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ABSTRACT

A lack of tractable experimental systems in which to test hypotheses about the ecological and
evolutionary drivers of disease spillover and emergence has limited our understanding of these
processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-
sense single-stranded RNA virus that naturally infects C. elegans. We assayed species across the
Caenorhabditis tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44
species. Confirming patterns documented in other systems, we detected effects of host phylogeny on
susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by
transplanting exposed hosts and determining whether they transmitted infection to conspecifics during
serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in
all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at
least 1 replicate), and evidence of sustained transmission in 6 strains (including all 3 experimental C.
elegans strains) in at least 1 replicate. Transmission was strongly associated with viral amplification in
exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis

strains suggests that the system could be powerful for studying spillover and emergence.

KEYWORDS: host range, spillover, emergence, Caenorhabditis, Orsay virus, host jump

INTRODUCTION

Disease spillover and emergence can have catastrophic consequences for the health of humans and
other species. For example, SARS-CoV-2 spilled over into human populations [1] and became pandemic,

killing more than 6 million people when this study was published [2]. Moreover, the frequency of
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spillover events and the rate of new disease emergence has been increasing in the recent past [3],
endowing urgency to the task of understanding drivers of spillover and the progression of emergence.
Studies in wild systems with ongoing spillover have provided substantial insights into the spillover and
emergence process [4—6], but experimental manipulation to test hypotheses in these systems can be
impractical due to ethical and logistical concerns. Moreover, disease emergence is so rare that it
typically can only be studied retrospectively. Therefore, it remains a challenge to understand what

factors facilitate emergence and how evolution proceeds in emerging pathogens.

Spillover requires that pathogens have the opportunity and the ability to exploit a new host;
emergence requires that this opportunity and ability persist through time [5,7]. Opportunity could occur
if hosts share habitats or resources. Ability may arise through mutations or pre-exist due to pathogen
plasticity or host similarity. Studies of natural spillover and emergence events have identified
characteristics of pathogens, hosts, and their interactions that generally support the above. For
example, pathogens that successfully spill over are likely to be RNA viruses with large host ranges [8,9].
Likewise, hosts with close phylogenetic relationships are more likely to share pathogens than more
distantly related hosts [9—14]. In addition, geographic overlap between hosts is associated with sharing
pathogens [12], meaning that changes in host population distributions that bring new species into

contact could potentially promote spillover and emergence events [9,15-17].

Ecological factors (e.g. host densities, distributions, diversity, condition, and behavior) can
promote or hinder spillover by modulating host exposure risk or host susceptibility [5,7]. Likewise, it is
believed that ecological factors can promote or hinder emergence through the modulation of onward
transmission in spillover hosts, which determines whether pathogens meet dead ends in novel hosts,
transmit in stuttering chains, or adapt and persist [18—20]. Conclusively demonstrating the influence of
ecological factors, however, requires experimental manipulation, and it has so far been difficult to

perform such studies.
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Experimental model systems have been essential for testing hypotheses about infectious
disease biology [21-23]. Indeed, major discoveries in immunity, pathogenesis, and pathogen ecology
and evolution come from model systems such as Mus musculus [24], Drosophila melanogaster [25],
Daphnia species [21], Arabadopsis thaliana [27], and Caenorhabditis elegans [28]. However, few model
systems exist to study the ecology and evolution of disease spillover and emergence, and the systems
that do exist lack key features known to drive disease dynamics (e.g. host behavior or transmission
ecology). A perfect model system would have large host population sizes, naturally transmitting, fast-
evolving pathogens (e.g. viruses), and multiple potential host species with variable susceptibility and

transmission.

Caenorhabditis nematode species are appealing model host candidates. Indeed, C. elegans and
various bacterial and microsporidian parasites are staples of evolutionary disease ecology [22,28].
Specifically, the trivial manipulation and sampling of laboratory host populations means that population-
level processes like disease transmission and evolution can be observed, and the tractable replication of
large populations makes possible the observation of rare events such as spillover and emergence.
However, until 2011, there were no known viruses of any nematodes including C. elegans. That changed

with the discovery of Orsay virus [29].

Orsay virus, a natural gut pathogen of C. elegans, is a bipartite, positive-sense, single-stranded
RNA (+ssRNA) virus that transmits readily in laboratory C. elegans populations through the fecal-oral
route [29]. This virus is an appealing model pathogen candidate since +ssRNA viruses have high
mutation rates [30] and typically evolve quickly [31]. Moreover, since Orsay virus transmits between
hosts in the lab, this system allows transmission itself to evolve, a critical component of emergence
[28,31-33] that cannot be readily studied in other animal laboratory systems of disease emergence. To
develop Caenorhabditis hosts and Orsay virus as a system for studying spillover and emergence, it is

necessary to know the extent to which the virus can infect and transmit in non-elegans Caenorhabditis
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species. So far, such exploration been limited to one other species, C. briggsae, which was determined
to be refractory to infection [29]. Notably, an ancestral virus likely crossed at least one host species
boundary in the past since C. briggsae has been found to be susceptible to three related viruses [29,32—

34].

To explore the suitability of the Caenorhabditis-Orsay virus system for studies of disease
spillover and emergence, we first test a suite of Caenorhabditis species for susceptibility to Orsay virus,
and then we test the extent to which susceptible host species can transmit the virus. We establish lower
bounds for both susceptibility and transmission ability, and we test for effects of host phylogeny on
these traits. Though host ranges of pathogens have been studied by infection assays (e.g. [35-38]) or by
sampling infected hosts from natural systems (e.g. [11,39]), these studies do not typically distinguish
between dead-end infections, stuttering chains of transmission, and sustained transmission. We found
that nematodes varied in susceptibility to the virus and their ability to transmit it, affirming the promise

of this system for future studies of spillover and emergence.

METHODS

Susceptibility Assays

We assayed susceptibility of Caenorhabditis species to Orsay virus by measuring virus RNA in
virus-exposed host populations using quantitative PCR (qPCR). We obtained 84 wild isolate strains
belonging to 44 Caenorhabditis species (1-3 strains per species) from the Caenorhabditis Genetics
Center (CGC) and from Marie-Anne Félix. We tested each strain for Orsay virus susceptibility using 8
experimental blocks (Table 1, Table S1). Species identities were confirmed by sequencing the small
ribosomal subunit internal transcribed spacer ITS2 and/or by mating tests. For each Caenorhabditis
strain, we initiated three replicate populations with five adult animals. For sexual species, we used five

5
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mated females, and for hermaphroditic species, we used five hermaphrodites. All populations were
maintained on nematode growth medium (NGM) in 60 mm diameter plates with a lawn of bacterial
food (lawns were seeded with 200 uL E. coli strain OP50 in Luria-Bertani (LB) broth and allowed to grow
at room temperature for approximately 24 hours [40]). We exposed populations to virus by pipetting 3
uL of Orsay virus filtrate, prepared as described in [29], onto the center of the bacterial lawn. We
determined the concentration of the filtrate to be 428.1 (95% Cl: 173.4-972.3) x the median tissue
culture infectious dose (TCID50) per pL (Supplemental Information A) [41]. We maintained populations
at 20 °C until freshly starved (i.e. plates no longer had visible bacterial lawns). Depending on the strain,
this took anywhere from 3 to 28 days (Table S1). While this meant that strains may have experienced
variable numbers of generations, this method ensured that all the exposure virus was consumed. We
collected nematodes from freshly starved plates by washing plates with 1,800 uL of water and
transferring suspended animals to 1.7 mL microcentrifuge tubes. We centrifuged tubes at 1000 x g for 1
minute to pellet nematodes. We removed the supernatant down to 100 pL (including the pellet of
nematodes) and ‘washed’ external virus from nematodes by adding 900 pL of water and removing it 5
times, centrifuging at 1000 x g for 1 minute between each wash. After the five washes, we lysed the
nematodes by transferring the nematode pellet along with 500 plL water to 2 mL round-bottom snap cap
tubes, adding approximately 100 pL of 0.5 mm silica beads, and shaking in a TissuelLyser Il (Qiagen) for 2
minutes at a frequency of 30 shakes per second. We then removed debris with two centrifugation steps
of 17,000 x g for 5 minutes, each time keeping the supernatant and discarding the pellet. Samples were

stored at -80 °C.

We used qPCR to measure viral RNA in these samples. Primers and probe were: Forward: GTG
GCT GTG CAT GAG TGA ATT T, Reverse: CGATTT GCA GTG GCT TGC T, Probe: 6-FAM-ACT TGC TCA GTG
GTC C-MGB. We performed 10 uL reactions composed of 1.12X gScript XLT One-Step RT-qPCR ToughMix

(Quantabio), 200 nM each of forward and reverse primers and probe, and 2 pL of sample. Reaction
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conditions were: 50 °C (10 min), 95 °C (1 min), followed by 40 cycles of 95 °C (3 sec), 60 °C (30 sec).
Assays were run on a 7500 Fast Real-Time gPCR System (Thermo Fisher Scientific, Applied Biosystems).
Cycle threshold (Ct) values were determined using the auto-baseline and auto-threshold functions of the

7500 Fast Real-Time software (Thermo Fisher Scientific, Applied Biosystems).

Each experimental block also contained five sets of controls and benchmarks (Table 2). Control 1
was a negative control where C. elegans laboratory strain N2 was exposed to water instead of virus.
Controls 2 and 3 were positive controls where C. elegans strains known to have moderate (N2) and high
(JU1580) susceptibility were exposed (control 2, strain N2: mean(Ct)=15.7, sd(Ct)=2.0; control 3, strain
JU1580: mean(Ct)=12.7, sd(Ct)=2.2). Benchmark 4 was used to determine a Ct threshold for overt
infection (i.e. susceptibility); we added virus to OP50-seeded NGM plates without nematodes and
treated them identically to our plates with exposed nematodes during extractions. Therefore, these
plates were used to quantify the amount of exposure virus that remains after the washing and
extraction procedure (benchmark 4: mean(Ct)=38.4, sd(Ct)=2.6). Benchmark 5 was used to quantify the
maximum amount of virus that could be present without replication (benchmark 5: mean(Ct)=22.0,
sd(Ct=0.6), and thus to generate a highly conservative Ct threshold for infection; it was determined by
diluting 3 L of exposure virus into 497 uL water, which corresponds to the final volume of our
extractions. Samples with more virus than benchmark 5 therefore give unequivocal evidence of virus
amplification. In practice, benchmark 5 is overly conservative as a threshold for determining infection
because virus is expected to be washed away during the wash steps, extractions are likely to be less than
100% efficient, and the virus may degrade between exposure and extraction. We therefore used
benchmark 4 and the within-strain standard deviation in Ct among plates to set a threshold for
determining infection status based on Ct. We calculated variance in the Cts for each strain (with
undetectable virus assigned a Ct of 40), found the mean variance, and took the square root; the result

(sqrt(var(Ct))=4.1) is equivalent to the standard deviation in Ct values within a strain. We set a threshold
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of one standard deviation more virus than the maximum amount of virus detected in benchmark 4
plates (Ct=33.6), yielding a threshold of Ct<29.5. Strains were considered susceptible if at least one
replicate population had more virus than this threshold. Note that had we used benchmark 5 rather
than benchmark 4 to determine infection status, only 4 of 21 strains would have changed susceptibility
designation (JU2837, JU4056, JU4088, JU4096). To confirm that virus was replicating within novel hosts
deemed to be susceptible, we measured virus levels over time in three of our susceptible, novel host

strains (Supplemental Information B; Supplemental Figure B1).

Transmission Assays

We conducted transmission assays for all strains where at least one replicate population was
determined to be infected in our susceptibility assay. First, three replicate populations were initiated as
above and exposed to 3 pL of virus filtrate. At the same time, we initiated three replicate positive
control populations of C. elegans laboratory strain N2 exposed to 3 uL of virus filtrate and three
replicate negative control populations of N2s exposed to 3 pL of water. When populations were recently
starved, 20 adult nematodes (mated females for sexual species or hermaphrodites for hermaphroditic
species) were chosen at random and passaged to virus-free plates with fresh food (E. coli strain OP50
lawns prepared as above). Remaining animals were washed from the starved plates, virus was extracted,
and viral RNA quantified via qPCR as above (Table S2). We passaged each replicate line 5 times, or until
there was no detectable viral RNA by qPCR. Controls were passaged 5 times regardless of virus

detection.

We assigned each passage line a transmission score of 0, 1, 2, or 3 based on detection of viral
RNA through the passages. A value of 0 was assigned when viral RNA was not detected in the exposure

population; a value of 1 was assigned when viral RNA was detected in the exposure population but not
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in the first passage population; a value of 2 was assigned when viral RNA was detected in the first
passage population but became undetectable on or before the fifth passage population; and a value of 3

was assigned when viral RNA was still detectable in the fifth passage population.

Statistical Analysis

We quantified phylogenetic relationships among nematode species using data from the most
recent published phylogeny of Caenorhabditis [45]. We rooted the phylogeny with Diploscapter pachys
as the outgroup and constrained the tree to be ultrametric (i.e. tips are all equidistant from the root —a
requirement for our downstream analysis) using the ‘chronos’ function in the ‘ape’ package [46]. We
selected a strict clock model since this method yielded the best ultrametric tree determined by the Phi

Information Criterion [47].

We then fit suites of Bayesian phylogenetic mixed effects models to the susceptibility and
transmission data using the ‘MCMCglmm’ package [36,42,43] in R [44] (Table 3, Table 4). Within each
suite, models were compared using the Deviance Information Criterion (DIC) to determine which model
best explains the data (lowest DIC) and which model components are most important for describing
patterns (see below) [48]. Best models according to DIC were used to draw additional conclusions about
the significance of model components (see below). Data from controls and benchmarks were excluded

from analyses of both the susceptibility and transmission data.

Two model components were included or excluded to generate our suite of models for the
susceptibility data (Table 3): a fixed effect of phylogenetic distance from C. elegans (calculated for each
species with the ‘cophenetic.phylo’ function in ‘ape’ [46]) and a random effect of the inverse relatedness
matrix between species pairs (i.e. the inverse of the matrix that contains the distance from the root to
the common ancestor of any two species, calculated by the function ‘inverseA’ within the package

9
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‘MCMCglmm’ [42,49]). The inverse relatedness matrix (hereafter referred to as “phylogenetic distance
between pairwise sets of species”) accounts for variation explained by phylogenetic relationships
assuming a Brownian model of evolution [36]. An additional random effect of species accounts for
differences among species that are not explained by phylogeny, and was included in all models. Since
our susceptibility data are binomial, we fit them using logistic regression with a logit link. In practice this

was achieved by setting family to ‘multinomial2’.

Three model components were included or excluded to generate our suite of models for the
transmission data (Table 4). Our most complicated transmission model included the two phylogenetic
factors described above as well as an additional fixed effect of viral amplification in the primary
exposure population measured as Ct, which was determined to likely be important upon plotting our
data during preliminary analyses. All transmission models also included a random effect of species to
account for differences between species that are not explained by phylogeny and a random effect of
strain to account for replication at the strain level (Table 4). Our transmission data are continuous, and

we fit them using linear regression by setting family to ‘gaussian’.

We used the MCMCglmm default priors for fixed effects (normal distribution with mean = 0 and
variance = 108) and parameter expanded priors for random effects that result in scaled multivariate F
distributions with V=1, nu=1, alpha.mu=0, alpha.V=1000 [50]. Residuals were assigned inverse Wishart
priors with V=1 n=0.002 [50]. We ran models for 10,000,000 iterations with a burn in of 30,000 and
thinning interval of 5,000. We visualized traces to affirm convergence of MCMC chains and confirmed
stationarity with the test ‘heidel.diag’ in the package ‘coda’ [51]. The handful of models that had not

converged were rerun with more iterations and larger thinning intervals to achieve convergence.

We compared models using DIC to select the best model. For the best model, we report

posterior means and central posterior density 95% credible intervals as well as MCMC p-values for the

10
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fixed effects. Because p-values cannot be obtained for random effects, we also report the R? values
(calculated as described in [52]) for all model components included in our best model. We additionally
used DIC to describe the relative support of each model and to further understand the importance of

model components [48]. We calculated DIC weights for each model, each model component, and the

e—ADIC/2 .
S o=apIC/z where j is

phylogenetic components combined [53]. The DIC weight of a model, calculated as 5
J

the set of all models, gives the relative support for each model. Similarly, the DIC weight of a model

. ,—ADIC/2
% where i refers to the set of models that includes a given parameter
J

component, calculated as
and j is the set of all models, is the posterior probability that a given component is included in the ‘true’

model assuming the ‘true’ model has been designated. Thus, model components with DIC weights

greater than 0.5 are more likely than not to be included in the ‘true’ model.

Table 1. Strains assayed for susceptibility to Orsay virus with the number of replicates processed in each
block. When strains were assayed in multiple blocks, replicate numbers are given in the respective order
of the blocks. Strains were acquired from the Caenorhabditis Genetics Center (University of Minnesota)
and from Marie-Anne Felix (IBENS).

Number of Number of
Strain Species Block Replicates Strain Species Block Replicates
JU1199 C. afra 2 3 JU2613 C. portoensis 7 3
JU1198 C. afra 4 3 JU2745 C. quiockensis 2 3
JU1593 C. afra 7 3 MY28 C. remanei 2 3
NIC1040 C. astrocarya 3 1 PB206 C. remanei 6 3
QG704 C. becei 2 3 Ju1082 C. remanei 6 3
SB280 C. brenneri 1 3 Ju1201 C. sinica 1 3
SB129 C. brenneri 6 3 Ju4053 C. sinica 4 3
LKC28 C. brenneri 6 3 Ju1202 C. sinica 6 3
JU1038 C. briggsae 1,2,3! 333 JU2203 C.sp. 8 5 2
EG4181 C. briggsae 6 3 QG555 C.sp. 24 3 3
ED3083 C. briggsae 6 3 Ju2867 C.sp. 24 57 1,3
Jul426 C. castelli 3,7 33 JU2837 C.sp. 24 6 3
JU1333 C. doughertyi 1 3 ZF1092 C.sp. 25 3 3
Ju1328 C. doughertyi 4 3 Qx2263 C.sp.27 1,3 2,3
JU1331 C. doughertyi 5 3 DF5152 C.sp. 30 3 3
DF5112 C. drosophilae 3 3 NIC1070 C.sp. 43 2 3
GXW1 C. elegans 6 3 JU4050 C.sp. 62 5 3
JU1401 C. elegans 6 3 Ju4045 C.sp. 62 7 3
ED3042 C. elegans 6 3 JU4056 C.sp. 63 6 3
NIC113 C. guadaloupensis 1 3 JU4061 C. sp. 64 6 3
EG5716 C. imperialis 3 3 Ju4087 C. sp. 65 4 3
JU1905 C. imperialis 7 3 Ju4093 C. sp. 65 5 3
NKZ35?2 C. inopinata 3 3 Ju4092 C. sp. 65 5 3
QG122 C. kamaaina 2 3 JU4094 C. sp. 66 4 3
VX80 C. latens 1 3 JU4096 C. sp. 66 4 3
JU3325 C. latens 4 3 Ju4088 C.sp. 66 4 3

11



Ju724 C. latens 5,7 1,3 SB454 C. sulstoni 2 3
Ju18s57 C. macrosperma 2 3 Ju2774 C. tribulationis 1 3
Ju1865 C. macrosperma 5 3 JU2776 C. tribulationis 5 3
Ju1853 C. macrosperma 7 3 Ju2775 C. tribulationis 5 3
Ju2884° C. monodelphis 8 3 JU1373 C. tropicalis 1 3
JU1667° C. monodelphis 8 3 Ju1428 C. tropicalis 2 3
JU1325 C. nigoni 1,2,3 2,1,3 Ju2469 C. uteleia 2 3
Ju2617 C. nigoni 4 3 Ju2458 C. uteleia 4 3
EG5268 C. nigoni 6 3 JU1968 C. virilis 3 3
JU1825 C. nouraguensis 1 3 JU2758 C. virilis 5 3
Ju1833 C. nouraguensis 5 3 NIC564 C. waitukubuli 1 3
Ju1854 C. nouraguensis 6 3 Ju1873 C. wallacei 1 3
QG702 C. panamensis 2 3 EG6142 C. yunquensis 3 3
JU2770 C. parvicauda 7 3 JU2156 C. zanzibari 1 3
EG4788 C. portoensis 1 3 JU3236 C. zanzibari 6 3
JU3126 C. portoensis 5 3 JU2161 C. zanzibari 7 3

236  1JU1038 was included in the first three blocks as a type of negative control since a previous study found
237  that C. briggsae was not susceptible. We discontinued this practice given the number of strains we
238 needed to test.

239 2Strain NKZ35 was maintained at 23°C according to Caenorhabditis Genetics Center recommendation.

240  3Populations were initiated with 12 juvenile animals due to challenges rearing animals with standard
241 methods.

242

243  Table 2. Description of controls and benchmarks included in triplicate in each of the 8 blocks of the
244  susceptibility assays.

Control/benchmark Description Type

1 Laboratory C. elegans strain N2 Negative control
exposed to 3 plL water

2 Laboratory C. elegans strain N2 Positive control
exposed to 3 L Orsay virus filtrate

3 Highly susceptible C. elegans strain Positive control
JU1580 exposed to 3 plL of Orsay virus
filtrate

4 3 plL Orsay virus filtrate pipetted on Threshold?®
the center of bacterial lawn with no
nematodes

5 3 L Orsay virus filtrate added directly Threshold®
to 497 plL water, yielding the final
extraction volume for experimental
populations.

245  2The purpose of this benchmark was to quantify exposure virus remaining in samples after 5 rounds of
246  washing.

12
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258

bThe purpose of this benchmark was to quantify the maximum amount of virus that could be present in
the absence of viral replication (i.e. total amount of virus added to each plate).

Table 3. Models compared for analysis of susceptibility patterns. All models included an intercept. The
random effect of species is retained in all models to avoid pseudo-replication.

Model ADIC DIC weight
Suscep. ~ fixed = phylo. dist., random = pairwise phylo. dist. + species 0 0.544
Suscep. ~ fixed = phylo. dist., random = species 1.731 0.229
Suscep. ~ fixed = random = pairwise phylo. dist. + species 2.370 0.166
Suscep. ~ fixed = random = species 4.368 0.061

‘phylo. dist’ indicates the effect of phylogenetic distance from C. elegans whereas ‘pairwise phylo. dist.’
Indicates the effect of phylogenetic distance between species pairs.

Table 4. Models compared for analysis of transmission scores. All models included an intercept. Random
effects of species and strain are retained in all models to avoid pseudo-replication.

Model ADIC DIC weight
Trans. ~ fixed = Ct + phylo. dist., random = pairwise phylo. dist. + species + strain 0 0.275
Trans. ~ fixed = Ct + phylo. dist., random = species + strain 0.518 0.212
Trans. ~ fixed = Ct , random = pairwise phylo. dist + species + strain 0.633 .200
Trans. ~ fixed = Ct , random = species + strain 0.908 0.174
Trans. ~ fixed = phylo. dist., random = pairwise phylo. dist. + species + strain 4.015 0.037
Trans. ~ fixed = phylo. dist., random = species + strain 4.166 0.034
Trans. ~ fixed = random = species + strain 4.205 0.034
Trans. ~ fixed = random = pairwise phylo. dist. + species + strain 4.205 0.034

13



259 ‘Ct’ indicates viral amplification on primary exposure plates. ‘phylo.dist’ indicates the effect of
260 phylogenetic distance from C. elegans whereas ‘pairwise phylo. dist.” Indicates the effect of phylogenetic
261  distance between species pairs.

262

263 RESULTS

264  Susceptibility Assays

265 In our assays of host susceptibility to Orsay virus, we identified 21 susceptible Caenorhabditis strains of
266  the 84 experimental strains tested (Figure 1). These included three (non-control) strains of C. elegans
267 (note that one of these strains, JU1401, had been previously documented to be susceptible [54]) and 18
268  strains belonging to 13 other species. In total, we found that Orsay virus is capable of infecting hosts

269  from at least 14 of 44 Caenorhabditis species.

270 Our statistical analysis uncovered the importance of host phylogeny in explaining differences in
271 susceptibility. Our best model included both phylogenetic effects (Table 3). In this best model, the fixed
272  effect of phylogenetic distance from C. elegans was significant (pMCMC = 0.044, posterior mean: -81.56;
273 95% Cl=-272.31 - -1.61; Figure 2A). The importance of phylogenetic distance from C. elegans was also
274  supported by the observation that susceptible strains were less well distributed across the phylogenetic
275  tree than random (i.e. the mean distance from C. elegans of susceptible strains was 0.259 and ranged
276  from 0to 0.687, while the mean distance from C. elegans of all strains was 0.367 and ranged from 0 to
277 1.06). We also used R?values from the best model and DIC weights calculated from the suite of models
278  to further explore the importance of phylogenetic effects. Phylogenetic distance from C. elegans

279  explained 89.0% (95% Cl: 48.7% - 99.6%) of the variance in susceptibility (Figure 2B) and had a DIC

280  weight of 0.773. The random effect of pairwise phylogenetic distance explained 5.15% (95% Cl: 0.0% -
281 22.0%) of the variance in susceptibility (Figure 2B) and had a DIC weight of 0.710. Importantly, both

282  phylogenetic effects together explained 94.1% (95% Cl 72.8% - 100%) of the variance (Figure 2B), and

14
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300

models that included at least one of these phylogenetic effects had a weight of 0.939. Further, the
model lacking either phylogenetic effect had a low DIC weight of 0.061, demonstrating additional
support for the importance of phylogenetic effects [55,56]. The species-level random effect explained
4.2% (95% Cl: 0.0% - 20.5%) of the variance in susceptibility (Figure 2B); we were not able to compute

DIC weight for this component since it was included in all the susceptibility models.
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Figure 1. Species across the Caenorhabditis phylogeny are susceptible to Orsay virus (i.e. Ct values
smaller than the infection determination cut off (dashed line, see methods regarding ‘benchmark 4’).
Note that smaller Ct values denote more virus). The asterisk on the left side of the y-axis shows the Ct
value from the ‘benchmark 5’ sample with the most detectable virus (Table 2). The phylogeny (bottom
left) is pruned from [56]. Many species currently have uncertain phylogenetic placement (right). Species
for which a clade is hypothesized are color-coded accordingly. These hypotheses were obtained from
[57]. However, clades are unknown for C. sp. 62, C. sp. 63, C. sp. 64, C. sp. 65, C. sp. 66. Shapes indicate
different strains within a species, colors differentiate clades, but are otherwise only varied to aid
visualization. Open gold circles and diamonds indicate Ct values for positive controls (‘control 2’ and
‘control 3’ plates respectively; Table 2).
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Figure 2. The best model for Orsay virus susceptibility included two phylogenetic components: a fixed
effect of phylogenetic distance from the native host C. elegans and a random effect of phylogenetic
distance between pairwise sets of species (Table 3). A) Slightly jittered points represent the proportion
of exposed populations that became infected for a given strain plotted against the strains’ phylogenetic
distance from C. elegans. The solid red line shows the median model prediction. Dashed lines depict 95%
credible intervals. B) Variance explained (R?) by each factor in the best model [52].

Transmission Assays

We used the strains we identified to be susceptible in a subsequent transmission assay, which was
completed in 2 blocks. Most replicates of C. elegans strains as well as positive control replicates (C.
elegans strain N2) maintained high levels of virus through five passages (Figure 2). However, virus was
lost in 1 out of 3 control replicates in both blocks; in retrospect, this is unremarkable since the N2 strain
used for controls is known to be less susceptible to Orsay virus than many other C. elegans strains [51].
Non-elegans strains did not transmit the virus as well in most cases. Virus was undetectable in the first
passage population in all replicates of C. doughertyi, C. wallacei, C. latens strain JU3325, C. waitukubuli,
C. sp. 25, C. castelli, C. sp. 24, C. sp. 63, and C. sp. 66 strains JU4088 and JU4096. Virus was also
undetectable in the first passage population in one or two replicates of C. tropicalis, C. latens strain

JU724, C. macrosperma, C. sulstoni, C. sp. 65 strain JU4087, and C. sp. 66 strain JU4094. Virus was

16



320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

maintained for 1-4 passages in at least one replicate of strains of C. tropicalis, C. latens strain VX80, C.
macrosperma, C. sulstoni, C. sp. 65 strains JU4093 and JU4087, and C. sp. 66 strain JU4094. Virus was
detectable through the 5™ passage in four non-elegans replicates belonging to three strains of different
species: 1 replicate of C. sulstoni strain SB454, 1 replicate of C. latens strain JU724, and 2 replicates of C.

sp. 65 strain JU4093 (Figure 3).

The primary exposure populations (passage 0) in our transmission assay were treated nearly
identically to populations in our susceptibility assay. As an internal control, we thus note high
concordance between Ct measures in both assays (correlation coefficient = 0.85). In a separate
experiment, we completed passages for additional replicates of 2 susceptible strains (C. sulstoni SB454
and C. latens VX80) for up to 12 passages, which yielded similar results to those in Figure 3

demonstrating repeatability of our data (Supplemental Information B, Figure B2).

As with the susceptibility data, we again identified factors associated with differences in
transmission through model analysis. Our best model included a significant effect of viral amplification
(Ct) in primary exposure populations (pMCMC=0.009; posterior mean: -0.04, 95% Cl=-0.08 - -0.01), a
non-significant effect of phylogenetic distance from C. elegans (PMCMC=0.132; posterior mean: -2.16,
95% Cl=-5.46 — 0.95; Figure 4A,C), and a random effect of phylogenetic distance between pairwise sets
of species. Notably, the fixed effects were moderately correlated (correlation coefficient = 0.477).

Viral amplification in primary exposure populations explained 44.8% (95% CI=0% - 88.3%; Figure
4B,C) of the variation in transmission ability and had a DIC weight of 0.862. Phylogenetic distance from
C. elegans explained 46.6% (95% CI=0% - 89.0%) of the variation in transmission ability and had a DIC
weight of 0.558, and pairwise phylogenetic distance between sets of species explained 4.3% (95%
Cl=0%-17.1%; Figure 4C) of the variation in transmission and had a DIC weight of 0.546. Combined, the
phylogenetic effects explained 50.9% (95% Cl=1.2%-93.0%) of the variation in transmission and models

including at least one of the phylogenetic effects had a weight of 0.792. The R? values and DIC weights
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344  indicate strong support for an effect of viral amplification in primary exposure populations and at least
345  some support for each phylogenetic effect in explaining transmission ability despite the non-significant
346  effect of phylogenetic distance from C. elegans in the best model. Interestingly, in the second-best

347  model (Table 4), which included phylogenetic distance from C. elegans and viral amplification in primary
348  exposure populations but not the random effect of pairwise phylogenetic distance, phylogenetic

349  distance from C. elegans was found to be marginally significantly associated with transmission ability
350 (pPMCMC=0.083, posterior mean: -1.88, 95% Cl=-4.02 - 0.35). Little of the variation in transmission

351  ability was explained by species (R?=1.4%, 95% Cl=0%-5.6%) or strain (R>=0.5%, 95% Cl=0%-2.1%).
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Figure 3. Orsay virus persisted to different extents when susceptible hosts were sequentially passaged to
virus-free plates. “Passage 0” denotes the primary exposure population. This experiment was carried out
in two blocks indicated by shape (circle=block 1, triangle=block 2). N2 controls were present in both
blocks, shown in black. Colors match color-coded phylogeny in Figure 1. Shades represent different
strains within a species: C. elegans GXW1 (dark green), ED3042 (medium green), JU1401 (light green); C.
doughertyi JU1331; C. tropicalis JU1428; C. wallacei JU1873; C. latens JU724 (dark green; one of the
three replicate lines was removed from analysis due to bacterial contamination), VX80 (medium green),
JU3325 (light green); C. macrosperma JU1857; C. sulstoni SB454; C. waitukubuli NIC564; C. sp. 25
ZF1092, C. castelli JU1426; C. sp. 24 JU2837; C. sp. 63 JU4056; C. sp. 65 JU4093 (dark gray), JU4087
(medium gray); C. sp. 66 JU4094 (dark gray), JU4088 (medium gray), JU4096 (light gray).
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Figure 4. The best model for transmission ability included two fixed effects (viral amplification in primary
exposure populations and phylogenetic distance from C. elegans) and three random effects
(phylogenetic distance between pairwise sets of species, species, and strain) (Table 4). A) Transmission
ability was negatively associated with the Ct of primary exposure populations (i.e. positively associated
with viral amplification) and B) was negatively but non-significantly associated with phylogenetic
distance from C. elegans. Note that points are jittered slightly. In A) and B), solid red lines depict the
median effect size from the best model for how transmission ability declines with each fixed effect.
Dashed lines represent central posterior density 95% credible intervals. C) Variance explained by
components in the best model [52].

DISCUSSION

In our study examining the host range of Orsay virus, we determined that at least 13
Caenorhabditis species in addition to C. elegans are susceptible to Orsay virus infection, but even within
a species, strains may differ in susceptibility and transmission ability. Specifically, we found 21
susceptible Caenorhabditis strains (including 3 out of 3 C. elegans strains) out of 84 tested strains
belonging to 44 species. When susceptible strains were assayed for transmission ability, 10 strains were
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dead-end hosts in all replicates, and 6 strains (3 C. elegans strains, 1 C. sulstoni strain, 1 C. latens strain,
and 1 C. sp. 65 strain) showed virus persistence for five passages in at least one replicate. The remaining
5 susceptible strains showed stuttering chains of transmission in at least one replicate. Our findings
constitute lower bounds for the number of species and strains that are susceptible and can transmit
Orsay virus; increased sampling of strains or increased replication could very well have identified more
instances of susceptibility or transmission especially since these phenomena may be the result of
stochastic ecological and evolutionary processes. Furthermore, we note that susceptibility and
transmission findings are likely dependent on experimental conditions as we expect aspects of ecology
such as dose and food quantity to impact spillover and emergence. Here, we found that susceptibility
was associated with two phylogenetic effects: distance from C. elegans and phylogenetic distance
between pairwise sets of species. Transmission ability was weakly associated with these phylogenetic
effects according to analysis of DIC weights but strongly positively associated with viral amplification in
primary exposure populations. Overall, we argue that the variation we observed among Caenorhabditis
species and strains in susceptibility and transmission ability primes the Caenorhabditis-Orsay virus
system to be valuable for experimental studies on the ecology and evolution of pathogen spillover and

emergence.

Replicating findings from several other experimental studies of host range [29,32—-34], we found
evidence of phylogenetic effects on susceptibility. Host species more closely related to the native host C.
elegans were more likely to be susceptible to infection, and closely related hosts had more similar
susceptibilities regardless of their relationship to the native host. We expect that the importance of
phylogenetic effects would only become more readily detectable if our unplaced Caenorhabditis species
were placed on the phylogeny, since their lack of placement cost us statistical power. Importantly, we
recovered an effect of phylogenetic distance from C. elegans even though few species are closely

related to C. elegans (Figure 1, Figure 2). A phylogenetic effect of susceptibility to related viruses (e.g.
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Santeuil, Le Blanc, and Melnik, [29,32—34]) might be even more readily detectable since the native host
C. briggsae is a member of a clade with more closely related species.

We also tested for effects of phylogeny on transmission ability. Although patterns consistent
with a phylogenetic effect on transmission have been identified [10,36,58], to the best of our
knowledge, this has not been empirically documented. Our DIC analysis suggests that phylogenetic
effects are important for transmission ability, but with weak statistical support likely resulting in part
from the small number of hosts tested and their distribution across the phylogenetic tree. In addition,
the moderate correlation between phylogenetic distance from C. elegans and our other focal fixed
effect, viral amplification in primary exposure populations, may have made a phylogenetic distance
effect more difficult to detect.

The use of DIC for model selection provided us with an objective tool for specifying a best
model, and analysis of DIC weights allowed us to assess the relative importance of each factor included
in our models. However, DIC is imperfect [59]. We elected to use it anyway because there was not a
feasible alternative in our case [59]. We note that despite the shortcomings of DIC, we believe our
conclusions from the DIC analysis are nevertheless robust. Notably, the average estimated effect for
each factor was in the same direction across all models regardless of DIC score, and our R? analysis
provided conclusions consistent with our DIC weight analysis regarding the relative importance of our
fixed and random effects.

Phylogenetic patterns in susceptibility may arise because closely related hosts likely have similar
receptors, within-host environments, and pathogen defenses [58,59]. Unfortunately, the receptor used
by Orsay virus to enter host cells is currently unknown [60], and little is known about phylogenetic
patterns in relevant within-host traits [61]. Exploring these traits may yield a more mechanistic
understanding of determinants of Orsay virus competence. Notably, the important pathogen defense

pathway RNA interference (RNAI) (i.e. where cellular machinery recognizes double stranded RNA
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(dsRNA) and degrades corresponding viral RNA sequences) has been investigated across Caenorhabditis
species [62,63]. This work uncovered phylogenetic patterns in the ability to respond to ingested dsRNA
[62]. Importantly, most strains responded to some extent when dsRNA was injected [62], suggesting
potential to mount an RNAI response to viral infection. Whether the nature and strength of the RNAI
response is a mechanistic explanation for the patterns of susceptibility observed in our study remains to
be explored formally, although we observed no obvious pattern between our data on susceptibility and
the data on RNAI responses across species.

The strongest predictor of transmission ability in our study was viral amplification in primary
exposure populations. We can imagine at least three reasons why amplification in primary exposure
populations may matter for transmission. First, high levels of viral amplification may indicate that the
virus was somewhat “pre-adapted” and had the ability to infect and transmit among novel hosts without
requiring any additional evolutionary changes [64]. Indeed, the correlation between viral amplification
in primary exposure populations with phylogenetic distance from C. elegans is consistent with this idea.
Second, if hosts can shed the virus, high levels of viral amplification may be indicative of higher
shedding, meaning that hosts would encounter more virus, which could increase infection prevalence. If
this was the case in our experiment, nematodes passaged from primary exposure populations with more
viral amplification may have been more likely to have been infected. Third, larger virus populations may
harbor more genetic variation, increasing opportunities for adaptive evolution that could maintain
persistence of the virus in the spillover host. Indeed, evolutionary rescue theory has shown that larger
populations are more likely to persist in comparison to smaller ones [65].

We also found substantial intra-species variation in susceptibility to Orsay virus. This result was
somewhat expected because there is natural variation in susceptibility in the native host C. elegans
[54]. Recent work has shown that the variation in C. elegans susceptibility can be partially attributed to

genetic variation in two defense pathways: RNAi [54,66] and the intracellular pathogen response [66—

22



454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

68]. Future work may explore how genetic variation in these or other defense pathways influences
Orsay virus susceptibility within novel host species. In addition to these known determinants of viral
susceptibility in C. elegans, variation in gut physiology, behavior, feeding rates, population density and
demography may impact host susceptibility since these factors affect host-pathogen interactions in
other systems (e.g. [69-72]).

Here we have documented spillover and transmission of Orsay virus in Caenorhabditis hosts. It is
important to note, however, that the patterns we see with our susceptibility and transmission assays
may not fully predict spillover and emergence patterns among Caenorhabditis hosts in the wild.
Exposure risk is a key determinant of spillover and emergence [68,69], but in our experiments, we
exposed all hosts equally. Orsay virus exposure risk for Caenorhabditis species in nature is unknown
since we know little about the distributions of Caenorhabditis species and their viruses [73,74]. The two
host species that have been most extensively studied in the wild, C. elegans and C. briggsae, do have
overlapping distributions [75], but appear to be refractory to each other's viruses [68]. However, the fact
that three viruses related to Orsay virus have been found in C. briggsae [69] suggests that at least one
host jump has occurred in the past, since the viruses appear to be much more closely related [71] than
C. briggsae and C. elegans [76].

The Caenorhabditis-Orsay virus system joins a small set of empirical systems suitable for
studying spillover and emergence. Prior studies using other systems have yielded useful insights into
these processes. For example, bacteria-phage systems have been used to show that the probability of
virus emergence is highest when host populations contain intermediate combinations of native and
novel hosts [77], that pathogen variation in reservoir hosts drives emergence in novel hosts [78], and
that mutations that allow phages to infect novel hosts also constrain further host range expansion [79].
Plant-virus systems have been used to document the effects of host species on the fitness distribution of

viral mutations [80], to determine the importance of dose, selection, and viral replication for adaptation
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to resistant hosts [81], and to characterize how spillover can impact competition among host species
[82,83]. Drosophila-virus systems have been used to show that viruses evolve in similar ways when
passaged through closely related hosts [46] and to show that spillover dynamics can depend on
temperature [84].

The Caenorhabditis-Orsay virus model can be uniquely useful for studying how ecology impacts
spillover and emergence in animal systems since population characteristics like density, genetic
variation, and immunity can be readily manipulated and virus transmission occurs without intervention
by a researcher. Caenorhabditis hosts have complex animal physiology, immune systems, and behavior,
meaning that this system can be useful for revealing the importance of variation in these traits. In this
study, we identified multiple susceptible spillover hosts that have variation in transmission ability. In the
future, these hosts can be used not only to probe how ecology impacts spillover and emergence, but

also to better understand how and why spillover and emergence patterns may differ across hosts.
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