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In brief

Understanding tumor heterogeneity from
a phenotypic (drug-response)
perspective is crucial for interpreting
drug-screening tests, developing
treatment strategies, and predicting
prognoses. Kéhn-Luque et al. leverage
mechanistic population modeling to
develop a statistical framework for
identifying subpopulations, along with
their frequencies and drug sensitivities,
from drug-screening data on bulk tumor
samples.
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MOTIVATION Tumors are typically comprised of heterogeneous cell populations exhibiting diverse pheno-
types. This heterogeneity, which is correlated with tumor aggressiveness and treatment failure, confounds
current drug-screening efforts aimed at informing therapy selection. In order to optimally select treatments,
understanding the frequency and drug-response profile of individual subpopulations within a tumor is crit-
ical. Furthermore, quantitative profiles of tumor drug-response heterogeneity, in combination with predic-
tive mathematical modeling of tumor dynamics, can be used to design effective temporal drug-sequencing
strategies for tumor reduction.

Here, we present a method that enables the deconvolution of tumor samples into individual subcomponents
exhibiting differential drug response. This method relies on standard bulk drug-screen measurements and
outputs the frequencies and drug sensitivities of tumor subpopulations. This framework can also be applied
more broadly to deconvolve cellular populations with heterogeneous responses to a variety of external stim-
uli and environmental factors.

SUMMARY

Tumor heterogeneity is an important driver of treatment failure in cancer since therapies often select for drug-
tolerant or drug-resistant cellular subpopulations that drive tumor growth and recurrence. Profiling the drug-
response heterogeneity of tumor samples using traditional genomic deconvolution methods has yielded
limited results, due in part to the imperfect mapping between genomic variation and functional characteris-
tics. Here, we leverage mechanistic population modeling to develop a statistical framework for profiling
phenotypic heterogeneity from standard drug-screen data on bulk tumor samples. This method, called
PhenoPop, reliably identifies tumor subpopulations exhibiting differential drug responses and estimates their
drug sensitivities and frequencies within the bulk population. We apply PhenoPop to synthetically generated
cell populations, mixed cell-line experiments, and multiple myeloma patient samples and demonstrate how it
can provide individualized predictions of tumor growth under candidate therapies. This methodology can
also be applied to deconvolution problems in a variety of biological settings beyond cancer drug response.

INTRODUCTION metabolism, and drug response. This diversity fuels tumor evo-

lution and adaptation, and it has been correlated with higher
Most human tumors display a striking amount of phenotypic het-  risks of treatment failure and tumor progression.’-¢ Indeed,
erogeneity in features such as gene expression, morphology, treatments that initially elicit clinical response can select for
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drug-tolerant tumor subpopulations, leading to outgrowth of
resistant clones and tumor recurrence. Additionally, the hetero-
geneity and composition of tumors is known to vary widely be-
tween patients, underscoring the need for more personalized ap-
proaches to cancer therapy that profile and address intra-tumor
heterogeneity and its evolutionary consequences. Toward this
goal, recent advances in single-cell genomic profiling of tumor
samples have enabled the assessment of the genetic variability
within tumor cell populations. However, single-cell technologies
are often limited by large measurement errors, incomplete
coverage, and small sample availability, which leads to chal-
lenges in capturing the temporal dynamics crucial for under-
standing response to therapies. Furthermore, the mapping
between genotypic and phenotypic variation is far from perfect:
not all variation in cellular drug response can be explained by ge-
netic mechanisms, and divergent genetic profiles can lead to
similar treatment responses.®10

Another important approach to designing individualized treat-
ment strategies is personalized drug-sensitivity screening, a pro-
cedure in which patient tumor samples are tested for functional
responsiveness to a library of drugs using high-throughput
in vitro drug-sensitivity assays. In these assays, cells are treated
with various concentrations of a drug, and the number of viable
cells is measured at one or more fixed time points. The resulting
data are normalized and fitted to produce viability curves, whose
summary characteristics (e.g., IC50 [drug concentration result-
ing in 50% relative viability] and AUC [area under the dose-
response curve]) are used to compare drug sensitivity across
multiple drugs and/or cell populations.”'='> Increasingly, such
drug screens are used as a tool in personalized medicine to eval-
uate and rank the potential efficacy of therapeutic agents on a
patient’s disease cell population. However, the interpretation
of these cell viability curves and associated metrics are
confounded by the presence of cellular heterogeneity within
the population. In particular, the presence of multiple subpopu-
lations with divergent drug-response characteristics may result
in an intermediate drug-sensitivity profile that does not accu-
rately represent any individual cell type within the population.’®
Developing techniques to detect the presence of subpopulations
with distinct drug-sensitivity profiles is crucial for achieving
effective treatment strategies.

In this work, we develop a methodology for detecting the pres-
ence of cellular subpopulations with differential drug responses
using standard bulk cell viability assessment data from drug
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screens. Our method, PhenoPop, detects the presence and
composition fractions of distinct phenotypic components in the
tumor sample and quantifies the sensitivity of each subpopulation
to a specific monotherapy. Notably, since the cell counts used in
the deconvolution are aggregated signals from the entire popula-
tion, the approach is categorically different from previous tech-
niques that rely on observations at the individual level such as
growth mixture modeling’”> or latent class growth analysis.'®
PhenoPop utilizes statistical tools in combination with an underly-
ing population dynamic model describing the evolution of a het-
erogeneous mixture of tumor cells with differential drug sensitivity
over time. In this work, we validate PhenoPop using simulated
tumor drug-screening data as well as measurements of drug
response in known mixture experiments of cancer cell lines. We
then use PhenoPop to profile the population drug-response
heterogeneity in multiple myeloma patient samples, and we
demonstrate how these results can be used to produce personal-
ized predictions of tumor response to therapy. This methodology
can be applied across a variety of cancer types and therapies to
characterize the drug-response heterogeneity within tumors.

RESULTS

Figure 1 provides an overview of the PhenoPop workflow. First, a
tumor sample is extracted, divided, and exposed to a panel of
therapeutic compounds at a range of concentrations. For each
drug, the population size counts are measured at a series of
time points for each concentration and replicate. These data are
then used as the input to PhenoPop, which estimates the param-
eters of the underlying population dynamic model for each candi-
date number of subpopulations. Then, a model selection process
is performed to identify the number of subpopulations present and
to estimate the mixture fractions and drug sensitivities of each
subpopulation. Details are provided in the STAR Methods.

Validation in synthetic populations

To quantify the performance of PhenoPop in mixtures of 1, 2, and
3 populations, three synthetic populations were designed to
have drug-response properties similar to cell lines observed in
in vitro experiments. Using the model for data generation
described in the STAR Methods (generation of synthetic popula-
tion data), synthetic data were generated for 9 different mixture
compositions of the 3 populations. The synthetic mixtures
were exposed to 17 concentrations of the simulated drug, and
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(1) A cancer sample is taken from a patient. (2) Drug screening is performed on the bulk sample. (3) Population deconvolution is performed using PhenoPop. (4)
Resulting identification of population subcomponents, their mixture fractions, and drug sensitivity.

the bulk cell populations were measured at 9 equidistant points
in time. The simulated drug concentrations were chosen to cover
the range where population growth rates were affected by
changes in the drug concentration. To simulate measurement er-
ror, random noise was added to each bulk cell count. Data from 4
replicates of the experiment were used to perform the inference.

To measure drug sensitivity, PhenoPop uses the growth rate-
associated metric GR50, introduced in Hafner et al.”® and
defined as the concentration at which the population growth
rate is reduced by half of the maximum observed effect, as it
provides a robust metric for comparing drug-response across
cellular subpopulations (STAR Methods, calculation of GR50
values). To assess the accuracy of the PhenoPop deconvolu-
tion analysis, (1) the estimated mixture fractions from the de-
convolution were compared with the true mixture fractions,
and (2) the GR50 obtained from the deconvolution was
compared with the true GR50 region. The use of a region, or
range of values, for the true GR50 reflects the inherent limita-
tion from sampling discrete concentrations in experimental
data; it is only possible to ascertain that the GR50 is some-
where between the closest two sampled concentration levels,
and the finer the sampling resolution, the smaller the range of
uncertainty.

Figure 2A shows true mixture compositions and GR50
values compared with PhenoPop’s estimates for the 9 cases
in an experiment where the noise terms were sampled inde-
pendently from a Gaussian distribution with mean 0 and
base noise level of 5%, meaning that the standard deviation
of the noise terms equaled 5% of the noiseless cell count at
time 0. Additional sensitivity tests evaluating PhenoPop per-
formance on synthetic data with varying noise levels (up to
50%) are discussed in PhenoPop experimental design recom-
mendations, and data are provided in the supplemental infor-
mation. To place these noise levels in the context of expected
noise levels from experimental drug-screen data, the standard

deviation-to-mean ratio reported from several common auto-
mated or semi-automated cell counting techniques ranges
from 1% to 15%.20-2". For example, counts obtained via a try-
pan blue exclusion-based Vi-CELL XR Cell Viability Analyzer
(Beckman Coulter) had noise levels consistently less than
5.3% across several cell lines,?® while those obtained via a
Countess Automated Cell Counter (Invitrogen) fell in the range
11%-14.3%. Cells counts obtained using the Cellomics
ArrayScan high-content screening platform in another set of
experiments (used in this work) had standard deviation-to-
mean ratios of 1%-5.6%.2"

Figure 2A demonstrates that PhenoPop inferred the mixture
fractions within 2 percentage points for mixtures of 1, 2, and 3
populations at the 5% noise level. The GR50 values were inferred
precisely within the true GR50 region for all mixtures of 1 and 2
populations and also for an equal mixture of 3 populations.
In the case with 3 populations in a 40:30:30 mixture, one of
the estimated GR50 values is off by 1 GR50 region, and in the
3-population mixture with a 60:20:20 mixture, all three estimated
GR50 values are off by 1 GR50 region. Details of model selection
results are shown in Figure S3A.

Validation with cell line experiments

Next, to investigate the performance of our method in the exper-
imental setting, mixtures of cell populations with differential drug
sensitivity were constructed and subjected to drug-screen ex-
periments. The resulting bulk cell population readings at varying
drug concentrations, time points, and replicates were used as in-
puts to PhenoPop.

Imatinib-sensitive and -resistant Ba/F3 cells

We tested monoclonal and mixture populations of isogenic Ba/
F3 murine cell lines that were stably transformed with either
the wild-type BCR-ABL fusion oncogene or with BCR-ABL-
T315l, which contains a point mutation that confers increased
resistance to the Abl tyrosine kinase inhibitor imatinib. Note
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results are shown in Figure S3.

that expression of these oncogenes renders cells addicted to
BCR-ABL activity.??>> Monopopulations and mixtures of these
two cell lines were treated with 11 different concentrations of
imatinib, and the bulk cell population sizes were quantified at
14 time points. Using this bulk population data, PhenoPop was
able to correctly assess the number of component subpopula-
tions (Figure 2B). As shown in Figure 2B, PhenoPop also
estimated the fraction of the population belonging to each sub-
component at the start of the drug screen as well as the drug
sensitivity (GR50) of each subpopulation; the estimates demon-
strated good agreement with the known mixture proportions
and independently assessed GR50 ranges of the monoclonal
T315l+/— populations. Details of model selection results are
shown in Figure S3B.

Erlotinib-sensitive and -resistant NSCLC cells
Additionally, two EGFR-mutant non-small cell lung cancer
(NSCLC) lines, HCC827 and H1975, were considered for their

4 Cell Reports Methods 3, 100417, March 27, 2023

differential sensitivity to the drug compound erlotinib. The mu-
tation T790M, which is present in H1975 cells but not in
HCCB827 cells, confers increased resistance to erlotinib. Mo-
nopopulations and mixtures of the erlotinib-sensitive and
-resistant NSCLC cell lines were treated with four drug concen-
trations, and total cell population count was assessed at 0, 24,
48, and 72 h with four replicates.?’: Figure 2C demonstrates
PhenoPop’s results on these bulk data. PhenoPop was able
to correctly assess when populations were monoclonal, as
well as to detect the presence of two populations in the bulk
drug response data from mixed populations. Furthermore, us-
ing the bulk mixture response data, PhenoPop accurately
estimated the mixture fractions and GR50 values of each
component subpopulation. The reference GR50 ranges were
independently assessed on monoclonal HCC827 and H1975
cell populations. Details of model selection results are shown
in Figure S3C.
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Deconvolution analysis of multiple myeloma patient
samples

Next, PhenoPop was used in a clinical scenario to deconvolve
twenty drug-sensitivity screens performed on five multiple
myeloma (MM) patient samples. MM is a clonal B cell malignancy
characterized by abnormal proliferation of plasma cells in
the bone marrow. The median survival time of patients with MM
is about 6 years, with a disease course typically marked by
multiple recurrent episodes of remission and relapse.?®: Drug
responses and relapses are currently unpredictable, largely due
to unknown complex clonal compositions and dynamics under
treatment.24-25

Bone marrow samples were taken from each patient, pro-
cessed, and screened with a set of MM clinically relevant drugs,
as illustrated in Figure 3A and described in the STAR Methods.?6:
To perform the drug screens, samples from each patient were
subjected to treatment at varying concentrations with a subset
of the following drugs: dexamethasone, ixazomib, melflufen, seli-
nexor, thalidomide, and venetoclax. We note that screening data
for all drugs for each patient were not available; Figures 3B-3G
show the set of patient samples treated by each drug and summa-
rize the results of PhenoPop deconvolution analysis on each set of
drug-screen data. The results provide each sample’s population
heterogeneity profile with respect to each screened drug; these
profiles are typically expected to be distinct between therapies
since the characteristics driving response to specific drugs
may vary.

Interpatient similarities in subpopulation GR50s

In all cases PhenoPop identified either one or two subpopulations;
details of model selection results are shown in Figure S4. For
example, Figure 3B shows that for patient MM1420, PhenoPop
estimates that 87% of the cells are resistant to dexamethasone.
This matches the clinically observed response, as the patient
was refractory to dexamethasone treatment in vivo. Interestingly,
for all drugs used except dexamethasone, the inferred subpopu-
lations across patient samples share comparable GR50 values,
although the proportions of these subpopulations may vary be-
tween patients (see Figures 3C-3G). For example, for three patient
samples treated with venetoclax, PhenoPop inferred one more-
sensitive and one more-resistant population (Figure 3E). However,
the estimated proportions of the more-resistant populations
(shown in the plot by the right-pointing arrows) varied from 23%
up to 58%.

We hypothesized that subpopulations with similar GR50s
across patients may in some cases be driven by similar genetic
alterations. To investigate this, we also characterized the sam-
ples with inferred heterogeneous compositions for the presence
of high-risk genomic abnormalities, including Gain(1g21) (2/3)
and several mutations co-existing in the same screened sample
(MM36). Interestingly, we noticed that the proportion of MM

Cell Reports Methods

cells from two samples (MM1420 and MM195) harboring the
aberration gain (1g21) (approximately 50%) was similar to the
PhenoPop-inferred mixture fractions for the more-resistant
clone in the same two samples (50% and 58%, respectively).
This supports our hypothesis that these subpopulations, which
have similar levels of drug tolerance in different patients, may
be driven the same alterations, and it is consistent with previous
findings showing Gain(1g21) as negative predictor for veneto-
clax efficacy in MM. This analysis provides genetic evidence
that supports PhenoPop’s ability to profile phenotypic drug
response heterogeneity.

Treatment response prediction using PhenoPop
estimates

The utility of these phenotypic deconvolutions as initial states
for predicting and optimizing patient-specific treatment sched-
ules remains to be systematically explored. Here, as a proof of
concept, we present a mathematical model to illustrate how to
use the PhenoPop estimates of population frequencies and differ-
ential drug sensitivities to predict the treatment outcome for the
three patients exposed to venetoclax. For easier comparison,
we assumed that all three patients start with a total of 102
abnormal plasma cells. Figure 4 demonstrates how the same
treatment dose, 2 uM venetoclax, assumed constant over the
simulation for simplicity, leads to highly disparate treatment out-
comes in patients with distinct phenotypic heterogeneity profiles
uncovered by PhenoPop. In particular, we note that to observe
the predicted relapse in patient MM36, simulations had to be
run for a much longer time (3,000 days) than for the other two pa-
tients. We also note that according to Equation 3, the growth rate
of a population can be negative at drug concentrations below the
GR50. This is the case in the first panel of Figure 4, which shows
both populations for patient MM1420 responding to venetoclax at
2 uM, while in Figure 3B, the largest subpopulation is estimated to
have a GR50 value that is above 10 uM. See the STAR Methods
for a description of the model and its parameterization.

To make treatment recommendations in a clinical setting,
population deconvolution and subsequent predictive mod-
eling of the heterogeneous cell population’s response to ther-
apy should be performed for all candidate drugs. Depending
on clinical goals (e.g., lowest tumor burden at particular time
horizon, fastest tumor reduction, or longest time to resis-
tance), the optimal treatment can be selected based on the
predicted modeling outcomes under each therapy. Figure S2
demonstrates a comparison of predicted response to ven-
etoclax versus three additional drugs (dexamethasone, seli-
nexor, and meflufen) for which drug screens were performed
on the same patient samples. In this case, dexamethasone
may be the preferred option for patients MM195 and
MM36, while for patient MM1420, all drugs produce a similar
response.

Figure 3. Phenotypic deconvolution of drug screens from MM patient samples

(A) lllustration of the experimental protocol described in STAR Methods,?® created using smart.servier.com and biorender.com.

(B—G) Deconvolution results for 5 MM samples, each exposed to 4 out of 6 drugs: (B) dexamethasone, (C) selinexor, (D) melflufen, (E) venetoclax, (F) ixazomib, and
(G) thalidomide. In (B)~(G) separately, each row corresponds to a patient sample. On the left, the estimated mixture percentages are shown. On the right, the grid
of vertical lines corresponds to drug concentrations. The estimated GR50 region is shown by a colored box, and the point estimate of the GR50 is marked with the
white circle. If the inferred GR50 value of a population is above the highest observed concentration, the estimated GR50 is instead marked by an arrow pointing

toward the right from the highest observed concentration.
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DISCUSSION

Understanding the phenotypic heterogeneity of human tumors,
especially in terms of drug response, is essential in treatment
planning and prognosis prediction. The optimization of treatment
regimens is a long-standing area of research in the mathematical
oncology community?’-3%; however, the initial state of the tumor,
which strongly influences optimal treatment strategies, is typi-
cally unknown. PhenoPop enables the detection of tumor sub-
populations, as well as estimation of their frequencies and
drug sensitivities based on drug-screen data. The resulting de-
convolved tumor profile can be fed, as an initial state, into math-
ematical models of tumor dynamics to predict treatment
response (see Figure 4) and identify optimal treatment regimens.

Though similar in objective, deconvolution methods are cate-
gorically different from clustering methods such as growth
mixture modeling since the former uses bulk observations from
the combined population while the latter relies on observations
ontheindividual level. The deconvolution problemis in fact closer
in nature to the problem considered in blind source separation in
digital signal processing, in which one attempts to recover individ-
ual source components from a mixture of signals (see, e.g., Mou-
lines et al.®" and Comon et al.®%). However, a key assumption in
this classic problem is the independence of the constituent com-
ponents, arestriction that is not needed for PhenoPop. Interaction
between individual populations, e.g., due to resource limitation or

2500 300

o

underlying population dynamic model of
drugresponse used in PhenoPop can bere-
placed with another mechanistic or ma-
chine-learning-derived model describing
response to other stimuli. In future efforts, we aim to extend
PhenoPop to incorporate the role of stromal cell signaling in medi-
ating drug response.

The precision of PhenoPop depends on the amount of obser-
vation noise in the data. Under an exponential growth model,
PhenoPop accurately performs deconvolutions on data sub-
jected to noise with a standard deviation of up to 20% of the
initial cell count, while higher noise levels lead to errors in model
selection and decreased accuracy in mixture fractions and GR50
estimates. This is especially seen in the 3-population mixtures,
and it is expected that the problem would be aggravated in mix-
tures of more than 3 populations. We note that the standard de-
viation-to-mean ratio reported from several of the most common
automated or semi-automated cell counting techniques ranges
from 1% to 15%.20-2" At moderate noise levels in this range
(standard deviation-to-mean ratio of 5%), PhenoPop was able
to detect subpopulations as small as 1% of the total population
in 2-population mixtures, while in 3-population mixtures, the
smallest detectable population fraction was 3%. The precision
is reduced when subpopulations have very similar GR50 values,
and the resolution of experimental drug concentrations does not
distinguish well between them, but for predicting treatment
response, distinguishing subpopulations that are almost iden-
tical is of limited clinical importance. Additionally, our study sug-
gests that in terms of data resolution and prioritization of exper-
imental effort, increasing the number of observed concentrations
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Figure 5. Comparison of accuracy gain in mixture fraction and GR50
values when increasing either the number of replicates (R), the
number of time points (N;), or the number of concentrations (N;)
while keeping the other two equal to 3

The inference was carried out on 30 datasets generated from a mixture of 40%
sensitive and 60% resistant cells. The standard deviation of the observation
noise was equal to 10% of the initial cell count. The random seed for the noise
was the only parameter varying between the 30 datasets. In (A), the accuracy
metric is absolute error in inferred mixture parameter; in (B) and (C), the metric
is Iog(maX(GRSOinferred /GRSOtrue7 Gﬂsotrue /GRSOinferred))s chosen to address
the logarithmic scale of the concentrations. The plots show mean accuracy
metrics with 95% confidence intervals for the mean (t-distribution with 29
degrees of freedom). The number of subpopulations (2) was assumed known,
and model selection was not performed.
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improves accuracy the most, followed by the number of time
points, and then the number of replicates.

There are several limitations to the method that suggest
avenues for future work. PhenoPop is currently best suited for
cancer types in which relatively large amounts of tumor material
can be obtained from patients for ex vivo drug screening, such as
hematological cancers. As shown in Figure 3, these drug screens
can be completed in less than a week, which is an acceptable
time frame for clinical decision-making. Ex vivo drug screening
is still challenging for solid tumors due to smaller sample size
availability (typically biopsies) compared with hematological
cancers. However, this field is evolving rapidly, and new
methods are being developed for solid tumors, such as orga-
noid/tumoroid approaches that allow for expansion of tumor
tissue and also preserve the tumor microenvironment to a certain
extent. Another important consideration for the applicability of
PhenoPop to solid tumors is spatial heterogeneity across
different regions of a tumor, which may result in incomplete or
inaccurate mixture deconvolutions. However, in situations where
multi-region sampling is available, PhenoPop can be used to
perform a deconvolution analysis on each sampled region,
thus providing a spatially resolved profile of drug-response het-
erogeneity throughout the tumor.

PhenoPop currently produces a heterogeneity profile for each
patient sample with respect to each treatment in a drug-screen
panel. While this information is useful for identifying successful
single-agent therapies and for optimizing or designing their ther-
apeutic schedules, combination therapy design requires joint
deconvolution analyses that elucidate the mapping between het-
erogeneity profiles for multiple drugs. This task will necessitate
additional data from combination drug screens and further meth-
odological development in experimental design to identify trac-
table subsets of combination screening experiments that are
necessary for identifying these joint deconvolution profiles. We
plan to address this problem in future work. Another area of
future work is the expansion of PhenoPop into a Bayesian frame-
work where the incorporation of expert knowledge, genetic infor-
mation, or experience from previous experiments with the drug
of interest could be incorporated into PhenoPop by the use of
informative priors. This would enable inference on screening da-
tasets with fewer replicates and/or time points.

Accurate, efficient techniques for profiling of heterogeneity
across multiple axes are important foundations for personalized
treatment decision-making. In this work, we have demonstrated
that PhenoPop can provide vital insights into the diversity of
drug response among tumor cells. This framework, enabled by
mixture population dynamic modeling of response to therapy,
utilizes bulk drug-screen data and alleviates the need for costly
single-cell methods in profiling tumor heterogeneity. Although
we focus here on tumor drug-response heterogeneity, the
PhenoPop framework can also be applied to detect and
profile heterogeneous cellular response to other stimuli, such
as stromal content, nutrient/oxygen deprivation, and epigenetic
modifiers. This general framework can also be applied beyond
cancer to other biological settings in which reproducing popula-
tions harbor heterogeneous responses to environmental stimuli,
such as the response of bacterial or viral populations to antibiotic
or antiviral therapies.
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selection.

Limitations of study

We performed a computational study using synthetic drug-
screen data to identify experimental design strategies that
enhance PhenoPop accuracy and to explore the limitations of
the method.

PhenoPop experimental design recommendations

We first considered the relative importance of experimental res-
olution in drug concentration, time points, and replicates in
PhenoPop performance. Figure 5 shows the average gain in ac-
curacy for a mixture of 2 populations (one sensitive, one resis-
tant) when either the replicates R, the number of concentrations
N;, or the number of time points N; are increased while the others
are held constant at the value three. To compare the accuracies,
27 two-sided t tests were made, since 3 effects (increasing R, N,

and N;) were compared pairwise at 3 sample sizes (5, 9, and 17)
in 3 different comparison measures. To account for multiple
testing, the family-wise error rate was controlled to be below
0.05 using the Bonferroni correction.

We find that for accuracy in the mixture parameter,
increasing the number of concentrations or time points gives
significantly higher precision than increasing the number of rep-
licates to the same amount. Similarly, to enhance accuracy in
the GR50 value of the sensitive population, increasing either
the number of concentrations or number of time points gives
significantly higher precision compared with increasing the
number of replicates by the same number. In addition,
increasing the number of concentrations to 9 or 17 is signifi-
cantly better than increasing the number of time points

Figure 6. Deconvolution results at different noise levels

True and estimated mixture fractions and GR50 values for synthetic data with observation noise with standard deviation equal to (A) 1%, (B) 10%, (C) 20%, and (D)
50% of the initial cell count. Each row corresponds to an independent experiment. On the left, the true and estimated mixture percentages are shown. On the
right, the grid of vertical lines corresponds to drug concentrations. The true GR50 region is marked by a light-colored bar extending between two adjacent
concentrations, and the estimated GR50 region is marked by a narrower, darker-colored bar. The point estimate of the GR50 is marked with a white circle. See

Figure S5 for model selection.
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Table 1. Parameters for simulated data

Clone a B E

1 (blue) 0.03 0.3 0.0001 3
2 (red) 0.03 0.4 0.001 3
3 (yellow) 0.03 0.5 0.1 3

similarly. No significant differences were found for estimating
the GR50 of the resistant population.

Noise level

We also studied how increasing levels of measurement noise in
the data (e.g., in cell counting) impact the precision of the decon-
volution results. Results of these tests are shown in Figure 6,
where the same synthetic data with increasing levels of mea-
surement noise were used as inputs to PhenoPop. We found
that for noise levels up to a standard deviation equal to 20% of
the initial cell count, PhenoPop is able to correctly deconvolve
the bulk response signal into the correct components. Beyond
this noise level, mixture fractions are off by more than 10% in
2-population mixtures, and populations may go undetected in
3-population mixtures. Figure S5 shows how model selection
was performed in these cases.

Small mixture fractions

To determine how small of population fractions PhenoPop is able
to detect, inference was performed on simulated data with a
range of small mixture fractions with a noise level of 5% of the
initial cell count. We found that in 2-population mixtures,
PhenoPop was able to detect populations at frequencies as
low as 1%. In 3-population mixtures, PhenoPop was able to
detect populations with mixture fractions of 3% and higher. At
a noise level of 5%, the estimated mixture parameters were
within 1% of the true value, and the estimated GR50 values
were always within two GR50 regions of the true value. Figure 7A
shows these results. The figure also shows that it is harder to
detect two small populations mixed with a large population (bot-
tom row) than it is to infer one small population mixed with two
larger ones (fifth row). Figure S6A shows how model selection
performed for these cases.

Subpopulation similarity

We performed computational experiments to determine the de-
gree of similarity between component subpopulations, beyond
which PhenoPop was unable to detect distinct populations. We
tested a set of 2 similar mixed populations at a noise level of
5% of the initial cell count. We found that PhenoPop was
able to detect populations whose GR50 values were as close
as 2 GR50 regions apart. For such close populations, the esti-
mate of the mixture parameters was within 2% of the true
value, and the estimated GR50 values were within 1 GR50 re-
gion of the true value, even for mixtures as unbalanced as
90:10. The results are shown in Figure 7B. The figure’s third,
sixth, and ninth rows show that the inferred GR50 values may
overlap or swap position if the true GR50 values are less than
2 GR50 regions apart. The figure’s eighth row shows that for
mixtures of 5% or smaller, the inferred GR50 values can over-
lap even when the true GR50 values are 2 GR50 regions apart.
Figure S6B shows how model selection performed for these
cases.
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STARXMETHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
QuikChange Il XL site directed mutagenesis kit Agilent 200521
Biological samples
Bone marrow samples derived from patients with multiple myeloma Oslo Myeloma Center N/A
Chemicals, peptides, and recombinant proteins
Trypsin:EDTA Solution - 0.05% Gemini Bio Products 400-150
DPBS Gibco 14,190-144
RPMI 1640 Corning 10-040-CV
L-glutamine Sigma-Aldrich G7513
Penicillin-Streptomycin Gemini Bio Products 400,109
Fetal Bovine Serum Gemini Bio Products 100-500
Erlotinib LC Laboratories E—4007
Propidium lodide Invitrogen P1304MP
Hoechst 33,342 Invitrogen H21492
CellTracker Green CMFDA ThermoFisher C7025
CellTracker Orange CMTMR ThermoFisher C34551
Lymphoprep Stemcell Technologies 04-03-9391103
Dynabeads CD8 ThermoFisher 11147D
Dynabeads Human T-activator CD3/CD28 ThermoFisher 11132D
Human interleukin-2 Roche 10,799,068,001
CD138 microbeads Milteny Biotec 130-051-301
Dimethyl sulfoxide (DMSO) Sigma-Aldrich D5879
Benzethonium chloride (BzCl) Sigma-Aldrich 843,983
Dexamethasone (Immunosuppressant) Selleckchem S1322
Ixazomib (Proteasome inhibitor) Selleckchem S2180
Thalidomide (Immunomodulatory) Sigma-Aldrich 50-35-1
Selinexor (CRM1 inhibitor) BOC Sciences 1,393,477-72-9
Melflufen (alkylating agent) Oncopeptides N/A
Venetoclax (Bcl-2 selective inhibitor) Selleckchem S8048
Imatinib Cayman 13,139
Critical commercial assays
CellTiterGlo Promega G7573
Deposited data
PhenoPop code repository This paper https://doi.org/10.5281/zenodo.7334379
pyPhenoPop code repository This paper https://doi.org/10.5281/zenodo.7323577
Experimental models: Cell lines
HCC827 ATCC CRL-2868
H1975 ATCC CRL-5908
BAF3 Kindly provided by ACC-300

Dr. Kristine Kleivi
Oligonucleotides
Forward primer for establishing of BCR-AbI-T315I 5 This paper N/A
GGGAGCCCCCGTTCTATATCATCATTGAGTTCATGACCTACG-3'
Reverse primer for establishing of BCR-Abl-T3151 5’ This paper N/A

CGTAGGTCATGAACTCAATGATGATATAGAACGGGGGCTCCC-3
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REAGENT or RESOURCE SOURCE IDENTIFIER
Recombinant DNA

pRNAT-H1.1/Hygro-GFP GenScript SD1214
pcDNA3::p210-BCR-AbI Addgene 27,481

Software and algorithms

MATLAB version R2020b

Python version 3.8

Mathworks, USA

Python Software

https://www.mathworks.com/products/
matlab.html

https://www.python.org

Foundation
PhenoPop code repository This paper https://doi.org/10.5281/zenodo.7334379
pyPhenoPop code repository This paper https://doi.org/10.5281/zenodo.7323577
ImageJ Sage et al.*® https://imagej.nih.gov/ij/
Other
Cellomics Arrayscan High Content Screening Platform Thermo N/A
96-well black bottom plates Corning Inc 3904
384-well TC-plates Greiner Bio-One 781098
Automatic liquid dispenser Fritz Gyger N/A
Acoustic dispenser Echo 550 LabCyte N/A
Plate reader Perkin Elmer N/A

RESOURCE AVAILABILITY

Lead contact

Requests for further information should be directed to and will be fulfilled by the lead contact, Jasmine Foo (jyfoo@umn.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

e Alldata and code used in this article are publicly available in the Github page of Oslo Center for Biostatistics and Epidemiology.
The Phenopop repository contains the data and code needed to reproduce the results in this article, and a user-friendly
example of how to run PhenoPop in MATLAB. Additionally, the pyPhenoPop repository contains a Python version that can
be easily installed as a package through pip and includes a user-friendly example of how to run PhenoPop in Python.

e All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOlIs are listed in the key

resources table.

@ Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ba/F3 cell line experiments
Preparation of cell lines

BCR-AbI-T315] expressing plasmid was established by site-directed mutagenesis of p210 BCR-Abl (Addgene 27481) using
QuickChange II XL (Agilent Technologies) with the forward primer 5 GGGAGCCCCCGTTCTATATCATCATTGAGTTCATGACC
TACG-3' and the reverse primer 5 CGTAGGTCATGAACTCAATGATGATATAGAACGGGGGCTCCC-3’ for T315l. To generate cells
stably expressing BCR-ADbI (imatinib-sensitive) and BCR-AbI-T315I (imatinib-resistant), parental Ba/F3 cells were transfected with
the appropriate plasmids by electroporation using Amaxa biosystems nucleofecor Il and stable cells were established by selecting
with medium containing 500 pg/mL Geneticin (Gibco, UK) and lacking the growth factor IL3 (BCR-ABL activity can overcome the
requirement for IL3 of untransformed parental cells for survival/proliferation).??> Furthermore, Ba/F3 cells expressing BCR-AbI
were stably transfected with GFP expression, pRNAT-H1.1/Hygro plasmid from Genscript (Piscataway NJ, USA). The resulting sub-
populations exhibited distinctive phenotypic differences upon treatment with Imatinib.
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Cell cultures

Parental Ba/F3 cells were maintained in RPMI-1640 supplemented with 10% heat-inactivated Fetal Bovine Serum (FBS), 7.5 ng/mL
IL3 and 1% penicillin and streptomycin at 37 © C under a humidified atmosphere containing 5% CO2. Ba/F3 cells stably expressing
BCR-Abl and BCR-AbI-T315] were maintained in medium lacking IL3.

Experimental procedures

Cells were harvested at 70-80% confluence, stained with trypan blue (ThermoFisher, UK), and counted with a Countess 3 Automated
Cell Counter (Life Technologies). Mono- and co-cultures were seeded at different initial ratios in 384 well microplates (Greiner Bio-
One) that contained different concentrations of imatinib (Cayman, USA). Imatinib ranging from (0-5 uM) was dispensed using an Echo
acoustic liquid dispenser (Labcyte, San Jose, CA, USA) in seven replicates per condition. Then time-lapse microscopy images were
obtained for bright field and GFP using IncuCyte (Essen BioScience, UK) every 3 h over the course of 72 h.

Image processing

Images were processed with the open-source software ImageJ.*® Images were background subtracted, converted to 8-bit, band-
pass filtered, sharpened, contrast enhanced, and thresholded. Then images were converted to binary images, watershed segmen-
tation was performed, and raw cell numbers were extracted.

NSCLC cell line experiments

Cell cultures

HCC827 and H1975 cell lines were maintained in RPMI-1640 media supplemented with 10% Fetal Bovine Serum and 1% penicillin
and streptomycin under standard cell culture growth conditions (37 ° C and 5% CO2).

Experimental growth assay

Tumor cells were seeded in 96-well black walled plates at 5,000 cells per well. The following day, the cells were treated with erlotinib at
various concentrations (0, 0.1, 1, 10uM). Cell counts were determined at 0, 24, and 48 h post drug treatment using the Cellomics Array-
scan High Content Screening Platform. Briefly, cells were stained with 5 ng/mL Hoechst 33,342 (nuclear marker to determine total cell
count) and 5 pg/mL Propidium lodide (P! - vital dye to determine dead cells) for 45 min prior to imaging. The average intensity for Hoechst
and Pl was determined for each cell to classify as live or dead. Each condition was performed in replicates of four. For admixture ex-
periments, each cell line was labeled with a different CellTracker dye (CellTracker orange CMTMR and H1975 labeled with CellTracker
green CMFDA). The cells were mixed at the specified ratios (total 5,000 cells/well) and imaged following the procedures outlined above.

Drug screen of multiple myeloma patient samples

Patient samples

The multiple myeloma (MM) patients enrolled in this study were recruited from the Oslo Myeloma Center at Ulleval Oslo University
Hospital under the Regional Committee approval for Medical and Health Research Ethics of South-Eastern Norway (REC-2016/
947). The MM samples were obtained following written informed consent in compliance with the Declaration of Helsinki.

Primary MM cells processing

Bone marrow samples from 5 relapsed myeloma patients were collected in ACD tubes. Details about patient ID, treatment lines and
refractory status are provided in Table S1. A Lymphoprep TM (Stemcell Technologies) density gradient centrifugation method was
used to obtain bone marrow mononuclear cells (BMMCs) from patient samples. As described in Wang et al.,** after CD8 T cell deple-
tion by Dynabeads (Life Technologies), BMMCs were then stimulated by activated T helper cells in the presence of Human T-activator
CD3/CD28 Dynabeads (Life Technologies) and 100U/mL human interleukin-2 (hIL-2, Roche, Mannheim, Germany). After 24h,
CD138+ MM cell enrichment was performed from the BMMC fraction by immune-magnetic microbeads CD138+ (Milteny Biotec,
Bergisch Gladbach, Germany).

Drug sensitivity assay

CD138+ MM cells (200,000 cells/mL) derived from activation assays were treated with drugs at 9 concentrations using a drug
customized concentration range (0,1-10,000), as described in Giliberto et al.’® The drug panel included clinically relevant anti-
myeloma drugs, Dexamethasone (0,1-10,000), ixazomib (1-10,000), thalidomide (0,1-10,000), selinexor (0,1-1000), melflufen
(0,1-1000) and venetoclax (0,1-10,000). Pre-printed drug plates were made by an acoustic dispenser (Echo 550, LabCyte Inc.,
San Jose, CA, USA), by the Chemical Biology Platform, NCMM, University of Oslo. Control agents included a negative control,
0.1% solvent solution dimethyl sulfoxide (DMSO), and a positive control 100 uM benzethonium chloride (BzCl). In brief, MM cells
were diluted in culture medium (RPMI 1640 medium supplemented with 10% fetal bovine serum, 2mM L-glutamine, penicillin
(100U/mL), streptomycin (100 pg/mL), and 25 uL of cell suspension was transferred to 384-well plates using a Certus Flex liquid
dispenser (Fritz Gyger, Switzerland). Afterward, plates were incubated at 37 ° C and 5% CO2 humidified environment. Cell viability
was measured at 4 different time points (0h-96h), using the CellTiterGlo (Promega, Madison, WI, USA) ATP assay according to man-
ufacturer’s instructions and with an Envision Xcite plate reader (Perkin EImer, Shelton, CT, USA) to measure luminescence.

METHOD DETAILS

Given a set of experimental drug-screen data on a bulk tumor sample, PhenoPop solves a series of optimization problems to identify
individual subpopulations within the sample and to estimate their frequencies and drug sensitivities. This problem is challenging
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because it requires simultaneous estimation of the number of individual subpopulations present, their frequencies in the population
and their drug response characteristics, all based on noisy observations of the total cell population. Our solution to this problem
is enabled by the introduction of a mixture population dynamic model of the tumor in which the growth rate dependence on drug
concentration follows a Hill-type functional form (see Equation 3).

Model of dose-dependent population dynamics
PhenoPop relies upon an underlying model of heterogeneous tumor population dynamics in vitro. The growth of a single population of
cells with homogeneous drug response is modeled by

X(d,t) = X(0) xexp[t(a + log H(d))], (Equation 1)

where X(d, t) is the number of cells at time t under drug concentration d, X (0) is the initial population size, « is the intrinsic growth rate
of the population in the absence of drug, and H(d) is a classic sigmoidal function describing the dependence of the population growth
rate on drug concentration ad:

J1-b
+@)"

The parameters of this function control the shape of the sigmoid: b > 0 reflects the maximum effect of the drug, E is the log con-
centration at which 50 percent of the maximum effect is achieved, and n> 0 controls the steepness of the response. This form of the
growth rate, r(d)=a+log H(d), is chosen so that the predicted cell viability curve, which is the treated viable cell population size
normalized by the untreated viable cell population size at a fixed time, exhibits the standard Hill-shaped dependence on drug con-
centration that is empirically observed in viability assays.'® Figure S1 demonstrates that this model accurately dependence on drug
concentration in two BCR-ABL positive Ba/F3 cell lines (with and without the T315I mutation) treated with the tyrosine kinase inhibitor
imatinib. Note that since we are studying in vitro populations prior to confluence, an exponential growth model is appropriate.

To extend the monoclonal growth model in Equation 1 to a population composed of several subpopulations, each with a specific
own drug response dynamics, we denote the growth parameters of the i-th subpopulation by «;, b;, E;,n;. Then the model of a cell
population with S subpopulations under drug concentration d at time ¢ is:

H(d) = b (Equation 2)

S
2(d,t;Ps) = Z(0)_ mexplt(ay + log H(ds by, E,m,))] (Equation 3)
i=1

where Z(0) is the total initial population and =; is the initial mixture fraction of the i-th subpopulation (Z,i ym = 1). Here, Ps=
{mi,ai,bi,Ei,ni i € {1,...,S}} denotes the set of parameters for S populations, and the parameters of the Hill function
H(d; b;, E;, n;) are written explicitly to emphasize the individual drug response profile of each subpopulation. Under this formulation,
we need to estimate, on the basis of the drug screen data, the unknown number of subpopulations S and the corresponding param-
eters Ps. Note that in this case, the heterogeneous population is modeled as a mixture of populations in which individual subpop-
ulations are assumed to grow independently. In the Supplemental Information, we consider a case in which interaction between sub-
populations is incorporated.

Estimation procedure

As input, PhenoPop takes bulk tumor sample drug screening observations, in the form of total cell counts at a series of time points
and drug concentrations. A variety of experimental techniques is commonly used to generate such observations of cell population
counts in drug screening. For example, tetrazolium reduction assays (e.g. MTT, MTS), protease viability markers (e.g. GF-AFC), ATP
assays (e.g. Cell Titer-Glo), and more recently developed real-time assays (e.g. Real-Time Glo, live-cell imaging).*>**° The PhenoPop
methodology is capable of using experimental input from any of these assays, as long the measurements provide viable cell count or
a proxy quantity (e.g. fluorescence intensity) that is proportional to the cell number. Generally, real-time techniques may yield superior
deconvolution results due to a reduction in the total noise of the dataset.

Given a set of experimental drug-response data on a bulk tumor sample, PhenoPop solves a series of optimization problems to
deconvolve and characterize individual subcomponents of the bulk sample in terms of varying drug sensitivity profiles. In particular,
each experimental observation, denoted by O;, corresponds to a cell population number measured under drug concentration d(j)
where je {1,...,C}, time point t,, where ke {1,...,T}, and replicate re {1,...,R}. We denote the total set of observations by O.

For simplicity, we will first assume that there are S subpopulations. Our statistical model of experimental observations will be based
on the deterministic model in Equation 3. In particular, we model each experimental observation as an independent standard
Gaussian random variable with mean Z(d(j), t(k); Ps) and standard deviation ¢(d(j),t(k)). Note that we allow the standard deviation
o to vary with dose and time. This is because at low doses and high times we expect a larger variance due to the larger cell counts.
Therefore we define

U(dt)_ OH, dSDLandtZTL
T oy, otherwise.
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Our standard deviation is thus characterized by four parameters, ¢ = (o.,04,D;,T;). We will denote the set of time-dose obser-
vations where we use standard deviation a1 by /1, and the set where we use ¢, by /. We denote their cardinalities by |/y| and |/.|.
Assuming S subpopulations we can use this model to write the log likelihood as

= - %R|/H|log(2mi,) - %R“LHOQ(Z’WE)

1 & , 0
L(Ps,0;0) " 242, >N (O — Z(d(),t(k); Ps)) (Equation 4)

For a fixed S, we thus compute the maximum likelihood estimates of the model parameters by solving the optimization problem

(7?3,3) = argmaxp, ,L(Ps,a; 0). (Equation 5)

Model selection using the elbow method

We observed that traditional model selection criteria like BIC, AIC and the likelihood-ratio test do not consistently select the correct
model in simulated cases and cell cultures of known admixtures, tending instead to select larger numbers of subpopulations. This
tendency of the AIC and BIC to overestimate the number of components in a mixture model has been documented in other contexts
(e.g. Celeux et al.®>") though the reasons remain unclear. Instead, a heuristic known as the eloow method was used. To infer the num-
ber of subpopulations in the mixture, PhenoPop is fitted to the data repeatedly, for each number of subpopulations S in S =
{1,2,...,Smax} in turn, and the S negative log likelihood values are recorded. We then plot the negative log likelihood values as a
decreasing function of S, and observe the number of subpopulations corresponding to which the negative log likelihood does not
decrease significantly further. This means that no useful increase in model accuracy is gained by including another additional pop-
ulation. This point of inflection of the negative log likelihood is called the elbow of the curve. The optimal number of populations is then

chosen by the experimenter through visual inspection. The resulting estimate 73§ contains the inferred population’s drug response

substructure: the estimated number of populations along with the estimated mixture frequency and estimated drug sensitivity GR50
of each subpopulation. This method is known as the elbow method, and it is a well-known heuristic for model selection in cases
where the model fit generally increases with complexity. Model selection for all experiments is shown in Figures S3-S6. Note that
the negative log likelihood value at the true global minimum of the negative log likelihood should in theory decrease monotonically
as the number of subpopulations increases, since extraneous mixture parameters can always be set to zero. However, as the number
of subpopulations increases the complexity of the optimization problem also increases, so in practice negative log likelihood values
may become non-monotonic due to the difficulty of obtaining convergence to the exact global minimum within the available
iterations.

QUANTIFICATION AND STATISTICAL ANALYSIS

Optimization methodology

The maximum likelihood estimate of the parameters fmLe was obtained by maximizing the log likelihood in Equation 4, subject to
constraints that were placed on the range of each parameter. This constrained optimization problem was performed using the func-
tion fmincon from the MATLAB Optimization Toolbox in MATLAB version R2020b,%® with the default interior-point optimization
method. To combat converging to suboptimal local minima, the log likelihood was maximized repeatedly and independently, by start-
ing from Nopiim different random initial positions for the parameter ¢, sampled uniformly within their allowed range (except for the
parameter E, which was sampled log-uniformly within the bounds). Among the Nopim minima, the one with the highest log likelihood

value was chosen as estimate 6.

Calculation of GR50 values

The viability curve and associated metrics of drug response (e.g. IC50, EC50) typically exhibit dependence on the timing of data
collection.'® We form a growth rate curve by inferring the growth rate r(d) at each tested dose level d. In contrast to the viability curve
the growth rate curve does not have a hidden dependence on the duration of the experiment, assuming exponential growth. Once the
parameters of the model in Equation 3 are estimated for each subpopulation using the inferential procedures above, the GR50 for
each subpopulation can be explicitly determined using the set of parameters (a;, b;, E;j, and n;). Following Sorger et al.,’® we char-
acterize dose-response of clones with a GR50 value. This number represents the dose at which the cellular growth rate experiences
half of its total reduction. In particular, suppose that we are interested in a homogeneous population with the growth rate at dose d
given by
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GR(d;a,b,E,n) = a+log H(d;b,E,n).

Note that we will generally suppress the dependence on parameters and simply write GR(d). If the maximum dose administered is
dm, and the minimum dose administered is 0, then the median growth rateisr,, = (GR(0) + GR(dm))/2. We then define the GR50 as
the dosage that results in this growth rate, i.e., the value d such that GR(d) = r,. We can then solve to obtain

m—a __ 1/n
GR50 = E(Z;) .

_ gm—«a

Generation of synthetic population data

By defining a number of populations S and a parameter set Ps = {xj,;,b;,Ei,n; : i € {1,...,S}}, synthetic data can be generated in a
deterministic manner with Equation 3. Table 1 shows the parameters {«;,b;,E;,n; : i € {1,2,3}} of the blue, red and yellow popula-
tions in Figures 2, 6, and 7.

For the synthetic validation, simulated data with initial population size of Zy = 1000 cells were generated for the following 9 mix-
tures of the three cell populations in Table 1:[1,0,0], [0,1,0], [0,0,1], [0.5,0.5,0], [0.7, 0.3, 0], [0.3, 0.7, 01, [/, '/, /5], [0.4, 0.3, 0.3] and
[0.6,0.2,0.2].

We chose 17 simulated drug concentrations. One equal to zero, the rest spaced log-linearly in a region designed to cover the GR50
values of the simulated populations. The simulated concentrations were: [0, 0.00000500, 0.0000108, 0.0000232, 0.0000500,
0.000108, 0.000232, 0.000500, 0.00108, 0.00232, 0.00500, 0.0108, 0.0232, 0.0500, 0.108, 0.232, 0.5] uM. Cell counts were
measured at 12-h intervals from 0 to 96 h, and 4 replicates of the simulation were carried out, where the only difference between
the replicates was the randomly sampled observation noise: A random noise term was added to each observed cell count, sampled
from an independent and identically distributed (i.i.d.) Gaussian distribution with mean 0 and SD ranging from 1 to 50% of the initial
cell count. Any negative cell count caused by the additive noise was set to zero. This gives the following expression for the generated
observation O;x » with concentration number j at time k for replicate r:

Ojxr max(Z(d, t; Ps) + xr,0), gxr ~ N (0,6%) iid. (Equation 6)

Model of multiple myeloma under treatment

Inspired by Tang et al.,>° we present a mathematical model of M-protein levels of a multiple myeloma patient under treatment with an
anti-cancer drug. This model assumes that the patient has two subpopulations of cancer cells with distinct responses to the drug. In
particular the cancer cells and M-protein levels are governed by the following system of ordinary differential equations

dx  n(d)x .
il Py’ (Equation 7a)
dy . r(dy

ot - m, (Equation 7b)

d.

d—j =r3(x +y) — daz, (Equation 7c)
where x and y denote number of myeloma cells in subpopulations 1 and 2 respectively, and z denotes M-protein concentration in
plasma. Parameters ry and r, are the net growth rates under treatment of subpopulations 1 and 2 respectively. We assume the
net growth rates can be computed as

ri(d) = o; + log H(d; b, Ei,n;),i e {1,2}, (Equation 8a)

where (q;, bj, Ej, n;) are the estimated parameters of subpopulation i using PhenoPop. The term (1 +p(x +y))’1 in Equations 7a and
7b alters the growth rate of both subpopulations when the total number of cells increases. Parameters r3 and ds are the production
and decay rate of the M-protein, respectively. Inspired by Tang et al.,>* we usep = 10713, r3 =0.07+ 10" ¥ and d3 = 0.07.

Model parameter ranges

For model with S = {1,2,3, 4} populations, the log likelihood was maximized Nopiim = 1000 times or more to combat local minima.
For each maximization, the initial estimate was sampled from within the bounds on the parameter range, which were set to the values
listed below for the different datasets.

The parameter ranges for the different settings were largely similar. Some differences occur due to different concentration scales in
the different experiments or due to parameter estimates hitting the boundary of the domain, in which case the range was expanded.
When working with the Ba/F3 cells we needed to adjust the lower bound on the parameter b. Due to the complexity of the optimization
problem, the solver had a tendency to push b toward an unrealistically low value. To address this issue we used previous

Cell Reports Methods 3, 100417, March 27, 2023 e6




¢? CelPress Cell Reports Methods

OPEN ACCESS

observations and derived a realistic lower bound on b. Denote the net growth rate of the cellsby 2 = 8 — u, where g is the birth rate
and u the death rate. From Milo et al.,*° we know that 8 < .06. We can thus write u = 8 — 1 < .06 — Amin = do, Where Amin is the
minimum observed growth rate amongst all Ba/F3 cell line experiments. Thus the maximal possible death rate is dp, and the minimal
possible net growth rate is — dp. Next note that according to our growth rate model, as the dose d goes to infinity the growth rate
decreases to the lower limit « + log(b). Therefore we know that « + log(b) > — dy. We again use that « < .06, and based on observed
data we set Anin = .04 and get dp = 0.2. However to account for any possible errors in the method we increase dj to be 0.07. This
then gives us the lower bound log(b) > — 0.08 or equivalently b > 0.878.
NSCLC data
m; € [0, 1] with the inequality constraint Zf:]m <1

aj€ [0,0.1] hours™!

be [0,1] hours™!

E < [0,50] uM

ne [0,50]

oL,0H€E [O7 5500}
Ba/F3 data
mj € [0, 1] with the inequality constraint Efﬂm <1

a;€ [0,0.06] hours™!

be [0.878,1] hours™', see comment below.

E € [0,50] uM

ne [0.001,20]

g.,0H€E [07 2500}
Synthetic data
mi € [0, 1] with the inequality constraint ijm <1

a;€ [0,0.1] hours™!

b€ [0.27,1] hours™"

Eie [1075,0.5] uM

n; e [0.01,10]

Se [0,4]

0L ,0H€ [1 076,5000]
Multiple myeloma data
For the multiple myeloma patient data, an inital parameter range was chosen for all patients. Then if one or more of the inferred pa-
rameters happened to lie on or near the upper or lower bound, the parameter range was increased for that patient until the estimate
was no longer on the bound. Therefore, the parameter for the E and ¢ variables are different for some of the patients.

;€ [0, 1] with the inequality constraint 35~ 17 < 1

aje [— 0.1,0.1] hours™!

bje [0,1] hours™!

n;e [0.01,10]

Se[0,5]

The E parameter ranges were:

E;je [10-8,2] uM for patient MM2108.

E;je [10-8,50] uM for patient MM720.

E;e [10%,5] uM for patient MM195.

E;je [10-8,5] uM for patient MM36.

E;e [10-5,100] uM for patient MM1420.

The o parameter ranges were:

oL, 04 € [10~8,50,000] for patient MM2108.

ar,on € [1078,1,000, 000] for patient MM720.

oL, 04 € [10~%,150,000] for patient MM195.

oL, 04 € [107%,250,000] for patient MM36.

o, 01 € [1078,150,000] for patient MM1420.

Model extension to interacting populations

Our model currently ignores potential interactions between subpopulations. Based on the sample size of our current datasets we
were not able to fit a more complex model that allows for interacting populations. For the situation when sufficient data are available,
we propose the model below that allows for interactions between the subpopulation. Assuming that there are S subpopulations, for
eachie {1,...,S} define the function
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S
fi(X,d) = > (@iX; — ciXX)) + X log Hi(d),

=1

where d is possible drug dose and X e Rﬁ . The parameter «; represent the rate at which type-/ cells produce type-i cells, and «;j; is the
net growth rate of the type-i cells. We assume that each «j; term is non-negative. The term c; represents the effect of population / on
population i. If c; >0 then population / inhibits population i, if c; < 0 then population / encourages population i to grow, and finally if
ci = 0then population / has no direct effect on population i. Note that the term c;; represents the effect of type-i cells on itself and we
assume that c; > 0. The parameters «; allow for inter-conversion between cell types, and the parameters c; allow for inhibition or pro-
motion between cell types.

For dose d, and initial population vector x° = (x9,...,x2), define {X(t,d;x°);t > 0} as the solution to the differential equation

Xi(t,d) = f,(X,d),foreachic S, (Equation 9)

with initial condition X;(0) = x?. Define xg = Dg and write xf’ = miXo. We assume that xq is a known quantity, but the proportions
i

{mi};c s are unknown. We denote the model-predicted total population at time t under dose d by X(t,d). Recall that the total popu-
lation is the observable variable in our model.
In this interacting population model, we have more model parameters, namely the parameter set

P = {({ai}ics: {Ci}ic s mirvisbi, Ei,ni)i € S}
To make clear the dependence on the parameter set P, we denote the predicted total population at time t using d units of drug with
parameter set P by X(t,d; P).
Similar to our main model, we will start by simply using additive Gaussian noise for our measurement error. In particular, we assume
that observation at dose d; and time ty is given by
Xk = X(dj, t; P) + Zjg,

for i.i.d N(0, ¢2) random variables Z;x. We can then implement the same maximum likelihood estimation procedure as for our orig-
inal model. This will be a more computationally challenging problem because evaluating the likelihood function will require numer-
ically solving the non-linear differential Equation 9. In addition, this inference problem is more difficult because we have a higher
dimensional parameter space to search over.
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