
1

CPU Frequency Scaling Optimization in Sustainable Edge Computing
Yu Luo, Member, IEEE, Lina Pu, Member, IEEE, and Chun-Hung Liu, Senior Member, IEEE

Abstract— Sustainable edge computing (SEC) is a promising

technology that can reduce energy consumption and computing

latency for the mobile Internet of things (IoT). By collecting

renewable energy such as solar or wind energy from the environ-

ment, a sustainable cloudlet outside the electric grid can provide

powerful computing capabilities for resource-constrained mobile

IoT devices. In the real world, the density of sustainable energy

can vary significantly over time. Therefore, the SEC cloudlet

needs to dynamically adjust the clock frequency to balance

energy consumption and computing latency. In this paper, we

consider the limited energy storage of the cloudlet and the

dynamic intensity of renewable energy, and then develop offline

optimal CPU frequency scaling policies that (a) maximize the

computing power of the cloudlet within a certain period of

time, and (b) minimize the execution time given tasks offloaded

to the cloudlet. An optimal tightest string policy is proposed

to solve the optimization problem. In addition, a dynamic

programming (DP) based suboptimal solution is introduced to

simplify the practical implementation. How to design an online

CPU frequency management strategy is also briefly discussed.

Index Terms—Sustainable edge computing (SEC), cloudlet

CPU frequency scaling, energy harvesting, mobile Internet of

things (IoT)

I. INTRODUCTION

In recent years, mobile edge computing (MEC) is emerging
as a new computing paradigm for the mobile Internet of things
(IoT) [1]. By deploying small-scale servers, called cloudlets,
at the edge of the Internet, IoT devices can offload computing
tasks to the cloudlet for preprocessing, thereby significantly re-
ducing response time and saving network bandwidth between
the IoT network and cloud servers.

Current research on MEC assumes that the cloudlet is
always connected to the electric grid. With unlimited energy
supply, the current research on task offloading has been
focused on making offloading decisions based on the time-
varying wireless channel and stochastic computing capability
of mobile edge and cloudlets. The optimal offloading strategies
were proposed to dynamically manage the task allocation
and computing resources aiming at minimizing the overall
latency [2]–[5], minimizing the local energy consumption [6]–
[8], or seeking a tradeoff between the latency and energy
consumption [9]–[11].

One essential difference between our work and conventional
MEC is that we consider the constraints of limited energy in
sustainable edge computing, where renewable energy is the
power supply to cloudlets. As will be introduced in the paper,
it is realistic to use solar or wind energy to power a high-
performance cloudlet in the wild. With the energy harvesting

Y. Luo and C.-H Liu are with the Department of Electrical and Computer
Engineering, Mississippi State University, Mississippi State, MS, 39759. e-
mail: yu.luo@ece.msstate.edu; chliu@ece.msstate.edu

L. Pu is with Department of Computer Science, University of Alabama,
Tuscaloosa, AL 35487. e-mail: lina.pu@ua.edu

capability, cloudlets can be deployed outside the coverage of
the electric grid, which will greatly improve the scalability
and sustainability of existing mobile edge computing enabling
compute-intensive tasks to run on resource-constrained IoT in
the wilderness, forest, and ocean environments [12].

Aside from the improved sustainability and scalability,
the renewable energy supply brings new challenges to the
computing power management for cloudlets. Compared to
conventional HPCs, sustainable cloudlets tend to have very
limited computing capacity. In addition, different from the
constant power supply from power-grid, the power density of
wind and solar energy is temporally dynamic and spatially
heterogeneous [13]. Therefore, the energy harvested from the
environment may not always allow cloudlets to run at full
speed. Given the dynamics in the energy environment, how
to manage the power consumption of cloudlets in order to
maximize computing capacity needs to be carefully studied.

In order to effectively use the harvested energy, the clock
frequency of the central processing unit (CPU) needs to be
adjusted carefully since it determines the computing power of
the cloudlet. Generally, the energy consumed by the processor
in a clock cycle is approximately proportional to the square of
CPU clock frequency [14]. As a result, operating at high clock
frequency with high computing power is not energy efficient.
If the cloudlet has unlimited energy storage and the task has
no deadline, the CPU should always run at the lowest clock
frequency for higher efficiency of energy utilization.

After considering the limitations of task deadlines and en-
ergy storage capacity, optimal computing power management
becomes a complex problem. Specifically, if the cloudlet keeps
running at minimum power, the energy storage may overflow,
causing waste of renewable energy or missing the mission
deadlines. Neither is acceptable, as the former reduces the
efficiency of energy harvesting, while the latter introduces un-
expected latency in computing. Therefore, the cloudlet needs
to manage its computing power to adapt to the fluctuations
in energy strength, which is a unique problem in sustainable
edge computing.

In this paper, we developed two optimal offline CPU fre-
quency scaling policies for the SEC cloudlet. In the first policy,
we aim at optimizing the overall computing power so that
the total number of computing tasks that can be completed
by cloudlet in a specific time period is maximized. In the
second policy, we optimize the time required for the cloudlet
to complete a certain number of tasks so that the computing
latency of the IoT network is minimized.

To achieve the above objectives, we build a model that can
convert the CPU frequency management into an optimiza-
tion problem with a concave objective function and several
convex constraints. The constraints can prevent the cloudlet
from violating the energy storage limitation and the energy



2

causality constraint (sustainable energy cannot be used before
it arrives). We formulate the optimization problem in a concise
and tractable way such that the Karush-Kuhn-Tucker (KKT)
conditions can be employed to find its solution.

To give insight into the efficient frequency management,
the tightest string and the directional water-filling strategy
are adopted to solve the optimization problem from a graph-
ical perspective and an algorithmic viewpoint, respectively.
Moreover, a dynamic programming (DP) based computing
method is introduced to convert the optimal CPU frequency
management into a shortest path problem. This conversion
simplifies the frequency scaling optimization problem and
make it solvable using classic DP algorithms (e.g., Dijkstra).

Finally, we briefly introduce an online CPU frequency
management strategy based on the optimal offline policy and
the prediction value of the energy that can be harvested by
the cloudlet in the near future. As will be shown in the
paper, the performance of the online strategy depends on the
prediction accuracy of the energy intensity and the variation
of the sustainable energy in the surrounding environment.

To summarize, the major contributions of our work are
summarized as follows:
a) We consider sustainable edge computing, where the

cloudlets are powered by renewable energy. A system
model is developed to optimize the CPU frequency scaling
for sustainable cloudlet considering the dynamic power
intensity of renewable energy. To the best of our knowl-
edge, this is the first work for CPU frequency scaling
optimization for sustainable cloudlets.

b) Based on the developed system model, we formulate the
CPU frequency scaling into two optimization problems
aiming to 1) maximize the computing capacity of cloudlets
given constrained renewable energy and 2) minimize the
execution time for a given computing task.

c) We provide an offline optimal solution, namely the tightest
string policy, and a DP-based suboptimal solution for the
CPU frequency scaling optimization problem in SEC. The
DP method converts the complex optimization problem into
a classic shortest path problem and significantly simplifies
the implementation compared to the tightest string policy.
Simulation results are provided to verify the theoretical
analysis as well as the performance improvement compared
to the benchmark policies.

d) The prediction-based online CPU frequency scaling strat-
egy is briefly introduced. How the accuracy of energy
prediction and changes in energy intensity affect the per-
formance of the online strategy is evaluated carefully.

The rest of the paper is organized as follows: Section II
introduces the related work. The system model of the CPU
frequency management for the SEC cloudlet is introduced
in Section III. In Section IV, we formulate the computing
power maximization problem. The theoretical solution and
suboptimal DP solution are provided in Sections V and VI.
How to minimize the execution time is studied in Section VII.
We evaluate the performance of the proposed CPU frequency
scaling policies in Section VIII and conclude our work in
Section IX.

II. RELATED WORK

MEC can significantly enhance the computing capability
of resource-constrained IoT devices by offloading computing
tasks to cloudlets. Extensive research has been conducted
to develop practical energy consumption models [15]–[17],
develop optimal CPU frequency scaling and task offloading
policies [8]–[10], and investigate MEC for renewable energy
powered edge devices [18]–[20].

In MEC, by offloading all or partial computation tasks to
the cloudlet [21], IoT devices can save a significant amount
of energy on computation but at the cost of higher execution
latency. The total execution delay is composed of the local
computing latency, transmission delay, and computing latency
on the cloudlet. The quality of the wireless channel and the
CPU frequency of mobile devices and cloudlets as well as the
task allocation strategy determine the execution latency and
the energy consumption. The task offloading and CPU scaling
strategy needs to comprehensively consider the quality of the
wireless channel, the power consumption of communications
and computations, the deadline of each task, and the topology
of the tasks (sequential, parallel, or general dependency [22],
[23]).

When a task is executed locally, the execution latency
and energy consumption can be adjusted by controlling the
CPU frequencies of mobile devices with dynamic voltage and
frequency scaling (DVFS) techniques [8], [10], [18], [19]. In
the scenario when the tasks are offloaded to the cloudlets, the
transmission delay becomes the dominant factor in the total
execution latency. In the literature, various wireless channels
(e.g., Block fading [18], Raleigh fading [8]) and communi-
cation systems (e.g., TDMA [19], FDMA [7], NOMA [19])
are considered for optimal task allocation. Besides offloading
tasks to a single cloudlet [18], a more complicated scenario
where one edge device offloads tasks to M MEC servers is
investigated in [10] and the scenario with N edge devices
offloading tasks to one MEC server is studied in [7].

In [18]–[20], the mobile edge with energy harvesting ca-
pabilities is considered. [18] jointly optimizes the computing
power and communication rate of edge devices with respect to
battery level. Besides the execution latency, the authors also
considered the execution cost caused by task failure when
there is no sufficient energy on the edge devices. In [19],
the authors consider an application scenario where the edge
devices harvest radio energy from a dedicated power station.
Both the binary offloading and the partial offloading schemes
are studied to maximize the computation efficiency of mobile
edge devices. [20] investigates when to switch ON and OFF
of fog devices considering the integration of renewable energy
to reduce energy consumption and execution latency.

In the existing research, there are several underlying as-
sumptions: 1) The cloudlets or edge/cloud servers have sig-
nificantly higher computing resources than mobile edges; 2)
Unlike mobile edges that need to adjust the computing power
and transmission rate for energy efficiency considerations,
cloudlets have no energy constraints (e.g., connected to the
power grid) and thus can always operate at the maximum
power in order to achieve low task execution latency.



3

Cloud server

Cloudlet

Micro wind tower Solar panel

Mobile IoT device

Cloudlet

Figure 1: Network architecture of SEC with mobile IoT devices.

However, in sustainable edge computing, where the
cloudlets are powered by renewable energy, the aforemen-
tioned assumptions do not hold due to the dynamic energy
intensity of renewable energy. How to optimize the CPU
frequency of the cloudlet in a dynamic energy environment
has not yet been studied, which is the focus of this paper.
Note that the proposed optimal CPU frequency scaling strategy
for sustainable cloudlets can be integrated with existing task
offloading [7], [8], [10], [18], [19] solutions making them more
practical and efficient in sustainable edge computing.

III. SYSTEM MODEL

In this section, we first briefly introduce the SEC architec-
ture with mobile IoT devices, and then propose two optimiza-
tion problems that optimize the performance of computation-
intensive IoT networks and the latency-critical IoT networks.

A. Network Architecture
We consider a mobile IoT network, where many mobile

devices are running computation-intensive applications in the
wild, such as AR and target recognition. Due to size, energy,
and heat dissipation limitations, performing all tasks locally
is inefficient. In order to reduce energy consumption and
computing latency, mobile devices offload their tasks to nearby
sustainable cloudlets, as shown in Fig. 1.

Different from mobile IoT devices, the cloudlet can have
a relatively large size so that it can scavenge solar or wind
energy from the surrounding environment to power high-
performance CPUs. Taking wind energy as an example, even
with a micro wind turbine (weight: 12 kg, rotor-swept area:
1.2 m2), it can harvest energy at 177 W and 524 W power when
the wind speeds are 11 m/s (24.6 mph) and 20 m/s (44.7 mph),
respectively [24]. These energy harvesting rates are sufficient
to drive high-performance server processors, such as Intel
Xeon Gold 6328HL [25] or AMD EPYC 7501 [26], the
thermal design point (TDP) of which are 165 W and 175 W,
respectively.

Taking solar energy as another example, the peak intensity
of solar energy in non-shaded areas can reach 600 W/m2 [27].
The power conversion efficiency of commercial solar panels is
between 15% and 20% [28]. Therefore, a two square meters
(1.4 m⇥1.4 m) solar panel can generate 180 W to 240 W of
power, which can easily drive high-performance CPUs.

After receiving computing tasks from mobile devices, the
cloudlet will preprocess the raw data (e.g., feature extraction or
data compression), and then upload useful information to the
cloud server via satellite internet constellation (e.g., Starlink by
SpaceX [29] ) for further data processing, or directly download
computing results to IoT devices. With the assistance of the
cloudlet, internet traffic can be greatly alleviated and the
workload of mobile devices can be significantly reduced.

B. Energy Model
Denote the clock frequency of the cloudlet CPU at time t by

fc(t). According to processor design [30], the CPU’s power
consumption can be divided into three parts: the short-circuit
power, the transistor leakage power, and the dynamic power,
where the last part dominates the others when the CPU is
running. Therefore, we use the dynamic power to approximate
the total power consumption of the cloudlet.

According to the CMOS circuit theory [14], the dynamic
power at time t, denoted by Pd(t), can be calculated as

Pd(t) = ↵fc(t)V
2
c (t), (1)

where ↵ is a constant related to the processor architecture and
Vc(t) is the CPU power supply voltage at time t. Furthermore,
fc is proportional to Vc [30]. By adopting DVFS technology,
modern processors can dynamically scales down the voltage
based on the frequency requirement [31]. Consequently, the
CPU clock frequency can be written as a function of the
dynamic power:

fc(t) = �P
1
3
d (t), Pd � 0, (2)

where � is the frequency scaling coefficient and it is a positive
constant.

In nature, the power density of sustainable energy changes
over time. Let ph(t) be the incident power at time t. According
to the energy causality constraint, the cloudlet cannot use the
energy that has not yet arrived. As a result, the total energy
consumed by cloudlet1 cannot exceed the cumulative harvested
energy, i.e.,

Z t

0
Pd(u) du 

Z t

0
ph(u) du, 8t � 0. (3)

Another constraint is resulted from the limited capacity of
the energy storage, Emax. To avoid harvested energy overflow
from the energy storage, the difference between the cumulative
energy harvested from the beginning to any time point and the
total energy consumed by the cloudlet during that time period
cannot be larger than Emax, i.e.,

Z t

0
ph(u) du�

Z t

0
Pd(u) du  Emax, 8t � 0. (4)

C. Optimization Problem Forumation
The computing power of the cloudlet linearly increases with

the CPU clock frequency since the clock cycle needed to

1A more general power model that considers the static system power and
CPU leakage power could be considered [16], [17]. As such, Pd(u) in the
energy causality constraint and battery capacity constraint can be replaced by
the total power consumption of CPU.



4

execute a machine code is fixed. Without loss of generality,
assume that it takes CPU an average of one clock cycle to
execute a machine code, and then according to the relationship
between fc and Pd given in (2), we can write the following
two optimization problems under the constraints of energy
causality and energy storage capacity:

Computing power maximization: The computing power
of cloudlets determines the execution latency in SEC. Unlike
conventional MEC, where cloudlets are assumed to have fixed
computing capacity, renewable energy-powered cloudlets have
time-varying computing power depending on the intensity
of harvested energy. In the computing power maximization
problem, we manage the dynamic power of the CPU in order
to maximize the overall computing capacity of the cloudlet in
a certain time period, [0, Tp]:

P1: argmax
Pd(t)� 0

Z Tp

0
�P

1
3
d (t) dt, Tp > 0,

s.t. C1:
Z t

0
Pd(u) du 

Z t

0
ph(u) du, 8t2 [0, Tp],

C2:
Z t

0
ph(u) du�

Z t

0
Pd(u) du  Emax, 8t2 [0, Tp].

(5)
Execution time minimization: It minimizes the time for

the cloudlet to execute a total number of Mp machine codes:

P2: argmin
Pd � 0

Tp, Tp > 0,

s.t. C1:
Z Tp

0
�P

1
3
d (u) du = Mp,

C2:
Z t

0
Pd(u) du 

Z t

0
ph(u) du, 8t2 [0, Tp],

C3:
Z t

0
ph(u) du�

Z t

0
Pd(u) du  Emax, 8t2 [0, Tp].

(6)
The objective function of P1 enables the cloudlet to achieve

the best computing performance in a certain period of time.
Therefore, the CPU frequency scaling policy obtained from P1

is suitable for IoT networks that run computation-intensive ap-
plications. In contrast, the objective function of P2 allows the
cloudlet to complete a certain number of tasks in the shortest
time. As will be introduced in Section VII, the optimization
problem P2 can be converted into P1. The solution of P2 can
be used to estimate the minimum computing latency to finish
specific tasks offloaded from mobile IoT devices.

IV. PROCESSING POWER OPTIMIZATION

Based on the optimization problem P1 given in Sec-
tion III-B, this section studies how to manage the CPU clock
frequency in order to maximize the computing power of the
cloudlet within a certain period of time.

To solve P1, we first discretize ph in (5). Let �t represent
a short time period, which is an aliquot part of Tp; i.e., Tp

can be divided by �t. The time between [n�t, (n+ 1)�t]
is referred to as the time slot n, which is represented by tn.
When �t is small, it is reasonable to assume that the incident

power of sustainable energy remains constant within a time
slot, then we have that

ph(t)=ph[n], t 2 [n�t, (n+ 1)�t) , n = 0, 1, 2 . . . . (7)

Let Eh[n],�t ph[n] be the energy received by the cloudlet
in the nth time slot, then the accumulative energy harvested
by the cloudlet in [0, t] is
Z t

0
ph(u) du =

nX

i=0

Eh[i], t � 0, n = 0, 1, 2 . . . . (8)

By substituting (8) into the constraints of (5), we can obtain
the following Lemma and Corollary:
Lemma 1. Under the optimal policy, the CPU clock frequency
remains unchanged within a time slot.
Corollary 1. For a given total amount of energy consumed in
a certain time period, the computing power can be maximized
if the CPU clock frequency remains unchanged.

Proof. As shown in (2), the CPU clock frequency is a con-
cave function of the dynamic power. Therefore, the proof of
Lemma 1 and Corollary 1 can refer to the proof of inequality
(2.8) in the BT-problem of [32].

According to Lemma 1, the optimal clock frequency of the
CPU in time slot n can be expressed in a discrete form given
by:

f⇤
c (t) = f⇤

c [n], t 2 [n�t, (n+ 1)�t) , n = 0, 1, 2 . . . . (9)

In addition, from Lemma 1 and (2), it can be realized that
Pd(t) in (5) becomes a piece-wise linear function of t. Let
Pd[n] represent Pd(t) at time n�t, then we have that

fc[n] = �P
1
3
d [n], n=0, . . . , Np, (10)

where Np = Tp/�t� 1.

Through the above discretization process, the continuous
optimization problem P1 can be converted into a piece-wise
optimization problem:

P3: argmax
Pd[i]� 0

NpX

i=0

�P
1
3
d [i]�t, Np = 0, 1, 2 . . . ,

s.t. C1:
nX

i=0

Pd[i]�t 
nX

i=0

Eh[i], n=0, . . . , Np,

C2:
nX

i=0

Eh[i]�
nX

i=0

Pd[i]�t  Emax, n=1, . . . , Np,

(11)
In the optimization problem P3, the objective function is con-
cave because it is a linear combination of concave functions. In
addition, C1 and C2 in (11) are composed of linear constraints,
so they are convex. Consequently, there exist KKT multiplier
sets µ = {µ0, . . . , µNp} and � = {�1, . . . ,�Np+1} to make
the following conditions hold:



5

Stationarity:

rP⇤
d [j]L=rP⇤

d [j]

0

@
NpX

i=0

�P
1
3
d [i]�t

1

A

�

NpX

n=0

µnrP⇤
d [j]

 
nX

i=0

Pd[i]�t�
nX

i=0

Eh[i]

!

�

NpX

n=1

�nrP⇤
d [j]

 
nX

i=0

Eh[i]�
nX

i=0

Pd[i]�t�Emax

!
= 0,

(12)
where L is the Lagrangian function and rx(·) represents the
partial derivative with respect to x.

Complementary slackness:

8
>>>><

>>>>:

µn

 
nX

i=0

Pd[i]�t�
nX

i=0

Eh[i]

!
=0, n=0, . . . , Np,(13)

�n

 
nX

i=0

Eh[i]�
nX

i=0

Pd[i]�t�Emax

!
=0, n=1, . . . , Np.(14)

Dual feasibility:

(
µn � 0, n = 0, . . . , Np,

�n � 0, n = 1, . . . , Np.
(15)

In the following two sections, we will introduce how to use
the KKT conditions to find the optimal solution to P3 from
the graphical perspective and the algorithmic viewpoint.

V. GRAPHICAL PERSPECTIVE OF PROBLEM P3

This section studies how to adjust the CPU clock frequency
from the graphical point of view to maximize the computing
power of the cloudlet in a certain period of time. We first
construct an feasible energy tunnel based on the constrains of
energy causality and energy storage capacity. Afterward, the
solution to P3 is given. Then, the optimal policy, called the
tightest string policy, is introduced to efficiently manage the
CPU frequency. Finally, we introduce a suboptimal DP-based
method for practical implementation.

A. Feasible energy Tunnel

Fig. 2 illustrates a feasible energy tunnel, where the upper
bound represents the accumulative harvested energy (i.e.,Pn

i=0Eh[i]) and the tunnel width is the battery capacity,
Emax. X-axis and Y-axis of Fig. 2 are the time and the
accumulative energy. We call the curve,

Pn
i=0Pd[i]�t, the

dynamic energy curve which represents the accumulative
energy consumed by the cloudlet. According to the constraints
of P3, the dynamic energy cannot fall outside the tunnel: If it
excesses the upper bound of the tunnel, the energy causality
constrain will be violated; if it is below the lower bound of
the tunnel, the constraint of the energy storage capacity will
not hold.

tt1 t2 t3 t4 t5 t6 t7

Ac
cu

m
ula

tiv
e 

en
er

gy n

∑
i=0

Eh[i]

n

∑
i=0

Eh[i] � Emax

Emax

n

∑
i=0

Pd[i]�t
�t

t0

Figure 2: Feasible energy tunnel

The dynamic energy curve is admissible if it is in the
feasible energy tunnel. In the optimization problem P3, we
aim at finding an admissible curve to maximize F(Pd), where

F(Pd) =

NpX

i=0

�P
1
3
d [i], Np = 0, 1, 2 . . . . (16)

Since the dynamic energy consumed by the CPU increases
monotonically with time, we can obtain the following Corol-
lary according to Lemma 1:
Corollary 2. Under the optimal policy, the dynamic energy
curve touches neither the upper bound nor the lower bound
of the feasible energy tunnel in a time slot.

Proof. The dynamic energy increases monotonically with
time. Therefore, if the dynamic energy curve touches the
lower bound of the feasible energy tunnel at time Tl, where
Tl 2 (m�t, (m+ 1)�t), the curve must be below the lower
bound of the feasible energy tunnel between (m�t, Tl),
which violates the constraint of energy storage capacity, as
shown in curve (e) of Fig. 3.

According to Lemma 1, if the optimal dynamic energy
curve reaches the upper bound of the feasible energy tunnel
at time Tu, then the curve would exceed the upper bound of
the tunnel during (Tu, (m+1)�t), which violates the energy
causality constraint, as shown in curve (d) of Fig. 3.

n

∑
i=0

Pd[i]�t

t0A
cc

um
ula

tiv
e 

en
er

gy

tm

( b ) ( a )

( c )

…

…

n

∑
i=0

Eh[i]

n

∑
i=0

Eh[i] � Emax

tm�1 tm+1

( e )

( d )
Tu

Tl

Figure 3: Three possible states of the dynamic energy curve.

According to Corollary 2 and the energy causality and
storage capacity constrains, the optimal dynamic energy curve
has only three potential states at the end of tm: (a) passing
through the energy feasible tunnel, (b) reaching the upper
bound of the tunnel, and (c) touching the lower bound of the
tunnel, as shown in Fig. 3. States (d) and (e) will not occur.



6

B. Solution of Precessing Power Optimization

By solving the KKT stationarity condition in (12), we have:

P ⇤
d [i]=

2

4 3

�

0

@
NpX

n=i

µn �

NpX

n=i

�n

1

A

3

5
� 3

2

, Np = 0, 1, 2 . . . . (17)

Combining (17) with the complementary slackness and dual
feasibility of KKT conditions, we obtain following Lemmas:
Lemma 2. Under the optimal policy, the CPU clock frequency
remains unchanged when the energy storage is neither full nor
empty (i.e., 0 <

Pm
i=0(Eh[m]�Pd[i]�t) < Emax, 8m 2

[0, Np � 1] : f⇤
c [m] = f⇤

c [m+ 1]).

Proof. The dynamic energy curve in Lemma 2 corresponds to
the state (a) in Fig. 3. In this state, we have that

8
>>>><

>>>>:

mX

i=0

Pd[i]�t�
mX

i=0

Eh[i] 6= 0, (18)

mX

i=0

Eh[i]�
mX

i=0

Pd[i]�t� Emax 6= 0. (19)

Substituting (18) and (19) into the complementary slackness
of the KKT conditions, (13) and (14), it can be obtained that
µm = 0 and �m = 0. Then, according to (17), it can be
obtained that

P ⇤
d [m] =

2

4 3

�

0

@µm +

NpX

n=m+1

µn � �m �

NpX

n=m+1

�n

1

A

3

5
� 3

2

=

2

4 3

�

0

@
NpX

n=m+1

µn �

NpX

n=m+1

�n

1

A

3

5
� 3

2

. = P ⇤
d [m+ 1].

(20)
From (20) and the relation between the CPU clock frequency
and the dynamic power given in (10), we have that f⇤

c [m+1] =
f⇤
c [m].

Lemma 3. Under the optimal policy, the CPU clock fre-
quency increases monotonically when the energy storage
becomes empty (i.e.,

Pm
i=0Pd[i]�t =

Pm
i=0 Eh[m], 8m 2

[0, Np � 1] : f⇤
c [m+ 1] � f⇤

c [m]).

Proof. The dynamic energy curve in Lemma 3 corresponds to
the state (b) in Fig. 3. In this state, we have that

8
>>>><

>>>>:

mX

i=0

Pd[i]�t�
mX

i=0

Eh[i] = 0, (21)

mX

i=0

Eh[i]�
mX

i=0

Pd[i]�t� Emax 6= 0. (22)

Substituting (22) into the complementary slackness of the
KKT conditions given in (14), it can be obtained that �m =
0. Substituting (21) into (13), and then according the dual

feasibility of the KKT conditions given in (15), we have that
µm � 0. Fianlly, according to (17), it can be obtained that

P ⇤
d [m] =

2

4 3

�

0

@µm +

NpX

n=m+1

µn � �m �

NpX

n=m+1

�n

1

A

3

5
� 3

2



2

4 3

�

0

@
NpX

n=m+1

µn �

NpX

n=m+1

�n

1

A

3

5
� 3

2

= P ⇤
d [m+ 1].

(23)
In (23), there is an inequality because µm � 0 and x� 3

2 is a
monotonically decreasing function of x.

From (23) and the relation between the CPU clock fre-
quency and the dynamic power described in (10), we have
f⇤
c [m+ 1] � f⇤

c [m].

Lemma 4. Under the optimal policy, the CPU clock frequency
decreases monotonically when the energy storage becomes full
(i.e.,

Pm
i=0Pd[i]�t=

Pm
i=0 Eh[m]+Emax, 8m 2 [0, Np�1] :

f⇤
c [m+ 1]  f⇤

c [m]).

Proof. The dynamic energy curve in Lemma 4 corresponds to
the state (c) in Fig. 3. In this state, we have that

8
>>>><

>>>>:

mX

i=0

Pd[i]�t�
mX

i=0

Eh[i] 6= 0, (24)

mX

i=0

Eh[i]�
mX

i=0

Pd[i]�t� Emax = 0. (25)

Substituting (24) into the complementary slackness of the
KKT conditions given in (13), it can be obtained that µm = 0.
Substituting (25) into (14), and then according to the dual
feasibility of the KKT conditions given in (15), we have that
�m � 0. Finally, according to (17), it can be obtained that

P ⇤
d [m] =

2

4 3

�

0

@µm +

NpX

n=m+1

µn � �m �

NpX

n=m+1

�n

1

A

3

5
� 3

2

�

2

4 3

�

0

@
NpX

n=m+1

µn �

NpX

n=m+1

�n

1

A

3

5
� 3

2

= P ⇤
d [m+ 1].

(26)
In (26), there is an inequality because �m � 0 and x� 3

2 is a
monotonically decreasing function of x.

From (26) and the relation between the CPU clock fre-
quency and the dynamic power given in (10), we have
f⇤
c [m+ 1]  f⇤

c [m].

Lemma 5. Under the optimal policy, the cloudlet consumes
all the harvested energy by the end of the last slot (i.e.,PNp

i=0P
⇤
d [i]�t =

PNp

i=0Eh[i]).

Proof. If energy is not exhausted in the last time slot with the
optimal P ⇤

d [i], i = 1, . . . , Np, we can always find P 0
d[Np] >



7

P ⇤
d [Np] that consumes all the collected energy. Because F

in (16) is a monotonically increasing function of Pd, we thus
have F(P 0

d[Np]) > F (P ⇤
d [Np]), which means that P ⇤

d [Np] is
not optimal. Therefore, the optimal policy must consume all
harvested energy in the last time slot.

C. Tightest String Policy
In this subsection, we present a tightest string policy uti-

lizing the proved Lemmas and Corollaries to optimize the
computing power for the cloudlet.

As shown in Fig. 4, we first mark several turning points in
the feasible energy tunnel as pi, i = 0, . . . , 8, where p0 is
the starting point. The optimal dynamic energy curve can be
obtained through the following steps.

tt1 t2 t3 t4 t5 t6 t7

Ac
cu

m
ula

tiv
e 

en
er

gy

t0

p1
p2

p3

p0

p4

p5

p6
p7

p8Energy causality constraint

Energy storage capacity constraint 

Emax

Figure 4: The tightest string policy for computing capacity maximiza-
tion.

Step 1: Connect p0 with all turning points in the feasible
energy tunnel. Remove the strings that have any portion fall
outside the tunnel. The rest of the strings, which are p0p1,
p0p2, and p0p3, are considered as admissible starting strings.

Step 2: According to Corollary 2, amongst all admissible
starting strings, we keep the one with the longest duration and
remove others. If two starting strings have the longest duration,
such as p0p2 and p0p3 in Fig. 4, and then go to the next step
to examine each retained string.

Step 3: We check p0p2 first. Let p2 be the new starting
point, and then repeat Step 1 and Step 2 to obtain all
admissible strings, p2p4 and p2p5. p0p2 hits the lower bound
of the feasible energy tunnel, which means the energy storage
is full. In this case, according to Lemma 4, the CPU will
reduce the frequency and the dynamic power in the next slot.
As a result, the slope of p2pi must be smaller than that of p0p2.
However, it can be observed from Fig.4 that the slopes of p2p4
and p2p5 are both greater than the slop of p0p2. Therefore,
p0p2 needs to be removed from the admissible strings, and
only p0p3 is retained.

Step 4: Let p3 be the new starting point, and then we repeat
Step 1 and Step 2 to obtain all admissible strings, which are
p3p6 and p3p7. We first check p3p6. According to Lemma 5,
the cloudlet must spend all received energy at the end of the
time slot. Therefore, the end point of the dynamic energy curve
is p8. As shown in the figure, p3p6 reaches the upper bound of
the feasible energy tunnel. In this case, the CPU will increase
the frequency and the dynamic power in the next slot based
on Lemma 3. Therefore, the slope of p6pi should be greater
than that the slope of p3p6, which is unsatisfactory. Therefore,
p3p6 is removed from the admissible strings. Finally, p3p7 and
p7p8 are retained as the optimal solution.

Step 5: After obtaining the optimal strings through Step 1
to Step 5, the optimal dynamic power of the CPU in each time
slot is available, which is the slope of the strings. Finally, the
optimal CPU frequency can be calculated by (10).

The optimal strings obtained through the above steps are
the tightest that follows the Lemmas. The corresponding CPU
frequency scaling policy is called the tightest string policy. To
be specific, assume that a thread ball is placed in the feasible
energy tunnel. We tie one end of the thread ball to the starting
point p0, and then withdraw the thread at the endpoint p8.
The process will not stop until the thread is fully tightened.
Finally, the thread left in the tunnel has the shortest length and
the tightest shape. A similar observation can also be found in
the transmission scheduling of wireless communications with
deadline constraints [32].

D. Dynamic Programming Solution
Although the tightest string method leads to an optimal

solution, the implementation of Step 1 to Step 5 is not
straightforward as it is not easy to find the optimal string under
the constraints of Lemma 3 and Lemma 4. In this subsection,
we introduce a dynamic programming method for practical
implementation. Specifically, the complex optimization prob-
lem is converted into a classic shortest path problem with
negligible performance degradation and thus can be solved
by DP algorithms [33]. Not that the DP method is a general
and fast solution that can be easily applied to different power
models in the literature [15]–[17].

0 5 10 15 20 25

5

10

15

20

Optimal path
DP path
Potential path

Vertexes

Magnified area

30

C
ol

um
n 

ID

t

Starting point

Destination

V1,0

V1,2

V1,1

V0,0

V2,0

V2,2
V2,1

V6,2

Figure 5: Dynamic programming based frequency management.

In the DP solution, finding the optimal frequency man-
agement strategy within the energy tunnel is converted into
seeking the shortest path from a Starting point to a Destination.
According to Lemma 2 and the inspiration of the tightest string
policy, the dynamic energy curve needs to stay within the
feasible energy tunnel; in addition, the dynamic power will
not change within a time slot. Therefore, we evenly place k
“vertexes” between the lower bound and the upper bound of
the feasible energy tunnel at the end of each time slot (k=3 in
Fig. 5). The vertexes are fully connected with the vertexes at
adjacent slots, forming directed edges in the weighted graph.
The slope of the edge represents the dynamic power, Pd, of
the CPU. The corresponding CPU frequency calculated with
(2) is considered as the weight of the edge.



8

The Starting point, V0,0, of the dynamic energy curve
indicates that the cloudlet consumes zero energy at time
0. The Destination, V6,2, means the cloudlet will consume
all harvested energy at the end of task execution according
to Lemma 5. When it moves along the edges toward the
Destination, the cloudlet consumes dynamic power and gets
the CPU frequency as weights of edges.

Following the above description, maximizing the computing
capacity of the cloudlet in a certain period of time is converted
into a routing problem with weighted rewards on different
paths. We aim at finding a route between the starting point
and the end point for the virtual point to maximize the
total costs. To achieve this goal, DP-based methods like
the Dijkstra’s algorithm can be directly applied to find the
optimal solution. Compared to the tightest string policy, the
DP solution significantly simplifies the computing capacity
maximization problem. The computational complexity of the
Dijkstra’s algorithm is O(kn log (kn)), where n is the number
of slots in the feasible energy tunnel [34].

However, this simplification converting the tightest string to
a DP problem is at the cost of minor performance degradation.
As shown in the magnified area of Fig.5, the optimal DP path,
V0,0�V1,1�V2,2, is slightly deviated from the optimal tightest
string path, V0,0�V2,2. By increasing vertex density (i.e., k),
the results obtained from the DP method can gradually ap-
proach the optimal solution. In the next section, we evaluated
the performance of the DP algorithm with respect to the grid
density.

E. Performance of DP Algorithm

In Fig. 6, we evaluate the impact of grid density on the
performance of the DP-based CPU scaling policy. The total
running time of the cloudlet is Tp = 600min. The maximum
capacity of the energy storage is Emax = 100Wh. The grid
density on the Y-axis is defined as the number of vertexes
distributed between the upper bound and the lower bound
of the feasible energy tunnel. The normalized performance
is the ratio of the total CPU clock cycles obtained by the
DP algorithm to that achieved by the tightest string policy.
The results presented in the figure are the average of 10
independent tests.

10 20 30 40
Vertexes density

0.975

0.98

0.985

0.99

0.995

1

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Figure 6: The normalized performance of the DP algorithm with
respect to the grid density.

When k = 3, the performance degradation is about 2.3%.
With the increment of grid density, the performance of the
DP-based frequency scaling strategy gradually approaches

tt1 t2 t3 t4 t5 t6 t7

Emax

t0 t8

Pd[7]

Po
w

er
 

ph[2]

Gap 

p*hPd [i] [i]
Transferred energy 

Figure 7: Directional water-filling algorithm for computing power
optimization.

the optimal tightest string policy. The performance gap is
reduced to less than 1% when k is greater than 6. However,
a larger k will result in higher computational complexity.
Therefore, we recommend a moderate k between 3 and 6. The
computational complexity of calculating the CPU frequency
scaling policy is negligible considering the high computing
capacity of cloudlets.

VI. ALGORITHM PERSPECTIVE OF PROBLEM P3
In this section, we study how to manage the CPU frequency

through the directional water-filling algorithm to maximize the
computing power of the cloudlet in a certain period of time.
It interprets the solution of the optimization problem P3 from
an algorithmic perspective.

The water-filling algorithm plays a crucial role in the opti-
mization problem [35]. It has been widely used for resource
(e.g., frequency and power) allocation, transceiver optimiza-
tion, and training optimization in communication systems [36],
[37]. The direction water-filling algorithm was first proposed
in [38] to find the optimal data transmission strategy for energy
harvesting devices in wireless fading channels. The algorithm
can be extended to our work because it describes the flow of
water in a tank under the constraints of energy causality and
energy storage capacity.

As shown in Fig. 7, we first construct the original water
surface, the depth of which represents the incident power
of the received energy in each time slot. Accordingly, the
area of water equals to the energy harvested by the cloudlet.
Afterward, water is allowed to flow under the constraints of
the following rules:
a) Water can only flow from the left to the right. This signifies

that the past energy can be saved and used in the future, but
due to the causality of energy, the future energy cannot be
transferred to the past.

b) Due to the constraint of the energy storage capacity, the total
amount of energy transferred from one slot to another cannot
exceed Emax.

c) To maximize the objective function in P3, water flows
continuously until the water level is equalized or the rule
(b) is violated.
Now, we take Fig. 7 as an example to show how the

directional water-filling algorithm works. As shown in the
figure, according to rules (a) and (b), in order to equalize the
water level, the energy received in t0 is filled into t1, and the



9

energy collected in t2 flows to t3 and t4. In addition, as stated
in rule (c), the water level from t5 to t8 cannot be completely
balanced since the maximum energy allowed to flow from t5
cannot exceed Emax. As a result, there is a gap between the
water surface of t5 and t6.

Based on the three rules, a new water surface is formed.
The depth of the new surface represents the optimal dynamic
power in each time slot. Finally, the optimal clock frequency
of the CPU can be calculated via (10). The results obtained
from the directional water-filling algorithm are the same as the
tightest string policy because they are different interpretations
of the same optimization problem.

In Fig. 7, we can observe an interesting phenomenon: If the
energy harvested by the cloudlet in a time slot, such as t2 and
t5, is much higher than the energy collected in the past few
slots, then an “energy dam” will be formed, which prevents
the flow of energy from the past to the future. Once the energy
dam is formed, it will serve as the new starting point of the
frequency management. In other words, the CPU frequency
scheduled before the dam will not affect the frequency scaling
strategy after the dam.

The above feature is useful for developing an online CPU
frequency scaling strategy. Specifically, the energy dam can
separate long-term frequency management into multiple short-
term ones. Therefore, if the cloudlet is able to predict energy
variations in the near future, it can adjust the clock frequency
based on the current and predicted energy harvesting rate to
achieve sub-optimal computing performance.

VII. EXECUTION TIME OPTIMIZATION

In this section, we study how to manage the CPU clock
frequency to minimize the task execution time based on the
optimization problem P2 given in Section III-B. To solve
P2, we first discretize ph as introduced in Section IV. Then,
according to the constraint C1 in the optimization problem
P2, we have that Tp is a convex function of Pd[i], where
i = 0, . . . , Np. Therefore, to minimize the execution time
of tasks offloaded from mobile IoT devices, the CPU clock
frequency remains unchanged in a time slot. This conclusion
is consistent with Lemma 1.

Let �t is an aliquot part of Tp and Np = Tp/�t� 1, then
the continuous optimization problem P2 can be converted into
the following piece-wise optimization problem:

P4: argmin
Pd[i]� 0

Np,

s.t. C1:
NpX

i=0

�P
1
3
d [i] = Mp,

C2:
nX

i=0

Pd[i]�t 
nX

i=0

Eh[i], n=0, . . . , Np,

C3:
nX

i=0

Eh[i]�
nX

i=0

Pd[i]�t  Emax, n=1, . . . , Np.

(27)
We can solve P4 based on the following Lemma:

tt1 t2 t3 t4 t5 t6 t7

Ac
cu

m
ula

tiv
e 

en
er

gy

t0

p1

p0

p2

p3
p4

t8

Figure 8: The impact of newly received energy on CPU frequency
management.

Lemma 6. P ⇤
d [i] form the optimal policy of P4 if they

maximize
PNp

i=0 �(P
⇤
d [i])

1
3 , where i=1, . . . , Np.

Proof. Denote Z(Pd, N) =
PN

i=0 �P
1
3
d [i]. Assuming that

P ⇤
d [i] do not maximize Z(P ⇤

d , Np), then we can always
find P 0

d[i] making Z(P 0
d, Np) � Z(P ⇤

d , Np) = �Mp, where
i=1, . . . , Np and �Mp > 0. Because the dynamic energy in-
creases monotonically with time, there is a Nx, Nx < Np that
makes Z(P ⇤

d , Np) = Z(P ⇤
d , Nx) +

PNp

j=Nx
�P

1
3
d [j], where

Z(P ⇤
d , Nx) = Mp and

PNp

j=Nx
�P

1
3
d [j] = �Mp. As a result,

P ⇤
d [i] is not optimal because Nx < Np. Therefore, the optimal

solution of P4 is P ⇤
d [i] that maximizes

PNp

i=0 �(P
⇤
d [i])

1
3 .

Based on Lemma 6, the optimization problem P4 can be
converted into the optimization problem P3. The only differ-
ence between the the two problems is that the total number of
time slots, Np, in P4 becomes a variable instead of a known
value in P3. Although Np cannot be written as a function of Pd

that can be directly calculated, we can run the tightest string
policy or the directional water-filling algorithm in each time
slot to check if the current Np and P ⇤

d [i], i = 0, . . . , Np, make
the constraint C1 in (27) hold, as will be introduced next.

Here, we use the tightest string policy as an example to
show how to manage the CPU clock frequency of the cloudlet
so that the execution time of tasks offloaded from mobile IoT
devices can be minimized:

Step 1: At the end of tn, the cloudlet performs Step 1 to
Step 5 introduced in Section V-C to find the optimal CPU
frequency from t0 to tn.

Step 2: The cloudlet calculates the cumulative frequency. IfPn
i=0 f

⇤
c [i] < Mp, and then more energy is needed to satisfy

the constraint C1 in (27). Therefore, the cloudlet waits for the
new energy that will be arrived in the next time slot and let
n = n+1, then go Step 3. If

Pn
i=0 f

⇤
c [i] = Mp, then go Step

4.
Step 3: Repeat Step 1. According to the new energy

harvested in time slot n + 1, the cloudlet calculates the new
CPU frequencies between time slots t0 and tn+1.

Step 4: Let n = Np, the current f⇤
c [i], i = 0, . . . , Np, are

considered to be the optimal frequencies that can minimize
the task execution time.

It is worth noting that in Step 3, the cloudlet does not need to
recalculate all CPU frequencies obtained in previous time slots
since most of the frequency values are reusable. Using Fig. 8
as an example, if the optimization process stops in t7, then the



10

optimal strings are p0p1, p1p2, and p2p3. If the optimization
process stops in t8, then the optimal strings are p0p1, p1p2, and
p2p4. Obviously, the first two strings, p0p1 and p1p2, remain
unchanged.

The above observation is mainly caused by the energy
causality constraint. It can also be interpreted by the energy
dam, which has been discussed in Section VI. As a result,
in most cases, when newly received energy joins the feasible
energy tunnel, the cloudlet only needs to recalculate the last
two strings. This greatly reduces the computational complexity
of optimal CPU frequency management.

In addition to reducing the computational complexity,
reusable frequencies are also very useful for developing online
CPU scaling strategies. Specifically, as analyzed in SectionVI,
significant changes in energy intensity are likely to create
energy dams, which divides a long-term CPU management
into multiple short-term strategies. Therefore, if the cloudlet
can predict variations of energy strength in the near future,
it can efficiently manage the CPU frequency to achieve good
computing performance.

VIII. PERFORMANCE EVALUATION

In this section, we will show the effectiveness of the
proposed optimal CPU frequency scaling strategy and demon-
strate the impacts of various system parameters through MAT-
LAB simulations. We first compare the proposed offline CPU
frequency scaling policy with two benchmark strategies in
terms of the average CPU clock rate in order to evaluate
their efficiency of energy utilization. The average CPU clock
rate will indicate the number of computing tasks that can
be executed given the limited energy supply from renewable
energy. Next, the impacts of the dynamic solar intensity
and varying battery capacity on the system performance are
illustrated. We also study the performance of the online CPU
frequency management strategy and evaluate the performance
degradation compared to offline optimal policy in different
conditions. The results presented in the figures are the average
of 10 independent tests for each configuration.

A. Performance of Offline Strategies
For comparison, we introduce two benchmark offline strate-

gies that work as follows:
- Average scaling strategy: In this strategy, the cloudlet first

calculates the average of the energy harvesting rate across all
time slots, and then adjusts the CPU frequency so that the
dynamic power is equal to the average energy harvesting rate.

- Greedy scaling strategy: In this strategy, the cloudlet adjusts
the CPU frequency to consume all the collected energy by the
end of each time slot.

Based on the experimental results reported in [39] and
[40], we choose a half-sine function with random fading and
fluctuation to model the intensity of solar radiation in a day.
Taking Fig. 9 as an example, from 6:00 AM to 8:00 PM
in summer, the average intensity of solar energy is a half-
sine function with small random fluctuations. When the sun
is obscured by clouds, the intensity of solar power decreases

06:00 09:00 12:00 15:00 18:00
Time

0

500

1000

So
la

r i
nt

en
si

ty
 (W

/m
2 ) Winter clear

Summer cloudy

Figure 9: Changes of solar intensity in a day.

significantly, causing deep fadings on random places of the
curve. In winter, the days are shorter (7:00 AM to 5:00
PM) and the average solar intensity is only half as strong
as in summer. The peak intensity of solar energy in summer
is 900 W/m2 at 1:00 PM. In the simulation, the length of
each time slot is �t = 10min. In each time slot, there
is 10% probability that clouds block the sun and the solar
intensity randomly drops to 1/5 to 1/2 of the original value. The
frequency scaling coefficient is set to ⇢=0.565 ⇥ 109. With
this frequency scaling coefficient, when the dynamic power is
10 W and 150 W, the CPU clock frequencies are 1.2 GHz and
3.0 GHz, respectively.

In Fig. 10, we compare the proposed optimal strategy
with two benchmark policies under different battery capacity,
Emax. As depicted in Fig. 10, the performance of the average
CPU frequency scaling strategy is much lower than that of
the other two strategies, especially when the energy storage
capacity is low. The average scaling strategy that uses fixed
computing power is not able to adapt to the high dynamics
in the harvested energy: when the solar intensity is high,
the battery tends to overflow in the average scaling policy
causing waste of energy; when the solar energy is weak, the
average policy drains the battery quickly resulting in inefficient
energy utilization. Therefore, we observe obvious performance
improvement for the average strategy with a larger energy
buffer. By contrast, the change of Emax has much less impact
on the optimal strategy and the greedy strategy than the
average policy. As a result, a relative stable clock rate is
achieved with the optimal and the greedy strategies regardless
of Emax.

50 100 150 200
Emax (Wh)

2

2.2

2.4

2.6

Av
er

ag
e 

cl
oc

k 
ra

te
 (G

H
z)

Optimal strategy
Average strategy
Greedy strategy

Figure 10: Impact of battery capacity on the performance of different
CPU frequency management strategies in daylong tests.

The greedy strategy consumes all the harvested energy



11

0.3 0.4 0.5 0.6 0.7 0.8
Standard deviation of Eh

2

2.2

2.4

2.6
Av

er
ag

e 
cl

oc
k 

ra
te

 (G
H

z)

Optimal strategy
Average strategy
Greedy strategy

Figure 11: Impact of energy variation on the performance of different
CPU frequency management strategies.

in each slot and can avoid waste of energy. However, the
performance of the greedy policy is 5% lower than the optimal
strategy due to inefficient energy utilization. Specifically, as
shown in (2), the clock frequency of the CPU is a concave
function of the dynamic power. Therefore, it is not efficient
to improve the computing power of the cloudlet by increasing
the dynamic power. In fact, if the maximum capacity of the
energy storage is unlimited and all tasks have no deadline, the
most efficient way to use the harvested energy is to perform
the task at the lowest frequency, thereby maximizing the total
clock cycles for a given energy consumption. However, the
greedy strategy consumes all collected energy at the end of
each time slot. The energy collected in past time slots cannot
be saved for future use, resulting in high fluctuation in the
computing capacity of cloudlets.

In addition to the daylong tests with time-varying average
solar intensity, we also conducted short-term tests where the
average energy intensity was constant during the experiment
(i.e., p̄h = 115W), but the amount of energy harvested in
each slot was dynamic representing the random fading caused
by clouds. We vary the fluctuations of solar intensity and
reveal the impact of energy variations on the performance of
the three CPU frequency management strategies in Fig. 11,
where the effectiveness of the proposed optimal strategy is
again validated. In the figure, the battery capacity is set to
Emax = 115Wh. Denote the relative standard deviation of
Eh as �h, which indicates the variation of energy intensity
between different time slots. In order to clearly show the
relationship between the performance of the three strategies
and �h, we perform the linear fit to all discrete points, and
show the results with the solid line in the figure.

As shown in Fig.11, when the fluctuation of energy intensity
becomes large, the performance of all three CPU management
strategies decreases linearly. According to Lemma 2, it can be
realized that an ideal feasible energy tunnel should be the one
that allows the CPU frequency to remain constant throughput
the whole tunnel. In this case, the tightest string will be a
single line segment connecting the start and end of the tunnel.
To achieve this, the height of the steps in the feasible energy
tunnel needs to be consistent, which requires the fluctuation
of the energy intensity to be as small as possible. Otherwise,
the slope of the tightest string will keep changing to meet the
constraints of the energy causality and energy storage capacity,

thereby reducing the efficiency of energy utilization.
From Fig. 11, it can be observed that the average frequency

management strategy is more sensitive to energy variation than
the greedy strategy and the optimal policy. For instance, when
the relative standard deviation of Eh increase from 0.3 to
0.8, the clock rate with the average frequency management
strategy is reduced from 2.52 GHz to 2.08 GHz, that is, the
computing power decreases by 18%. In the same situation,
the average clock rate of the greedy strategy is reduced by
8%. This is because, with the increase of �h, the harvested
energy is very likely to be underutilized. As a result, there is
a high probability that the energy storage is fully charged in
some time slots. This greatly reduces the energy harvesting
efficiency because the arriving energy cannot be successfully
stored by the cloudlet for future use.

B. Performance of Online Strategy
In the online CPU frequency scaling strategy, we assume

the cloudlet is able to accurately predict the energy harvesting
rates in the next Nf time slots. Nf is considered as the
prediction ability of cloudlets. In the past few decades, how
to predict the intensity of solar and wind energy has been
extensively studied [41]–[43], which is out of the scope of
this paper.

Compared to the offline policy, the whole feasible energy
tunnel is equally divided into multiple sub-tunnels of Nf

length in the online solution. The DP method is performed
independently in each Nf -tunnel to calculate the dynamic
power and the corresponding clock rate. The shortened energy
tunnel and the prediction error lead to degraded performance
of the online solution. We normalize the performance of the
online method by dividing its clock frequency by the clock
rate of the optimal offline strategy.

5 10 15 20 25 30
Prediction ability (Nf)

0.985

0.99

0.995

1

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

h  = 0.48 Wh

h = 3.2 Wh

h = 7.2 Wh

Figure 12: Performance of online CPU frequency scaling strategy
with accurate prediction on energy harvesting rate.

For the online CPU frequency scaling, we study two dif-
ferent situations: (a) The cloudlet can accurately predict the
future energy harvesting rate, and (b) the cloudlet can predict
the energy harvesting rate with some errors. We start from the
first case, where the cloudlet can perfectly predict the energy
harvesting rates in the next Nf time slots.

Fig. 12 shows the performance of the online strategy with
respect to Nf . As illustrated in the figure, the performance of
the online strategy is proportional to Nf . With the increment
of prediction capability, the performance of the online strategy
will approach to the optimal solution quickly. Moreover, the



12

2 4 6 8 10
Prediction ability (Nf)

0.75
0.8

0.85
0.9

0.95
1

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 = 5,  = 5
 = 10,  = 5
 = 20,  = 5

AR prediction

(a) Impact of initial value.

2 4 6 8 10
Prediction ability (Nf)

0.8

0.9

1

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 = 10,  = 0.1
 = 10,  = 5
 = 10,  = 10

AR prediction

(b) Impact of slope.

Figure 13: Performance of online CPU frequency scaling strategy with prediction errors on energy harvesting rate.

variation of energy intensity has negative impact on the per-
formance of the online strategy. The reason is the same as the
low performance of the offline average frequency management
strategy that is analyzed in Fig. 11. From Fig. 12, it can be
observed that even if the cloudlet can only accurately predict
the energy harvesting rate for the next several time slots, the
performance of the online strategy could be very close to the
optimal offline policy. When Nf is reduced to 1, the online
CPU frequency scaling strategy degenerates to the greedy
policy.

In practice, prediction errors exists in the estimation of
future energy harvesting rates, which will further reduce
the performance of online CPU scaling strategy. We use a
simple autoregressive (AR) [44] model to predict the incoming
energy intensity and conduct numerical evaluations to evaluate
the performance of the prediction-based online transmission
strategy in Fig. 13. The prediction error is generally small
while predicting the harvest rate in the next adjacent slot and
grows with the slot increases. Therefore, we can observe a
slight performance degradation with the growth of Nf for the
AR prediction-based online strategy.

In order to further evaluate the impact of prediction error
on the performance of prediction-based online CPU scaling
policy, we manually add errors to the estimation of future
energy harvesting rates. Here, we consider a linear error model
where the prediction error, e=⌘+⇢(n�1), with n=1, · · · , Nf .
We change ⌘ and ⇢ to generate varying prediction error and
then plot the normalized performance in Fig. 13.

In Fig. 13(a), we fix the slope of the prediction error, ⇢, but
change the initial prediction error, ⌘, from 5 Wh to 20 Wh.
As shown in the figure, increasing the initial prediction error
significantly reduces the performance of online strategy. The
normalized performance is 0.997 when there is no prediction
error, Nf =1, and �h=3.2 Wh (i.e. black curve in Fig. 12).
It reduces to 0.947, 0.910, and 0.845 when ⌘ is 5 Wh, 10 Wh,
and 15 Wh, respectively. From the figure it can be observed
that if the initial prediction error is small (e.g., ⌘ is 5 Wh or
10 Wh), the performance of the online CPU scaling strategy
can achieve a very good performance even if Nf is small.

Next, we investigate the impact of ⇢ on the performance of
online strategy in Fig. 13(b). When ⇢=0.1Wh, the growth of
the prediction error with time slots is negligible; the estimation
of energy harvesting rate in all time slots has comparable

prediction error. In this case, the benefit from larger prediction
ability (i.e., larger Nf ) leads to better normalized performance.
When ⇢=5Wh, the prediction errors in estimating the harvest
rate in the end slots become significant with large Nf . In this
case, the negative impact of growing prediction error surpasses
the benefit from better prediction ability. Therefore, a moderate
prediction ability is suggested, e.g., Nf =6. When ⇢ becomes
very large (e.g., ⇢=10Wh), the greedy strategy (i.e., Nf =1)
is most favorable.

Combining Fig.12 with Fig.13, we realize that the variation
of the energy intensity (�) and the initial prediction error (⌘)
have the most significant impact on the performance of the
online CPU scaling strategy. To reduce � and ⌘, the most
efficient way is to decrease the length of each time slot (�t).
This is because the change of energy intensity is usually
a continuous process, reducing �t will make the adjacent
measures of the energy intensity highly correlated. In this case,
using the greed strategy can achieve similar a performance as
the offline optimal CPU frequency scaling policy.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the CPU frequency scaling problem
of the cloudlet with energy harvesting capability. Two opti-
mization problems subject to the constraints of energy causal-
ity and energy storage capacity are developed to (a) maximize
the computing power of the CPU within a certain period of
time, or (b) minimize the execution time of tasks offloaded
from mobile IoT devices. As analyzed in the paper, the second
optimization problem can be transformed into the first one.
To give insight into efficient CPU frequency management, the
optimization problem is solved through the graphical method
(tightest string) and the algorithmic method (directional water-
filling). In addition, we also introduced a suboptimal DP-based
solution by converting the optimal frequency scaling problem
into a shortest path problem. The DP method is a practical and
general solution that can be easily applied to the optimal CPU
frequency scaling problems. Finally, how to design an online
strategy for frequency management is discussed. Simulation
results verified the efficiency of the proposed CPU frequency
scaling policies.

The future work will focus on two directions. 1) We aim
to implement the optimal CPU frequency scaling policy on a
real sustainable cloudlet and conduct field experiments. More



13

practical issues, such as the piecewise nonlinear lithium-ion
battery charging and the power consumption model consider-
ing system power and CPU leakage power, will be considered
when developing the optimal CPU frequency scaling policies.
2) We will integrate the proposed sustainable cloudlet CPU
frequency scaling and task allocation in order to develop
a more comprehensive sustainable edge computing system.
The stochastic task arrival, dynamic wireless channel, CPU
frequency scaling, and dynamics in renewable energy will be
taken into account in the policy design.

ACKNOWLEDGEMENT

This work is supported in part by the US National Science
Foundation under Awards CIF-2051356, CNS-2122167, CNS-
2122159, CNS-2006453, CNS-2126151, and ECCS-2210106.

Dr. Yu Luo received the B.S. degree and the M.S.
degree in electrical engineering from the North-
western Polytechnical University, China, in 2009
and 2012, respectively. In 2015, he received the
Ph.D. degree in computer science and engineering
from University of Connecticut, Storrs. Dr. Luo
is currently an Assistant Professor at Mississippi
State University. His major research focus on the
sustainable wireless networks for emerging IoT, RF
energy harvesting hardware, security in RF energy
harvesting wireless networks, and underwater wire-

less networks. He is a Co-recipient of the Best Paper Award in IFIP
Networking 2013 and Chinacom 2016.

DSC_0461

DSC_0451

DSC_0459

DSC_0450

DSC_0458 DSC_0453 DSC_0452

SMIC 2017

SMIC 2017

SMIC 2017

SMIC 2017

SMIC 2017 SMIC 2017 SMIC 2017

Dr. Lina Pu received the B.S. degree in electrical
engineering from the Northwestern Polytechnical
University, Xi’an, China in 2009 and the Ph.D.
degree in Computer Science and Engineering from
University of Connecticut, Storrs. Dr. Pu is currently
an Assistant Professor at University of Alabama. Her
research interests lie in the area of edge computing,
RF energy harvesting wireless networks, security
in the sustainable IoT, and underwater acoustic/VL
networks. She owned IFIP Networking 2013 best
paper award.

Dr. Chun-Hung Liu (Senior Member, IEEE) re-
ceived the B.S. degree in Mechanical Engineering
from National Taiwan University, Taipei, Taiwan,
the M.S. degree in Mechanical Engineering from
Massachusetts Institute of Technology, Cambridge
MA, USA, and the Ph.D. degree in electrical and
computer engineering from The University of Texas
at Austin, TX, USA. He is currently an Assistant
Professor with the Department of Electrical and
Computer Engineering at Mississippi State Univer-
sity, Starkville MS, USA. He was with the University

of Michigan, Ann Arbor MI, USA, and National (Yang Ming) Chiao Tung
University, Hsinchu, Taiwan. His research interests lie in the areas of wireless
networking, machine learning, high-dimensional data analysis, stochastic
control, and optimization theory. He was a recipient of the Best Paper
Award from the IEEE Global Communications Conference (Globecom) in
2008 and 2014, a recipient of the Excellent Young Researcher Award from
the Ministry of Science and Technology of Taiwan in 2015, a recipient of
the Outstanding Advisor Award from the Taiwan Institute of Electrical and
Electronic Engineering in 2016.

REFERENCES

[1] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: architecture, advances
and challenges,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 4, pp. 2462–2488, 2020.

[2] J. Wang, W. Wu, Z. Liao, R. S. Sherratt, G.-J. Kim, O. Alfarraj,
A. Alzubi, and A. Tolba, “A probability preferred priori offloading
mechanism in mobile edge computing,” IEEE Access, vol. 8, pp. 39 758–
39 767, 2020.

[3] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing,” IEEE Transactions on Communications, vol. 67, no. 6, pp.
4132–4150, 2019.

[4] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency IoT services
in multi-access edge computing,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3, pp. 668–682, 2019.

[5] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: collaborative intelligence between the
cloud and mobile edge,” Proceedings of ACM SIGARCH Computer
Architecture News, vol. 45, no. 1, pp. 615–629, 2017.

[6] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading
scheduling and power allocation for mobile edge computing systems,”
IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6774–6785, 2019.

[7] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-edge
computing systems,” IEEE Transactions on Wireless Communications,
vol. 16, no. 9, pp. 5994–6009, 2017.

[8] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen,
“TOFFEE: task offloading and frequency scaling for energy efficiency
of mobile devices in mobile edge computing,” IEEE Transactions on
Cloud Computing, 2019.

[9] J. Yan, S. Bi, and Y. J. A. Zhang, “Offloading and resource allocation
with general task graph in mobile edge computing: a deep reinforcement
learning approach,” IEEE Transactions on Wireless Communications,
vol. 19, no. 8, pp. 5404–5419, 2020.

[10] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: task allocation and computational frequency scaling,”
IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571–3584,
2017.

[11] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta reinforcement
learning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 1, pp. 242–253, 2020.

[12] L. P. Yu Luo and C.-H. Liu, “Optimal CPU Frequency Scaling Policies
for Sustainable Edge Computing,” in proceedings of IEEE Annual
International Symposium on Personal, Indoor and Mobile Radio Com-
munications (PIMRC) (Under review). IEEE, 2021, pp. 1–6.

[13] J. Cochran, M. Miller, O. Zinaman, M. Milligan, D. Arent, B. Palmintier,
M. O’Malley, S. Mueller, E. Lannoye, A. Tuohy et al., “Flexibility in
21st century power systems,” National Renewable Energy Lab.(NREL),
Golden, CO (United States), Tech. Rep., 2014.

[14] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The en-
ergy/frequency convexity rule: modeling and experimental validation on
mobile devices,” in proceedings of International Conference on Parallel
Processing and Applied Mathematics. Springer, 2013, pp. 793–803.

[15] R. F. da Silva, H. Casanova, A.-C. Orgerie, R. Tanaka, E. Deelman, and
F. Suter, “Characterizing, modeling, and accurately simulating power
and energy consumption of i/o-intensive scientific workflows,” Journal
of computational science, vol. 44, p. 101157, 2020.

[16] M. Travers, “CPU power consumption experiments and results analysis
of intel i7-4820k,” Newcastle University, Newcastle, 2015.

[17] K. D. Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The en-
ergy/frequency convexity rule: Modeling and experimental validation
on mobile devices,” in International Conference on Parallel Processing
and Applied Mathematics. Springer, 2013, pp. 793–803.

[18] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[19] F. Zhou and R. Q. Hu, “Computation efficiency maximization in
wireless-powered mobile edge computing networks,” IEEE Transactions
on Wireless Communications, vol. 19, no. 5, pp. 3170–3184, 2020.

[20] A. Gougeon, B. Camus, and A.-C. Orgerie, “Optimizing green energy
consumption of fog computing architectures,” in 2020 IEEE 32nd Inter-



14

national Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). IEEE, 2020, pp. 75–82.

[21] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: the communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[22] S. E. Mahmoodi, R. Uma, and K. Subbalakshmi, “Optimal joint schedul-
ing and cloud offloading for mobile applications,” IEEE Transactions on
Cloud Computing, vol. 7, no. 2, pp. 301–313, 2016.

[23] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks for
computation-intensive applications in mobile cloud computing,” in pro-
ceedings of IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2014, pp. 352–357.

[24] H. Mamur, “Design, application, and power performance analyses of
a micro wind turbine,” Turkish Journal of Electrical Engineering &
Computer Sciences, vol. 23, no. 6, pp. 1619–1637, 2015.

[25] Intel Company, “Intel Xeon Gold 6328HL Processor,” intel.com, 2021,
[Accessed: Feb, 2021]. [Online]. Available: https://www.intel.com/
content/www/us/en/products/processors/xeon/scalable/gold-processors/
gold-6328hl.html

[26] AMD Company, “AMD EPYC 7501,” amd.com, 2021, [Accessed:
Feb, 2021]. [Online]. Available: https://www.amd.com/en/products/cpu/
amd-epyc-7501

[27] G. Papadakis, P. Tsamis, and S. Kyritsis, “An experimental investigation
of the effect of shading with plants for solar control of buildings,” Energy
and buildings, vol. 33, no. 8, pp. 831–836, 2001.

[28] Ossila Company, “Perovskites and perovskite solar cells:
an introduction,” ossila.com, 2018, [Accessed: Feb,
2021]. [Online]. Available: https : / / www. ossila . com / pages /
perovskites-and-perovskite-solar-cells-an-introduction

[29] SpaceX Company, “Starlink,” starlink.com, 2021, [Accessed: Feb,
2021]. [Online]. Available: https://www.starlink.com

[30] T. D. Burd and R. W. Brodersen, “Processor design for portable
systems,” Journal of VLSI signal processing systems for signal, image
and video technology, vol. 13, no. 2, pp. 203–221, 1996.

[31] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and
practical limits of dynamic voltage scaling,” in proceedings of the 41st
Annual Design Automation Conference, 2004, pp. 868–873.

[32] M. A. Zafer, “Dynamic rate-control and scheduling algorithms for

quality-of-service in wireless networks,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2007.

[33] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[34] M. Sniedovich, Dynamic programming: foundations and principles.
CRC press, 2010.

[35] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[36] C. Xing, Y. Jing, S. Wang, S. Ma, and H. V. Poor, “New viewpoint
and algorithms for water-filling solutions in wireless communications,”
IEEE Transactions on Signal Processing, vol. 68, pp. 1618–1634, 2020.

[37] P. He, L. Zhao, S. Zhou, and Z. Niu, “Water-filling: a geometric approach
and its application to solve generalized radio resource allocation prob-
lems,” IEEE transactions on Wireless Communications, vol. 12, no. 7,
pp. 3637–3647, 2013.

[38] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmis-
sion with energy harvesting nodes in fading wireless channels: optimal
policies,” IEEE Journal on Selected Areas in Communications, vol. 29,
no. 8, pp. 1732–1743, 2011.

[39] F. Wang, Y. Zhu, and J. Yan, “Performance of solar PV micro-grid
systems: a comparison study,” Energy Procedia, vol. 145, pp. 570–575,
2018.

[40] A. Avila, P. R. Vizcaya, and R. Diez, “Daily irradiance test signal
for photovoltaic systems by selection from long-term data,” Renewable
Energy, vol. 131, pp. 755–762, 2019.

[41] A. Cammarano, C. Petrioli, and D. Spenza, “Pro-energy: a novel energy
prediction model for solar and wind energy-harvesting wireless sensor
networks,” in IEEE International Conference on Mobile Ad-Hoc and
Sensor Systems (MASS). IEEE, 2012, pp. 75–83.

[42] T. Khatib, A. Mohamed, and K. Sopian, “A review of solar energy
modeling techniques,” Renewable and Sustainable Energy Reviews,
vol. 16, no. 5, pp. 2864–2869, 2012.

[43] F. Cassola and M. Burlando, “Wind speed and wind energy forecast
through kalman filtering of numerical weather prediction model output,”
Applied energy, vol. 99, pp. 154–166, 2012.

[44] K. E. Baddour and N. C. Beaulieu, “Autoregressive modeling for fading
channel simulation,” IEEE Transactions on Wireless Communications,

vol. 4, no. 4, pp. 1650–1662, 2005.


