperature [84].

482 The *Caenorhabditis*-Orsay virus model can be uniquely useful for studying how ecology impacts
483 spillover and emergence in animal systems since population characteristics like density, genetic
484 variation, and immunity can be readily manipulated and virus transmission occurs without intervention
485 by a researcher. *Caenorhabditis* hosts have complex animal physiology, immune systems, and behavior,
486 meaning that this system can be useful for revealing the importance of variation in these traits. In this
487 study, we identified multiple susceptible spillover hosts that have variation in transmission ability. In the
488 future, these hosts can be used not only to probe how ecology impacts spillover and emergence, but
489 also to better understand how and why spillover and emergence patterns may differ across hosts.

490

491

492 ACKNOWLEDGEMENTS

493 We thank M-A Félix and A Richaud for *Caenorhabditis* strains and for technical advice. Some strains
494 were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40
495 OD010440). We thank AJ Belville for help with supplemental experiments, A Aluquin for help with viral
496 extractions, B Tuschhoff, C Geyer, and A Wood for statistical and computational assistance, A
497 Bhattacharya, H Dutra, B McGraw, E Hansen, and A Read for discussion, and L Stevens for technical
498 guidance on working with phylogenetic data. We are also grateful to M-A Félix and two anonymous
499 reviewers for comments on earlier drafts of this manuscript. This work was supported by National
500 Science Foundation grants DEB-1754692 and DEB-2211322. The funders had no role in study design,
501 data collection and analysis, decision to publish, or preparation of this article.

502

503 REFERENCES

504 1. Zhou P *et al.* 2020 A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* **579**, 270–273.

505

506 2. In press. Coronavirus resource center. *COVID-19 Dashboard by the Center for Systems Science and*
507 *Engineering (CSSE) at Johns Hopkins University (JHU)*. See <https://coronavirus.jhu.edu/map.html>
508 (accessed on 13 October 2021).

509 3. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. 2008 Global trends in
510 emerging infectious diseases. *Nature* **451**, 990–993.

511 4. Chua KB *et al.* 2000 Nipah virus: a recently emergent deadly paramyxovirus. *Science* **288**, 1432–
512 1435.

513 5. Plowright RK *et al.* 2015 Ecological dynamics of emerging bat virus spillover. *Proc. Biol. Sci.* **282**,
514 20142124.

515 6. Métras R *et al.* 2020 Estimation of Rift Valley fever virus spillover to humans during the Mayotte
516 2018-2019 epidemic. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 24567–24574.

517 7. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith JO. 2017 Pathways
518 to zoonotic spillover. *Nat. Rev. Microbiol.* **15**, 502–510.

519 8. Kreuder Johnson C *et al.* 2015 Spillover and pandemic properties of zoonotic viruses with high host
520 plasticity. *Sci. Rep.* **5**, 14830.

521 9. Olival KJ, Hosseini PR, Zambrana-Torrelío C, Ross N, Bogich TL, Daszak P. 2017 Host and viral traits
522 predict zoonotic spillover from mammals. *Nature* **546**, 646–650.

523 10. Streicker DG, Turmelle AS, Vonhof MJ, Kuzmin IV, McCracken GF, Rupprecht CE. 2010 Host
524 phylogeny constrains cross-species emergence and establishment of rabies virus in bats. *Science*
525 **329**, 676–679.

526 11. Barrow LN, McNew SM, Mitchell N, Galen SC, Lutz HL, Skeen H, Valqui T, Weckstein JD, Witt CC.
527 2019 Deeply conserved susceptibility in a multi-host, multi-parasite system. *Ecol. Lett.* **22**, 987–998.

528 12. Davies TJ, Pedersen AB. 2008 Phylogeny and geography predict pathogen community similarity in
529 wild primates and humans. *Proc. Biol. Sci.* **275**, 1695–1701.

530 13. Charleston MA, Robertson DL. 2002 Preferential host switching by primate lentiviruses can account
531 for phylogenetic similarity with the primate phylogeny. *Syst. Biol.* **51**, 528–535.

532 14. Ssebuliba E, Davies TJ. 2021 Assessing the phylogenetic host breadth of millet pathogens and its
533 implication for disease spillover. *Ecological Solutions and Evidence* **2**. (doi:10.1002/2688-
534 8319.12040)

535 15. Alexander KA, Carlson CJ, Lewis BL, Getz WM, Marathe MV, Eubank SG, Sanderson CE, Blackburn JK.
536 2018 The Ecology of Pathogen Spillover and Disease Emergence at the Human-Wildlife-
537 Environment Interface. In *The Connections Between Ecology and Infectious Disease* (ed CJ Hurst),
538 pp. 267–298. Springer International Publishing.

539 16. Jones RAC. 2020 Disease pandemics and major epidemics arising from new encounters between
540 indigenous viruses and introduced crops. *Viruses* **12**. (doi:10.3390/v12121388)

541 17. Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, Dobson AP,
542 Plowright RK. 2018 Pathogen spillover during land conversion. *Ecol. Lett.* **21**, 471–483.

543 18. Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JRC, Dobson AP, Hudson PJ, Grenfell BT.
544 2009 Epidemic dynamics at the human-animal interface. *Science* **326**, 1362–1367.

545 19. Wasik BR, de Wit E, Munster V, Lloyd-Smith JO, Martinez-Sobrido L, Parrish CR. 2019 Onward
546 transmission of viruses: how do viruses emerge to cause epidemics after spillover? *Philos. Trans. R.
547 Soc. Lond. B Biol. Sci.* **374**, 20190017.

548 20. Dennehy JJ. 2017 Evolutionary ecology of virus emergence. *Ann. N. Y. Acad. Sci.* **1389**, 124–146.

549 21. McLean KD, Duffy MA. 2020 Ecological context influences evolution in host-parasite interactions:
550 insights from the *Daphnia*-parasite model system. In *Evolution in Action: Past, Present and Future:
551 A Festschrift in Honor of Erik D. Goodman* (eds W Banzhaf, BHC Cheng, K Deb, KE Holekamp, RE
552 Lenski, C Ofria, RT Pennock, WF Punch, DJ Whittaker), pp. 289–307. Springer International
553 Publishing.

554 22. Gibson AK, Morran LT. 2017 A model for evolutionary ecology of disease: the case for
555 *Caenorhabditis* nematodes and their natural parasites. *J. Nematol.* **49**, 357–372.

556 23. O'Callaghan D, Vergunst A. 2010 Non-mammalian animal models to study infectious disease:
557 worms or fly fishing? *Curr. Opin. Microbiol.* **13**, 79–85.

558 24. Minkah NK, Schafer C, Kappe SHI. 2018 Humanized mouse models for the study of human malaria
559 parasite biology, pathogenesis, and immunity. *Front. Immunol.* **9**, 807.

560 25. Harnish JM, Link N, Yamamoto S. 2021 *Drosophila* as a model for infectious diseases. *Int. J. Mol. Sci.*
561 **22**. (doi:10.3390/ijms22052724)

562 26. Pagán I, Fraile A, Fernandez-Fueyo E, Montes N, Alonso-Blanco C, García-Arenal F. 2010 *Arabidopsis
563 thaliana* as a model for the study of plant-virus co-evolution. *Philos. Trans. R. Soc. Lond. B Biol. Sci.*
564 **365**, 1983–1995.

565 27. Marsh EK, May RC. 2012 *Caenorhabditis elegans*, a model organism for investigating immunity.
566 *Appl. Environ. Microbiol.* **78**, 2075–2081.

567 28. Gammon DB. 2017 *Caenorhabditis elegans* as an emerging model for virus-host interactions. *J.
568 Virol.* **91**. (doi:10.1128/JVI.00509-17)

569 29. Félix M-A *et al.* 2011 Natural and experimental infection of *Caenorhabditis* nematodes by novel
570 viruses related to nodaviruses. *PLoS Biol.* **9**, e1000586.

571 30. Sanjuán, Rafael, Nebot, Miguel R., Chirico, Nicola, Mansky, Louis M., Belshaw, Robert. 2010 Viral
572 mutation rates. *J. Virol.* **84**, 9733–9748.

573 31. Holmes EC. 2010 The comparative genomics of viral emergence. *Proc. Natl. Acad. Sci. U. S. A.* **107**
574 *Suppl 1*, 1742–1746.

575 32. Frézal L, Jung H, Tahan S, Wang D, Félix M-A. 2019 Noda-like RNA viruses infecting *Caenorhabditis*
576 nematodes: sympatry, diversity, and reassortment. *J. Virol.* **93**. (doi:10.1128/JVI.01170-19)

577 33. Franz CJ, Zhao G, Félix M-A, Wang D. 2012 Complete genome sequence of Le Blanc virus, a third
578 *Caenorhabditis* nematode-infecting virus. *J. Virol.* **86**, 11940.

579 34. Franz CJ, Renshaw H, Frezal L, Jiang Y, Félix M-A, Wang D. 2014 Orsay, Santeuil and Le Blanc viruses
580 primarily infect intestinal cells in *Caenorhabditis* nematodes. *Virology* **448**, 255–264.

581 35. Perlman SJ, Jaenike J. 2003 Infection success in novel hosts: an experimental and phylogenetic
582 study of *Drosophila*-parasitic nematodes. *Evolution* **57**, 544–557.

583 36. Longdon B, Hadfield JD, Webster CL, Obbard DJ, Jiggins FM. 2011 Host phylogeny determines viral
584 persistence and replication in novel hosts. *PLoS Pathog.* **7**, e1002260.

585 37. Hoverman JT, Gray MJ, Haislip NA, Miller DL. 2011 Phylogeny, life history, and ecology contribute to
586 differences in amphibian susceptibility to ranaviruses. *Ecohealth* **8**, 301–319.

587 38. Gilbert GS, Webb CO. 2007 Phylogenetic signal in plant pathogen-host range. *Proc. Natl. Acad. Sci.*
588 *U. S. A.* **104**, 4979–4983.

589 39. Levitt AL, Singh R, Cox-Foster DL, Rajotte E, Hoover K, Ostiguy N, Holmes EC. 2013 Cross-species
590 transmission of honey bee viruses in associated arthropods. *Virus Res.* **176**, 232–240.

591 40. Stiernagle T. 2006 Maintenance of *C. elegans*. *WormBook* , 1–11.

592 41. Chen K, Franz CJ, Jiang H, Jiang Y, Wang D. 2017 An evolutionarily conserved transcriptional
593 response to viral infection in *Caenorhabditis* nematodes. *BMC Genomics* **18**, 303.

594 42. Stevens L *et al.* 2020 The Genome of *Caenorhabditis bovis*. *Curr. Biol.* **30**, 1023-1031.e4.

595 43. Paradis E, Schliep K. 2019 ape 5.0: an environment for modern phylogenetics and evolutionary
596 analyses in R. *Bioinformatics* **35**, 526–528.

597 44. Paradis E. 2013 Molecular dating of phylogenies by likelihood methods: a comparison of models
598 and a new information criterion. *Mol. Phylogenet. Evol.* **67**, 436–444.

599 45. Hadfield J. 2010 MCMC methods for multi-response generalized linear mixed models: The
600 MCMCglmm R package. *J. Stat. Softw.* **33**, 1–22.

601 46. Longdon B, Day JP, Alves JM, Smith SCL, Houslay TM, McGonigle JE, Tagliaferri L, Jiggins FM. 2018
602 Host shifts result in parallel genetic changes when viruses evolve in closely related species. *PLoS*
603 *Pathog.* **14**, e1006951.

604 47. R Core Team. 2020 R: A Language and Environment for Statistical Computing.

605 48. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. 2002 Bayesian Measures of Model Complexity
606 and Fit. *J. R. Stat. Soc. Series B Stat. Methodol.* **64**, 583–639.

607 49. Hadfield JD, Nakagawa S. 2010 General quantitative genetic methods for comparative biology:
608 phylogenies, taxonomies and multi-trait models for continuous and categorical characters. *J. Evol.*
609 *Biol.* **23**, 494–508.

610 50. Gelman A. 2006 Prior distributions for variance parameters in hierarchical models (Comment on
611 Article by Browne and Draper). *Bayesian Analysis* **1**, 515–533.

612 51. Plummer M, Best N, Cowles K, Vines K. 2006 CODA: convergence diagnosis and output analysis for
613 MCMC. *R News* **6**, 7–11.

614 52. Nakagawa S, Schielzeth H. 2013 A general and simple method for obtaining R² from generalized
615 linear mixed-effects models. *Methods Ecol. Evol.* **4**, 133–142.

616 53. Burnham KP, Anderson DR. 2003 *Model Selection and Multimodel Inference: A Practical*
617 *Information-Theoretic Approach*. Springer Science & Business Media.

618 54. Ashe A, Bélicard T, Le Pen J, Sarkies P, Frézal L, Lehrbach NJ, Félix M-A, Miska EA. 2013 A deletion
619 polymorphism in the *Caenorhabditis elegans* RIG-I homolog disables viral RNA dicing and antiviral
620 immunity. *Elife* **2**, e00994.

621 55. Mazerolle MJ. 2006 Improving data analysis in herpetology: using Akaike's Information Criterion
622 (AIC) to assess the strength of biological hypotheses. *Amphib-reptil.* **27**, 169–180.

623 56. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009
624 Generalized linear mixed models: a practical guide for ecology and evolution. *Trends Ecol. Evol.* **24**,
625 127–135.

626 57. Kiontke K. 2018 *RhabditinaDB*. See <https://wormtails.bio.nyu.edu/> (accessed on 2 July 2021).

627 58. Guth S, Visher E, Boots M, Brook CE. 2019 Host phylogenetic distance drives trends in virus
628 virulence and transmissibility across the animal-human interface. *Philos. Trans. R. Soc. Lond. B Biol.*
629 *Sci.* **374**, 20190296.

630 59. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. 2014 The deviance information criterion: 12
631 years on. *J. R. Stat. Soc. Series B Stat. Methodol.* **76**, 485–493.

632 60. Jiang H, Chen K, Sandoval LE, Leung C, Wang D. 2017 An evolutionarily conserved pathway essential
633 for Orsay virus Infection of *Caenorhabditis elegans*. *MBio* **8**. (doi:10.1128/mBio.00940-17)

634 61. Stevens L *et al.* 2019 Comparative genomics of 10 new *Caenorhabditis* species. *Evol Lett* **3**, 217–
635 236.

636 62. Nuez I, Félix M-A. 2012 Evolution of susceptibility to ingested double-stranded RNAs in
637 *Caenorhabditis* nematodes. *PLoS One* **7**, e29811.

638 63. Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP. 2007 *Caenorhabditis elegans* SID-2 is
639 required for environmental RNA interference. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 10565–10570.

640 64. Mollentze N, Biek R, Streicker DG. 2014 The role of viral evolution in rabies host shifts and
641 emergence. *Curr. Opin. Virol.* **8**, 68–72.

642 65. Gonzalez A, Ronce O, Ferriere R, Hochberg ME. 2013 Evolutionary rescue: an emerging focus at the
643 intersection between ecology and evolution. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **368**, 20120404.

644 66. Sowa JN, Jiang H, Somasundaram L, Tecle E, Xu G, Wang D, Troemel ER. 2020 The *Caenorhabditis*
645 *elegans* RIG-I homolog DRH-1 mediates the intracellular pathogen response upon viral infection. *J.*
646 *Virol.* **94**. (doi:10.1128/JVI.01173-19)

647 67. Sterken MG *et al.* 2021 Punctuated loci on chromosome IV determine natural variation in Orsay
648 virus susceptibility of *Caenorhabditis elegans* strains Bristol N2 and Hawaiian CB4856. *J. Virol.* **95**.
649 (doi:10.1128/JVI.02430-20)

650 68. van Sluijs L *et al.* 2021 Balancing selection of the intracellular pathogen response in natural
651 *Caenorhabditis elegans* populations. *bioRxiv*., 579151. (doi:10.1101/579151)

652 69. Taracena ML *et al.* 2018 Regulation of midgut cell proliferation impacts *Aedes aegypti* susceptibility
653 to dengue virus. *PLoS Negl. Trop. Dis.* **12**, e0006498.

654 70. Hall SR, Sivars-Becker L, Becker C, Duffy MA, Tessier AJ, Cáceres CE. 2007 Eating yourself sick:
655 transmission of disease as a function of foraging ecology. *Ecol. Lett.* **10**, 207–218.

656 71. Weinstein SB, Buck JC, Young HS. 2018 A landscape of disgust. *Science* **359**, 1213–1214.

657 72. Khalil H, Hörfeldt B, Evander M, Magnusson M, Olsson G, Ecke F. 2014 Dynamics and drivers of
658 hantavirus prevalence in rodent populations. *Vector Borne Zoonotic Dis.* **14**, 537–551.

659 73. Félix M-A, Jovelin R, Ferrari C, Han S, Cho YR, Andersen EC, Cutter AD, Braendle C. 2013 Species
660 richness, distribution and genetic diversity of *Caenorhabditis* nematodes in a remote tropical
661 rainforest. *BMC Evol. Biol.* **13**, 10.

662 74. Cutter AD. 2015 *Caenorhabditis* evolution in the wild. *Bioessays* **37**, 983–995.

663 75. Félix M-A, Duveau F. 2012 Population dynamics and habitat sharing of natural populations of
664 *Caenorhabditis elegans* and *C. briggsae*. *BMC Biol.* **10**, 59.

665 76. Cutter AD, Félix M-A, Blaxter M. 2016 Myths and misconceptions about *C. elegans* ecology and
666 evolution. *Worm Breed. Gaz.* **20**.

667 77. Chabas H, Lion S, Nicot A, Meaden S, van Houte S, Moineau S, Wahl LM, Westra ER, Gandon S. 2018
668 Evolutionary emergence of infectious diseases in heterogeneous host populations. *PLoS Biol.* **16**,
669 e2006738.

670 78. Dennehy JJ, Friedenberg NA, McBride RC, Holt RD, Turner PE. 2010 Experimental evidence that
671 source genetic variation drives pathogen emergence. *Proc. Biol. Sci.* **277**, 3113–3121.

672 79. Zhao L, Seth-Pasricha M, Stemate D, Crespo-Bellido A, Gagnon J, Draghi J, Duffy S. 2019 Existing
673 host range mutations constrain further emergence of RNA viruses. *J. Virol.* **93**.
674 (doi:10.1128/JVI.01385-18)

675 80. Lalić J, Cuevas JM, Elena SF. 2011 Effect of host species on the distribution of mutational fitness
676 effects for an RNA virus. *PLoS Genet.* **7**, e1002378.

677 81. Rousseau E *et al.* 2018 Impact of genetic drift, selection and accumulation level on virus adaptation
678 to its host plants. *Mol. Plant Pathol.* **19**, 2575–2589.

679 82. Mordecai EA. 2013 Despite spillover, a shared pathogen promotes native plant persistence in a
680 cheatgrass-invaded grassland. *Ecology* **94**, 2744–2753.

681 83. Beckstead J, Meyer SE, Connolly BM, Huck MB, Street LE. 2010 Cheatgrass facilitates spillover of a
682 seed bank pathogen onto native grass species. *J. Ecol.* **98**, 168–177.

683 84. Roberts KE, Hadfield JD, Sharma MD, Longdon B. 2018 Changes in temperature alter the potential
684 outcomes of virus host shifts. *PLoS Pathog.* **14**, e1007185.

685

686

687

688

689

690