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Measurement-device-independent quantum key distribution (MDI QKD) offers great security in practice

because it removes all detector side channels. However, conducting MDI QKD over free-space channels is

challenging. One of the largest culprits is the mismatched transmittance of the two independent turbulent

channels causing a reduced Hong-Ou-Mandel visibility and thus a lower secret key rate. Here we introduce

a dynamic attenuation scheme, where the transmittance of each of the two channels is monitored in real time

by transmitting bright light pulses from each users to the measurement device. Based on the measured channel

transmittance, a suitable amount of attenuation is introduced to the low-loss channel at the measurement device.

Our simulation results show a significant improvement of QKD performance, especially when using short raw

keys.
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I. INTRODUCTION

Ever since the Bennett-Brassard 1984 (BB84) protocol

was proposed, quantum key distribution (QKD) has enjoyed

tremendous progress. In particular, free-space experiments

have progressed from just 30-cm [1] to 7600-km satellite-

based connections [2].

Despite this progress, numerous hacking techniques have

been discovered. While in theory, QKD is secure, realistic

implementations deviate from ideal models used in the se-

curity proofs. In particular, detectors may be vulnerable to

a plethora of attacks, including the detector blinding attack

[3,4], time-shift attack [5], backflash attack [6], and many

others (see Jain et al. [7]).

Two types of countermeasures have been proposed. The

first type involves addressing new attacks as they are discov-

ered and adjusting the setup accordingly in order to thwart

them. An example of such countermeasures is adding an

optical isolator to combat the backflash attack. However,

unknown attacks cannot be anticipated. The second type in-

volves device-independent QKD (DI QKD) protocols [8–10].

In this category, a common entanglement source sends photon

pairs to Alice and Bob. Because entanglement is monoga-

mous, the protocol is provably secure with the proof relying

directly on the violation of Bell’s inequalities [11]. However,

a loophole-free Bell test is very challenging in practice [12].

For a recent experimental demonstration of DI-QKD, see

Ref. [13].
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A more practical protocol, called measurement-device-

independent QKD (MDI QKD) [14], automatically removes

all detector side-channels by employing time-reversed entan-

glement. In this protocol, Alice and Bob send light pulses to a

third party, Charlie, who possesses a Bell-state analyzer based

on linear optics and single-photon detection. Charlie projects

the input photons to Bell states and publicly announces the

measurement results, which allows Alice and Bob to gener-

ate a secret key by classical postprocessing. MDI QKD has

been widely implemented with attenuated laser sources that

incorporate the decoy-state protocol [15–17]. It has also been

implemented on chips [18] and with cost-effective setups [19].

The Bell-state analyzer in MDI QKD relies on the Hong-

Ou-Mandel (HOM) effect [20] where photons from Alice and

Bob interfere at a 50:50 beam splitter. A high HOM visibility

can usually be translated into a low quantum bit error rate

(QBER) and therefore a high secret key rate. To achieve a high

HOM visibility, photons from Alice and Bob should be in-

distinguishable in all degrees of freedom. Furthermore, when

the MDI QKD is implemented with weak coherent sources,

a high HOM visibility requires the average photon numbers

from Alice and Bob to be matched at the beam splitter [21,22].

In practice, the two quantum channels (one from Alice to

Charlie, and another from Bob to Charlie) may have different

transmittance. One could account for this mismatch by simply

adding extra fiber on the low-loss channel so that each channel

equally attenuates the light pulses [15]. While being unwieldy

in a future quantum network with many users, this approach

can improve the HOM visibility at the cost of a lower de-

tection rate. A better solution is the asymmetric MDI QKD

protocol where Alice and Bob use different intensity profiles

[23,24]. The asymmetric MDI QKD allows Alice and Bob to

send different intensities to help account for the asymmetric
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channel loss. This results in a large improvement over simply

adding fiber [24].

Unfortunately, the above asymmetric MDI QKD protocol

requires static channels (such as optical fiber) and may not

be applicable in free-space MDI QKD, where the transmit-

tance of each of the two channels fluctuates randomly and

independently of the other channel. Asymmetric protocols

could still help for compensating the mismatch of the average

channel losses. To compensate for the channel fluctuation,

Alice and Bob would have to know the instantaneous channel

transmittance and change their QKD parameters on the scale

of milliseconds [25].

In free-space BB84 setups, an adaptive postselection

scheme was proposed where a stronger probe beam would

be multiplexed with the single-photon pulses to monitor the

atmospheric transmittance at a given time [26–29]. The time

blocks with lower transmittance would correspond to a higher

QBER. Hence, discarding pulses measured in those blocks

could increase the key rate despite reducing the detection rate

[30]. Recent work, such as Refs. [31–33], has also introduced

this idea to MDI QKD.

In this work, we propose a dynamic attenuation scheme

to improve the key rate of free-space MDI QKD. Similar to

the adaptive postselection scheme in BB84 QKD, both Alice

and Bob transmit strong probe beams with known intensities

to Charlie, who determines the channel transmittances in real

time by measuring probe beams with classical photodetectors

and then applies an appropriate amount of attenuation on

one of the paths to compensate for the mismatch of channel

transmittance. The effect is similar to the case of adding extra

fiber in asymmetric channels. Our simulations show that using

dynamic attenuation makes MDI QKD considerably more ro-

bust in turbulence. In the high-turbulence region, our scheme

still shows improvement even when we consider a nonzero

minimum loss for Charlie’s variable attenuators.

Our discussion is organized as follows. Section II contains

pertinent background for MDI QKD, discusses how turbu-

lence affects transmission, and details our proposed scheme.

Section III outlines our simulation model and presents our

results. Lastly, Sec. V contains a brief discussion of our ap-

proach and suggests future work. Details of the noise model

we used and the secure key calculation are provided in the

Appendix.

II. THEORY

A. Polarization encoding MDI QKD

Inspired by time-reversed entanglement [34,35], MDI

QKD was proposed as a solution to detector side-channel

attacks. In this protocol, Alice and Bob generate a key by

sending laser pulses to a potentially untrusted third party,

Charlie, who projects them onto Bell states and publicly an-

nounces his results. In general, they may choose time-bin

encoding [36–38], phase encoding [39], or polarization en-

coding [16,40]. Here, we work with polarization encoding.

Phase-randomized weak coherent pulses remain common

in QKD implementations. To improve the performance of

QKD, decoy-state protocols are employed [41–43]. The orig-

inal MDI QKD protocol used three different intensities

FIG. 1. Basic measurement setup for Charlie in a polarization

encoding MDI QKD experiment. Alice and Bob send pulsed laser

beams to Charlie whose experimental setup consists of a beam

splitter (BS), two polarization beam splitters (PBS), and four single-

photon detectors (D). Charlie publicly announces his measurement

results and one of Alice and Bob may apply bit-flip depending on the

Bell state detected and the encoding basis.

[14,44]. Zhou et al. then showed a sizable improvement with a

four-intensity method [45]. A seven-intensity method was also

suggested to account for asymmetric channels in Ref. [24]

where Alice and Bob could choose their signal and decoy

parameters independently to account for asymmetric loss. In

this work, we only consider channels with identical statistical

distribution, so the four-intensity protocol is adopted.

In MDI QKD with polarization encoding, Alice and Bob

encode their random bits on the polarization of weak coherent

states, using one of the two bases, rectilinear (Z) or diagonal

(X ), and Charlie performs Bell-state measurements using a

setup depicted in Fig. 1.

A bit of raw key is generated whenever Charlie measures

a coincidence of photons with orthogonal polarizations (V

and H , respectively) using a set of four single-photon de-

tectors, {D1H , D1V , D2H , D2V }, and Alice and Bob use the

same encoding basis. Charlie announces the outcome |ψ−〉
whenever coincidences occur on D1V D2H or D1H D2V , and he

announces |ψ+〉 if coincidences occur on D1H D1V or D2H D2V ,

instead. Other detection patterns are simply discarded. In the

rectilinear basis, errors occur whenever Alice and Bob send

the same polarization, and Charlie announces |ψ−〉 or |ψ+〉.
In the diagonal basis, errors occur whenever Alice and Bob

send the same polarization and Charlie announces |ψ−〉 or

Alice and Bob send orthogonal polarization states and Charlie

announces |ψ+〉.
Notice in Fig. 1 that Charlie only measures in the rectilin-

ear basis. To ensure a low error rate when Alice and Bob use

the diagonal basis, Charlie relies on the HOM effect to bunch

identical photons from Alice and Bob at the beam splitter.

High HOM visibility requires Alice’s and Bob’s photons to be

identical in every degree of freedom at the beam splitter. In the

case of phase-randomized weak coherent sources, the average

photon numbers from Alice and Bob should be matched at
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the beam splitter [21,22]. Consequently, it can be difficult

to consistently achieve high HOM visibility in a turbulent

atmosphere with fluctuating transmittance. The central idea

of our dynamic attenuation scheme is to compensate the trans-

mittance mismatch by dynamically controlling the amount of

attenuation introduced.

B. Atmospheric effects

The transmittance coefficient of light η follows a lognormal

distribution through a weak to moderate turbulent channel

[46–48]. In this regime, we can express the effect of tur-

bulence using two parameters, the average transmittance η0

and the log irradiance variance σ 2 which characterizes the

severity of the turbulence. The probability distribution of the

transmittance coefficient (PDTC) is given by

P(η) =
1

√
2πση

e
−

[

ln( η
η0 )+ σ2

2

]2

2σ2 . (1)

Very weak to moderately strong turbulence for a 3-km chan-

nel has σ 2 ranging from 10−3 to about 1.2 at 1550-nm

wavelength. After this point, the lognormal distribution for

transmittance loses validity [46].

The average loss η0 can be determined from atmospheric

visibility and channel length. Due to the complexity of dif-

ferent atmospheric and aerosol models, software such as

MODTRAN [49,50] and FASCODE [51] is often required to find

transmittance for an arbitrary wavelength.

In this work, we consider average losses of η0 = 17, 14,

11, and 8 dB in each channel (excluding the efficiency of

detector), and we choose QKD parameters based on a recent

free-space MDI-QKD demonstration [31]. We then simulate

the secret key rate using a range of values for σ 2 and show

that dynamic attenuation makes MDI QKD more tolerant of

channel fluctuation.

C. Dynamic attenuation scheme

We propose a scheme where high-speed, low-loss variable

optical attenuators (VOAs) are placed before Charlie’s beam

splitter (see Fig. 2) to balance the transmittance fluctuations

between the two channels. Both Alice and Bob transmit strong

probe beams with known intensities along the same paths

as the QKD signals, but slightly separated in wavelength.

Charlie can separate the probe beams from the QKD signals

using dense wavelength-division multiplexing (DWDM) tech-

nology and determine the channel transmittance in real time

by measuring probe beams with classical photodetectors. He

further applies an appropriate amount of attenuation on the

high-transmittance path.

The goal of adding additional attenuation is to balance

the loss between the two channels and improve the HOM

visibility. However, because additional loss could negatively

impact the raw key rate, an optimal balance must be found to

maximize the final secret key rate, as we discuss below.

If we assume Alice’s and Bob’s channels are independent,

the joint probability distribution is simply

P(ηA, ηB) = P(ηA)P(ηB), (2)

where P(η) is defined in Eq. (1).

FIG. 2. Charlie’s measurement setup with dynamic attenuation

using probe beams sent by Alice and Bob. The multiplexed probes

are separated by DWDMs and their intensities are measured using

classical light detectors. Charlie, based on the measurement results

of the probe beams, applies a proper amount of attenuation to the

channel with lower loss using variable optical attenuators.

Since the secret key rate is a function of transmittance, one

can compute the average key rate using the following integral,

given an infinite key length:

Rave =
∫ 1

0

∫ 1

0

R(ηA, ηB)P(ηA)P(ηB)dηAdηB, (3)

where we used Eq. (2) for the joint probability distribution.

R(ηA, ηB) is the key rate bounded by [14]

R � P1,1
Z Y 1,1

Z

[

1 − H2

(

e1,1
X

)]

− QZ fEC(EZ )H2(EZ ), (4)

where P1,1
Z is the probability of sending a single-photon pair

in the Z basis, Y 1,1
Z is the yield of a single-photon pair in the Z

basis, and QZ and EZ are the gain and error rates, respectively.

e1,1
X is the error rate of a single photon in the X basis, fEC is the

error-correcting efficiency, and H2(x) is the Shannon binary

entropy function.

When using dynamic attenuation, the joint PDTC is trans-

formed according to

P(ηA′, ηB′) =
∫∫

K (ηA′, ηB′, ηA, ηB)P(ηA, ηB)dηAdηB,

(5)

where K (ηA′, ηB′, ηA, ηB) represents the kernel relating the

new joint PDTC with the original one. Because we cannot

achieve infinite resolution, a lookup table is used instead of

the kernel.

If we use the lookup table to transform the joint probability

distribution, the asymptotic key rate after dynamic attenuation
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TABLE I. ηD is the detector efficiency, edZ and edX are misalign-

ments in their respective bases, Y0 is the dark count probability, and

fEC is the error-correction efficiency.

ηD edZ edX fEC Y0

0.5 0.003 0.03 1.1 7 × 10−7

is found from Eq. (3). We deduce

R′
ave =

∫ 1

0

∫ 1

0

R(ηA′, ηB′)P(ηA′, ηB′)dηA′dηB′, (6)

where the integral is evaluated numerically.

Furthermore, Eq. (6) must be modified in the case of finite

key size, because when additional loss is introduced, the finite

size effect is exacerbated. Consequently, rather than integrate

the PDTC against the secure key rate, we integrate to find new

sifted key and error sizes {nZ , nX , mZ , mX } and use a bounded

version of Eq. (4) afterward. Thus, we separately compute the

following:

n
i, j

X,Z =
∫ 1

0

∫ 1

0

n
i, j

X,Z (ηA, ηB)P(ηA′, ηB′)dηA′dηB′, (7)

m
i, j

X,Z =
∫ 1

0

∫ 1

0

m
i, j

X,Z (ηA, ηB)P(ηA′, ηB′)dηA′dηB′, (8)

where n
i, j

X,Z and m
i, j

X,Z represent the number of sifted bits and

errors, respectively, in the X and Z bases and for i and j states

(signal, or one of the decoy states) from Alice and Bob. Once

the sifted bits and errors have been found, we compute the

full secure key length using our sifted bits and errors and

QKD system parameters. A detailed description of the key

calculation can be found in the Appendix.

III. PARAMETER OPTIMIZATION AND KERNEL

GENERATION

In QKD using decoy states [41–43], it is essential to opti-

mize the intensity of each state and the probability of sending

it. Here, we employ the four-intensity protocol; therefore, six

parameters must be optimized. In particular, Alice and Bob

use the set of intensities {s, μ, ν, ω}, where s is the signal state

intensity, μ and ν are the decoy state intensities, and ω = 0 is

the vacuum state.

We optimize decoy parameters stochastically using MAT-

LAB’s built-in genetic algorithm. This is a preferred technique

because it requires neither differentiability nor any initial

data points. It also runs reasonably quickly on an ultrabook’s

Ryzen 5 processor.

Prior to optimization, we choose the total number of pulses

N , Z-basis misalignment edZ , X -basis misalignment edX , dark

counts Y0, detector efficiencies ηD, and an estimated channel

transmittance η0. Our choices are taken from a recent free-

space MDI-QKD experiment in Ref. [31] and are listed in

Table I.

Because the lognormal distribution’s median is consider-

ably less than the mean for higher turbulence, about 3–6 dB

of extra loss in each arm must be budgeted into η0 at the

optimization and lookup stages, compared to the simula-

tion step. We, therefore, optimize channels assuming η0 ∈
{0.01, 0.02, 0.04}.

In the optimization and lookup table generation, we com-

pute the finite secure key rate using

R = P2
s

{

s2e−2sY 1,1
X,min

[

1 − H2

(

e1,1,max
X

)]

− QZ fEC(EZ )H2(EZ )
}

,

(9)

where Ps is the probability of sending a signal state, s is the

average photon number of the signal state, Y 1,1
X,min is the lower

bound of a single-photon pair yield in the X basis, and QZ and

EZ are the Z-basis (signal) gain and error rates, respectively.

e1,1
X,max is the upper bound of the single-photon pair error rate

in the X basis, fEC is the error-correcting efficiency, and H2(x)

is the Shannon binary entropy function. A detailed calculation

can be found in the Appendix.

Once decoy parameters are obtained, the lookup table is

generated where the transmittance of Alice’s and Bob’s chan-

nels are varied in the range 0.001 � η0 � 1 in increments of

about 0.001. For each pair of transmittances, we compute the

key rate using Eq. (9) assuming a static channel. Specifically,

we evaluate the key rate after applying an additional 0.1 dB to

the stronger channel until we find the maximum.

The case in Fig. 3 represents the procedure needed to pro-

duce a single point in the final lookup table. In this example,

we select transmittances of ηA = 0.15 and ηB = 0.04 and we

apply an incremental attenuation of 0.1 dB to Alice’s side to

bring hers closer to Bob’s. Each point represents 0.1 dB of

additional attenuation for Alice since her channel has higher

transmittance. Figure 3(a) shows the improvement in secure

key rate as we attenuate Alice’s (stronger) side. Notice in

Fig. 3(b), as we attenuate Alice, we see improved HOM visi-

bility at the expense of single-photon yield. We balance these

two effects by evaluating Eq. (9) for each point, where we

assume an entire experiment with data size N was conducted

with new transmittance, tA. We observe the maximum im-

provement to the key rate at about 2 dB of attenuation, which

we record in the lookup table for these two transmittances.

A plot of the optimal attenuation as a function of transmit-

tance of Alice’s and Bob’s channels is shown in Fig. 4. Here,

we observe that the optimum is zero additional attenuation

for many combinations of transmittances, except when their

imbalance is large. However, the channels will most likely

be highly imbalanced when the atmospheric turbulence is

strong. If we apply the optimal attenuation, the impact on the

secret key rate, as shown in Fig. 5, increases precipitously as

the imbalance goes up. The reason is because for much of

the yellow region the key rate without dynamic attenuation

vanishes rapidly for higher mismatch.

Computing time determines the fineness of the lookup

table. The finer the resolution, the more accurately the table

will approximate the ideal kernel K [Eq. (5)]. Improvements

can still be seen when the resolution is more coarse than about

0.001, but the effects are less pronounced.

IV. RESULTS

Once the lookup table is produced for a given set of param-

eters, we produce PDTCs for different atmospheric conditions

using Eq. (1). We start with very weak turbulence of σ 2 =
0.001 and go up to σ 2 = 1.2, after which we would need to
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FIG. 3. Results using a lookup table for ηA = 0.15, ηB = 0.04, and N = 1013 pulses. (a) Improvement in secure key rate when we attenuate

the stronger channel (Alice). (b) Improvement of the HOM visibility, thereby our estimate of e1,1
X , and the decrease in yield as Alice’s channel

is attenuated.

move beyond the lognormal model of turbulence [46]. Our

choices of η0 assume losses of 17, 14, 11, and 8 dB in each

channel.

To produce each PDTC, we numerically integrate to deter-

mine the number of sifted bits for each pair of transmittances,

as in Eq. (8). The integral is computed by evaluating the

PDTCs in 0.001 increments in the range 0 � η � 1, for both

Alice’s and Bob’s channels, and finding the number of sifted

bits contributing to the final key. We evaluate the noise model

using each pair of transmittances, additionally attenuate the

stronger transmittance using the lookup table, and separately

determine the number of sifted bits and errors for both cases.

FIG. 4. Plot of the optimal amount of attenuation needed to pro-

duce the highest key rate for different combinations of Alice’s and

Bob’s transmittances when N = 1014. The middle of the plot requires

no additional attenuation because the transmittances are already

close. In high turbulence, Alice’s and Bob’s channels will likely have

very different transmittances and hence dynamic attenuation is useful

to enhance the key rate.

Afterward, we evaluate the secure key rate corresponding

to the sifted bit and error sizes for the original PDTC and the

transformed PDTC. Results are shown in Fig. 6, and decoy

parameters for each run are given in Table II.

In Fig. 6 we see the greatest impact when working at the

strongest amounts of turbulence (indicated by increasing σ )

and thus channel imbalance. In particular, for many of the

plots shown, we see that dynamic attenuation gives the ability

to generate a secure key when the atmospheric conditions

would not otherwise allow it.

Results show that dynamic attenuation gives a higher

secure key rate when the turbulence-induced transmittance

fluctuation is more severe, as manifested by a higher σ 2. The

FIG. 5. Improvement in the secure key rate when the optimal

attenuation is applied, where R2 and R1 are the key rates with and

without dynamic attenuation. Under turbulent conditions, when Al-

ice’s and Bob’s transmittances fluctuate the most, and transmittances

are likely very different, Alice and Bob see the greatest benefit of

dynamic attenuation. In the white region near the axes, no secure key

can be generated, even with dynamic attenuation.
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FIG. 6. Key rate using dynamic attenuation (red dotted curves) compared with key rate without dynamic attenuation (blue dashed curves)

vs severity of turbulence for various pulse sizes and average losses. Notice the improvement in key rate is better for higher turbulence.

largest benefit can be seen in shorter keys, though there is

still an advantage in large ones. Furthermore, if we vary loss

and keep σ 2
A = σ 2

B = 1.0, we can see an improvement in loss

tolerance as shown in Fig. 7.

In the above simulations, we have assumed the mini-

mum loss of the VOA can be set to 0 dB. However, if one

considers implementing the high-speed VOA using a commer-

cial LiNbO3amplitude modulator, the minimum insertion loss

could be about 2–3 dB. There will be a penalty on secret key

rate associated with the minimum insertion loss. Nevertheless,

the advantage of the dynamic attenuation scheme at high

turbulence remains, as shown in Fig. 8.

Figure 8 shows that dynamic attenuation with nonzero

insertion loss is only beneficial beyond a certain level of

turbulence. Thus, one should only use dynamic attenuation

when the turbulence is high. At low data rates, this could be

problematic, but for 1-GHz pulse rates [52], it takes about 15–

20 min to send N = 1012. In this time frame, it is unlikely that

turbulence will change drastically, as shown in Refs. [53–55],

TABLE II. Decoy parameters for each of our simulations.

N dB s μ ν Ps Pμ Pν

1012 28 0.353 0.229 0.051 0.527 0.055 0.285

1013 34 0.450 0.200 0.037 0.573 0.066 0.219

1014 40 0.499 0.198 0.026 0.466 0.123 0.295

so an entire experiment could be completed when turbulence

is high and dynamic attenuation is most useful.

FIG. 7. Dynamic attenuation compared to conventional key rate

in a turbulent channel and a static channel for various average losses.

The lookup table and decoy parameters for 20-dB loss in each arm

were used so a positive key could be achieved for a larger range of

losses.
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FIG. 8. The impact of the minimum loss of VOA. Secret key

rates with dynamic attenuation and minimum loss of 0 dB (red dotted

curve) and 2 dB (green dash-dotted curve), and secret key rates

without dynamic attenuation (blue dashed curve).

V. CONCLUSION

We introduced the seemingly paradoxical idea that one

could enhance the secure key rate of an MDI QKD setup in

turbulence by adding loss in one of the channels. We improved

the HOM visibility by dynamically adding loss to balance the

constantly fluctuating channel transmittances. This dynamic

attenuation modified the original joint PDTC to one which

was more favorable to MDI QKD.

We remark that classical beacon laser beams are commonly

used in free-space QKD for synchronization, polarization

alignment, beam tracking, wave-front correction, etc. The

same beacon laser beams could also be used as the probe

beams to implement our protocol. In this regard, it could

be beneficial to first perform the other corrections men-

tioned above to maximize the transmittance of each individual

channel and then apply the dynamic attenuation scheme.1 Fur-

thermore, dynamic attenuation could be piggybacked off such

systems, eliminating the need for additional probe beams.

It should be pointed out that in order to use fiber-based

VOAs, one needs VOAs with extremely low loss, because

much of the plot area in Fig. 4 shows an optimal attenuation of

0 dB whenever the channels’ transmittances are close. Adding

too much loss under these conditions could spoil advantages

gained through dynamically attenuating less balanced chan-

nels. Nevertheless, as shown in Fig. 8, a strong advantage still

remains for higher turbulence.

Our results show that secure keys can be obtained for

much higher turbulence when one applies dynamic attenua-

tion, especially when using short raw key lengths. We have

shown that automated channel transmittance balancing is very

helpful in extending MDI QKD’s use in a highly turbulent

environment.

1We thank the anonymous reviewer for the comment.

It would be interesting to derive the kernel K used in our

calculations [Eq. (5)] rigorously and apply our method in

conjunction with a postselection process [31].
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APPENDIX: NOISE MODEL AND FINITE KEY

CALCULATION

Here we describe the model needed to predict the sifted key

and error quantities, and then we proceed to compute the finite

secure key length using a method described in the Appendix of

Ref. [24]. We consider intensities of Alice’s and Bob’s beams

in the set {sA,B, μA,B, νA,B, ω}, where s is the signal, μ and

ν are decoy states, and ω = 0 is the vacuum state, assuming

perfect intensity modulators. ηD is the detector efficiency for

all detectors and ηA,B are the channel transmittances excluding

the detector.

1. Noise model

a. Z basis

The probability of coincidence when Alice and Bob send

opposite polarizations is

nz1 = 1
2
(1 − 2ed,Z )(1 − e−ηAηDsA )(1 − e−ηBηDsB ), (A1)

where dark counts are neglected, as well as cases of Alice and

Bob both being misaligned. PsA,B
and N are suppressed in this

step, because they are canceled in the secure key calculation.

Whenever Alice and Bob send the same polarization, the

coincident probability is

nz2 = 1
2

(

1 − e−(1−ed,Z )ηAηDsA e−(1−ed,Z )ηBηDsB
)

× (ed,ZηAηDsA + ed,ZηBηDsB + 2Y0). (A2)

We have nZ = nz1 + nz2 and mX = nz2.

b. X basis

We refer to each intensity as ki, where i = 2 and 3 are the

decoy states, and i = 4 is the vacuum. The only coincidences

that survive sifting have the same intensity state.

First, consider when Alice and Bob send opposite polar-

izations. Whenever a single photon is incident at the beam

splitter, the only coincidences that are possible are due to dark

counts. We have

Pcoin = ηAηDki,Ae−ηAηDki,AY0 + ηBηDk j,Be−ηBηDk j,BY0. (A3)

When Alice and Bob each send one photon, we have

Pcoin = ηAηBη2
Dki,Ak j,Be−ηAηDki,A−ηBηDk j,B . (A4)

In the case where Alice or Bob sends two photons and the

other sends no photons, we have

ηAηBη2
De−ηAηDki,A−ηBηDk j,B

k2
i,A + k2

j,B

2
. (A5)
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Three-photon events are not considered, and so the model

loses accuracy at lower losses and high photon numbers.

The number of |ψ−〉 events is

nc1 =
1

2

[

(

ηAηDki,Ae−ηAηDki,AY0 + ηBηDk j,Be−ηBηDk j,BY0

)

+ 0.5
(

ηAηBη2
Dki,Ak j,Be−ηAηDki,A−ηBηDk j,B

)

(1 − 2ed,X )

+ 0.25

(

ηAηBη2
De−ηAηDki,A−ηBηDk j,B

k2
i,A + k2

j,B

2

)]

, (A6)

and the number of |ψ+〉 events is

nw1 =
1

2

(

(ηAηDki,Ae−ηAηDki,AY0 + ηBηDk j,Be−ηBηDk j,BY0)

+ (ηAηBη2
Dki,Ak j,Be−ηAηDki,A−ηBηDk j,B )ed,X

+ 0.25ηAηBη2
De−ηAηDki,A−ηBηDk j,B

k2
i,A + k2

j,B

2

)

. (A7)

When Alice and Bob send the same polarization state, the

analysis is similar, except with the roles of |ψ+〉 and |ψ−〉
exchanged. Therefore, nc2 = nc1 and nw2 = nw1. Finally, we

have

n
i, j

X = 2(nc1 + nw1),

m
i, j

X = 2nw1. (A8)

2. Secure key calculation

The set of probabilities {nZ , nX , mZ , mX } derived above can

be used to calculate the secure key rate, by mostly following

the steps in the Appendix of Ref. [24]. Having suppressed N

and Pki, j
, the gains are given by

Q
i, j

X = n
i, j

X ,

T
i, j

X = m
i, j

X , (A9)

where n
i, j

X applies to all decoy intensities i ∈ {2, 3, 4}. Next,

we apply bounds according to γ = 5.3, the number of stan-

dard deviations of an observed value from the expected. This

value of γ corresponds to a failure probability of less than

10−7. We have

Q
i, j

X = Q
i, j

X + γ

√

Q
i, j

X

NPki
Pk j

,

Q
i, j

X = Q
i, j

X − γ

√

Q
i, j

X

NPki
Pk j

,

T
i, j

X = T
i, j

X + γ

√

T
i, j

X

NPki
Pk j

,

T
i, j

X = T
i, j

X − γ

√

T
i, j

X

NPki
Pk j

.

Then, we define

Qνν
M1 = eνA+νB Qνν

X − eνA Qνω
X − eνB Qων

X + Qωω
X ,

Q
μμ

M2 = eμA+μB Q
μμ

X − eμA Q
μω

X − eμB Q
ωμ

X + Qωω
X .

We place lower and upper bounds on yield,

Y 1,1
X,min =

1

μA − νA

(

μA

νAνB

Qνν
M1 −

νA

μAμB

Q
μμ

M2

)

, (A10)

and error,

e1,1
X,max =

1

νAνBY 1,1
X,min

(eνA+νB Tνν − eνA Tνω − eνB Tων + Tωω ).

(A11)

Finally, we define Ez as the error rate in the Z basis. The secure

key rate is

R = PsA
PsB

{

sAsBe−(sA+sB )Y 1,1
X,min

[

1 − h2

(

e1,1
X,max

)]

− fECQ1,1
Z H2(Ez )

}

, (A12)

where fEC is the error-correcting efficiency which we set to

1.10, and H2 is the binary Shannon entropy.
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