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Figure 1: The overview of our proposed system. There are two main components in the proposed system, namely, traffic analysis,

and city planning simulation.

ABSTRACT

Big cities are well-known for their traffic congestion and high den-
sity of vehicles such as cars, buses, trucks, and even a swarm of
motorbikes that overwhelm city streets. Large-scale development
projects have exacerbated urban conditions, making traffic conges-
tion more severe. In this paper, we proposed a data-driven city traffic
planning simulator. In particular, we make use of the city camera
system for traffic analysis. It seeks to recognize the traffic vehicles
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and traffic flows, with reduced intervention from monitoring staff.
Then, we develop a city traffic planning simulator upon the analyzed
traffic data. The simulator is used to support metropolitan transporta-
tion planning. Our experimental findings address traffic planning
challenges and the innovative technical solutions needed to solve
them in big cities.

Keywords: Data-driven, computer vision, simulation, user experi-
ence, evaluation

Index Terms: Human-centered computing— Visualization—Visu-
alization techniques; Human-centered computing— Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

The growing population and its centralization in metropolitan areas
are among some factors creating a serious issue of traffic congestion
in big and growing cities. Large-scale urban development projects
have exacerbated conditions, making traffic congestion more severe.
Additionally, traffic congestion is one of the leading contributors
to noise and dust pollution in the city [5, 12]. Altogether, traffic
congestion poses major barriers to urban quality of life, but the
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Figure 2: Overview of our traffic data analysis component. First, the object detector component is responsible for vehicle detection resulting in
bounding boxes. Then, the tracking component tracks the detected vehicles in bounding boxes. Finally, the vehicles travelled in different motions

are counted.

solutions are complex. There are two main existing problems with
traffic in the big cities. First, the big cities need resources to solve
infrastructure problems. Second, monitoring staff watch traffic activ-
ities on multiple screens, whose data are collected from numerous
monitoring cameras installed on streets in the big cities.

Therefore, the overarching goal of this work is to use a data-driven
method for for the city traffic planning simulator. In particular, we
make use of the city camera system which was originally used
to detect traffic congestion and guide vehicles to alternate routes.
Our findings do not only address specific urban challenges and the
innovative technical solutions, but also provide models use in other
contexts, including worldwide cities where traffic and congestion can
benefit from Al. Figure 1 shows the overview of our proposed data-
driven traffic simulation system. There are two main components in
the proposed system, namely, traffic data analysis, and city traffic
planning simulation.

It is worth noting that our novelty is the integration of analyzed
data via computer vision into a simulator for city traffic planning.
First, this work applies state-of-the-art computer vision algorithms
from object detection, to trajectory-based tracking in order to im-
prove the performance of traffic flow estimation. At the moment,
most simulators used the mock-up data or random data. Regarding
the actual traffic data collection, the consulting firms still deploy
humans using manual clicker to count vehicles in a period of sev-
eral days or weeks. This is very inefficient and tedious. Second,
the project analyzes the camera data in the context of a graph; the
traffic of one node can affect to another node in the traffic graph.
Significantly, the visual data taken from one city camera grid can
be used for other cities where the traffic situation remains the same.
Third, we develop a city traffic planning simulator based on the
actual traffic data. The simulator is used to support metropolitan
transportation planning. The addition or removal of any traffic infras-
tructure can be observed from the simulator. The simulator results
can guide engineers and city authorities in urban development plan-
ning. Fourth, the spatial-temporal navigation in the simulator makes
use of the historically recorded analyzed traffic data. The impact
of any additional/removal of infrastructure can be observed from
different time periods.

The remainder of this paper is organized as follows. Section 2
summarizes the related works. In Section 3, we introduce the pro-
posed framework. Section 4 presents the experiments. Finally,
Section 5 concludes the paper and paves way to the future work.

2 RELATED WORKS

Computer vision is a field of artificial intelligence (AI) that trains
computers to “see” and understand the visual world. In the task
of analyzing traffic data, we consider computer vision algorithms
such as object detection, action recognition, and semantic segmenta-
tion. First, object detection is an important task in computer vision
which recognizes objects along with their location (in the form of
bounding box) in the image. There are a number of object detection
methods such as YOLO, Faster RCNN, and Focal-loss object detec-
tor [18,26,27] based on Convolutional Neural Networks (CNN) [15].
In addition, there are many variants to improve the runtime perfor-
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Figure 3: The illustration of adding a new infrastructure item into the
simulator. The red rectangle highlights the newly added road.

mance or accuracy [24,40]. Action recognition in video is another
important task in computer vision. It aims to recognize the hu-
mans and their activities in the videos. To date, there exist many
approaches based on handcrafted features [16,19,37] and deep fea-
tures [29,34]. Meanwhile, image semantic segmentation is another
computer vision fundamental task which a semantic label for each
image pixel. This task is very challenging since it implicitly inte-
grates the tasks of object detection, segmentation, and multi-label
recognition into one single process. There are some works based on
data-driven parsing [33] or deep learning [28,41].

Simulation is a powerful tool for training/education/planning in
many different domains, i.e., public speaking simulation [22], non-
destructive evaluation training [20], and sheet music interface for
live performance [14]. There also exist many city traffic planning
simulators [4, 8, 38] in literature. Daniel et al. [8] proposed a simula-
tor which support to plan zones, roads, public transport like trains,
trams, and buses. However, this simulator only focused on predict-
ing traffic emissions based on the complete road network. Cai et
al. [4] introduced a simulator for urban driving. However, the traffic
data are randomly generated. Weyl and Glake [38] presented traffic
simulation for city planning. However, there is no graphics available
in the simulator. Here, the main drawback of these aforementioned
simulators is the lack of the real traffic data analysis. In addition, the
graphics are not customized for the city map and terrain. Also, these
systems do not support virtual reality for the immersive experience.

3 PROPOSED FRAMEWORK
3.1 Data Traffic Analysis

Figure 2 shows the overview of our traffic data analysis component.
Video frames are first fed into the detection module, i.e., YOLO
(You Only Look Once) detector [26] with the YOLOVS implemen-
tation [40]. Then, we obtain a list containing bounding boxes and
vehicle labels belong to these boxes for each frame. DeepSORT [39]
works as our main tracking module. From the outcomes of tracking,
for each bounding box, we retrieve its particular tracking ID. The
counting module considers bounding boxes having the same tracking
ID i as a trajectory. From the tracked vehicles through video frames,
we can estimate the velocity v; for each tracked vehicle i. The traffic
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Figure 4: The modeling stage in our simulator. From left to right: (left) the 2D layout of the city map, (middle) the overlaid terrain onto the 2D city
map, (right) our built 3D models such as buildings, roads, and landmark points for the city planning simulator.

density k is computed via:
k=— 1

, where N; is number of vehicles at the time measurement ¢ and /
is the length of roadway. From the tracked points of the detected
vehicles, we estimate the traffic flow. First, we compute the space
mean speed vy which is defined as the harmonic mean of speeds
passing a point during a period of time. It also equals the average
speeds over a length of roadway:

N,
L B @
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, where N; again is number of vehicles at the time measurement. The
output traffic flow q from one traffic camera is estimated: g = kvy ,
where £ is already computed from the previous stage.

Note that each tracked vehicle i has n; tracked points. We then
compute the movement vector 7i; for vehicle i based on its first
tracked point pi1 and the final tracked point pf n;. Following the
computation of movement vectors of vehicles, we leverage the K-
Means algorithm to cluster those vectors into K dominant movement
directions [d},da,...,dk]. We also apply the Elbow method [32] to
find the optimal value of K in K-Means for each video:

[d] ,dz, . ,dK} = Elbow-KMeans([m] smp, ... ,mNr}). (3)

Then, we assign a direction dv; to a vehicle i by calculating the
similarity between the particular movement vector to every dominant
directions and selects the direction k that gets the highest cosine
similarity score:

dv; = argmax " {k . )
ko ||y

We consider each single camera as a vertex in a graph G. After
the geospatial calibration, each camera is responsible for one traffic
vertex in the city map. The graph vertices are linked via the real
map obtained the OpenStreetMap data [21]. Note that the graph
links (edges) contain the weights, i.e., length of roadway /, and the
number of vehicles N, at the time measurement ¢. Larger roads tend
to have larger /s. Meanwhile, the N;s values are dynamically varied.
The time-series data including graph G; at different time s are stored
for the later use in the simulator that is described below.

3.2 City Traffic Planning Simulator

In this work, we proposed the data-driven city planning simulator.
First, the “data-driven” term means the traffic data are not mock-up
or dummy data. Instead, the data are analyzed from the actual traffic
videos as mentioned in the previous subsection. We spawn the N;
vehicles into the simulator at time 7. We assign the aforementioned
speed v; and direction dv; for each vehicle i.

Second, the virtual city scenes are modeled from actual city
landscapes. Therefore, city authorities are easily able to observe
the impact of any update, e.g., the addition/removal of a bridge,
and the change of road direction (e.g., one-way to two-way or vice
versa). Due to the graph-based setting in the first component, the
proposed simulator is able to visualize the update impact within
the whole city. Our user interface is easy to use. The simulator
supports users with common infrastructure items. For instance,
the users are able to add a new infrastructure item into the traffic
graph. Items to be added include road, overpass, bridge, tunnel, and
traffic light, among others. The users are also able to change the
traffic direction, i.e., from one way to two way, or vice versa. The
addition/removal of any infrastructure is updated on the graph G by
adding/removing the edges or change the graph weights. In addition,
the neighboring nodes are affected as well. Following the graph
update, the estimated traffic is recomputed to fit well the new graph.
As depicted in Figure 3, the added road shares the traffic load with
the main road.

3.3 Implementation

For the implementation, we develop the simulator with Unity3D
engine [35]. We choose Ho Chi Minh City in Asia to develop our
prototype. The reasons are two-fold. First, Ho Chi Minh City has
busy traffic with 7.3 million motorbikes for more than 8.4 million
residents that overwhelm city streets [10]. Second, the city provides
a public camera grid showing the traffic at various locations [23].
This facilities our data collection process.

For the traffic analysis, we collected a dataset of 26,821 video
frames and manually annotated 244,106 bounding boxes of popular
vehicle classes such as car, bus, truck, and two-wheeled vehicle. The
collected dataset is used to train the vehicle detection and tracking
models as mentioned in Section 3.1. Regarding 3D modeling, we
build the city infrastructures such as roads and buildings in the vir-
tual environment in Blender [3]. Then, we import real world height
maps [25] into Blender. The imported height map along with the
satellite images from Google Map are used as the reference for us to
touch up and refine the city landmark points and buildings. These 3D
models are imported to the city simulator in Unity3D. Figure 4 visu-



?;Fsﬂ cmﬂu

lza and Jul ou
Back to ml'm
4
//Hide Function list

Figure 5: The graphical user interface of the proposed city planning simulator in 3 different navigation modes. From left to right: Mode 1 - the
users teleport to the predefined landmark points in the virtual environment, Mode 2 - the users travel in the virtual world in the third-person view,
Mode 3 - the users experience the immersive environment via the first person view.

alizes the key steps in the city infrastructure modeling. We further
model vehicles such as motorbikes, buses, trucks and cars. Regard-
ing the traffic simulation, we use the analyzed traffic data to estimate
the traffic flow. Then, we spawn the 3D vehicles with corresponding
travel paths. We also attach the corresponding camera videos in
the simulator for the references. Regarding VR headset, we deploy
our simulator on Oculus Quest which is lightweight and portable.
Thus it is very suitable for us to conduct experiments. Note that
traversing or navigating within a virtual city is very challenging [6].
Therefore, we develop several modes, namely, Mode 1 (teleporting
between predefined landmark points), Mode 2 (third-person view
navigation), and Mode 3 (first-person view navigation), which will
be investigated in the next section.

4 EVALUATION

Our study received approval from the Institutional Review Board
(IRB) at the university. We follow [13] and [31] for the design
methodology and sample size, respectively. 25 people participated
in this study, 12 of these participants identified themselves as female.
The participants are university students and staff, whose ages range
from 19 to 44 (1 = 26.6). We provided participants the instructions
for the experiment after they completed the consent form. The
participants evaluate 3 aforementioned modes or variants, namely,
Mode 1 (teleporting between predefined landmark points), Mode
2 (navigating in the third-person view), and Mode 3 (navigating
in the first-person view). Figure 5 shows the user interface of the
three evaluating modes. Each participant took part in a 30-minute
session, namely, a 10-minute trial for each mode. We then showed
the questionnaire and asked for feedback regarding the following
perspectives:

* Ease of use: How easy is the method?
» Convenience: How convenient is the method?
* Realism: How does the mode look real to you?

* Functionality: Are you satisfied with the functions available in
the system?

Preference: How much do you prefer a certain mode over other
modes?

The ‘ease of use’ is the most popular criterion in literature [1,9,
36]. Meanwhile, ‘convenience’ and ‘realism’ were included in [30].
In addition, the ’preference’ criterion was studied in [7,20]. Also, the
criterion ‘functionality’ was mentioned in [2,9,11,20]. Therefore, we
included all the aforementioned criteria in our study. The participant

rated each interaction mode on a 5-point Likert scale [17] from the
best (5) to the worst (1) for each criterion.

Figure 6 shows the average scores of different modes for the
aforementioned criteria. Mode 1 (teleporting mode) and Mode 2
(third-person view navigation) are highly rated for ease of use. The
participants simply use AWSD keys to navigate and observe the
virtual environment. Meanwhile, regarding Mode 3 (first person
view navigation), the participants need to learn how to navigate in
the virtual reality by using VR headset and controllers. Especially,
they need time to get used to the first person view. Note that the
consecutive wrong activities that are not recognized by the VR
controllers frustrate the users.

Regarding the convenience, Mode 2 and Mode 3 achieve the
highest rate. These modes are convenient and provides the great
experience to users. Meanwhile, Mode 1 (teleporting between pre-
defined landmark points) is not as convenient as Mode 3 since the
users can only visit the limited places in the virtual world. In terms
of realism, Mode 3 obtains the top rates. The main reason that Mode
3 outperforms others can be explained via the navigation support.
Actually, the use of controllers is very interesting to participants.
Therefore, it is realistic for the users to navigate within the city
planning simulator. Meanwhile, Mode 1 achieves the lowest rate
due to the limited navigation.

Regarding functionality and preferences, Mode 2 and Mode 3
are preferred by the participants. The participants highly rated the
ability to observe and interact with the superimposed objects in the
virtual environment. Furthermore, our participants appreciated the
ability to navigate inside the virtual world.

The participants appreciate the efforts to integrate the real ana-
lyzed traffic data into the simulator. In addition, they also appreciate
the embedded videos showing the real traffic scenes associated to
the corresponding locations in the virtual world. In addition, we
received many valuable comments to further improve our simulator.
First, there is a need to increase the high fidelity of the VR head-
set. Using VR headset for a long time might cause a cybersickness.
Second, the name of the road should be shown as a hologram to
help users identify the current location. There should be additional
feature to travel to certain location in the simulator by inputting the
address. There is also a need of a minimap feature with compass
for the ease of navigation. The participants also suggested that the
Mode 2 can be used for city manipulation whereas Mode 3 can be
used only for immersive navigation. This research has opened op-
portunities for future research to explore how the VR system can be
applied in other big cities. Our participants recommended applying
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Figure 6: The average rating scores from the user study evaluation for the three modes.

our VR system in a more complicated environment (for example,
desserts, countryside, suburban). Mode 1 is easy to use and can be
deployed on the web browser. Meanwhile, Mode 2 and Mode 3 can
be further developed on the VR headsets. These arguments suggest
that our system has a lot of potentials for future usage.

5 CONCLUSION

In this paper, we introduce a data driven city traffic planning sim-
ulator. In particular, we analyze the real traffic data and feed the
analyzed data into a city planning simulator. By using our simulator,
the users are able to make certain modifications on the city infrastruc-
tures and observe the changes in traffic. We assess different variants
of the proposed system in terms of the ease of use, convenience,
realism, functionality, and preference. The user study indicates that
participants favor the simulator in the third person-view for the ease
of use and convenience, and the full VR first-person view support
for realistic navigation.

In the future, we will investigate methods to further improve the
current system. In particular, we aim to extend this work to different
big cities in the world. Additionally, future studies should integrate
different factors into the simulator such as the living costs, the gas
price, the birth rates, and the land price. Finally, we believe this work
could attract more future research looking to data-driven simulation
in the rise of virtual reality era.
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