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MOTIVATION Tumors are typically comprised of heterogeneous cell populations exhibiting diverse pheno-
types. This heterogeneity, which is correlated with tumor aggressiveness and treatment failure, confounds
current drug-screening efforts aimed at informing therapy selection. In order to optimally select treatments,
understanding the frequency and drug-response profile of individual subpopulations within a tumor is crit-
ical. Furthermore, quantitative profiles of tumor drug-response heterogeneity, in combination with predic-
tive mathematical modeling of tumor dynamics, can be used to design effective temporal drug-sequencing
strategies for tumor reduction.
Here, we present a method that enables the deconvolution of tumor samples into individual subcomponents
exhibiting differential drug response. This method relies on standard bulk drug-screen measurements and
outputs the frequencies and drug sensitivities of tumor subpopulations. This framework can also be applied
more broadly to deconvolve cellular populations with heterogeneous responses to a variety of external stim-
uli and environmental factors.
SUMMARY
Tumor heterogeneity is an important driver of treatment failure in cancer since therapies often select for drug-
tolerant or drug-resistant cellular subpopulations that drive tumor growth and recurrence. Profiling the drug-
response heterogeneity of tumor samples using traditional genomic deconvolution methods has yielded
limited results, due in part to the imperfect mapping between genomic variation and functional characteris-
tics. Here, we leverage mechanistic population modeling to develop a statistical framework for profiling
phenotypic heterogeneity from standard drug-screen data on bulk tumor samples. This method, called
PhenoPop, reliably identifies tumor subpopulations exhibiting differential drug responses and estimates their
drug sensitivities and frequencies within the bulk population. We apply PhenoPop to synthetically generated
cell populations, mixed cell-line experiments, andmultiple myeloma patient samples and demonstrate how it
can provide individualized predictions of tumor growth under candidate therapies. This methodology can
also be applied to deconvolution problems in a variety of biological settings beyond cancer drug response.
INTRODUCTION

Most human tumors display a striking amount of phenotypic het-

erogeneity in features such as gene expression, morphology,
Cell Re
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metabolism, and drug response. This diversity fuels tumor evo-

lution and adaptation, and it has been correlated with higher

risks of treatment failure and tumor progression.1–8 Indeed,

treatments that initially elicit clinical response can select for
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9Institut de Matématiques de Bourgogne, Universite de Bourgogne, Dijon Cedex, 21078 Dijon, France
10Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, USA
11Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
12Department of Oncology, Norris ComprehensiveCancer Center, Keck School ofMedicine, University of SouthernCalifornia, CA 90033,USA
13Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, 0450 Oslo, Norway
14Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0037 Oslo, Norway
15College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
16Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, 0372 Oslo, Norway
17Present address: Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
18These authors contributed equally
19These authors contributed equally
20Lead contact
*Correspondence: jyfoo@umn.edu

https://doi.org/10.1016/j.crmeth.2023.100417

Article
ll

OPEN ACCESS
drug-tolerant tumor subpopulations, leading to outgrowth of

resistant clones and tumor recurrence. Additionally, the hetero-

geneity and composition of tumors is known to vary widely be-

tween patients, underscoring the need formore personalized ap-

proaches to cancer therapy that profile and address intra-tumor

heterogeneity and its evolutionary consequences. Toward this

goal, recent advances in single-cell genomic profiling of tumor

samples have enabled the assessment of the genetic variability

within tumor cell populations. However, single-cell technologies

are often limited by large measurement errors, incomplete

coverage, and small sample availability, which leads to chal-

lenges in capturing the temporal dynamics crucial for under-

standing response to therapies. Furthermore, the mapping

between genotypic and phenotypic variation is far from perfect:

not all variation in cellular drug response can be explained by ge-

netic mechanisms, and divergent genetic profiles can lead to

similar treatment responses.9,,10

Another important approach to designing individualized treat-

ment strategies is personalized drug-sensitivity screening, a pro-

cedure in which patient tumor samples are tested for functional

responsiveness to a library of drugs using high-throughput

in vitro drug-sensitivity assays. In these assays, cells are treated

with various concentrations of a drug, and the number of viable

cells is measured at one or more fixed time points. The resulting

data are normalized and fitted to produce viability curves, whose

summary characteristics (e.g., IC50 [drug concentration result-

ing in 50% relative viability] and AUC [area under the dose–

response curve]) are used to compare drug sensitivity across

multiple drugs and/or cell populations.11–15 Increasingly, such

drug screens are used as a tool in personalized medicine to eval-

uate and rank the potential efficacy of therapeutic agents on a

patient’s disease cell population. However, the interpretation

of these cell viability curves and associated metrics are

confounded by the presence of cellular heterogeneity within

the population. In particular, the presence of multiple subpopu-

lations with divergent drug-response characteristics may result

in an intermediate drug-sensitivity profile that does not accu-

rately represent any individual cell type within the population.16

Developing techniques to detect the presence of subpopulations

with distinct drug-sensitivity profiles is crucial for achieving

effective treatment strategies.

In this work, we develop a methodology for detecting the pres-

ence of cellular subpopulations with differential drug responses

using standard bulk cell viability assessment data from drug
2 Cell Reports Methods 3, 100417, March 27, 2023
screens. Our method, PhenoPop, detects the presence and

composition fractions of distinct phenotypic components in the

tumor sample and quantifies the sensitivity of each subpopulation

to a specific monotherapy. Notably, since the cell counts used in

the deconvolution are aggregated signals from the entire popula-

tion, the approach is categorically different from previous tech-

niques that rely on observations at the individual level such as

growth mixture modeling17, or latent class growth analysis.18

PhenoPop utilizes statistical tools in combination with an underly-

ing population dynamic model describing the evolution of a het-

erogeneousmixture of tumor cells with differential drug sensitivity

over time. In this work, we validate PhenoPop using simulated

tumor drug-screening data as well as measurements of drug

response in known mixture experiments of cancer cell lines. We

then use PhenoPop to profile the population drug-response

heterogeneity in multiple myeloma patient samples, and we

demonstrate how these results can be used to produce personal-

ized predictions of tumor response to therapy. This methodology

can be applied across a variety of cancer types and therapies to

characterize the drug-response heterogeneity within tumors.

RESULTS

Figure 1 provides an overview of the PhenoPop workflow. First, a

tumor sample is extracted, divided, and exposed to a panel of

therapeutic compounds at a range of concentrations. For each

drug, the population size counts are measured at a series of

time points for each concentration and replicate. These data are

then used as the input to PhenoPop, which estimates the param-

eters of the underlying population dynamic model for each candi-

date number of subpopulations. Then, a model selection process

is performed to identify the number of subpopulations present and

to estimate the mixture fractions and drug sensitivities of each

subpopulation. Details are provided in the STAR Methods.

Validation in synthetic populations
To quantify the performance of PhenoPop inmixtures of 1, 2, and

3 populations, three synthetic populations were designed to

have drug-response properties similar to cell lines observed in

in vitro experiments. Using the model for data generation

described in the STARMethods (generation of synthetic popula-

tion data), synthetic data were generated for 9 different mixture

compositions of the 3 populations. The synthetic mixtures

were exposed to 17 concentrations of the simulated drug, and
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Figure 1. The PhenoPop workflow

(1) A cancer sample is taken from a patient. (2) Drug screening is performed on the bulk sample. (3) Population deconvolution is performed using PhenoPop. (4)

Resulting identification of population subcomponents, their mixture fractions, and drug sensitivity.
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the bulk cell populations were measured at 9 equidistant points

in time. The simulated drug concentrations were chosen to cover

the range where population growth rates were affected by

changes in the drug concentration. To simulatemeasurement er-

ror, random noisewas added to each bulk cell count. Data from 4

replicates of the experiment were used to perform the inference.

To measure drug sensitivity, PhenoPop uses the growth rate-

associated metric GR50, introduced in Hafner et al.19, and

defined as the concentration at which the population growth

rate is reduced by half of the maximum observed effect, as it

provides a robust metric for comparing drug-response across

cellular subpopulations (STAR Methods, calculation of GR50

values). To assess the accuracy of the PhenoPop deconvolu-

tion analysis, (1) the estimated mixture fractions from the de-

convolution were compared with the true mixture fractions,

and (2) the GR50 obtained from the deconvolution was

compared with the true GR50 region. The use of a region, or

range of values, for the true GR50 reflects the inherent limita-

tion from sampling discrete concentrations in experimental

data; it is only possible to ascertain that the GR50 is some-

where between the closest two sampled concentration levels,

and the finer the sampling resolution, the smaller the range of

uncertainty.

Figure 2A shows true mixture compositions and GR50

values compared with PhenoPop’s estimates for the 9 cases

in an experiment where the noise terms were sampled inde-

pendently from a Gaussian distribution with mean 0 and

base noise level of 5%, meaning that the standard deviation

of the noise terms equaled 5% of the noiseless cell count at

time 0. Additional sensitivity tests evaluating PhenoPop per-

formance on synthetic data with varying noise levels (up to

50%) are discussed in PhenoPop experimental design recom-

mendations, and data are provided in the supplemental infor-

mation. To place these noise levels in the context of expected

noise levels from experimental drug-screen data, the standard
deviation-to-mean ratio reported from several common auto-

mated or semi-automated cell counting techniques ranges

from 1% to 15%.20,,21, For example, counts obtained via a try-

pan blue exclusion-based Vi-CELL XR Cell Viability Analyzer

(Beckman Coulter) had noise levels consistently less than

5.3% across several cell lines,20, while those obtained via a

Countess Automated Cell Counter (Invitrogen) fell in the range

11%–14.3%. Cells counts obtained using the Cellomics

ArrayScan high-content screening platform in another set of

experiments (used in this work) had standard deviation-to-

mean ratios of 1%–5.6%.21

Figure 2A demonstrates that PhenoPop inferred the mixture

fractions within 2 percentage points for mixtures of 1, 2, and 3

populations at the 5%noise level. TheGR50 valueswere inferred

precisely within the true GR50 region for all mixtures of 1 and 2

populations and also for an equal mixture of 3 populations.

In the case with 3 populations in a 40:30:30 mixture, one of

the estimated GR50 values is off by 1 GR50 region, and in the

3-population mixture with a 60:20:20 mixture, all three estimated

GR50 values are off by 1 GR50 region. Details of model selection

results are shown in Figure S3A.

Validation with cell line experiments
Next, to investigate the performance of our method in the exper-

imental setting, mixtures of cell populations with differential drug

sensitivity were constructed and subjected to drug-screen ex-

periments. The resulting bulk cell population readings at varying

drug concentrations, time points, and replicates were used as in-

puts to PhenoPop.

Imatinib-sensitive and -resistant Ba/F3 cells

We tested monoclonal and mixture populations of isogenic Ba/

F3 murine cell lines that were stably transformed with either

the wild-type BCR-ABL fusion oncogene or with BCR-ABL-

T315I, which contains a point mutation that confers increased

resistance to the Abl tyrosine kinase inhibitor imatinib. Note
Cell Reports Methods 3, 100417, March 27, 2023 3
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Figure 2. PhenoPop validation in simulated data and cell line data

Deconvolution results for (A) simulated data, (B) Ba/F3 murine cell line-derived experimental data, and (C) NSCLC cell line-derived experimental data. In (A)–(C)

separately, each row corresponds to an independent experiment. On the left, the true and estimated mixture percentages are shown. On the right, the grid of

vertical lines corresponds to drug concentrations. The trueGR50 region ismarked by a light-colored bar extending between two adjacent concentrations, and the

estimated GR50 region is marked by a narrower, darker-colored bar. The point estimate of the GR50 is marked with a white circle. Details of model selection

results are shown in Figure S3.

Article
ll

OPEN ACCESS
that expression of these oncogenes renders cells addicted to

BCR-ABL activity.22, Monopopulations and mixtures of these

two cell lines were treated with 11 different concentrations of

imatinib, and the bulk cell population sizes were quantified at

14 time points. Using this bulk population data, PhenoPop was

able to correctly assess the number of component subpopula-

tions (Figure 2B). As shown in Figure 2B, PhenoPop also

estimated the fraction of the population belonging to each sub-

component at the start of the drug screen as well as the drug

sensitivity (GR50) of each subpopulation; the estimates demon-

strated good agreement with the known mixture proportions

and independently assessed GR50 ranges of the monoclonal

T315I+/� populations. Details of model selection results are

shown in Figure S3B.

Erlotinib-sensitive and -resistant NSCLC cells

Additionally, two EGFR-mutant non-small cell lung cancer

(NSCLC) lines, HCC827 and H1975, were considered for their
4 Cell Reports Methods 3, 100417, March 27, 2023
differential sensitivity to the drug compound erlotinib. The mu-

tation T790M, which is present in H1975 cells but not in

HCC827 cells, confers increased resistance to erlotinib. Mo-

nopopulations and mixtures of the erlotinib-sensitive and

-resistant NSCLC cell lines were treated with four drug concen-

trations, and total cell population count was assessed at 0, 24,

48, and 72 h with four replicates.21, Figure 2C demonstrates

PhenoPop’s results on these bulk data. PhenoPop was able

to correctly assess when populations were monoclonal, as

well as to detect the presence of two populations in the bulk

drug response data from mixed populations. Furthermore, us-

ing the bulk mixture response data, PhenoPop accurately

estimated the mixture fractions and GR50 values of each

component subpopulation. The reference GR50 ranges were

independently assessed on monoclonal HCC827 and H1975

cell populations. Details of model selection results are shown

in Figure S3C.
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Deconvolution analysis of multiple myeloma patient
samples
Next, PhenoPop was used in a clinical scenario to deconvolve

twenty drug-sensitivity screens performed on five multiple

myeloma (MM) patient samples. MM is a clonal B cell malignancy

characterized by abnormal proliferation of plasma cells in

the bone marrow. The median survival time of patients with MM

is about 6 years, with a disease course typically marked by

multiple recurrent episodes of remission and relapse.23, Drug

responses and relapses are currently unpredictable, largely due

to unknown complex clonal compositions and dynamics under

treatment.24,,25

Bone marrow samples were taken from each patient, pro-

cessed, and screened with a set of MM clinically relevant drugs,

as illustrated in Figure 3A and described in the STAR Methods.26,

To perform the drug screens, samples from each patient were

subjected to treatment at varying concentrations with a subset

of the following drugs: dexamethasone, ixazomib, melflufen, seli-

nexor, thalidomide, and venetoclax. We note that screening data

for all drugs for each patient were not available; Figures 3B–3G

show the set of patient samples treated by eachdrug and summa-

rize the results of PhenoPopdeconvolution analysis on each set of

drug-screen data. The results provide each sample’s population

heterogeneity profile with respect to each screened drug; these

profiles are typically expected to be distinct between therapies

since the characteristics driving response to specific drugs

may vary.

Interpatient similarities in subpopulation GR50s

In all cases PhenoPop identified either one or two subpopulations;

details of model selection results are shown in Figure S4. For

example, Figure 3B shows that for patient MM1420, PhenoPop

estimates that 87% of the cells are resistant to dexamethasone.

This matches the clinically observed response, as the patient

was refractory to dexamethasone treatment in vivo. Interestingly,

for all drugs used except dexamethasone, the inferred subpopu-

lations across patient samples share comparable GR50 values,

although the proportions of these subpopulations may vary be-

tween patients (see Figures 3C–3G). For example, for three patient

samples treated with venetoclax, PhenoPop inferred one more-

sensitive and onemore-resistant population (Figure 3E). However,

the estimated proportions of the more-resistant populations

(shown in the plot by the right-pointing arrows) varied from 23%

up to 58%.

We hypothesized that subpopulations with similar GR50s

across patients may in some cases be driven by similar genetic

alterations. To investigate this, we also characterized the sam-

ples with inferred heterogeneous compositions for the presence

of high-risk genomic abnormalities, including Gain(1q21) (2/3)

and several mutations co-existing in the same screened sample

(MM36). Interestingly, we noticed that the proportion of MM
Figure 3. Phenotypic deconvolution of drug screens from MM patient

(A) Illustration of the experimental protocol described in STAR Methods,26 create

(B–G) Deconvolution results for 5MMsamples, each exposed to 4 out of 6 drugs: (B

(G) thalidomide. In (B)–(G) separately, each row corresponds to a patient sample.

of vertical lines corresponds to drug concentrations. The estimated GR50 region is

white circle. If the inferred GR50 value of a population is above the highest observ

toward the right from the highest observed concentration.
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cells from two samples (MM1420 and MM195) harboring the

aberration gain (1q21) (approximately 50%) was similar to the

PhenoPop-inferred mixture fractions for the more-resistant

clone in the same two samples (50% and 58%, respectively).

This supports our hypothesis that these subpopulations, which

have similar levels of drug tolerance in different patients, may

be driven the same alterations, and it is consistent with previous

findings showing Gain(1q21) as negative predictor for veneto-

clax efficacy in MM. This analysis provides genetic evidence

that supports PhenoPop’s ability to profile phenotypic drug

response heterogeneity.

Treatment response prediction using PhenoPop

estimates

The utility of these phenotypic deconvolutions as initial states

for predicting and optimizing patient-specific treatment sched-

ules remains to be systematically explored. Here, as a proof of

concept, we present a mathematical model to illustrate how to

use the PhenoPop estimates of population frequencies and differ-

ential drug sensitivities to predict the treatment outcome for the

three patients exposed to venetoclax. For easier comparison,

we assumed that all three patients start with a total of 1012

abnormal plasma cells. Figure 4 demonstrates how the same

treatment dose, 2 mM venetoclax, assumed constant over the

simulation for simplicity, leads to highly disparate treatment out-

comes in patients with distinct phenotypic heterogeneity profiles

uncovered by PhenoPop. In particular, we note that to observe

the predicted relapse in patient MM36, simulations had to be

run for a much longer time (3,000 days) than for the other two pa-

tients. We also note that according to Equation 3, the growth rate

of a population can be negative at drug concentrations below the

GR50. This is the case in the first panel of Figure 4, which shows

both populations for patient MM1420 responding to venetoclax at

2 mM,while in Figure 3B, the largest subpopulation is estimated to

have a GR50 value that is above 10 mM. See the STAR Methods

for a description of the model and its parameterization.

To make treatment recommendations in a clinical setting,

population deconvolution and subsequent predictive mod-

eling of the heterogeneous cell population’s response to ther-

apy should be performed for all candidate drugs. Depending

on clinical goals (e.g., lowest tumor burden at particular time

horizon, fastest tumor reduction, or longest time to resis-

tance), the optimal treatment can be selected based on the

predicted modeling outcomes under each therapy. Figure S2

demonstrates a comparison of predicted response to ven-

etoclax versus three additional drugs (dexamethasone, seli-

nexor, and meflufen) for which drug screens were performed

on the same patient samples. In this case, dexamethasone

may be the preferred option for patients MM195 and

MM36, while for patient MM1420, all drugs produce a similar

response.
samples

d using smart.servier.com and biorender.com.

) dexamethasone, (C) selinexor, (D) melflufen, (E) venetoclax, (F) ixazomib, and

On the left, the estimated mixture percentages are shown. On the right, the grid

shown by a colored box, and the point estimate of the GR50 ismarkedwith the

ed concentration, the estimated GR50 is instead marked by an arrow pointing

http://smart.servier.com
http://biorender.com


Figure 4. Proof-of-concept modeling of MM

disease dynamics under venetoclax treat-

ment for three patients using PhenoPop de-

convolution results

The estimated mixture and drug-response parame-

ters obtained by PhenoPop (see Figure 3E) define

the initial percentage of cells and drug response

for each clone and patient. Cells from both clones

are assumed to produce monoclonal protein

(M-protein), which can be used as a proxy for tumor

burden. For easier comparison, we assume that all

three patients start with a total of 1012 abnormal

plasma cells (cell number shown in the right y axes)

and 1 g/dL M-protein (shown in the left y axes). All

three patients are exposed to 2 mM venetoclax.

See the STAR Methods for a description of the

mathematical model.
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DISCUSSION

Understanding the phenotypic heterogeneity of human tumors,

especially in terms of drug response, is essential in treatment

planning and prognosis prediction. The optimization of treatment

regimens is a long-standing area of research in themathematical

oncology community27–30; however, the initial state of the tumor,

which strongly influences optimal treatment strategies, is typi-

cally unknown. PhenoPop enables the detection of tumor sub-

populations, as well as estimation of their frequencies and

drug sensitivities based on drug-screen data. The resulting de-

convolved tumor profile can be fed, as an initial state, into math-

ematical models of tumor dynamics to predict treatment

response (see Figure 4) and identify optimal treatment regimens.

Though similar in objective, deconvolution methods are cate-

gorically different from clustering methods such as growth

mixture modeling since the former uses bulk observations from

the combined population while the latter relies on observations

on the individual level. The deconvolution problem is in fact closer

in nature to the problem considered in blind source separation in

digital signal processing, inwhichoneattempts to recover individ-

ual source components from amixture of signals (see, e.g., Mou-

lines et al.31, and Comon et al.32,). However, a key assumption in

this classic problem is the independence of the constituent com-

ponents, a restriction that is notneeded forPhenoPop. Interaction

between individual populations, e.g., due to resource limitation or
Cell Re
phenotypic switching, can be incorpora-

ted within the PhenoPop framework (see

STAR Methods, model extension to inter-

acting populations). The mathematical

structure used in PhenoPop can also be

applied to perform deconvolution analyses

for cellular response to many other external

stimuli, such as intercellular signaling, the

environmental pH level, mechanical forces,

and many others. To achieve this, the

underlying population dynamic model of

drug responseused inPhenoPopcanbe re-

placed with another mechanistic or ma-

chine-learning-derived model describing
response to other stimuli. In future efforts, we aim to extend

PhenoPop to incorporate the role of stromal cell signaling inmedi-

ating drug response.

The precision of PhenoPop depends on the amount of obser-

vation noise in the data. Under an exponential growth model,

PhenoPop accurately performs deconvolutions on data sub-

jected to noise with a standard deviation of up to 20% of the

initial cell count, while higher noise levels lead to errors in model

selection and decreased accuracy inmixture fractions andGR50

estimates. This is especially seen in the 3-population mixtures,

and it is expected that the problem would be aggravated in mix-

tures of more than 3 populations. We note that the standard de-

viation-to-mean ratio reported from several of the most common

automated or semi-automated cell counting techniques ranges

from 1% to 15%.20,,21 At moderate noise levels in this range

(standard deviation-to-mean ratio of 5%), PhenoPop was able

to detect subpopulations as small as 1% of the total population

in 2-population mixtures, while in 3-population mixtures, the

smallest detectable population fraction was 3%. The precision

is reduced when subpopulations have very similar GR50 values,

and the resolution of experimental drug concentrations does not

distinguish well between them, but for predicting treatment

response, distinguishing subpopulations that are almost iden-

tical is of limited clinical importance. Additionally, our study sug-

gests that in terms of data resolution and prioritization of exper-

imental effort, increasing the number of observed concentrations
ports Methods 3, 100417, March 27, 2023 7
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Figure 5. Comparison of accuracy gain in mixture fraction and GR50

values when increasing either the number of replicates (R), the
number of time points ðNtÞ, or the number of concentrations ðNcÞ
while keeping the other two equal to 3

The inference was carried out on 30 datasets generated from amixture of 40%

sensitive and 60% resistant cells. The standard deviation of the observation

noise was equal to 10% of the initial cell count. The random seed for the noise

was the only parameter varying between the 30 datasets. In (A), the accuracy

metric is absolute error in inferred mixture parameter; in (B) and (C), the metric

is logðmaxðGR50inferred =GR50true;GR50true =GR50inferredÞÞ, chosen to address

the logarithmic scale of the concentrations. The plots show mean accuracy

metrics with 95% confidence intervals for the mean (t-distribution with 29

degrees of freedom). The number of subpopulations (2) was assumed known,

and model selection was not performed.
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improves accuracy the most, followed by the number of time

points, and then the number of replicates.

There are several limitations to the method that suggest

avenues for future work. PhenoPop is currently best suited for

cancer types in which relatively large amounts of tumor material

can be obtained frompatients for ex vivo drug screening, such as

hematological cancers. As shown in Figure 3, these drug screens

can be completed in less than a week, which is an acceptable

time frame for clinical decision-making. Ex vivo drug screening

is still challenging for solid tumors due to smaller sample size

availability (typically biopsies) compared with hematological

cancers. However, this field is evolving rapidly, and new

methods are being developed for solid tumors, such as orga-

noid/tumoroid approaches that allow for expansion of tumor

tissue and also preserve the tumormicroenvironment to a certain

extent. Another important consideration for the applicability of

PhenoPop to solid tumors is spatial heterogeneity across

different regions of a tumor, which may result in incomplete or

inaccuratemixture deconvolutions. However, in situations where

multi-region sampling is available, PhenoPop can be used to

perform a deconvolution analysis on each sampled region,

thus providing a spatially resolved profile of drug-response het-

erogeneity throughout the tumor.

PhenoPop currently produces a heterogeneity profile for each

patient sample with respect to each treatment in a drug-screen

panel. While this information is useful for identifying successful

single-agent therapies and for optimizing or designing their ther-

apeutic schedules, combination therapy design requires joint

deconvolution analyses that elucidate themapping between het-

erogeneity profiles for multiple drugs. This task will necessitate

additional data from combination drug screens and furthermeth-

odological development in experimental design to identify trac-

table subsets of combination screening experiments that are

necessary for identifying these joint deconvolution profiles. We

plan to address this problem in future work. Another area of

future work is the expansion of PhenoPop into a Bayesian frame-

workwhere the incorporation of expert knowledge, genetic infor-

mation, or experience from previous experiments with the drug

of interest could be incorporated into PhenoPop by the use of

informative priors. This would enable inference on screening da-

tasets with fewer replicates and/or time points.

Accurate, efficient techniques for profiling of heterogeneity

across multiple axes are important foundations for personalized

treatment decision-making. In this work, we have demonstrated

that PhenoPop can provide vital insights into the diversity of

drug response among tumor cells. This framework, enabled by

mixture population dynamic modeling of response to therapy,

utilizes bulk drug-screen data and alleviates the need for costly

single-cell methods in profiling tumor heterogeneity. Although

we focus here on tumor drug-response heterogeneity, the

PhenoPop framework can also be applied to detect and

profile heterogeneous cellular response to other stimuli, such

as stromal content, nutrient/oxygen deprivation, and epigenetic

modifiers. This general framework can also be applied beyond

cancer to other biological settings in which reproducing popula-

tions harbor heterogeneous responses to environmental stimuli,

such as the response of bacterial or viral populations to antibiotic

or antiviral therapies.
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Figure 7. Deconvolution results with small mixture fractions

True and estimated mixture fractions and GR50 values for synthetic data with observation noise with standard deviation equal to 5% of the initial cell count.

Each row corresponds to an independent experiment. On the left, the true and estimated mixture percentages are shown. On the right, the grid of vertical

lines corresponds to drug concentrations. The true GR50 region is marked by a light-colored bar extending between two adjacent concentrations, and the

estimated GR50 region is marked by a narrower, darker-colored bar. The point estimate of the GR50 is marked with a white circle. See Figure S6 for model

selection.
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Limitations of study
We performed a computational study using synthetic drug-

screen data to identify experimental design strategies that

enhance PhenoPop accuracy and to explore the limitations of

the method.

PhenoPop experimental design recommendations

We first considered the relative importance of experimental res-

olution in drug concentration, time points, and replicates in

PhenoPop performance. Figure 5 shows the average gain in ac-

curacy for a mixture of 2 populations (one sensitive, one resis-

tant) when either the replicates R, the number of concentrations

Nc, or the number of time pointsNt are increasedwhile the others

are held constant at the value three. To compare the accuracies,

27 two-sided t tests weremade, since 3 effects (increasingR,Nc,
Figure 6. Deconvolution results at different noise levels

True and estimatedmixture fractions andGR50 values for synthetic data with obse

50% of the initial cell count. Each row corresponds to an independent experime

right, the grid of vertical lines corresponds to drug concentrations. The true GR

concentrations, and the estimated GR50 region is marked by a narrower, darker-

Figure S5 for model selection.
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and Nt) were compared pairwise at 3 sample sizes (5, 9, and 17)

in 3 different comparison measures. To account for multiple

testing, the family-wise error rate was controlled to be below

0.05 using the Bonferroni correction.

We find that for accuracy in the mixture parameter,

increasing the number of concentrations or time points gives

significantly higher precision than increasing the number of rep-

licates to the same amount. Similarly, to enhance accuracy in

the GR50 value of the sensitive population, increasing either

the number of concentrations or number of time points gives

significantly higher precision compared with increasing the

number of replicates by the same number. In addition,

increasing the number of concentrations to 9 or 17 is signifi-

cantly better than increasing the number of time points
rvation noisewith standard deviation equal to (A) 1%, (B) 10%, (C) 20%, and (D)

nt. On the left, the true and estimated mixture percentages are shown. On the

50 region is marked by a light-colored bar extending between two adjacent

colored bar. The point estimate of the GR50 is marked with a white circle. See



Table 1. Parameters for simulated data

Clone a B E n

1 (blue) 0.03 0.3 0.0001 3

2 (red) 0.03 0.4 0.001 3

3 (yellow) 0.03 0.5 0.1 3
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similarly. No significant differences were found for estimating

the GR50 of the resistant population.

Noise level

We also studied how increasing levels of measurement noise in

the data (e.g., in cell counting) impact the precision of the decon-

volution results. Results of these tests are shown in Figure 6,

where the same synthetic data with increasing levels of mea-

surement noise were used as inputs to PhenoPop. We found

that for noise levels up to a standard deviation equal to 20% of

the initial cell count, PhenoPop is able to correctly deconvolve

the bulk response signal into the correct components. Beyond

this noise level, mixture fractions are off by more than 10% in

2-population mixtures, and populations may go undetected in

3-population mixtures. Figure S5 shows how model selection

was performed in these cases.

Small mixture fractions

To determine how small of population fractions PhenoPop is able

to detect, inference was performed on simulated data with a

range of small mixture fractions with a noise level of 5% of the

initial cell count. We found that in 2-population mixtures,

PhenoPop was able to detect populations at frequencies as

low as 1%. In 3-population mixtures, PhenoPop was able to

detect populations with mixture fractions of 3% and higher. At

a noise level of 5%, the estimated mixture parameters were

within 1% of the true value, and the estimated GR50 values

were always within two GR50 regions of the true value. Figure 7A

shows these results. The figure also shows that it is harder to

detect two small populations mixed with a large population (bot-

tom row) than it is to infer one small population mixed with two

larger ones (fifth row). Figure S6A shows how model selection

performed for these cases.

Subpopulation similarity

We performed computational experiments to determine the de-

gree of similarity between component subpopulations, beyond

which PhenoPop was unable to detect distinct populations. We

tested a set of 2 similar mixed populations at a noise level of

5% of the initial cell count. We found that PhenoPop was

able to detect populations whose GR50 values were as close

as 2 GR50 regions apart. For such close populations, the esti-

mate of the mixture parameters was within 2% of the true

value, and the estimated GR50 values were within 1 GR50 re-

gion of the true value, even for mixtures as unbalanced as

90:10. The results are shown in Figure 7B. The figure’s third,

sixth, and ninth rows show that the inferred GR50 values may

overlap or swap position if the true GR50 values are less than

2 GR50 regions apart. The figure’s eighth row shows that for

mixtures of 5% or smaller, the inferred GR50 values can over-

lap even when the true GR50 values are 2 GR50 regions apart.

Figure S6B shows how model selection performed for these

cases.
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Antibodies
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Chemicals, peptides, and recombinant proteins
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Penicillin-Streptomycin Gemini Bio Products 400,109

Fetal Bovine Serum Gemini Bio Products 100–500

Erlotinib LC Laboratories E�4007

Propidium Iodide Invitrogen P1304MP

Hoechst 33,342 Invitrogen H21492

CellTracker Green CMFDA ThermoFisher C7025

CellTracker Orange CMTMR ThermoFisher C34551

Lymphoprep Stemcell Technologies 04-03-9391103

Dynabeads CD8 ThermoFisher 11147D

Dynabeads Human T-activator CD3/CD28 ThermoFisher 11132D

Human interleukin-2 Roche 10,799,068,001

CD138 microbeads Milteny Biotec 130-051-301

Dimethyl sulfoxide (DMSO) Sigma-Aldrich D5879

Benzethonium chloride (BzCl) Sigma-Aldrich 843,983

Dexamethasone (Immunosuppressant) Selleckchem S1322

Ixazomib (Proteasome inhibitor) Selleckchem S2180

Thalidomide (Immunomodulatory) Sigma-Aldrich 50-35-1

Selinexor (CRM1 inhibitor) BOC Sciences 1,393,477-72-9

Melflufen (alkylating agent) Oncopeptides N/A

Venetoclax (Bcl-2 selective inhibitor) Selleckchem S8048

Imatinib Cayman 13,139

Critical commercial assays

CellTiterGlo Promega G7573

Deposited data

PhenoPop code repository This paper https://doi.org/10.5281/zenodo.7334379

pyPhenoPop code repository This paper https://doi.org/10.5281/zenodo.7323577

Experimental models: Cell lines

HCC827 ATCC CRL-2868

H1975 ATCC CRL-5908

BAF3 Kindly provided by

Dr. Kristine Kleivi

ACC-300

Oligonucleotides

Forward primer for establishing of BCR-Abl-T315I 50

GGGAGCCCCCGTTCTATATCATCATTGAGTTCATGACCTACG-30
This paper N/A

Reverse primer for establishing of BCR-Abl-T315I 50

CGTAGGTCATGAACTCAATGATGATATAGAACGGGGGCTCCC-30
This paper N/A
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Software and algorithms

MATLAB version R2020b Mathworks, USA https://www.mathworks.com/products/

matlab.html

Python version 3.8 Python Software

Foundation

https://www.python.org

PhenoPop code repository This paper https://doi.org/10.5281/zenodo.7334379

pyPhenoPop code repository This paper https://doi.org/10.5281/zenodo.7323577
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Other
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Lead contact
Requests for further information should be directed to and will be fulfilled by the lead contact, Jasmine Foo (jyfoo@umn.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data and code used in this article are publicly available in the Github page of Oslo Center for Biostatistics and Epidemiology.

The Phenopop repository contains the data and code needed to reproduce the results in this article, and a user-friendly

example of how to run PhenoPop in MATLAB. Additionally, the pyPhenoPop repository contains a Python version that can

be easily installed as a package through pip and includes a user-friendly example of how to run PhenoPop in Python.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ba/F3 cell line experiments
Preparation of cell lines

BCR-Abl-T315I expressing plasmid was established by site-directed mutagenesis of p210 BCR-Abl (Addgene 27481) using

QuickChange II XL (Agilent Technologies) with the forward primer 50 GGGAGCCCCCGTTCTATATCATCATTGAGTTCATGACC

TACG-30 and the reverse primer 50 CGTAGGTCATGAACTCAATGATGATATAGAACGGGGGCTCCC-30 for T315I. To generate cells

stably expressing BCR-Abl (imatinib-sensitive) and BCR-Abl-T315I (imatinib-resistant), parental Ba/F3 cells were transfected with

the appropriate plasmids by electroporation using Amaxa biosystems nucleofecor II and stable cells were established by selecting

with medium containing 500 mg/mL Geneticin (Gibco, UK) and lacking the growth factor IL3 (BCR-ABL activity can overcome the

requirement for IL3 of untransformed parental cells for survival/proliferation).22 Furthermore, Ba/F3 cells expressing BCR-Abl

were stably transfected with GFP expression, pRNAT-H1.1/Hygro plasmid from Genscript (Piscataway NJ, USA). The resulting sub-

populations exhibited distinctive phenotypic differences upon treatment with Imatinib.
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Cell cultures

Parental Ba/F3 cells were maintained in RPMI-1640 supplemented with 10% heat-inactivated Fetal Bovine Serum (FBS), 7.5 ng/mL

IL3 and 1% penicillin and streptomycin at 37 � C under a humidified atmosphere containing 5% CO2. Ba/F3 cells stably expressing

BCR-Abl and BCR-Abl-T315I were maintained in medium lacking IL3.

Experimental procedures

Cells were harvested at 70–80%confluence, stainedwith trypan blue (ThermoFisher, UK), and countedwith a Countess 3 Automated

Cell Counter (Life Technologies). Mono- and co-cultures were seeded at different initial ratios in 384 well microplates (Greiner Bio-

One) that contained different concentrations of imatinib (Cayman, USA). Imatinib ranging from (0–5 mM)was dispensed using an Echo

acoustic liquid dispenser (Labcyte, San Jose, CA, USA) in seven replicates per condition. Then time-lapse microscopy images were

obtained for bright field and GFP using IncuCyte (Essen BioScience, UK) every 3 h over the course of 72 h.

Image processing

Images were processed with the open-source software ImageJ.33 Images were background subtracted, converted to 8-bit, band-

pass filtered, sharpened, contrast enhanced, and thresholded. Then images were converted to binary images, watershed segmen-

tation was performed, and raw cell numbers were extracted.

NSCLC cell line experiments
Cell cultures

HCC827 and H1975 cell lines were maintained in RPMI-1640 media supplemented with 10% Fetal Bovine Serum and 1% penicillin

and streptomycin under standard cell culture growth conditions (37 � C and 5% CO2).

Experimental growth assay

Tumor cells were seeded in 96-well black walled plates at 5,000 cells per well. The following day, the cells were treated with erlotinib at

various concentrations (0, 0.1, 1, 10uM). Cell counts were determined at 0, 24, and 48 h post drug treatment using the Cellomics Array-

scan High Content Screening Platform. Briefly, cells were stained with 5 mg/mL Hoechst 33,342 (nuclear marker to determine total cell

count) and 5 mg/mLPropidium Iodide (PI - vital dye to determine deadcells) for 45min prior to imaging. The average intensity for Hoechst

and PI was determined for each cell to classify as live or dead. Each condition was performed in replicates of four. For admixture ex-

periments, each cell line was labeled with a different CellTracker dye (CellTracker orange CMTMR and H1975 labeled with CellTracker

green CMFDA). The cells weremixed at the specified ratios (total 5,000 cells/well) and imaged following the procedures outlined above.

Drug screen of multiple myeloma patient samples
Patient samples

The multiple myeloma (MM) patients enrolled in this study were recruited from the Oslo Myeloma Center at Ullevål Oslo University

Hospital under the Regional Committee approval for Medical and Health Research Ethics of South-Eastern Norway (REC-2016/

947). The MM samples were obtained following written informed consent in compliance with the Declaration of Helsinki.

Primary MM cells processing

Bone marrow samples from 5 relapsed myeloma patients were collected in ACD tubes. Details about patient ID, treatment lines and

refractory status are provided in Table S1. A Lymphoprep TM (Stemcell Technologies) density gradient centrifugation method was

used to obtain bonemarrowmononuclear cells (BMMCs) from patient samples. As described inWang et al.,34 after CD8 T cell deple-

tion byDynabeads (Life Technologies), BMMCswere then stimulated by activated T helper cells in the presence of Human T-activator

CD3/CD28 Dynabeads (Life Technologies) and 100U/mL human interleukin-2 (hIL-2, Roche, Mannheim, Germany). After 24h,

CD138+ MM cell enrichment was performed from the BMMC fraction by immune-magnetic microbeads CD138+ (Milteny Biotec,

Bergisch Gladbach, Germany).

Drug sensitivity assay

CD138+ MM cells (200,000 cells/mL) derived from activation assays were treated with drugs at 9 concentrations using a drug

customized concentration range (0,1-10,000), as described in Giliberto et al.26 The drug panel included clinically relevant anti-

myeloma drugs, Dexamethasone (0,1-10,000), ixazomib (1-10,000), thalidomide (0,1-10,000), selinexor (0,1-1000), melflufen

(0,1-1000) and venetoclax (0,1-10,000). Pre-printed drug plates were made by an acoustic dispenser (Echo 550, LabCyte Inc.,

San Jose, CA, USA), by the Chemical Biology Platform, NCMM, University of Oslo. Control agents included a negative control,

0.1% solvent solution dimethyl sulfoxide (DMSO), and a positive control 100 mM benzethonium chloride (BzCl). In brief, MM cells

were diluted in culture medium (RPMI 1640 medium supplemented with 10% fetal bovine serum, 2mM L-glutamine, penicillin

(100U/mL), streptomycin (100 mg/mL), and 25 mL of cell suspension was transferred to 384-well plates using a Certus Flex liquid

dispenser (Fritz Gyger, Switzerland). Afterward, plates were incubated at 37 � C and 5% CO2 humidified environment. Cell viability

was measured at 4 different time points (0h–96h), using the CellTiterGlo (Promega, Madison, WI, USA) ATP assay according to man-

ufacturer’s instructions and with an Envision Xcite plate reader (Perkin Elmer, Shelton, CT, USA) to measure luminescence.

METHOD DETAILS

Given a set of experimental drug-screen data on a bulk tumor sample, PhenoPop solves a series of optimization problems to identify

individual subpopulations within the sample and to estimate their frequencies and drug sensitivities. This problem is challenging
e3 Cell Reports Methods 3, 100417, March 27, 2023
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because it requires simultaneous estimation of the number of individual subpopulations present, their frequencies in the population

and their drug response characteristics, all based on noisy observations of the total cell population. Our solution to this problem

is enabled by the introduction of a mixture population dynamic model of the tumor in which the growth rate dependence on drug

concentration follows a Hill-type functional form (see Equation 3).

Model of dose-dependent population dynamics
PhenoPop relies upon an underlyingmodel of heterogeneous tumor population dynamics in vitro. The growth of a single population of

cells with homogeneous drug response is modeled by

Xðd; tÞ = Xð0Þ � exp½tða + log HðdÞÞ�; (Equation 1)

where Xðd; tÞ is the number of cells at time t under drug concentration d, Xð0Þ is the initial population size, a is the intrinsic growth rate

of the population in the absence of drug, andHðdÞ is a classic sigmoidal function describing the dependence of the population growth

rate on drug concentration d:

HðdÞ = b+
1 � b

1+
�
d
E

�n : (Equation 2)

The parameters of this function control the shape of the sigmoid: bR0 reflects the maximum effect of the drug, E is the log con-

centration at which 50 percent of the maximum effect is achieved, and n> 0 controls the steepness of the response. This form of the

growth rate, rðdÞha+ log HðdÞ, is chosen so that the predicted cell viability curve, which is the treated viable cell population size

normalized by the untreated viable cell population size at a fixed time, exhibits the standard Hill-shaped dependence on drug con-

centration that is empirically observed in viability assays.16 Figure S1 demonstrates that this model accurately dependence on drug

concentration in two BCR-ABL positive Ba/F3 cell lines (with andwithout the T315I mutation) treated with the tyrosine kinase inhibitor

imatinib. Note that since we are studying in vitro populations prior to confluence, an exponential growth model is appropriate.

To extend the monoclonal growth model in Equation 1 to a population composed of several subpopulations, each with a specific

own drug response dynamics, we denote the growth parameters of the i-th subpopulation by ai;bi;Ei;ni. Then the model of a cell

population with S subpopulations under drug concentration d at time t is:

Zðd; t;PSÞ = Zð0Þ
XS
i = 1

piexp½tðai + log Hðd;bi;Ei;niÞÞ� (Equation 3)

where Zð0Þ is the total initial population and pi is the initial mixture fraction of the i-th subpopulation ðPS
i = 1pi = 1Þ. Here, PSh

fpi;ai;bi;Ei; ni : i ˛ f1;.;Sgg denotes the set of parameters for S populations, and the parameters of the Hill function

Hðd;bi;Ei; niÞ are written explicitly to emphasize the individual drug response profile of each subpopulation. Under this formulation,

we need to estimate, on the basis of the drug screen data, the unknown number of subpopulations S and the corresponding param-

eters PS. Note that in this case, the heterogeneous population is modeled as a mixture of populations in which individual subpop-

ulations are assumed to grow independently. In the Supplemental Information, we consider a case in which interaction between sub-

populations is incorporated.

Estimation procedure
As input, PhenoPop takes bulk tumor sample drug screening observations, in the form of total cell counts at a series of time points

and drug concentrations. A variety of experimental techniques is commonly used to generate such observations of cell population

counts in drug screening. For example, tetrazolium reduction assays (e.g. MTT, MTS), protease viability markers (e.g. GF-AFC), ATP

assays (e.g. Cell Titer-Glo), and more recently developed real-time assays (e.g. Real-Time Glo, live-cell imaging).35,36 The PhenoPop

methodology is capable of using experimental input from any of these assays, as long the measurements provide viable cell count or

a proxy quantity (e.g. fluorescence intensity) that is proportional to the cell number. Generally, real-time techniquesmay yield superior

deconvolution results due to a reduction in the total noise of the dataset.

Given a set of experimental drug-response data on a bulk tumor sample, PhenoPop solves a series of optimization problems to

deconvolve and characterize individual subcomponents of the bulk sample in terms of varying drug sensitivity profiles. In particular,

each experimental observation, denoted byOj;k;r , corresponds to a cell population number measured under drug concentration dðjÞ
where j˛ f1;.;Cg, time point tk , where k˛ f1;.;Tg, and replicate r ˛ f1;.;Rg. We denote the total set of observations by O.

For simplicity, wewill first assume that there areS subpopulations. Our statistical model of experimental observations will be based

on the deterministic model in Equation 3. In particular, we model each experimental observation as an independent standard

Gaussian random variable with mean ZðdðjÞ; tðkÞ;PSÞ and standard deviation sðdðjÞ;tðkÞÞ. Note that we allow the standard deviation

s to vary with dose and time. This is because at low doses and high times we expect a larger variance due to the larger cell counts.

Therefore we define

sðd; tÞ =
�
sH; d%DL and tRTL

sL; otherwise:
Cell Reports Methods 3, 100417, March 27, 2023 e4
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Our standard deviation is thus characterized by four parameters, s = ðsL;sH;DL;TLÞ. We will denote the set of time-dose obser-

vations where we use standard deviation sH by IH, and the set where we use sL by IL. We denote their cardinalities by jIHj and jILj.
Assuming S subpopulations we can use this model to write the log likelihood as

LðPS; s;OÞ

= � 1

2
RjIHjlog

�
2ps2

H

� � 1

2
RjILjlog

�
2ps2

L

�

� 1

2s2
H

XR
r = 1

X
ðj;kÞ˛ IH

ðOj;k;r � ZðdðjÞ; tðkÞ;PSÞÞ2

� 1

2s2
L

XR
r = 1

X
ðj;kÞ˛ IL

ðOj;k;r � ZðdðjÞ; tðkÞ;PSÞÞ2:

(Equation 4)

For a fixed S, we thus compute the maximum likelihood estimates of the model parameters by solving the optimization problem

ðcPS ; bsÞ = argmaxPS ;s
LðPS;s;OÞ: (Equation 5)

Model selection using the elbow method

We observed that traditional model selection criteria like BIC, AIC and the likelihood-ratio test do not consistently select the correct

model in simulated cases and cell cultures of known admixtures, tending instead to select larger numbers of subpopulations. This

tendency of the AIC and BIC to overestimate the number of components in a mixture model has been documented in other contexts

(e.g. Celeux et al.37) though the reasons remain unclear. Instead, a heuristic known as the elbowmethod was used. To infer the num-

ber of subpopulations in the mixture, PhenoPop is fitted to the data repeatedly, for each number of subpopulations S in S =

f1;2;.;Smaxg in turn, and the S negative log likelihood values are recorded. We then plot the negative log likelihood values as a

decreasing function of S, and observe the number of subpopulations corresponding to which the negative log likelihood does not

decrease significantly further. This means that no useful increase in model accuracy is gained by including another additional pop-

ulation. This point of inflection of the negative log likelihood is called the elbow of the curve. The optimal number of populations is then

chosen by the experimenter through visual inspection. The resulting estimate bP bS contains the inferred population’s drug response

substructure: the estimated number of populations along with the estimated mixture frequency and estimated drug sensitivity GR50

of each subpopulation. This method is known as the elbow method, and it is a well-known heuristic for model selection in cases

where the model fit generally increases with complexity. Model selection for all experiments is shown in Figures S3–S6. Note that

the negative log likelihood value at the true global minimum of the negative log likelihood should in theory decrease monotonically

as the number of subpopulations increases, since extraneousmixture parameters can always be set to zero. However, as the number

of subpopulations increases the complexity of the optimization problem also increases, so in practice negative log likelihood values

may become non-monotonic due to the difficulty of obtaining convergence to the exact global minimum within the available

iterations.

QUANTIFICATION AND STATISTICAL ANALYSIS

Optimization methodology
The maximum likelihood estimate of the parameters bqMLE was obtained by maximizing the log likelihood in Equation 4, subject to

constraints that were placed on the range of each parameter. This constrained optimization problem was performed using the func-

tion fmincon from the MATLAB Optimization Toolbox in MATLAB version R2020b,38 with the default interior-point optimization

method. To combat converging to suboptimal local minima, the log likelihoodwasmaximized repeatedly and independently, by start-

ing from Noptim different random initial positions for the parameter q, sampled uniformly within their allowed range (except for the

parameter E, which was sampled log-uniformly within the bounds). Among the Noptim minima, the one with the highest log likelihood

value was chosen as estimate bqMLE.

Calculation of GR50 values
The viability curve and associated metrics of drug response (e.g. IC50; EC50) typically exhibit dependence on the timing of data

collection.19 We form a growth rate curve by inferring the growth rate rðdÞ at each tested dose level d. In contrast to the viability curve

the growth rate curve does not have a hidden dependence on the duration of the experiment, assuming exponential growth. Once the

parameters of the model in Equation 3 are estimated for each subpopulation using the inferential procedures above, the GR50 for

each subpopulation can be explicitly determined using the set of parameters (ai, bi, Ei, and ni). Following Sorger et al.,19 we char-

acterize dose-response of clones with a GR50 value. This number represents the dose at which the cellular growth rate experiences

half of its total reduction. In particular, suppose that we are interested in a homogeneous population with the growth rate at dose d

given by
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GRðd;a;b;E;nÞ = a+ log Hðd;b;E; nÞ:
Note that we will generally suppress the dependence on parameters and simply writeGRðdÞ. If the maximum dose administered is

dm, and the minimum dose administered is 0, then the median growth rate is rm = ðGRð0Þ +GRðdmÞÞ=2. We then define theGR50 as

the dosage that results in this growth rate, i.e., the value d such that GRðdÞ = rm. We can then solve to obtain

GR50 = E

�
erm �a � 1

b � erm �a

�1=n

:

Generation of synthetic population data
By defining a number of populations S and a parameter set PShfpi;ai;bi;Ei;ni : i ˛ f1;.;Sgg, synthetic data can be generated in a

deterministic manner with Equation 3. Table 1 shows the parameters fai;bi;Ei;ni : i ˛ f1; 2; 3gg of the blue, red and yellow popula-

tions in Figures 2, 6, and 7.

For the synthetic validation, simulated data with initial population size of Z0 = 1000 cells were generated for the following 9 mix-

tures of the three cell populations in Table 1: [1,0,0], [0,1,0], [0,0,1], [0.5,0.5,0], [0.7, 0.3, 0], [0.3, 0.7, 0], [1/3 ,
1/3 ,

1/3 ], [0.4, 0.3, 0.3] and

[0.6, 0.2, 0.2].

We chose 17 simulated drug concentrations. One equal to zero, the rest spaced log-linearly in a region designed to cover the GR50

values of the simulated populations. The simulated concentrations were: [0, 0.00000500, 0.0000108, 0.0000232, 0.0000500,

0.000108, 0.000232, 0.000500, 0.00108, 0.00232, 0.00500, 0.0108, 0.0232, 0.0500, 0.108, 0.232, 0.5] mM. Cell counts were

measured at 12-h intervals from 0 to 96 h, and 4 replicates of the simulation were carried out, where the only difference between

the replicates was the randomly sampled observation noise: A random noise term was added to each observed cell count, sampled

from an independent and identically distributed (i.i.d.) Gaussian distribution with mean 0 and SD ranging from 1 to 50% of the initial

cell count. Any negative cell count caused by the additive noise was set to zero. This gives the following expression for the generated

observation Oj;k;r with concentration number j at time k for replicate r:

Oj;k;r maxðZðd; t;PSÞ + εj;k;r ; 0Þ; εj;k;r � N �
0;s2

�
i:i:d: (Equation 6)
Model of multiple myeloma under treatment
Inspired by Tang et al.,39 we present a mathematical model of M-protein levels of a multiple myeloma patient under treatment with an

anti-cancer drug. This model assumes that the patient has two subpopulations of cancer cells with distinct responses to the drug. In

particular the cancer cells and M-protein levels are governed by the following system of ordinary differential equations

dx

dt
=

r1ðdÞx
1+pðx + yÞ ; (Equation 7a)
dy

dt
=

r2ðdÞy
1+pðx + yÞ ; (Equation 7b)
dz

dt
= r3ðx + yÞ � d3z; (Equation 7c)

where x and y denote number of myeloma cells in subpopulations 1 and 2 respectively, and z denotes M-protein concentration in

plasma. Parameters r1 and r2 are the net growth rates under treatment of subpopulations 1 and 2 respectively. We assume the

net growth rates can be computed as

riðdÞ = ai + log Hðd;bi;Ei; niÞ; i˛ f1;2g; (Equation 8a)

where ðai;bi;Ei;niÞ are the estimated parameters of subpopulation i using PhenoPop. The term ð1+pðx + yÞÞ� 1 in Equations 7a and

7b alters the growth rate of both subpopulations when the total number of cells increases. Parameters r3 and d3 are the production

and decay rate of the M-protein, respectively. Inspired by Tang et al.,39 we use p = 10� 13, r3 = 0:07 � 10� 13 and d3 = 0:07.

Model parameter ranges
For model with S = f1; 2; 3;4g populations, the log likelihood was maximized Noptim = 1000 times or more to combat local minima.

For eachmaximization, the initial estimate was sampled fromwithin the bounds on the parameter range, which were set to the values

listed below for the different datasets.

The parameter ranges for the different settings were largely similar. Some differences occur due to different concentration scales in

the different experiments or due to parameter estimates hitting the boundary of the domain, in which case the range was expanded.

Whenworkingwith the Ba/F3 cells we needed to adjust the lower bound on the parameter b. Due to the complexity of the optimization

problem, the solver had a tendency to push b toward an unrealistically low value. To address this issue we used previous
Cell Reports Methods 3, 100417, March 27, 2023 e6
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observations and derived a realistic lower bound on b. Denote the net growth rate of the cells by l = b � m, where b is the birth rate

and m the death rate. From Milo et al.,40 we know that b% :06. We can thus write m = b � l% :06 � lmin = d0, where lmin is the

minimum observed growth rate amongst all Ba/F3 cell line experiments. Thus the maximal possible death rate is d0, and the minimal

possible net growth rate is � d0. Next note that according to our growth rate model, as the dose d goes to infinity the growth rate

decreases to the lower limit a+ logðbÞ. Therefore we know that a+ logðbÞR � d0. We again use that a% :06, and based on observed

data we set lmin = :04 and get d0 = 0:2. However to account for any possible errors in the method we increase d0 to be 0.07. This

then gives us the lower bound logðbÞR � 0:08 or equivalently bR0:878.

NSCLC data

pi ˛ ½0;1� with the inequality constraint
PS� 1

s = 1pi % 1

ai ˛ ½0; 0:1� hours� 1

b˛ ½0;1� hours� 1

E˛ ½0; 50� mM
n˛ ½0;50�
sL;sH ˛ ½0;5500�

Ba/F3 data

pi ˛ ½0;1� with the inequality constraint
PS� 1

s = 1pi % 1

ai ˛ ½0; 0:06� hours� 1

b˛ ½0:878;1� hours� 1, see comment below.

E˛ ½0; 50� mM
n˛ ½0:001;20�
sL;sH ˛ ½0;2500�

Synthetic data

pi ˛ ½0;1� with the inequality constraint
PS� 1

s = 1pi % 1

ai ˛ ½0; 0:1� hours� 1

bi ˛ ½0:27; 1� hours� 1

Ei ˛ ½10� 6;0:5� mM
ni ˛ ½0:01;10�
S˛ ½0;4�
sL;sH ˛ ½10� 6;5000�

Multiple myeloma data

For the multiple myeloma patient data, an inital parameter range was chosen for all patients. Then if one or more of the inferred pa-

rameters happened to lie on or near the upper or lower bound, the parameter range was increased for that patient until the estimate

was no longer on the bound. Therefore, the parameter for the E and s variables are different for some of the patients.

pi ˛ ½0;1� with the inequality constraint
PS� 1

s = 1pi %1

ai ˛ ½ � 0:1;0:1� hours� 1

bi ˛ ½0;1� hours� 1

ni ˛ ½0:01;10�
S˛ ½0;5�
The E parameter ranges were:

Ei ˛ ½10� 6;2� mM for patient MM2108.

Ei ˛ ½10� 6;50� mM for patient MM720.

Ei ˛ ½10� 6;5� mM for patient MM195.

Ei ˛ ½10� 6;5� mM for patient MM36.

Ei ˛ ½10� 6;100� mM for patient MM1420.

The s parameter ranges were:

sL;sH ˛ ½10� 6;50; 000� for patient MM2108.

sL;sH ˛ ½10� 6;1;000;000� for patient MM720.

sL;sH ˛ ½10� 6;150;000� for patient MM195.

sL;sH ˛ ½10� 6;250;000� for patient MM36.

sL;sH ˛ ½10� 6;150;000� for patient MM1420.

Model extension to interacting populations
Our model currently ignores potential interactions between subpopulations. Based on the sample size of our current datasets we

were not able to fit a more complex model that allows for interacting populations. For the situation when sufficient data are available,

we propose the model below that allows for interactions between the subpopulation. Assuming that there are S subpopulations, for

each i˛ f1;.;Sg define the function
e7 Cell Reports Methods 3, 100417, March 27, 2023
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fiðX;dÞ =
XS
l = 1

ðailXj � cilXiXlÞ+Xi log HiðdÞ;

where d is possible drug dose andX˛RS
+ . The parameter ail represent the rate at which type-l cells produce type-i cells, and aii is the

net growth rate of the type-i cells. We assume that each ail term is non-negative. The term cil represents the effect of population l on

population i. If cil > 0 then population l inhibits population i, if cil < 0 then population l encourages population i to grow, and finally if

cil = 0 then population l has no direct effect on population i. Note that the term cii represents the effect of type-i cells on itself and we

assume that cii > 0. The parameters ail allow for inter-conversion between cell types, and the parameters cil allow for inhibition or pro-

motion between cell types.

For dose d, and initial population vector x0 = ðx01;.;x0SÞ, define fXðt;d; x0Þ; t R 0g as the solution to the differential equation

_Xiðt;dÞ = fiðX;dÞ; for each i˛S; (Equation 9)

with initial condition Xið0Þ = x0i . Define x0 =
P
i

xi0 and write x0i = pix0. We assume that x0 is a known quantity, but the proportions

fpigi˛S are unknown. We denote the model-predicted total population at time t under dose d by Xðt;dÞ. Recall that the total popu-

lation is the observable variable in our model.

In this interacting population model, we have more model parameters, namely the parameter set

P =
��failgl˛S ; fcilgl˛S ;pi; ni;bi;Ei;ni

�
; i ˛ S�:

Tomake clear the dependence on the parameter set P, we denote the predicted total population at time t using d units of drug with

parameter set P by Xðt;d;PÞ.
Similar to ourmainmodel, wewill start by simply using additive Gaussian noise for ourmeasurement error. In particular, we assume

that observation at dose dj and time tk is given by

xj;k = Xðdj; tk ;PÞ+Zj;k ;

for i.i.d Nð0;s2Þ random variables Zj;k . We can then implement the same maximum likelihood estimation procedure as for our orig-

inal model. This will be a more computationally challenging problem because evaluating the likelihood function will require numer-

ically solving the non-linear differential Equation 9. In addition, this inference problem is more difficult because we have a higher

dimensional parameter space to search over.
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