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Abstract: Atomic force microscopy (AFM) provides a platform for high-resolution topographical
imaging and the mechanical characterization of a wide range of samples, including live cells, proteins,
and other biomolecules. AFM is also instrumental for measuring interaction forces and binding
kinetics for protein—protein or receptor-ligand interactions on live cells at a single-molecule level.
However, performing force measurements and high-resolution imaging with AFM and data analytics
are time-consuming and require special skill sets and continuous human supervision. Recently,
researchers have explored the applications of artificial intelligence (AI) and deep learning (DL) in the
bioimaging field. However, the applications of Al to AFM operations for live-cell characterization are
little-known. In this work, we implemented a DL framework to perform automatic sample selection
based on the cell shape for AFM probe navigation during AFM biomechanical mapping. We also
established a closed-loop scanner trajectory control for measuring multiple cell samples at high speed
for automated navigation. With this, we achieved a 60x speed-up in AFM navigation and reduced
the time involved in searching for the particular cell shape in a large sample. Our innovation directly
applies to many bio-AFM applications with Al-guided intelligent automation through image data
analysis together with smart navigation.

Keywords: atomic force microscope; deep learning; vision-based navigation; object detection;
YOLOv3

1. Introduction

7

Atomic force microscopy (AFM), a key member of the “scanning probe microscopy”
family, offers an excellent platform for performing high-resolution imaging and the me-
chanical characterization of organic and inorganic samples in ambient air or liquid. Atomic
force microscopy is crucial for studying soft biological samples such as proteins, DNA,
RNA, and live cells. It also plays a major role in measuring important parameters of
binding kinetics such as the binding probability, the most probable rupture force, and the
association and dissociation constants for ligand-receptor or protein—protein interactions at
the single-molecule level on live cells. Cellular fate such as cell division, proliferation, differ-
entiation, and migration is controlled by the molecular and mechanical cues of the cellular
environment [1-4]. Various mechanical stimuli altered by biochemical signals are governed
by cellular interaction with their microenvironment. These interactions are responsible
for turning benign cancer cells into malignant [5] cancer cells, changing their stiffness,
viscoelastic properties, and shape. Intracellular mechanics and the cellular interaction with
the extracellular matrix (ECM) and its environment regulate cell shape [6-10].

Cellular morphology is regulated by maintaining a balance between extrinsic and
intrinsic forces. Drugs and other stress-causing factors such as drugs alter the mechanical
properties of cells in seconds to minutes, and biochemical changes in cells are manifested
in hours to days. Mechanical properties can serve as early biomarkers of biochemical
changes. To obtain a statistically significant data set, measuring the mechanical properties
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of cells of different cell shapes is important. AFM [11-16] is a noninvasive, unique platform
for generating three-dimensional surface profiles and for the mechanical characterization
of hard as well as soft biological samples such as RNA, DNA, protein, and live cells in
its physiological environment without compromising the integrity of the sample. Single
molecule interaction forces and binding kinetics for ligand-receptor interactions on live
cells are also measured using AFM [17]. Prolonged and expensive sample preparation
protocols involving freezing, drying, or metal coating are not used in AFM.

However, the present-day biomechanical studies performed using AFM are low-
throughput and highly time-consuming because of the lack of proper tools for automatic
sample selection, detection, and AFM navigation [18]. Experimentalists manually engage
the AFM [19] cantilever tip on a particular live cell to measure nanomechanical proper-
ties [20] and then retract the probe to move to another new live cell for measurement. In
this study, this significant limitation is addressed by proposing an artificial intelligence
(AI)-enabled AFM operation framework to accelerate measurement throughput and save a
significant amount of expert effort and time.

In this paper, we leverage the deep learning (DL)-based object detection and localiza-
tion techniques for automating the selection of the cell locations based on the cell shape
chosen by the experimentalist to analyze AFM phase-contrast images. In experimental
microscopy, this concept will help future researchers to accelerate the process significantly
to conduct more experiments with lower expert efforts. To automate the navigation of
the AFM probe to evaluate the cells of different shapes, we train the deep neural network
on an extensive dataset of phase-contrast images containing different types of cell shapes
annotated by an expert. Specifically, we focus on labeling and detecting three different cell
shapes: round, polygonal, and spindle. Apart from the framework and algorithms, our
annotated data will be publicly available, benefiting future research. Our proposed frame-
work will help to interpret the interrelationship between the behavior and the morphology
of the live cells in accordance with the statistically significant data set of optical images
and AFM biomechanical measurements of cells. Specifically, our key contributions in this
paper are:

* A high-speed DL-based automation to accelerate the AFM probe navigation when
performing biomechanical measurements on cells with the desired shape.

* A transfer learning approach to adapt the cell shape detection model to low-quality
images captured by the AFM stage navigation camera with limited training data.

* A closed-loop scanner trajectory control setup ensuring the accuracy and precision of
the AFM probe navigation for biomechanical quantification.

*  Ananomechanical property characterization for representative cell shapes using the
proposed framework.

The paper is organized into four sections, including this one. Next, in the “Materials
and Methods” section, we discuss cell sample preparation techniques for AFM experiments,
the deep-learning-based cell shape detection processes, and the closed-loop navigation
strategies for the AFM probe (tip). In the “Results and Discussion” section, we summa-
rize the results of the cell shape detection, tip navigation, and nanomechanical property
characterization. Finally, we conclude our work with some future research directions.

2. Materials and Methods

In this section, we discuss in detail the three major parts of our work: (i) live-cell
sample preparation, (ii) cell shape detection, and (iii) closed-loop navigation. We start
with the live-cell sample preparation which was used to collect data for training our DL
models and validate the overall framework. DL-based cell shape detection automates the
AFM probe navigation, for which it is necessary to detect the presence of the cells and their
shapes in a given image. Additionally, we are interested in obtaining the coordinates of
the detected cell shapes, which can be further used to generate the trajectory of the AFM
probe from its current location. We feed this information to the closed-loop navigation
framework for guiding the AFM probe navigation.
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2.1. Live Cell Sample Preparation for AFM Experiments

We used an NIH-3T3 cell line (CRL-1658, ATCC) to generate phase contrast images
for annotation and investigate the nanomechanical properties of live cells of different
shapes in this study. These cells were derived from a mouse embryo. We maintained
these cells in 25 cm? cell culture flasks and passaged these cells into new culture flasks and
AFM-compatible dishes every 72 h for the experiments. We detached the cells from the cell
culture flasks using 0.25% trypsin-EDTA, phenol red solution (catalog number: 25200056,
ThermoFischer Scientific). We disposed the cell medium in the flask and washed the cells
using 1 mL of a warm Trypsin-EDTA (0.25%), phenol red solution. We added 2 mL of
the same solution to the flask. We incubated the flask at 37 °C for 3 min in an incubator
(with 5% CO; and appropriate humidity). We added 4 mL of warm DMEM complete
medium to the culture flask afterward. We refer to serum-free Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with L-glutamine, 4.5 g/L of glucose, sodium pyruvate,
10% calf bovine serum, and 1% PS as the complete medium here. We mixed the entire cell
solution thoroughly inside the flask to dislodge most of the cells adhered to the bottom of
the flask. In the meantime, we added 5 mL of warm complete medium to a new culture
flask and 2.5 mL of warm complete medium to each AFM-compatible dish. We dispersed
1.5 mL of the mixed cell solution in the new flask and 400 puL of the cell solution in the
AFM compatible dishes. We placed the new flask and AFM-compatible dishes inside
the incubator until the measurement. To explore the effects of cellular shapes on their
nanomechanical properties, we took out AFM-compatible 50 mm glass-bottom dishes
plated with NIH-3T3 cells from the incubator and secured the dish to the Bioscope Resolve
AFM [21,22] stage (base plate) using a vacuum pump.

2.2. Cell Shape Detection from Microscopic Images

To detect the cell shapes, we extended the use of a state-of-the-art deep neural network
developed for object detection tasks [23]. In this work, we were interested in detecting
the following shapes: (i) round, (ii) spindle, and (iii) polygonal. We differentiated the
spindle shape from the polygonal shape if the shape had two narrow ends. With this
DL-based approach, we detected and localized cells with particular shapes. In Figure 1,
we summarize the pipeline for the cell shape detection, which includes data collection
and annotation, then data augmentation, training of the deep neural network, and finally
outputting the detected cell shapes and their location in the image.

e
W Spindle [ Polygonal
M Round

Rotation by multiples
of 90°, Mirroring, etc.

Data augmentation

Data collection Data annotation

Deep learning model Cell shape detection

Figure 1. Overview of the cell shape detection pipeline. It involves data collection and augmentation
and training the deep learning framework.

Cell shape detection-localization was performed using a real-time object detection
framework called the You Only Look Once (YOLOV3) [24] algorithm. It involved mainly
two tasks: identifying the object and classifying it to one of the class labels and predicting
its location in an image under consideration. The advantage of using YOLOV3 is that it
accomplishes both the tasks using only a single deep convolutional neural network (CNN)
and a single forward pass of an input image.

The YOLOV3 processes the input image and divides it in a grid of size S x S. Using
bounding boxes priors called anchor boxes, each grid cell predicts the B number of boxes
and is expected to predict the objects whose centers lie in that grid cell. For each bounding
box prediction, YOLOV3 also predicts the confidence score or objectness score using a
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logistic regression, which measures the probability that the object is present in the bounding
box and how accurate the bounding box is. The ground truth value of the confidence score
should be 1 if the bounding box prior overlaps with the ground truth box the most among
other box priors and 0 otherwise. The overlap between two boxes is calculated using the
intersection over union (IoU), which lies in the range [0.0, 1.0], with 1.0 for full overlap.
During the inference, it predicts the IoU as a confidence score.

YOLOV3 predicts the four parameters per bounding box for its location and these are
xt, Yi, w, and h;. These parameters are relative to the grid cell location. With these four
parameters, YOLOvV3 finds the location of the predicted bounding box by computing the
coordinates of the left corner (bby, bby) and the width (bb,) and height (bby,) of the bounding
box using the following equations:

bby = o(xt) +of fx
bby = o(y:) +offy

bby, = ancy, * et
ht

@D
bby, = ancy, x e

where (of fx, of fy) is the offset of the grid cell from the top-left corner of the image and
ancy and ancy, denote the width and height of the anchor box.

In addition to the bounding box location, the network also classifies the detected object
into one of the class labels among the C number of classes in the given data set. In total,
the network predicts 5 quantities per bounding box, including the location information
and confidence score. Finally, the output predicted by the YOLOv3 has the shape of
SxSx (Bx(5+0QC)).

Similar to feature pyramid networks [25], the YOLOv3 makes the predictions across
three different scales obtained by downscaling the input image by the factors of 32, 16, and
8. It uses a Darknet-53 architecture (explained in the next paragraph) as a base feature
extractor, combined with numerous convolutional layers to obtain the features at three
different scales.

Darknet-53 is a significantly larger and enhanced version of Darknet-19, a feature
extractor proposed as a backbone model in YOLO(v2) [26], by adapting the residual
network [27] concept. Darknet-53 has 53 convolutional layers as opposed to having 19 layers
as in Darknet-19. This backbone model is constructed by stacking multiple convolutional
and residual blocks, as illustrated in Figure 2. Each convolutional block is a sequence of a
convolutional layer with a filter size of 3 x 3 and stride of 2, batch normalization, and a
leaky-ReLU. To downscale the input image or input feature map, a convolution layer with a
stride of 2 is used to minimize the information loss relative to the use of pooling operations
such as max-pool [27,28]. Batch normalization is used to speed up the convergence during
training and to regularize the model [29]. Each residual block is a stack of two convolutional
blocks with a filter size of 1 X 1 and 3 x 3, respectively, with the stride of 1. At the end of the
residual block, an identity connection is implemented by adding the input of the residual
block to the second convolutional block with the shortcut connection [27]. The input image
is processed and downscaled by a factor of 32 through these stacks of convolutional and
residual blocks to obtain the feature maps as the output of Darknet-53.

The predictions at the first scale are obtained by processing the output of the base
feature extractor, Darknet-53, by adding a few convolutional layers, where the output has
the shape downscaled by a factor of 32. The feature map obtained by the layer, which
precedes two layers, is upsampled by 2 and concatenated with the feature map of the
same resolution from Darknet-53. This maintains the low-level features from Darknet-
53 and allows one to learn meaningful semantic details. Similar to the first scale prediction,
the second scale prediction is obtained by feeding the upsampled feature map to several
convolutional layers. The third scale prediction involves the same operations—upsampling
and concatenating the feature map from Darknet-53—and passing through convolutional
layers. This process is described in Figure 3. The bounding box coordinates and confidence
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scores were processed through the sigmoid function to obtain values in the range of 0 and 1.
We were interested in multiclass classification as the cell cannot simultaneously have more
than one shape, and we used the sigmoid function to output the probabilities for each
cell shape. The one cell shape with the highest probability was considered the predicted
cell shape. Actual coordinates of the predicted bounding box in an image were calculated
using Equation (1). To select the most significant and accurate bounding box among the
thousands of bounding box predictions, YOLOv3 uses a nonmax suppression technique. It
removes the duplicate boxes predicted based on the confidence score and the IoU score
between the predicted and the actual bounding box.

P o=

() convolution block x1 with stride 1

Input Image

| Convolution block x1 with stride 2

| Residual block

Output

Residual block
Darknet-53
Figure 2. Architecture of Darknet-53, the backbone feature extractor consisting of 53 convolutional

layers. Residual block composition is shown in the dark gray box. In the figure, the number shown
on the green box indicates the number of residual blocks used.

Skip-connections

Input image

() Darknet-53

(J Convolution layer

() Convolution block x1

(1) Convolution block x6

() Intermediate feature map

J Up-sampling by 2x Prediction at scale 1
© Concatenation (down-sampled by 32)
Prediction at scale 2
(down-sampled by 16)
YOLOv3 architecture Prediction at scale 3

(down-sampled by 8)

Figure 3. Architecture of the YOLOV3 neural network. It has a total of 106 convolutional layers.
Processing the feature map obtained from Darknet-53, YOLOv3 makes predictions at three different
scales and outputs the location of bounding boxes in a single forward pass. Convolutional block
contain the sequence of convolutional layer, batch normalization, and leaky ReLU.
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In summary, YOLOvV3 can predict objects of various sizes by making multiscale pre-
dictions. It uses Darknet-53 as the backbone feature extractor, whose output is processed
further to perform the predictions at three different scales. YOLOv3 directly output the
coordinates of the bounding box surrounding the cell and its classified shape.

2.2.1. Dataset

Training the supervised deep learning (DL) model described above required the
dataset be annotated with the cell shapes in each image. We collected several microscopic
images using the camera system available on the AFM platform. There were two cameras—
one at the bottom and the other at the top of the AFM stage. We captured images using both
cameras. The advantage of the top camera was that it could capture the AFM cantilever
probe in the image, but it output a low-quality image. On the other hand, the bottom camera
could capture relatively high-quality images but did not capture the AFM cantilever probe.
The cantilever probe being visible in the image made it easier for navigation purposes and
other experimental analyses. The resolution of the images captured by the top camera was
640 x 480, and for the bottom camera, it was 1388 x 1040. The bottom camera could capture
images at different zoom levels, 10x, 20x, and 40x by varying the optical zoom level.
Overall, we captured 221 images, of which 114 were captured using the bottom camera,
and the remaining 107 were captured using the top camera.

Once the data were collected, the expert could annotate the cell shape by drawing
the bounding box around it and labeling it with an accurate shape. For the data annota-
tion, we used a tool available online: Labelbox (https:/ /labelbox.com/) (accessed on 20
January 2021). Collecting these images was time-consuming and tedious as the user had
to manually scan the cell samples and capture the images. In addition, performing the
annotations, especially on low-quality images, was a painstaking task, leading to a smaller
dataset with fewer annotated images. To address this challenge, we implemented data
augmentation techniques on the fly (during training), which involved rotating the original
images by 90° clockwise or counter-clockwise, by 180°, flipping them upside down, and
by left-right mirroring. This enhanced the original dataset with more data samples with
different orientations, which further made the DL network robust to the variety of cell
shape orientations encountered during inference.

2.2.2. Training with Transfer Learning

The training of the YOLOV3 network was performed in two stages. As mentioned,
we collected images from the top and bottom cameras of the AFM platform, producing
relatively low- and high-quality images, respectively. Ideally, we needed the top camera
view for the ease of navigation. However, if we performed the training using only the low-
quality images the top camera produced, the network performed poorly (we discuss this
more in the Results Section). Note, as discussed above, we also struggled to generate a large
number of annotated data samples from the top camera due to the annotation difficulty.
Therefore, we started with high-quality images for training and trained for 500 epochs.
We use pretrained weights trained on the COCO dataset [30] for better performance. We
further fine-tuned the network for low-quality images using the transfer learning technique.
Specifically, we initialized the network weights to the weights trained on high-quality
images and perform training for more than 500 epochs on the whole dataset, including
both high- and low-quality images.

For each stage of training, we split the dataset into training and testing sets. The 75% of
the whole dataset was grouped as a training set, and the remaining 25% formed the testing
set. Images were then transformed to a fixed resolution of 640 x 640 and fed as input to the
network. As described in the previous section, we performed data augmentation during
training. Once the image was processed through the network, we calculated the losses.
Binary cross-entropy was used for the confidence score and classification of cell shapes.
We used mean the squared error for the bounding box coordinates, which ensured the
predicted bounding box had a significant IoU value with the ground truth box.
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2.3. Closed-Loop Navigation of AFM Stage

The closed-loop navigation module aimed to move the AFM stage from its current
location (i.e., preoperation location) to the target cell smoothly and precisely such that
the probe was right above (along the vertical direction) the selected cell for AFM charac-
terization measurements. The working process of the AFM closed-loop stage navigation
process is shown in Figure 4. In our work, the conversion factor between the optical image
pixels and the distance (in metric unit), i.e., the AFM coordinate system, was calibrated by
using a silicon calibration sample that had 5 by 5 um square pitches on its surface. Pixel
numbers of the pitches were counted in multiple optical images of the silicon sample to
calculate the pixel size in metric unit, thus obtaining the pixel-to-distance conversion factor.
As the network was also trained to recognize the AFM probe, the probe location in the
optical image was used as the reference point for stage navigation. With the cell shape
identification and selection performed, the desired AFM stage navigation trajectory (i.e.,
the stage position vs. time profile) was generated using the distance (x and y distances on
the horizontal plane) between the current location of the AFM probe and the preoperation
location of the selected cell to be measured.

)/ Sample Pre-operation
image stage location (xo, Yo) >5 um AFM stage motor
Jv & " | controller (closed-loop) I Current stage
+ .
. + . location (x, y)
Cel! . I}FM navigation _>®_ , loc
selection trajectory generator| +
<5um | AFM stage PEA |
" | controller (closed-loop)

Figure 4. A schematic of the automatic AFM navigation closed-loop control.

Specifically, the navigation trajectory was generated using the linear function (with a
constant velocity of 100 um/s used in this work) with parabolic blends (with a constant
acceleration of ~500 pm/s?). For substantial distances, closed-loop trajectory tracking
control was applied to the AFM x- and y-axis stage motors. The fine-tuning of the AFM
stage position or minute distance travel was achieved by applying a closed-loop trajectory
tracking control to the x- and y-axis stage with piezoelectric actuators (PEAs). Specifically,
the (x, y) location of the AFM sample stage was measured in real time and fed back to the
closed-loop trajectory tracking control. For large range travels (i.e., coarse-stage position
travel), PI controllers were applied to drive the AFM x- and y-axis stage motors. Once the
selected cell position (i.e., stage position) was within the ~5 pm/s radius range relative
to the AFM tip location, the navigation actuation was switched to the stage PEAs for fine
position adjustment if necessary. Note that the PEA nonlinear dynamics [31,32], especially
at high-speed operation, may affect the trajectory tracking accuracy; thus, a more advanced
closed-loop control approach than the PI controller, such as model predictive control
(MPC) [33], could be used to control the stage PEAs. Furthermore, to ensure the positioning
accuracy, nonlinear PEA dynamics models trained using ML-based approaches could be
implemented [32] as well.

3. Results and Discussion

We first discuss the cell shape detection and localization results. We then present
an example of automatic navigation of the AFM tip. Finally, based on the cell sample
measurements performed by our automated framework, we present the statistical analysis
of the nanomechanical properties, which demonstrates the feasibility of our approach for
scientific investigations.

3.1. Cell Shape Detection and Localization

We conducted two experiments: (i) we trained the network on low-quality images,
and (ii) we trained it on the whole dataset, including low- and high-quality images using
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the transfer learning technique. We observed poor performance when trained on only
the low-quality images. To overcome this challenge, we implemented a transfer learning
approach, as mentioned in the earlier section, where we first trained the network on high-
quality images, and then we fine-tuned the learned weights by training further using low-
and high-quality images. We evaluated the performance on a test set (25% of the whole
dataset, 55 images), which contained both low- and high-quality images. In this section, we
compare and discuss the performance of both experiments.

We performed numerous experiments with different permutations of neural network
parameters such as batch size, number of epochs, optimizers (such as Adam [34], stochas-
tic gradient descent (SGD) [35]) for backpropagation, and learning rate. In Table 1, we
summarize these experiments and report the corresponding evaluation metric, the mean
average precision (mAP) over all cell shapes. The best-performing model was selected,
which achieved the highest mAP value. The best model was trained for 500 epochs using
a batch size of 16, with an SGD optimizer to perform a gradient descent with a cosine
decaying learning rate [36], where the learning rate gradually increased to 0.001 as the
training progressed and gradually fell to 0.0002 over 500 epochs. We evaluated the best
model with more metrics and discuss the results below.

Table 1. Comparison of models trained with different sets of neural network’s parameters. We report
the mAP value over all cell shapes for each experiment and highlight the best model.

Optimizer Batch Size Epochs Learning Rate mAP
Adam 16 500 0.01 47.8
Adam 32 500 0.01 44.7
Adam 16 1000 0.01 47.3
Adam 32 500 0.01 45.9

SGD 16 500 0.01 63.8
SGD 16 1000 0.01 62.3
SGD 32 500 0.01 64.8
SGD 32 1000 0.01 64.4
SGD 16 500 0.0001 63.7
SGD 32 500 0.001 66.1

SGD (best) 16 500 0.001 66.4

The performance of the object detection network was evaluated on the test data set
using various metrics. Combining with numerical metrics, we displayed the accuracy
of the cell shape detection by visualizing the predictions obtained using YOLOv3. We
used the confusion matrix (CM) to assess the classification performance. The CM specified
the number and percentage of correctly (true positives, true negatives) and incorrectly
(false positives, false negatives) classified class labels for bounding boxes. Values along
the columns ("True’ classes) were normalized. We compared the confusion matrices (CMs)
(Figure 5) for both of the experiments and observed that the network trained on low-quality
images alone could only detect on average 44% of the labeled boxes correctly; on the other
hand, with transfer learning, we observed on average 63% of correct classification of cell
shapes (diagonals of the matrices). With the transfer learning approach, we could reduce
the false negatives (bottom rows of matrices) from almost 50% to 29%. This meant that the
network failure rate to detect the cell samples was lower with transfer learning. From the
last columns of the CMs, we deduce that the trained network could detect the unlabeled
boxes which contain the cell shape but were not annotated explicitly. Furthermore, we ob-
served fewer misclassifications of the cell shapes (i.e., correct detection of cell but incorrect
classification of its shape) after transfer learning.

Further, we calculated the mean average precision (mAP) for all cell shapes. The value
of mAP falls between 0 and 100, with the higher value desirable for better performance
of the classification as well as localization. The mAP for all shapes was computed using
each shape’s mean of its average precision (AP). The AP value was the area under the
precision-recall (PR) curve. Precision (P) specifies the number of true positives among the
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total number of predicted positives, whereas recall (R) states the number of true positives
among the total number of actual positives. The PR curve was generated by setting a fixed
IoU threshold value and then calculating the precision and recall values using a range of
confidence score thresholds. We show the PR curve for each shape and the mean over
all shapes in Figure 6. We computed the AP value using a IoU threshold of 0.5, which
imposes the condition that the predicted box must at least overlap by 50% with the ground
truth box. With the transfer learning approach, we saw a significant improvement in the
mAP value from 40.3 to 66.4, an almost 65% improvement. After comparing the confusion
matrix and the average precision values, we concluded that, with transfer learning, the
YOLOV3 network could perform significantly better for cell shape detection-localization.

H 42 0 3 14 < 0 3 15
=} (58%) (0%) (1%) (11%) =} (61%) (0%) (1%) (13%)

1009 100%
Q @
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Figure 5. Confusion Matrix (CM): True labels on the horizontal axis and predicted labels on the
vertical axis. In addition to absolute numbers, we calculate the percentage fraction along the column.
(Left) CM for the network trained on low-quality images, (Right) CM for the network trained using

the transfer learning technique.

1.0 1.0 ‘
——round 60.1 ! —round 57.5
——spindle 38.1 o ——spindle 69.4
——polygonal 22.7 1 ——polygonal 72.3
0.8 o —all classes 40.3 MAP@0.5 0.8 —all classes 66.4 mMAP@0.5
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Recall
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Figure 6. Precision-recall (PR) curve: Plot of PR curve for each cell shape with IoU threshold of 0.5.
(Left) PR curve for the network trained on only low-quality images, mAP@0.5 = 40.3, (Right) PR
curve for the network trained using the transfer learning technique, mAP@0.5 = 66.4.

We also report the F-1 score for each cell shape and the overall F-1 score across all
the cell shapes in Table 2. As we had class-imbalanced data, the number of samples
representing each cell shape was not uniform, and the F-1 score determined the network’s
performance better for each cell shape. The F-1 score measures the model’s classification
accuracy on the test data set. It is a combined representation of the model’s precision
and recall, computed as the harmonic mean of precision and recall, and the value ranges
from 0.0 to 1.0; the higher, the better. We achieved a 27% better F-1 score with the transfer
learning approach. Furthermore, with transfer learning, we achieved more recall value,
which showed the network was less prone to predict false negatives.
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Table 2. F-1 score for overall and each cell shape .

Experiment Round Spindle Polygonal Mean
Trained on only
low-quality 0.73 0.64 0.42 0.60
images
Transfer learning 0.74 0.77 0.77 0.76

Apart from the numerical metrics, we evaluated the performance of the transfer
learning approach by visualizing the predicted bounding boxes and corresponding class
labels and comparing them with the labeled images. We performed inference and visualized
both low- and high-quality images in Figures 7 and §, respectively. The visuals are arranged
so that the ground truths/targets are shown in the top row, and the predictions are in the
bottom row. Visualizing the predictions demonstrates the cell shape detection performance
as it can detect most labeled shapes. Additionally, it can detect many cell shapes that
were not labeled in the ground truth, as we understood from the last column of the
confusion matrix. We notice that the predicted (but unlabeled) shapes are almost all
correctly classified.

\J \J

Target

Predicted

Figure 7. Visualizing the predictions on low-quality images. Target/ground truth images are shown
in the top row and the corresponding predictions in the bottom row. The color scheme is: (i) red:
round shape; (ii) blue: spindle shape; (iii) green: polygonal shape.

Target

Predicted

Figure 8. Visualizing the predictions on high-quality images. Target/ground truth images are shown
in the top row and the corresponding predictions in the bottom row. The color scheme is: (i) red:
round shape; (ii) blue: spindle shape; (iii) green: polygonal shape.
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3.2. Tip Navigation

We demonstrated the proposed cell shape detection-localization framework on a
commercial AFM platform (BioResolve, Bruker Inc., Billerica, MA, USA) for the automatic
navigation process. As shown in Figure 9, we identified cells with different shapes. In
the example shown here, we moved the AFM probe to a spindle-shaped cell (e.g., right
over the cell nucleus region) from its original (preoperation) location. The cell shape
detection algorithm could output the coordinates of the detected shapes in an image. With
this, we had the location and shape information about all present cell shapes in an image.
Combining this with the navigation mechanism, we could reduce the navigation time
of the AFM platform by approximately 60x. For example, manual sample identification
and navigation to 10 different cell shapes takes approximately an hour. The same can be

performed within a minute using the proposed framework.

EETENE

X: 2999, Y: 699 X: 2924, Y: 699 X: 2832, Y: 699 X: 2799, Y: 699 X: 2799, Y: 537
time: 0.00 s time: 0.75 s time: 1.67 s time: 2.00 s time: 3.62 s
Starting position Moving the probe to target cell shape Target position

[J Round shape [ Spindle shape Polygonal shape == Starting position of probe . Current position of probe

Figure 9. We show the sequence of images demonstrating the AFM probe navigation from starting to
target position based on the cell shape identification result. We specify the (X, y) co-ordinates of the
AFM probe at current location and the cumulative time to travel just below each image. Processing
time was approximately 3.62 s at a navigation speed of 100 um/s.

3.3. Nanomechanical Properties

The nanomechanical properties (adhesion, Young’s modulus, deformation, and dis-
sipation) of live cells were measured using the PeakForce QNM mode of the Bioscope
Resolve AFM platform using specialized live-cell probes to prevent damage to both the
AFM cantilever probe and live cells. PeakForce QNM mode (an improved version of
AFM tapping mode) [37-40] can produce high-resolution images as well as produce force—-
distance curves at each pixel, execute all necessary calculations on the fly, and generate
high-resolution maps of nanomechanical properties.

The force-distance curves at each pixel representing the variation of the force acting
on the probe vs. tip—sample separating distance were fit with the Hertz model (spherical
indenter) to calculate Young’s modulus values. The Hertz model parameters are given by:

4 E 3
F= 5—(1_#)\@52 )
where F is the indentation force, E is Young’s modulus, v is the Poisson ratio, ¢ is the
indentation, and R is the radius of the indenter. The same PFQNM-LC-CAL-A probe with a
calibrated spring constant of 0.101 N/m was used to perform AFM experiments on all cells
of different shapes (for example, round, spindle, and polygonal shapes). Uniform scanning
parameters, i.e., peak force setpoint: 539.4 pN, scan rate: 0.458 Hz, peak force amplitude:
250 nm, and peak force frequency: 1 kHz, were also maintained for all the experiments
mentioned in this study.
According to Sneddon’s model [41,42], the indentation force F acting is given by:

E
F= ;mtan(a)éz (3)

where E stands for Young’s modulus, v stands for Poisson’s ratio (usually in the range of
0.2-0.5), « stands for the indenter’s half angle, and J stands for indentation. The indentation
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of an infinitely hard conical cantilever tip or indenter on the elastic cylinder or sample was
represented by Sneddon’s model while the indentation of an infinitely hard spherical AFM
probe tip or indenter on the sample or elastic cylinder was represented by Hertz’s model.
The cantilever tip radius was around 65 nm. When the indentation depth was smaller than
the tip radius, the Nanoscope analysis software package applied Hertz’s model. On the
other hand, Sneddon’s model was used when the indentation depths were larger than the
cantilever tip radius. The trend of experimentally measured values are not going to change
depending on what model is being used. However, the values might differ individually
(increase or decrease depending on the tip half angle chosen by the user in NanoScope
Analysis software).

Figure 10a shows the AFM peak force error image of a polygonal cell (on the left) and a
spindle-shaped cell (on the right). This peak force error image shows an enhanced contrast
across live cells revealing structural and topographical details of the actin cytoskeleton fila-
ment network running across the NIH-3T3 cells compared to the height sensor image that
gives an idea about the height of the cell. The peak force error image represents an arbitrary
measure of the regulation error of the AFM feedback loop. The actin cytoskeleton network
is the major force-generating structure inside the cell that is also responsible for resisting
any force applied to the cells externally by ECM or neighboring cells. Figure 10b depicts
five high-resolution maps of nanomechanical properties. Observing these high-resolution
maps makes it evident that on top of long actin filaments, Young’s modulus is much higher
(around three times), and deformation values are much lower than in other regions of
the cell body. Although adhesion should be generally added to Equation (2), measuring
adhesion forces in this particular study would not make much sense as the functionalization
of the AFM cantilever tip was not performed to probe any specific interactions between the
substrate and the AFM cantilever tip.

Polygonal

shapec cell Spindle shaped cell

b)

5728 nm S 174.7 pN

1.5nN

-763.0 nm

-1.3nN
165.8 nm

Peak Force Error

R -04.2kPa 31.8nm

DMTModulus

Zopm

Figure 10. High-resolution images of NIH-3T3 cells of different shapes and high resolution maps of
nanomechanical properties of a polygonal cell: (a) AFM peak force error image of a polygonal cell
(on left) and a spindle-shaped cell (on right) revealing the actin cytoskeleton network clearly; scale
bar: 10 um. (b) Five high-resolution maps of nanomechanical properties (height sensor, peak force
error, DMT modulus, deformation, and adhesion maps); scale bar: 4 pm.

Figure 10b shows the zoomed-in version of five high-resolution images of nanome-
chanical properties (height sensor, peak force error, DMT modulus, deformation, and
adhesion maps). In the DMT modulus image, the values do not correspond directly to
the true DMT modulus range and are part of a color-scale optimization automatically per-
formed by Bruker Nanoscope software for better visualization. The modulus measurement
could be performed in two different ways. The PeakForce QNM mode not only yielded
high-resolution images of height and peak force error but also performed a force—distance
curve at each pixel and executed all the necessary calculations on the fly to produce high-
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resolution maps of DMT modulus, deformation, and adhesion. We could choose up to
10 random points across the cell body on the DMT modulus image (.spm file), use the
roughness tool to measure the DMT modulus values and take an average value for that
particular cell, repeat the same process for twenty different cells of each shape, and take the
average modulus value. Another way of measuring the modulus was to use the .pfc files
(an example of .pfc file for the spindle-shaped cell is attached in the supplement Figure A4
that shows a Young’s modulus value of 30.49 kPa) for the same image, choose 10 differ-
ent points along the cell body, perform force-distance curve measurements, and fit those
curves individually to the Hertz model to compute Young’s modulus values, and then take
the average. Both approaches produced similar modulus values. The actin cytoskeleton
running across the cells had higher modulus values than other sections of the cell body.
So, while choosing the 10 random points, we chose some points on the actin filaments and
other sections of the cell body, and then we took the average.

Figure 11a shows the AFM probe approaching the live cells (cell in focus) of different
shapes (spindle, round, and polygonal) and Figure 11b represents the AFM probe that has
reached the substrate (live cells plated on glass bottom dishes in this case). Nanomechanical
measurements were performed on 20 cells of each different cell shape type using our pro-
posed framework. Figure 11c,d represent the height sensor, peak force error, DMT modulus,
deformation, and adhesion maps of the round- and spindle-shaped cells, respectively,
marked with yellow boxes in Figure 11a.

31.9GPa

AFM cantilever tip
approaching the
live cells Height Sensor  307m

-6.4GPa

Peak Force Error 3.0 pm DMTModulus 30um

12.00N

-76.8nm

2
Tomm ‘Adhesion

833.7 pN 0 MPa

AFM cantilever tip
in focus at the

N 71 N 1.1MPa

Peak Force Error ZTopm DMTModulus

500.8 pN

414.2pN

Deformation Toum Adhesion Topm

Figure 11. AFM tip navigation and nanomechanical measurement of round- and spindle-shaped cells:
(a) navigation process of the AFM cantilever towards the live cells of different shapes; (b) cantilever
tip in focus at the substrate; (c,d) height sensor, peak force error, DMT modulus, deformation, and
adhesion maps of the round- and spindle-shaped cells, respectively, marked with yellow boxes in (a).

Figure 12a,b show how the Young’s modulus and deformation values vary depend-
ing on the cellular shape. We can conclude that the nanomechanical properties change
along with the cell shape variation depending on these results. Young’s modulus values
were calculated at ten different locations along the cell body, and the average of these
values was considered. Polygonal cells with the stronger and larger actin cytoskeletal net-
works demonstrated the highest Young’s modulus values (average: 41.71 &£ 15.68 kPa), the
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round cells demonstrated the lowest Young’s modulus values (average: 24.80 £ 7.78 kPa),
and the spindle-shaped cells demonstrated mid-level Young’s modulus values (average:
27.92 4 10.24 kPa). Similarly, the polygonal-shaped cells showed the lowest deformation
(average: 228.19 £ 34.01 nm), and the round-shaped cells (average: 132.23 + 47.66 nm)
showed the highest deformation values.

a) b) 280 1
60 ] 260 i
g § 240 -
=50 E 220 =
g s £ ;
g ! 5 200 |
1 i
] — ' S == |
840 ! © 180 i
£ i E
! S 160
3
§ 30 9 140
> 120
2 —_ 1 100
' el - i 7
10 .
Round Spindle Polygonal Round Spindle Polygonal
Cell shapes Cell shapes

Figure 12. Effect of cellular shapes on Young’s modulus and deformation: (a) variation of Young’s
modulus values with different cell shapes (round, spindle, polygonal); (b) variation of deformation
values depending on the cellular shape.

Choosing 10 points on the cell body (some on the cytoskeleton and some on the
other parts of the cell body) was a matter of choice. As modulus measurements were
performed for 20 cells of each kind (a total of 60 cells) using the same method, we assumed
that choosing 10 points on 20 cells (a total of 200 points) would be statistically sound to
represent the mean. As the standard deviation values for these samples were low, we
thought that showing the distribution of the mean would be sufficient.

4. Conclusions

In this paper, we utilized a deep-learning-based object detection neural network for
a smoother and faster navigation of the AFM cantilever probe to the desired cell shape.
We also generated and annotated a dataset of the AFM images with different cell shapes.
With a deep-learning-based methodology, we detected and localized the cell shapes in
an entire sample within a few seconds, making it efficient for instant navigation. We
improved the performance of the deep neural network by implementing a transfer learning
approach, which helped overcome the challenge of performing shape detection using low-
quality AFM stage camera images using fewer training samples. Using transfer learning,
we achieved an acceptably high accuracy for recognizing the cell shape and its location.
Coupling this with the navigation mechanism, we speeded up the navigation to the desired
shape by approximately 60x compared to manual AFM experiments. While this study
showed the feasibility of our approach, cell shape classification performance can be further
improved for widespread use by the AFM community, using larger annotated data sets
and leveraging robust image enhancement techniques [43]. Performance can also improve
dramatically with better cameras that may be available with advanced AFM platforms.

For future work, the proposed Al-driven sample selection can be incorporated with
high-speed AFM scanning control techniques, which will help to increase the efficacy of
AFM biomechanical study on live cells. Furthermore, optimal trajectory generation can
be developed using a cell shape detection framework and we will develop an integrated
closed-loop control framework to achieve seamless coordination at high speed between the
AFM stage motors control and scanner piezoactuators.
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Abbreviations

The following abbreviations are used in this manuscript:

AFM Atomic force microscopy
ECM Extracellular matrix

Al Artificial intelligence

DL Deep learning

DMEM Dulbecco’s Modified Eagle Medium
YOLOvV3  You Only Look Once version 3

CNN Convolutional neural network
SGD Stochastic gradient descent
IoU Intersection over union

PEA Piezoelectric actuator

MPC Model predictive control

CM Confusion matrix

AP Average precision

mAP Mean average precision

Appendix A. Detecting the Cantilever Probe

We also demonstrated that the YOLOv3 was able to recognize the cantilever probe if
it was trained to identify it with cell shapes. We visualize the results in Figure A1 where
a trained network was able to identify the cantilever probe (in cyan color) in low-quality
images. The only images using the top camera captured the cantilever probe, but they were
low-quality images compared to the bottom camera images. We noticed that detecting the
cantilever probe was relatively less complicated than detecting the cell shapes. This was
because in the image the cantilever probe was more dominant than the cell shapes.
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Target

Predicted

Figure A1l. Visualizing the predictions on low-quality images detecting cell shapes and cantilever
probe. Target/ground truth images are shown in the top row and the corresponding predictions
in the bottom row. The color scheme is: (i) red: round shape, (ii) blue: spindle shape, (iii) green:
polygonal shape, (iv) cyan: cantilever probe.

Appendix B. Implementation Details

We discussed the details of the architecture in Section 2.2. In this section, we talk
about the implementation details of YOLOv3. We used Python based PyTorch [44], a
popular deep learning library to develop the YOLOvV3 neural network. We used the github
repository which trained the YOLOv3 on COCO dataset [30]. We edited it to be compatible
to train the network on AFM images to detect cell shapes. In Algorithm A1, we list the
general training process of the neural network.

Algorithm A1: Training Algorithm.

Input : Input AFM image, neural network

Initialization: Initialize the weights for all layers

Use the pretrained weights if using transfer learning

Data Loading: Load the training data D and testing data Dt
for (iter = 0;iter < toatal_epochs;iter + +) do

Shuffle the data randomly
Split D to D;, (i = 1,2,...,n) minibatches
fori=1:ndo

Forward pass and computeO; for minibatch D;
Loss computation £(D;, O;, {W})
Gradient decent to update the weights {W}
using any one from the family of the optimizer
Obtain predictions on testing data Ot for Dy
Loss computation on testing data £(Dy, Or, {W})
if Avg. testing loss is improving then
| Save the weights as a best model
else
| Save the weights

Appendix C. More Visual Results

We add more visualization results from the testing data set. We present both high-
quality (Figure A2) and low-quality (Figure A3) images in this section.
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Target

w
Predicted
\J/ \/
Target
\J/ \/

Predicted

Figure A2. Predictions on low-quality images. Target/ground truth images are shown in top row
and the corresponding predictions in the bottom row. The color scheme is: (i) red: round shape, (ii)
blue: spindle shape, (iii) green: polygonal shape.

Predicted /

Predicted

Figure A3. Predictions on high-quality images. Target/ground truth images are shown in top row
and the corresponding predictions in the bottom row. The color scheme is: (i) red: round shape, (ii)
blue: spindle shape, (iii) green: polygonal shape.
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Appendix D. Example PFC file

Figure A4 shows an example of an exported pfc file.

Force Curve Index 26378 platied Marker Mode:  SliceFrequency

Force Curve Mode
i, i Select Al S4ve Curves RecalcMaps [ Piot Background
@ snge OMutpie () Rangs
Cloar All | Save images Dyn Bigac Ramovs!

S S 187 pm Proparties

Baselineg Fit Line Extend
B 100 %

500 %

Hertzian [Spherical)
16518 nm/V
0.10600 Mfm

Modulus ~ 30490 kPa

900 %
Full Scabe

s 187 um

Figure A4. Example of an exported .pfc file.
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