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Abstract
This paper concerns a high-dimensional stochastic programming (SP) problem of minimiz-
ing a function of expected cost with a matrix argument. To this problem, one of the most
widely applied solution paradigms is the sample average approximation (SAA), which uses
the average cost over sampled scenarios as a surrogate to approximate the expected cost.
Traditional SAA theories require the sample size to grow rapidly when the problem dimen-
sionality increases. Indeed, for a problem of optimizing over a p-by-p matrix, the sample

complexity of the SAA is given by ˜O(1) · p2

ε2
· polylog( 1

ε
) to achieve an ε-suboptimality

gap, for some poly-logarithmic function polylog( · ) and some quantity ˜O(1) independent
of dimensionality p and sample size n. In contrast, this paper considers a regularized SAA
(RSAA) with a low-rankness-inducing penalty. We demonstrate that, when the optimal solu-
tion to the SP is of low rank, the sample complexity of RSAA is ˜O(1) · p

ε3
· polylog(p, 1

ε
),

which is almost linear in p and thus indicates a substantially lower dependence on dimen-
sionality. Therefore, RSAA can be more advantageous than SAA especially for larger scale
and higher dimensional problems. Due to the close correspondence between stochastic pro-
gramming and statistical learning, our results also indicate that high-dimensional low-rank
matrix recovery is possible generally beyond a linear model, even if the common assumption
of restricted strong convexity is completely absent.
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1 Introduction

As dimensionality inflates in modern applications of stochastic programming (SP) in order
to generate more comprehensive and higher-granular decisions, the sample average approx-
imation (SAA), which is traditionally a common solution paradigm for SP, sometimes tends
to be demanding for sample availability. The current SAA theories as per [19, 20, 22] and
[21] require that the number of samples should always be greater than the number of deci-
sion variables; for optimizing over a p-by-p matrix, the sample size n should grow at least
quadratically in p. Such sample size requirement may be undesirably costly in certain high-
dimensional applications. Recently, a regularized SAA with sparsity-inducing penalty has
been studied by [15], which shows that significant reduction of sample size requirement may
be achieved by exploiting sparse structures in the problem. This current paper then seeks
to substantially generalize the result therein to the settings where sparsity is replaced by a
low-rankness assumption. We will show that a similar level of success can be achieved.

The particular problem of focus is stated as follows: Let Z ∈ W , for some W ⊆ �q and
q > 0, be a random vector. Consider a measurable, deterministic function f : S+

p ×W → �
where S+

p is the cone of p-by-p (p ≥ 1) symmetric and positive semidefinite matrices and
f (X, Z) is a cost functionwith respect to parameter Z and a fixedmatrix of decision variables
X. Then the problem of consideration is an SP problem given as

X∗ ∈ argmin
{

F(X) : X ∈ S+
p

}

. (1)

where F(X) = E[ f (X, Z)] is well-defined and finite-valued for any givenX ∈ S+
p . Assume,

hereafter, that σmax(X∗) ≤ R for some constant R ≥ 1, where σmax(·) denotes the spectral
radius. With some abuse of terminology, we say that the dimensionality of this problem is
p, since the unknown is a p-by-p matrix. We refer to this optimization problem as the “true
problem” andX∗ as the “true solution”, as they assume the exact knowledge of the underlying
distribution and the admissibility of calculating the multi-dimensional integration involved
in evaluating the expected cost.

The problem of interest (1) falls into the general category of the stochastic version of
semidefinite programming (SDP), whose many applications have been found in science and
engineering (See more discussions in [1, 24, 25]). As compared to the traditional schemes,
the proposed RSAA is expected to result in substantial improvement in the efficacy and
efficiency of solving the stochastic SDP by reducing the need of simulation replications or
data collections. Though, admittedly, many of the SDP applications stipulates constraints
that are more sophisticated than our formulation in (1), we argue that this work can serve as
the underpinning to the development of more advanced schemes to address those additional
sophistication.

We would like to remark that the formulation in (1) subsumes the unconstrained problems
since any symmetric matrix can be represented by the difference between two symmetric
and positive semidefinite matrices. Furthermore, also subsumed by (1) are problems with
non-symmetric and non-square matrices X, since they can be transformed into symmetric

matrices by the self-adjoint dilation with X̄ =
[

0 X
X	 0

]

for some all-zero matrices 0’s with

proper dimensions.
Hereafter, let Zn

1 = (Z1, ..., Zn) be a sequence of n-many i.i.d. random samples of Z .
To solve Problem (1), one of the most popular solution schemes, as mentioned above, is to
invoke the following SAA formulation as a surrogate:
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XSAA ∈ argmin

{

Fn(X, Zn
1) := 1

n

n
∑

i=1

f (X, Zi ) : X ∈ S+
p

}

. (2)

According to the seminal results by [22], XSAA well approximates X∗ in the sense that

F(XSAA) − F(X∗) ≤ ˜O(1) ·
√

p2 · ln n
n

(3)

with high probability, where ˜O(·) is some quantity that is independent of p and n. Thus, to
ensure the same suboptimality gap, it stipulates that the sample size, n, must grow qradrat-
ically if p increases. For an SP problem where X∗ is sparse and f is twice-differentiable
almost surely, we have shown in [15] that (3) can be sharpened, in terms of its dependence
on p, into:

F(XRSAA) − F(X∗) ≤ ˜O(1) ·
√
ln(np)

n1/4
, (4)

with high probability, whereXRSAA is an SAA schemewith sparsity-inducing regularization.
Similar (and potentially stronger) results than the above have been reported by [12, 13] in
the context of high-dimensional statistical and machine learning under a sparsity assumption
and/or its limited variations.

In contrast, this paper provides a substantial generalization to [12, 13, 15] by weaken-
ing the sparsity and twice-differentiability assumptions simultaneously to low-rankness and
continuous differentiability. Particularly, our low-rankness assumption is as below:

Assumption 1 The rank rk( · ) of X∗ in the problem (1) satisfies s := rk(X∗) � p for some
s ≥ 1.

The above low-rankness assumption is more general than the sparsity assumption of a vector,
since any vector x can be represented by a diagonal matrix, diag(x), whose diagonal entries
equal to x. Then, sparsity of x implies that diag(x) is of low rank. Furthermore,we generalize
the assumption twice-differentiability to Lipschitz continuity of the partial derivatives of f
w.r.t. the eigenvalues of the input matrix, as we will discuss in more detail subsequently.

For this more general problem, our solution paradigmmodifies the SAA into the following
regularized SAA (RSAA):

XRSAA ∈ argmin
X∈S+

p

⎧

⎨

⎩

Fn,λ(X, Zn
1) := Fn(X, Zn

1) +
p
∑

j=1

Pλ(σ j (X))

⎫

⎬

⎭

, (5)

where σ j (X) stands for the j th eigenvalue ofX and Pλ is a penalty function in the form of the

minimax concave penalty (MCP) [26] given as Pλ(x) = ∫ x
0

[aλ−t]+
a dt , for some user-specific

tuning parameters a, λ > 0. Here [ · ]+ = max{ · , 0}. TheMCP is a mainstream special form
of the folded concave penalty (FCP) first proposed by [7].

Under the above settings, the RSAA formulation is nonconvex and its global solutions
are elusive. To ensure computability, this paper considers stationary points that satisfy a set
of significant subspace second-order necessary conditions (S3ONC), given as in Definition
6 in the subsequent. The S3ONC herein is an extension to a similar notion presented by
[14, 15] and is a special case than the canonical second-order KKT conditions. Hence, any
second-order (local optimization) algorithm that computes a second-order KKT solution
ensures the S3ONC. To add to the existing literature, we will present a new, highly tractable
S3ONC-guaranteeing algorithm.
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Let X�1
λ be defined as

X�1
λ ∈ argminX∈S+

p
Fn(X, Zn

1) + λ‖X‖∗, (6)

with ‖ · ‖∗ denoting the nuclear norm. We show that, under a few standard assumptions in
addition to Assumption 1, for any S3ONC solution to the RSAA, denoted XRSAA, which
satisfies Fn,λ(XRSAA) ≤ Fn,λ(X

�1
λ ) a.s., it holds that

F(XRSAA) − F(X∗) ≤ ˜O(1) ·
(

s · p2/3
n2/3

+ s · p1/3
n1/3

)

· ln(np), (7)

with overwhelming probability, when our knowledge on the rank ofX∗ is completely absent.
Furthermore, as a quick extension to (7), if we allow the penalty parameter to incorporate
knowledge on the rank s of X∗, as in Assumption 1, then a better choice of λ allows the
sample size requirement to entail a lower dependence on s. The above results are then the
promised, almost linear, sample complexity; from (7), n should only increase almost linearly
in p to compensate the growth in dimensionality. This indicates that the RSAA can be
provably much more advantageous than the SAA especially for high-dimensional problems
that satisfies p2 > ˜O(1) · n.

To compute the desired solution XRSAA, one may invoke an S3ONC-guaranteeing algo-
rithm initialized at X�1

λ . Meanwhile, the initial solution, X�1
λ , is often polynomial-time

computable when f ( ·, w) is convex for almost every w ∈ W (although the convexity
of f ( ·, w) is not necessary to prove the almost linear sample complexity).

To our knowledge, our paper presents the first SAA variant that ensures a sample complex-
ity that is almost linear in dimensionality under low-rankness. Even though similar results
have been achieved previously, e.g., by [6, 17, 18] in the context of high-dimensional low-
rank matrix estimation, most of the existing results assume the presence of restricted strong
convexity (RSC) or its variations. While the RSC is deemed generally plausible for statistical
and/or machine learning, such type of assumptions are often not satisfied by stochastic pro-
gramming. Furthermore, due to the correspondence between the SAA and matrix estimation
problems, our results may also imply that high-dimensional matrix estimation is generally
possible under the low-rankness assumption; even if the conditions such as the RSC or alike
are completely absent, the MCP-based regularization may still ensure a sound generalization
error as measured by the excess risk, which coincides in formulation with the suboptimality
gap in minimizing the SP. In addition, our results do not assume a linear or generalized linear
model in data generation. Even though a few other likely more important error bounds are
unavailable herein but are presented by [6, 17, 18] (most of whom focus more on linear or
generalized linear models under RSC or alike), we believe that the excess risk is still an
important out-of-sample performance measure commonly employed by, e.g., [2, 5, 11].

The rest of the paper is organized as follows: Sect. 2 presents our assumptions and main
results concerning the sample complexity of RSAA. A highly tractable solution scheme
to compute a desired S3ONC solution is presented in Sect. 3. Section 4 presents some
preliminary numerical experiments to show the consistency between our theory and the
corresponding simulation results. Section 5 then concludes our paper. All technical proofs
are presented in the appendix.

1.1 Notations

Throughout this paper, we denote by ‖ · ‖ the 2-norm of a vector, by σmax(·) the spectral
norm, by ‖ · ‖∗ the nuclear norm, and by ‖ · ‖p the p-norm (with 1 ≤ p ≤ ∞). Let σ j (X) be
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the j th singular value of matrix X. Denote by ‖ · ‖F the Frobenius norm. Sp and S+
p are the

cone of symmetric and symmetric and positive definite matrices, respectively.

2 Sample complexity of RSAA

This section presents our main results in Sect. 2.3 after we introduce our assumptions in Sect.
2.1 as well as the definition of the S3ONC in Sect. 2.2.

2.1 Assumptions

In addition to the low-rankness structure as in Assumption 1, we will make the following
additional assumptions about continuous differentiability (Assumption 2), the tail of the
underlying distribution (Assumption 3), and a Lipschitz-like continuity (Assumption 4).

Assumption 2 The gradient of f (X, z) with respect to the singular values, denoted by
(

∂ f (X, z)
∂σ j (X)

: j = 1, ..., p
)

, is well defined and Lipschitz continuous with constant UL ≥ 1

for any X ∈ S+
p : σmax(X) ≤ R and z ∈ W .

Assumption 3 The family of random variables, f (X, Zi ) − E[ f (X, Zi )], i = 1, ..., n, are
independent and follow sub-exponential distributions; that is

‖ f (X, Zi ) − E[ f (X, Zi )]‖ψ1 ≤ K ,

for some K ≥ 1 for all X ∈ S+
p : σmax(X) ≤ R, where ‖ · ‖ψ1 is the sub-exponential norm.

Invoking the well-known Bernstein-type inequality, one has that, for all X ∈ S+
p , it holds

that

P

(∣

∣

∣

∣

∣

n
∑

i=1

ai { f (X, Zi ) − E[ f (X, Zi )]}
∣

∣

∣

∣

∣

> K (‖a‖√t + ‖a‖∞t)

)

≤ 2 exp (−ct) , (8)

for all t ≥ 0, a = (ai ) ∈ �n and for some absolute constant c ∈ (0, 1
2 ].

Assumption 4 For some measurable and deterministic function C : W → � with
E[|C(Z)|]≤Cμ, for someCμ ≥1, the randomvariableC(Z) satisfies that‖C(Z) − E [C(Z)]‖ψ1≤ KC for some KC ≥ 1. Furthermore, | f (X1, z) − f (X2, z)| ≤ C(z)‖X1 − X2‖ for all
X1, X2 ∈ S+

p , and almost every z ∈ W.

Remark 5 Assumption 2 is easily verifiable and applies to a flexible set of SP problems.
Assumptions 3 and 4 are standard, and, by a close examination, it is essentially equivalent
to the assumptions made by [22] in the analysis of the traditional SAA. Examples of distri-
butions that satisfy 3 are Gaussian, χ2, exponential, and uniform distributions as well as any
distribution with bounded support. Assumption 3 essentially establishes the probability for
the average cost function to be Lipschitz continuous.

2.2 The significant subspace second-order necessary conditions

Our sample complexity results concern critical points that satisfy the S3ONC as per the
following definition, where we notice that Pλ(t) is twice differentiable for all t ∈ (0, aλ).
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Definition 6 For given Zn
1 ∈ Wn , a vector ̂X ∈ S+

p is said to satisfy the S3ONC (denoted by

S3ONC(Zn
1)) of the problem (5) if the following inequality holds at ̂X for all j = 1, ..., p:

UL +
[

∂2Pλ(σ j (X))

∂σ j (X)2

]

X=̂X
≥ 0, if σ j (̂X) ∈ (0, aλ), (9)

where UL is as defined in Assumption 2.

As mentioned, the above S3ONC is verifiably a weaker condition than the canonical
second-order KKT conditions. Therefore, any local optimization algorithm that guaran-
tees the second-order KKT conditions will necessarily ensure the S3ONC. Thus, many
schemes exist to compute such a condition.Wewill introduce a new, highly tractable S3ONC-
guaranteeing algorithm subsequently.

2.3 Main results on sample complexity

Introduce a few short-hand notations: Denote ˜	 := ln
(

18R · (KC + Cμ)
)

and

λ(ρ) :=
√

8K (2p + 1)2/3s−ρ

c · a · n2/3 [ln(n1/3 p) + ˜	], (10)

for the same c in (8) and a user-specific ρ ≥ 0. Recall the definition of X�1
λ in (6). We are

now ready to present our claimed results.

Theorem 7 Suppose that Assumption 1 through 4 hold. Specify the penalty parameter λ :=
λ(ρ) and a = (2UL)−1. Let XRSAA ∈ S+

p : σmax(XRSAA) ≤ R satisfy the S3ONC(Zn
1) to

(5) almost surely. For any � ≥ 0 and some universal constants c̃, C1 > 0, if

n > C1 · s3ρ ·
[

(

�

K

)3

+ 1

]

· p + C1 · s · p · (ln(n1/3 p) + ˜	
)

, (11)

and Fn,λ(XRSAA, Zn
1) ≤ Fn,λ(X∗, Zn

1) + � almost surely, then the excess risk is bounded
by

F(XRSAA) − F(X∗) ≤
√

K · sρ · p1/3 · �

n1/3
+ �

+C1K ·
⎡

⎣

s1−ρ · p2/3 · (ln(n1/3 p) + ˜	
)

n2/3
+
√

s · p · (ln(n1/3 p) + ˜	
)

n
+ p1/3 · sρ

n1/3

⎤

⎦ ,

(12)

with probability at least 1 − 2(p + 1) exp(−c̃n) − 6 exp
(−2c(2p + 1)2/3n1/3

)

.

Remark 8 Some explanations on the notations are below:

1. � measures the solution quality in solving the (in-sample) RSAA formulation; that is, �
is the suboptimality gap of minimizing the RSAA, which is the surrogate model for the
true SP problem in (1). We refer to � as “in-sample suboptimality gap” hereafter.

2. More important to us is a second type of suboptimality gap, which we refer to as the
“out-of-sample suboptimality gap”, calculated as F(X) − F(X∗) for a feasible solution
X. The out-of-sample suboptimality gap measures how well the solutionX optimizes the
true SP problem in (1).
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3. ˜	 is some logarithmic term independent of p and n.
4. K and KC are the upper bounds on the subexponential norm of the underlying distribu-

tions. They are alternative measures of the distributions’ variances.
5. An equivalent representation of the results in (12) can lead to the following sample size

requirement to achieve an out-of-sample suboptimality gap ε with probability at least
1 − α, for any ε > � and α ∈ (0, 1],

̂O(1) ·
(

p · �3

(ε − �)6
+ p

(ε − �)3
+ ln

p

α
+ 1

p2

(

ln
1

α

)3
)

,

for some quantity ̂O(1) that is independent of, or at most logarithmic in, p, ε, and α.

Remark 9 Some intuitions on the above theorem are as follows:

1. Theorem 7 ensures that all S3ONC solutions to the RSAA formulation yield a bounded
out-of-sample suboptimality gap in minimizing the true problem (1). The out-of-sample
performance of these S3ONC solutions differentiates as their in-sample optimality gaps
vary; Eq. (12) indicates that the out-of-sample optimality gap is strictly increasing in the
in-sample optimality gap �.

2. When � is relatively large, the deterioration is dominated by a linear rate.

Wemay well control the in-sample suboptimality gap� by properly initializing the search
for an S3ONC solution. Indeed, as is shown in the corollary below, using X�1

λ defined in (6)
to warm-start any S3ONC-guaranteeing local optimization algorithm ensures the promised
sample complexity.

Corollary 10 Suppose that Assumption 1 through 4 hold. Specify the penalty parameter λ =
λ(0) (that is, ρ = 0) and a = (2UL)−1 in both formulations (6) and (5). Let XRSAA ∈ S+

p :
σmax(XRSAA) ≤ R satisfy the S3ONC(Zn

1) to (5) almost surely. For some universal constant
c̃, C2 > 0, if

n > C2 · p · UL · [ln(n 1
3 p) + ˜	] · s 3

2 R
3
2 , (13)

and

Fn,λ(XRSAA, Zn
1) ≤ Fn,λ(X

�1
λ , Zn

1) (14)

almost surely, where X�1
λ is as defined in (6), then the excess risk is bounded by

F(XRSAA) − F(X∗)

≤ C2 · s · K ·
⎡

⎣

p2/3
(

ln(n
1
3 p) + ˜	

)

n
2
3

+ p1/3R · U1/2
L

√

ln(n
1
3 p) + ˜	

n
1
3

⎤

⎦ , (15)

with probability at least 1 − 2(p + 1) exp(−c̃n) − 6 exp
(−2c(2p + 1)2/3n1/3

)

.

Remark 11 We would like to make a few remarks on the above result:

1. Corollary 10 above establishes our claimed result of almost linear complexity at an
S3ONC solution generated with a proper initialization.

2. The same corollary considers the particular sublevel set that has a better objective value
(in terms of RSAA formulation) thanX�1

λ . In such a case, the suboptimality inminimizing
the true problem (1) explicitly vanishes as sample size n increases.
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3. X�1
λ is an initial solution often tractably computable under the common assumption that

f ( · , z) is convex for almost every z ∈ W . However, our results in Theorem 7 is not
contingent on the convexity of f ( · , z), although generating X�1

λ may be intractable
when convexity of f ( · , z) is not in presence.

4. Corollary 10 above is consistent with the claimed sample complexity in (7), which is
almost linear in p. Indeed, for achieving an accuracy of ε, the above bounds indicate
a sample complexity ˜O(1) · p

ε3
· polylog(p, 1

ε
), which is almost linear in p, for some

quantities ˜O(1) that is independent of n, ε, and p.
5. Onemayequivalently represent (15) into the following sample size requirement to achieve

an out-of-sample suboptimality gap ε with probability at least 1 − α, for any ε > � and
α ∈ (0, 1],

̂O(1) ·
(

p

ε3
+ ln

p

α
+ 1

p2

(

ln
1

α

)3
)

, (16)

for some quantity ̂O(1) that is independent of, or at most logarithmic in, p, ε, and α.

We note that the dependence of sample size n on rank s of the true solution X∗ is cubic,
which means that the proposed approach is more powerful when the true solution X∗ is
of very low rank. The deterioration may be fast when s increases for certain applications.
Nonetheless, we believe it possible to significantly reduce the order on s if any further
information below is given: (i) If the Fn or F satisfies strong convexity or its certain relaxed
forms, dependence on s is likely reducible, as it has been successful for [15] in stochastic
optimization under sparsity. (ii) If the value of s can be coarsely predicted in the sense that
O(1) · s for some universal constant O(1) is given, then one may also properly modify the
value of λ to decrease the dependence on s. We will consider the relatively special case in (i)
in future study. Nonetheless, our claim in (ii) above is provided in Corollary 12 below.

Corollary 12 Suppose that Assumption 1 through 4 hold. Specify the penalty parameter λ =
λ( 23 ) (that is, ρ = 2

3 ) and a = (2UL)−1 in both formulations (6) and (5). Let XRSAA ∈ S+
p :

σmax(XRSAA) ≤ R satisfy the S3ONC(Zn
1) to (5) almost surely. For some universal constant

c̃, C3 > 0, if

n > C3 · p · UL · [ln(n 1
3 p) + ˜	] · s2 · R 3

2 , (17)

and (14) holds almost surely, where X�1
λ is as defined in (6), then the excess risk is bounded

by

F(XRSAA) − F(X∗)

≤ C3 · K ·
⎡

⎣

s1/3 p2/3
(

ln(n
1
3 p) + ˜	

)

n
2
3

+ s2/3 p1/3 · R · U1/2
L ·

√

ln(n
1
3 p) + ˜	

n
1
3

⎤

⎦ , (18)

with probability at least 1 − 2(p + 1) exp(−c̃n) − 6 exp
(−2c(2p + 1)2/3n1/3

)

.

Remark 13 TheCorollary 12, similar to Corollary 10, establishes our claimed result of almost
linear complexity at a computable S3ONC solution generated with a proper initialization,
X�1

λ , which can be tractable when f ( · , z) is convex for almost every z.

Remark 14 In contrast toCorollaries 10 and12yields a sample complexitywithmuch reduced
dependence on s; quadratic instead of cubic in s.We suppose that this dependence is no longer
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improvable. This is because, even if we are given the exact knowledge to correctly reduce the
“redundant” dimensions of the problem, the traditional SAA to the reduced problem will still
require a sample size quadratically dependent on s. As a direct implication of (18), the sample
requirement follows the same rate as in (16) in terms of the dependence on p, out-of-sample
suboptimality gap ε, and confidence level α.

Remark 15 There is strong correspondence between theSPand statistical learning as formerly
noted by [15, 16]. More specifically, the SAA formulation (5) can be considered as an M-
estimation problem and the suboptimality gap F(XRSAA)−F(X∗) has the same formulation
as the excess risk discussed by [2, 5, 11]. We therefore argue that the results in Theorem
(7) and Corollaries 10 and 12 indicate that M-estimation with high dimensions is generally
possible under a low-rankness assumption. In particular, since our analysis does not assume
any form of RSC, we believe that our results then provides perhaps the first out-of-sample
performance guarantee for high-dimensional low-rank estimation beyond RSC.

Remark 16 Wewould like to remark again that, to obtain the desired results, the incurred com-
putational ramification can be reasonably small. This is because XRSAA is only a stationary
point that satisfies (14). First, the stationarity can be ensured by invoking local optimization
algorithms. Second, the stipulated inequality in (14) can be ensured by initializing the local
algorithm with X�1

λ . Such an initializer often can be generated within polynomial time under
the common assumption that f ( · , w) is convex for almost every w ∈ W , although the con-
vexity of f ( · , w) is not necessary for proving the claimed almost linear sample complexity.

Remark 17 In practice, exact optimal solutions to the convex program (6) may be challenging
to compute. It is nonetheless easy to see that a good approximation to the optimal solution is
sufficient to ensure a comparable out-of-sample performance; in particular, one may easily
verify the following by the same argument as in proving Corollary 12: If X�1

λ incurs a sub-
optimality gap of δ > 0 in solving (6), then the right-hand-side of error bound in (18) will

need to involve an additional error term of
√

K ·sρ ·p1/3·δ
n1/3

+ δ in the worse case. Thus, if X�1
λ

is a ˜O(1) p1/3 ln p
n1/3

-suboptimal solution to the convex problem in (6), then same error rate as
in (18) can be maintained.

3 A highly tractable S3ONC-guaranteeing algorithm

Belowwe introduce a computing procedure to generate an S3ONC solution. For convenience,
we consider a more abstract form than (5) given as:

min
X∈S+

p

G(X) := f (X) +
p
∑

j=1

Pλ(σ j (X)). (19)

The pseudo-code of the proposed algorithm is provided below.
The (nonconvex) subproblem in (20) admits a closed form solution and provably generates

an S3ONC solution as shown in the theorem below.

Theorem 18 Let L satisfy that UL ≤ L < 1
a . A closed form solution to (20) is that ̂X =

Q diag
({

y j : j = 1, ..., p
})

Q−1 where

y j =
{

σ j (X0 − 1
L · ∇ f (X0)) if σ j (X0 − 1

L · ∇ f (X0)) ≥ aλ;
0 otherwise.
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Algorithm 1 An S3ONC-guaranteeing algorithm

1: Initialize a feasible X0 (e.g., we may let X0 := X�1
λ as in (6)).

2: Solve the following nonconvex (but tractable) optimization problem, and output its optimal solution ̂X

̂X ∈ arg min
X∈S+

p

〈

∇ f (X0), X − X0
〉

+ L

2

∥

∥

∥X − X0
∥

∥

∥

2

F
+

p
∑

j=1

Pλ(σ j (X)). (20)

and Q�Q−1, with � = diag({λ j : j = 1, ..., p}), is the eigenvalue decomposition of the
matrix Y := X0 − 1

L ∇ f (X0). Furthermore, ̂X is an S3ONC solution to (19) and satisfies
that G(̂X) ≤ G(X0).

Remark 19 Based on the closed form solution provided in (18), the proposed scheme is
equivalent to one iteration of an iterative hard thresholding algorithm, as discussed by, e.g.,
[3, 10, 17, 23], following the computation of a nuclear norm-regularized problem. Both
components have been studied previously. Nonetheless, existing theories on out-of-sample
performance (e.g., by [17, 23]) concerning each scheme assume conditions such as RSC or
its variations, which are not stipulated by our results. More on the RSC have been provided
in the introduction and in Remark 15.

Remark 20 If one choses a different initial point than X0, Theorem 7 still applies to the output
of the algorithm; the in-sample suboptimality gap of the solution generated by Algorithm 1
is then the value of � in Eq. (12)

4 Preliminary numerical experiments

Our numerical experiment was focused on a special matrix recovery problem using simulated
data formulated as:

min
X

{

E[(Xi j − Ti j )
2] : X ∈ S+

p

}

, (21)

where Ti j is a randomly selected entry from a matrix T := Ttrue +W for some target matrix
Ttrue ∈ S+

p and white noise W ∈ �p×p . The expectation is over both the random indices
i, j ∈ {1, ...., p} and the white noise W . Assume that Ttrue is of rank two. We can invoke
both SAA and RSAA to solve (21) and compare their performance. All the experiments were
implemented in Matlab and run on a PC with 2.2 GHz Intel Core i7 and 16 GB Memory.
The SAA in (2) and the convex problem (6) in Step 1 of Algorithm 1 are both solved by
invoking CVX 2.2 [8, 9] viaMatlab. Then, Step 2 of Algorithm 1 invokes a closed form given
in Theorem 18.

To generate a low-rank target matrix Ttrue, we first simulated a random matrixA ∈ �r×p

with i.i.d. entries following uniform distribution on [0, 1]. We then calculated a matrix
of AA	 which admits an eigenvalue decomposition of QAV Q−1

A . We set all the nonzero
diagonals of V to be 2 and obtained a new diagonal matrix ˜V . Then, the target matrix was
generated by Ttrue = QA˜V Q−1

A .
To generate the samples for both SAA and RSAA, we first simulated W as a random

matrix with i.i.d. normal gaussian entries. Then, we downsampled T := (Ti j ) = Ttrue + W
by selecting entries of T following a discrete uniform distribution repetitively. This process
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Fig. 1 Comparison between SAA and RSAA in terms of suboptimality gaps, when dimensionality p varies
and sampling rate is set as 0.4/p2 · 100%

Table 1 Average computational
time (s) for solving SAA and
RSAA formulations for different
values of p

p 10 20 30 40 50 60

SAA 1.50 3.89 10.49 32.03 68.40 160.51

RSAA 1.45 4.19 11.22 33.55 68.64 158.81

was replicated for a pre-specified n-many rounds and one entry was selected in each round.
Thus, we obtained n-many samples for both SAA and RSAA. We refer to n

p2
× 100% as the

sampling rate. In all our experiments, we set a = 1 and λ = 0.01 · 1
n1/3

for RSAA.

We report two sets of test results. The first involves a sampling rate of 40/p2 × 100% and
various values of dimensionality p. Notice that, this way, the number of sampled entries is
fixed at n = 40 for any p. To see this, we note that 40/p2×100% = n

p2
×100% ⇐⇒ n = 40.

For each combination of sampling rate and dimensionality, five problem instances were gen-
erated and solved by both SAA and RSAA. Figure 1 reports the average suboptimality gaps
(bad) achieved by both schemes. In the figure, each data point represents the average subop-
timality gap over the five replications of problem instances for the same n-p combination.
We see that as the dimensionality increases from p = 10 (100 unknowns) to p = 60 (3600
unknowns), SAA became unstable and may perform significantly worse than the RSAA. Yet,
the latter outperformed the former for all the combinations of n and p involved in the experi-
ment. Table 1 reports the average computational time on solving both SAA and RSAA out of
the five replications for different p. From this table, one may observe that the computational
effort incurred by the proposed RSAA is comparable to that of RSAA.

The second test set involves different sampling rates {2%, 4%, 6%, 8%, 10%, 12%, 14%,

16%, 20%, 50%, 80%} and a fixed dimensionality with p = 60. Thus, there are 3600
unknowns. Again, five random replications were done for each combination of settings.

Figure 2 reports the average of (logarithm of) suboptimality gaps. We can see that, when
the sampling rate is as low as 2%, the RSAA yields a significantly better performance.
Although the difference in performance reduces when the sampling rate increases, the RSAA
is consistently better than the SAA. Table 2 reports the average computational time spent
on solving SAA and RSAA when the sampling rates change from 2% to 80%. Again, we
observe that the RSAA yielded comparable computational cost with the SAA for all the
different sampling rates.
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Fig. 2 Comparison between SAA and RSAA in terms of (the logarithm of) suboptimality gaps, when sampling
rate varies and dimensionality is set as p = 60

Table 2 Average computational
time (s) for solving SAA and
RSAA formulations for different
sampling rates

Sampling rate (%) SAA RSAA

2 138.5 130.1

4 142.1 139.6

6 155.7 161.5

8 147.6 155.8

10 171.4 162.7

12 149.7 159.3

14 153.4 157.2

16 135.7 149.6

20 170.3 183.8

50 188.5 179.4

80 173.1 168.9

5 Conclusions

This paper proposes a regularized SAA (RSAA), which incorporates a low-rankness-
exploiting regularization into the traditional SAA framework, to solve high-dimensional
SP problems of minimizing an expected function over a p-by-p matrix argument. We prove
that certain stationary points ensure an almost linear sample complexity: the RSAA only
requires a sample size almost linear in p to achieve sound optimization quality, while, in
contrast, the required sample size for the traditional SAA is at least quadratic in p. The
reduced sample complexity can be obtained at certain stationary points without incurring
a significant computational effort, especially when the cost function f ( · , z) is convex for
almost every z ∈ W . Our RSAA theory also implies that, under the low-rankness assump-
tion, high-dimensional matrix estimation is generally possible beyond linear and generalized
linear models even if p, the size of the matrix to be estimated, is large and the RSC is absent.
Future research will focus on generalizing our paradigm to problems with general linear and
nonlinear constraints. Furthermore, we will investigate the (non-)tightness of our bound on
sample complexity.

Acknowledgements The authors would like to thank the anonymous reviewers and editors for their con-
structive comments that have helped improve this paper. This research is partially supported by NSF grant
CMMI-2016571.
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A Technical proofs

A.1 Proof of results on sample complexity

A.1.1 General ideas

The general idea of our proof is focused on addressing the question: how to show that an
S3ONC solution has low rank. If this question is answered, then the desired results can
be almost evident by analyzing the ε-net for all the low-rank subspaces. Such an analysis
is available in Lemma 3.1 of [4] and is restated (with minor modifications) in Lemma 28
herein. Proposition 22 then establishes a point-wise bound between the average cost and the
expected cost for all the low-rank subspaces.

To bound the rank of an S3ONCsolution,we utilize a unique property of theMCP function,
which ensures that the S3ONC solutions XRSAA must obey a thresholding rule: for all the
singular values, they must be either 0 or greater than aλ, where a and λ are hyper-parameters
of the penalty. Proposition 21 formalizes this thresholding rule.

By this rule and the definition of the MCP, for each nonzero singular value in the S3ONC
solutionXRSAA, the total value of penalty incurred by theMCP-based low-rankness-inducing

regularization becomes
∑p

j=1 Pλ(σ j (XRSAA)) = rk(XRSAA) · aλ2

2 . Now, consider those

S3ONC points whose suboptimality gaps in terms of minimizing the RSAA are smaller than
a user-specific quantity �. These solutions should satisfy

Fn,λ(XRSAA,Zn
1) = Fn(XRSAA,Zn

1) + rk(XRSAA) · aλ2

2
≤ Fn,λ(X∗,Zn

1) + �.

By this inequality, we may observe that the rank ofXRSAA must be bounded from above. It is
also easy to see that this upper bound should be a function of�. This function is explicated by
Proposition 23. Then, the desired results in Theorem 7 immediately follows the combination
of Propositions 22 and 23. Finally, the value of � can be well contained and explicated by
proper (and tractable) initializations, as shown in and Corollaries 10 and 12. The proof of
these corollaries are based on Lemma 27, which shows that X�1

λ yields a small value of �.

A.1.2 Proof of Theorem 7

Proof This proof substantially generalizes the argument of Proposition 1 in [13] from han-
dling sparsity to handling low-rankness. Meanwhile, much more flexible choices of penalty
parameters λ is enabled. We follow the same set of notations in Proposition 24 in defin-

ing p̃u , ε, and 	1(ε) := ln
(

18pR·(KC+Cμ)

ε

)

. Furthermore, we will let ε := 1
n1/3

and

˜	 := ln
(

18 · R · (KC + Cμ)
)

. Then 	1(ε) = ln
(

18·(KC+Cμ)·p·R
ε

)

= ln(n1/3 p) + ˜	 > 0

and λ =
√

8·s−ρ ·K (2p+1)2/3·	1(ε)

c·a·n2/3 =
√

8·s−ρ ·K ·(2p+1)2/3

c·a·n2/3 [ln(n1/3 p) + ˜	]. We will denote by
O(1)’s the universal constants, which may be different in each occurence.

To show the desired results, it suffices to simplify the results in Proposition 24. We
will first derive an explicit form for p̃u . To that end, we let PX := p̃u and T1 :=
2Pλ(aλ) − 8K ·(2p+1)

cn 	1(ε). We then solve the following inequality, which is equivalent
to (41) of Proposition 24, for a feasible PX ,

T1
2

· PX − 2K√
n

√

2PX · (2p + 1)	1(ε)

c
> � + 2ε + sPλ(aλ), (22)
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for the same c ∈ (0, 0.5] in (8). Solving the above inequality in terms of PX , we

have
√
PX > 2K

T1
√
n

√

2(2p+1)·	1(ε)
c +

√

2(2K )2 ·(2p+1)·	1(ε)

cn +2T1[�+2ε+sPλ(aλ)]
T1

. To find a fea-

sible PX , we may as well let PX >
32K 2·(2p+1)·	1(ε)

cT 2
1 ·n + 8T−1

1 [� + 2ε + sPλ(aλ)].
For λ =

√

8K ·s−ρ ·	1(ε)·(2p+1)2/3

c·a·n2/3 =
√

8K ·s−ρ ·(2p+1)2/3

c·a·n2/3 [ln(n1/3 p) + ˜	] with ˜	 :=
ln
(

18 · R · (KC + Cμ)
)

), we have Pλ(aλ) = aλ2

2 = 4K ·s−ρ ·(2p+1)2/3

c·n2/3 · 	1(ε). Further-

more, 2Pλ(aλ) = 8K ·s−ρ ·(2p+1)2/3·	1(ε)

c·n2/3 >
4·s−ρK ·	1(ε)·(2p+1)2/3

c·n2/3 + 8K ·(2p+1)
nc 	1(ε) as

per our assumption (i.e., (11) implies that n1/3 > 2sρ). Therefore, T1 = 2Pλ(aλ) −
8K ·(2p+1)

nc 	1(ε) >
4K ·s−ρ ·	1(ε)·(2p+1)2/3

c·n2/3 . Hence, if we recall ε = n−1/3, to satisfy (22), it

suffices to let PX be any integer that satisfies PX ≥ 2cn1/3s2ρ

	1(n
− 1
3 )·(2p+1)2/3·

+ 2cn2/3sρ

K	1(n
− 1
3 )·(2p+1)2/3·

·
[

� + 2
n1/3

+ sPλ(aλ)
]

, which is satisfied by letting PX ≥ p̃u with

p̃u :=
⌈

2cn1/3s2ρ

	1(n− 1
3 ) · (2p + 1)1/3

+ 2cn2/3sρ

K · 	1(n− 1
3 ) · (2p + 1)2/3

·
(

� + 2

n1/3

)

+ 8s

⌉

.

(23)

In the meantime, verifiably, p̃u > s. Since the above is a sufficient to ensure (22), we know
that (41) in Proposition 24 holds for any p̃ : p̃u ≤ p̃ ≤ p. Due to Proposition 24, with

probability at least P∗ := 1 − 6 exp
(

− p̃u · (2p + 1) · 	1(n− 1
3 )
)

− 2(p + 1) exp(−c̃n) ≥
1 − 6 exp(−2c · (2p + 1)2/3 · n1/3) − 2(p + 1) exp(−c̃n), it holds that

F(XRSAA) − F(X∗) ≤ s · Pλ(aλ) + 2K√
n

√

2 p̃u(2p + 1)

c
	1(n− 1

3 )

+4K

n

p̃u(2p + 1)

c
	1(n

− 1
3 ) + 2ε + �, (24)

in which p̃u is as per (23).
The following simplifies the formula while seeking to preserve the rates in n and p. Firstly,

we have

√

2 p̃u · (2p + 1)

cn
	1(n− 1

3 ) (25)

≤
√

√

√

√

4 · (2p + 1)s2ρ

cn · (2p + 1)1/3
	1(n− 1

3 ) · cn1/3

	1(n− 1
3 )

+ 4cn2/3(2p + 1)sρ

K (2p + 1)2/3	1(n− 1
3 )

(

� + 2

n1/3

)

· 	1(n− 1
3 )

cn

+
√

2

cn
	1(n− 1

3 ) · (8s + 1) · (2p + 1)

≤
√

4(2p + 1)2/3s2ρ

n2/3
+ 4sρ · (� + 2

n1/3
) · (2p + 1)1/3

Kn1/3
+
√

2

nc
	1(n− 1

3 ) · (8s + 1) · (2p + 1),

(26)

which is due to
√
x + y ≤ √

x+√
y for any x, y ≥ 0 and the relations that 0 < a < U−1

L ≤ 1,

0 < c ≤ 0.5, K ≥ 1, and 	1(n− 1
3 ) ≥ ln 36.
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Similar to the above, we obtain

3 p̃u · (2p + 1)

cn
	1(n

− 1
3 )

≤ 4 · (2p + 1)2/3s2ρ

n2/3
+ 2

nc
	1(n

− 1
3 ) (8s + 1) · (2p + 1)

+4 · sρ · (� + 2
n1/3

)

K · n1/3 · (2p + 1)1/3. (27)

Since (11) and	1(n− 1
3 ) = ln(np)+˜	, we have 4(2p+1)2/3s2ρ

n2/3
+ 4(�+ 2

n1/3
)·(2p+1)1/3sρ

Kn1/3
≤ O(1)

and 2
nc	1(n− 1

3 ) [8s + 1] · (2p + 1) ≤ O(1). Therefore, it holds that 2 p̃ucn 	1(n− 1
3 )(2p + 1) ≤

O(1) ·
√

(2p+1)2/3s2ρ

n2/3
+ (�+ 2

n1/3
)·(2p+1)1/3·sρ
Kn1/3

+ O(1) ·
√

	1(n
− 1
3 )

nc · (8s + 1) · (2p + 1). Com-

bining the above with (26) and (27), the inequality in (24) can be simplified into F(XRSAA)−
F(X∗) ≤ O(1)s1−ρ · K ·	1(n

− 1
3 )·p2/3

c·n2/3 + O(1) · K ·
√

p2/3s2ρ

n2/3
+ (�+ 2

n1/3
)·p1/3sρ

Kn1/3
+ O(1) ·

K
√

sp
nc	1(n− 1

3 ) + 2
n1/3

+ �. Together with 	1(n− 1
3 ) ≥ ln 2, K ≥ 1, and 0 < c ≤ 0.5,

the above becomes

F(XRSAA) − F(X∗)

≤ O(1) ·
⎛

⎝

s1−ρ · 	1(n−1/3) · p2/3
n2/3

+ p1/3 · sρ

n1/3
+
√

s · p · 	1(n−1/3)

n

⎞

⎠ · K

+O(1) ·
√

K · sρ · p1/3 · �

n1/3
+ �, (28)

which then shows Theorem 7 since 	1(n− 1
3 ) := ln

(

18n1/3(KC + Cμ) · p · R). ��

A.1.3 Proof of Corollary 10

Proof Lemma 27 implies that Fn,λ(XRSAA, Zn
1) ≤ Fn,λ(X∗, Zn

1) + λ‖X∗‖∗ almost surely.
Below we invoke the results from Theorem 7 with � = λ‖X∗‖∗ and assumption that ρ = 0
and λ = λ(0). Note that it is assumed that

n > C2 · p · UL · [ ln(np) + ˜	] · s3/2R3/2 > O(1) · p · a−1 · [ln(np) + ˜	] · s3/2R3/2,

(29)

and �
K ≤ λ‖X∗‖∗

K ≤
‖X∗‖∗·

√

8K ·(2p+1)2/3

c·a·n2/3 [ln(n1/3 p)+˜	]
K (as well as K ≥ 1). In view of

(29), it then holds under Assumption 1 that �
K ≤ Rs ·

√

8(2p+1)2/3

cK ·a·n2/3 [ln(n1/3 p) + ˜	] ≤
O(1)·

√

Rs
a1/3

[ln(n1/3 p) + ˜	]1/3. Therefore, ( �
K

)3 ≤
(

O(1) ·
√

Rs
a1/3

[ln(n1/3 p) + ˜	]1/3
)3 ≤

O(1) · R3/2s3/2
√

a−1 · [ln(n1/3 p) + ˜	], for some universal constants O(1). Furthermore,
since a < U−1

L ≤ 1, it holds that, if n satisfies (13) for some universal constant C2, then

n > O(1)· p ·a−1 ·[ln(n1/3 p)+˜	]·s3/2R3/2 ≥ O(1)· p ·R3/2s3/2
√

a−1 · [ln(n1/3 p) + ˜	]+
O(1) · p + C1 · s · p · (ln(n1/3 p) + ˜	

) ≥ C1 ·
[

(

�
K

)3
p + p + s · p · (ln(n1/3 p) + ˜	

)

]

.
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Therefore, Theorem 7 is met and thus (12) in Theorem 7 implies that

F(XRSAA) − F(X∗) ≤ O(1) · K ·
⎛

⎝

sp2/3	1(n−1/3)

n2/3
+
√

sp	1(n− 1
3 )

n
+ p1/3

n1/3

⎞

⎠

+O(1) ·
√

Kp1/3(λ‖X∗‖∗)
n1/3

+ λ‖X∗‖∗,

with probability at least 1 − 2(2p + 1) exp(−c̃n) − 6 exp
(−2cn1/3 · (2p + 1)2/3

)

. Note

that a < 1, K ≥ 1, p ≥ 1,
[

ln(n1/3 p) + ˜	
] ≥ 1 and

√

sp	1(n
− 1
3 )

n ≤ s(2p+1)1/3·
√

	1(n
− 1
3 )

n1/3

(due to (13) again). Hence, F(XRSAA) − F(X∗) ≤ O(1) · K ·
[

sp2/3·(ln(np)+˜	)
n2/3

+ p1/3

n1/3

]

+
O(1) · sRK ·(2p+1)1/3

min{a1/2n1/3, a1/4n1/3}
[

ln(n1/3 p) + ˜	
]1/2

, which shows Part (ii) by further noticing that

a = 1
2UL

and UL ≥ 1. ��

A.1.4 Proof of Corollary 12

Proof The proof follows almost the same argument as in Sect. A.1.3 for proving Corollary
10, except that the choice of user-specific parameters are different. Again, Lemma 27 implies
that Fn,λ(XRSAA, Zn

1) ≤ Fn,λ(X∗, Zn
1) + λ‖X∗‖∗ almost surely. As the same in Part (ii),

below we invoke the results from Theorem 7 with � = λ‖X∗‖∗ and assumption that ρ = 2/3
and λ = λ( 23 ). Note that it is assumed that

n > C3 · p · UL · [ln(np) + ˜	] · s2R3/2 > O(1) · p · a−1 · [ln(np) + ˜	] · s2R3/2, (30)

and �
K ≤ λ‖X∗‖∗

K ≤
‖X∗‖∗·

√

8K ·(2p+1)2/3 ·s−2/3

c·a·n2/3 [ln(n1/3 p)+˜	]
K (as well as K ≥ 1). In view of

(30), it then holds under Assumption 1 that �
K ≤ Rs ·

√

8(2p+1)2/3s−2/3

cK ·a·n2/3 [ln(n1/3 p) + ˜	] ≤
O(1)·

√

R
a1/3

[ln(n1/3 p) + ˜	]1/3. Therefore, ( �
K

)3 ≤
(

O(1) ·
√

R
a1/3

[ln(n1/3 p) + ˜	]1/3
)3 ≤

O(1) · R3/2
√

a−1 · [ln(n1/3 p) + ˜	], for some universal constants O(1). Furthermore, since
a < U−1

L ≤ 1, it holds that, if n satisfies (17), then n > O(1) · p · a−1 · [ln(n1/3 p) + ˜	] ·
s2R3/2 ≥ O(1)·p·R3/2s2

√

a−1 · [ln(n1/3 p) + ˜	]+O(1)·s2·p+C1s·p·
(

ln(n1/3 p) + ˜	
) ≥

C1 ·
[

s2
(

�
K

)3
p + s2 · p + s · p · (ln(n1/3 p) + ˜	

)

]

. Therefore, (11) in Theorem 7 is met

and thus (12) in Theorem 7 implies that

F(XRSAA) − F(X∗)

≤ O(1) · K ·
⎛

⎝

s1/3 p2/3	1(n−1/3)

n2/3
+
√

sp	1(n− 1
3 )

n
+ p1/3 · s2/3

n1/3

⎞

⎠

+O(1) ·
√

Kp1/3 · s2/3 · (λ‖X∗‖∗)
n1/3

+ λ‖X∗‖∗,

with probability at least 1− 2(2p+ 1) exp(−c̃n)− 6 exp
(−2cn1/3 · (2p + 1)2/3

)

. Note that

a < 1, K ≥ 1, p ≥ s ≥ 1,
[

ln(n1/3 p) + ˜	
] ≥ 1 and

√

sp	1(n
− 1
3 )

n ≤ (2p+1)1/3·
√

	1(n
− 1
3 )

n1/3
(in
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viewof (17) again).Hence,F(XRSAA)−F(X∗) ≤ O(1)·K ·
[

s1/3 p2/3·(ln(np)+˜	)
n2/3

+ s2/3·p1/3
n1/3

]

+
O(1)· s2/3RK ·(2p+1)1/3

min{a1/2n1/3, a1/4n1/3}
[

ln(n1/3 p) + ˜	
]1/2

, which shows Part (iii) by further noticing that

a = 1
2UL

. ��

A.1.5 Pillar results for sample complexity

Proposition 21 Suppose that a < UL
−1. Assume that the S3ONC(Zn

1) is satisfied almost
surely at XRSAA ∈ Sp. Then,

P[{|σ j (XRSAA)| /∈ (0, aλ) for all j}] = 1.

Proof Since XRSAA satisfies the S3ONC(Zn
1) almost surely, Eq. (9) implies that for any

j ∈ {1, ..., p}, if σ j (XRSAA) ∈ (0, aλ), then

0 ≤UL +
[

∂2Pλ(|σ j (X)|)
[∂σ j (X)]2

]

X=XRSAA

= UL − 1

a
. (31)

Further observe that ∂2Pλ(t)
∂t2

= −a−1 for t ∈ (0, aλ). Therefore, (31) contradicts with the

assumption that UL < 1
a . This contradiction implies that

P[{XRSAA satisfies the S3 ONC(Zn
1)} ∩ {|σ j (XRSAA)| ∈ (0, aλ)}] = 0

�⇒ 0 ≥ 1 − P[{XRSAA does not satisfy the S3 ONC (Zn
1)}] − P[{|σ j (XRSAA)| /∈ (0, aλ)}].

Since P[{XRSAA satisfies the S3 ONC (Zn
1)}] = 1, it holds that P[{|σ j (XRSAA)| /∈

(0, aλ)}] = 1 for all j = 1, ..., n, which immediately leads to the desired result. ��
Proposition 22 Suppose that Assumptions 3 and 4 hold. Let ε ∈ (0, 1], p̃ : p̃ > s,

	1(ε) := ln
(

18·(KC+Cμ)·p·R
ε

)

, and B p̃,R := {

X ∈ Sp : σmax(X) ≤ R, rk(X) ≤ p̃
}

. Then,

for the same c ∈ (0, 0.5] as in (8) and for some c̃ > 0,

max
X∈B p̃,R

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f (X, Zi ) − F(X)

∣

∣

∣

∣

∣

≤ K√
n

√

2 p̃(2p + 1)

c
	1(ε) + K

n
· 2 p̃(2p + 1)

c
	1(ε) + ε

with probability at least 1 − 2 exp (− p̃(2p + 1)	1(ε)) − 2 exp(−c̃n).

Proof We will follow the “ε-net” argument similar to [22] to construct a net of discretization
grids G(ε) := {˜Xk} ⊆ B p̃,R such that for any X ∈ B p̃,R , there is Xk ∈ G(ε) that satisfies
‖Xk − X‖ ≤ ε

2KC+2Cμ
for any fixed ε ∈ (0, 1].

Invoking Lemma 28, for an arbitrary X ∈ B p̃,R , to ensure that there always exists ˜Xk ∈
G(ε) that ensures

∥

∥X −˜Xk
∥

∥ ≤ ε
(2KC+2Cμ)

, it is sufficient to have the number of grids to be

no more than
(

18R
√
p̃·(KC+Cμ)

ε

)(2p+1) p̃
. Now, we may observe

P

[

max
Xk∈G(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f (Xk, Zi ) − E

[

1

n

n
∑

i=1

f (Xk, Zi )

]∣

∣

∣

∣

∣

≤ K

√

t

n
+ Kt

n

]

= P

⎡

⎣

⋂

Xk∈G(ε)

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

f (Xk, Zi ) − E

[

1

n

n
∑

i=1

f (Xk, Zi )

]∣

∣

∣

∣

∣

≤ K

√

t

n
+ Kt

n

}

⎤

⎦

123



274 Journal of Global Optimization (2023) 85:257–282

≥ 1 −
∑

Xk∈G(ε)

P

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

f (Xk, Zi ) − E

[

1

n

n
∑

i=1

f (Xk, Zi )

]∣

∣

∣

∣

∣

> K

√

t

n
+ Kt

n

]

. (32)

Further invoking Eq. (8), for the same c as in (8), it holds that

P

[

max
Xk∈G(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f (Xk, Zi ) − E

[

1

n

n
∑

i=1

f (Xk, Zi )

]∣

∣

∣

∣

∣

≤ K

√

t

n
+ Kt

n

]

≥ 1 − |G(ε)| · 2 exp(−ct) ≥ 1 − 2

(

18R
√
p̃ · (KC + Cμ)

ε

)(2p+1) p̃

· exp(−ct).

Combined with Lemmas 25 and 26,

max
X∈B p̃,R ,Xk∈G(ε)

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

f (X, Zi ) − 1

n

n
∑

i=1

f (Xk, Zi )

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

E

[

1

n

n
∑

i=1

f (X, Zi )

]

− E

[

1

n

n
∑

i=1

f (Xk, Zi )

]∣

∣

∣

∣

∣

}

≤ 2(KC + Cμ) · ε

2KC + 2Cμ

= ε, (33)

with probability at least 1 − 2 exp(−c̃ · n) for some problem independent c̃ > 0 and
any fixed τ > 0. Observe that for any X ∈ B p̃,R and Xk ∈ G(ε), it holds that
∣

∣Fn(X,Zn
1) − E

[Fn(X,Zn
1)
]∣

∣ ≤ ∣

∣Fn(Xk,Zn
1) − E

[Fn(Xk,Zn
1)
]∣

∣+ ∣∣Fn(X,Zn
1) − Fn(Xk,

Zn
1)
∣

∣+∣∣E [Fn(X,Zn
1)
]− E

[Fn(Xk,Zn
1)
]∣

∣ .Therefore,with probability at least 1−2 exp(−c̃·
n) for some positive constant c̃ > 0,

max
X∈B p̃,R ,Xk∈G(ε)

{

∣

∣Fn(X,Zn
1) − E

[Fn(X,Zn
1)
]∣

∣−
∣

∣

∣Fn(Xk,Zn
1) − E

[

Fn(Xk,Zn
1)
]∣

∣

∣

}

≤ ε.

(34)

Further invoking (32), we now obtain that

max
X∈B p̃,R ,Xk∈G(ε)

∣

∣Fn(X,Zn
1) − F(X)

∣

∣ ≤ ε + K

√

t

n
+ Kt

n
,

with probability at least 1− 2
(

18R
√
p̃·(KC+Cμ)

ε

)(2p+1) p̃ · exp(−ct) − 2 exp(−c̃ · n). Finally,

we may let t := 2 p̃
c · (2p + 1) · 	1(ε), where 	1(ε) := ln

(

18·(KC+Cμ)·p·R
ε

)

, and obtain the

desired result. ��
Proposition 23 Suppose that Assumptions 1 through 3 hold, the solution XRSAA ∈ Sp :
σmax(XRSAA) ≤ R satisfies S3ONC(Zn

1) almost surely,

Fn,λ(XRSAA,Zn
1) ≤ Fn,λ(X∗,Zn

1) + �, w.p.1. (35)

where � ≥ 0, ε ∈ (0, 1], 	1(ε) := ln
(

18·(KC+Cμ)·p·R
ε

)

. For a positive integer p̃u : p̃u > s,

if

( p̂ − s) · Pλ(aλ) >
4K

cn
	1(ε) · p̂ · (2p + 1) + 2K√

n

√

2 p̂ · (2p + 1)

c
	1(ε) + � + 2ε,

(36)
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for all p̂ : p̃u ≤ p̂ ≤ p, then P[rk(XRSAA) ≤ p̃u − 1] ≥ 1 − 2p exp(−c̃n) −
4 exp (− p̃u(2p + 1)	1(ε)) for the same c in (8) and some c̃ > 0.

Proof This proof generalizes Proposition EC.3 from [13] bounding the sparsity of an S3ONC
solution to bounding the rank of an S3ONC solution. Though the argument is similar, details
are quite different and thus the result is different. Define BR := {X ∈ Sp : σmax(X) ≤ R}.
Define a few events:

E1 := {

(˜X, ˜Zn
1) ∈ BR × Wn : Fn,λ(˜X, ˜Zn

1) ≤ Fn,λ(X∗, ˜Zn
1) + �

}

,

E2 := {˜X ∈ BR : |σ j (˜X)| /∈ (0, aλ) for all j},
E3, p̂ := {

˜X ∈ BR : rk(˜X) = p̂
}

,

where c in E5, p̂ is a universal constant defined to be the same as in (8), p̂ : p̃u ≤ p̂ ≤ p
and (thus p̂ > s by the assumption that p̃u > s). For any (˜X,˜Zn

1) ∈ {(˜X,˜Zn
1) ∈ E1} ∩ {˜X ∈

E2 ∩ E3,p}, where˜Zn
1 = (˜Z1, ...,˜Zn), since ˜X ∈ E3,p ∩ E2, which means that ˜X has p̂-many

non-zero singular values and each must not be within the interval (0, aλ), it holds that

Fn(˜X,˜Zn
1) + p̂Pλ(aλ) ≤ 1

n
Fn(X∗,˜Zn

1) + sPλ(aλ) + �, (37)

Notice that X∗ ∈ BR : rk(X∗) = s < p̂ by Assumption 1. We may obtain that, for all
˜X ∈ E3,p ,

1

n

n
∑

i=1

f (X∗,˜Zi ) − 1

n

n
∑

i=1

f (˜X,˜Zi )

=
[

1

n

n
∑

i=1

f (X∗,˜Zi ) − F(X∗)
]

+
[

F(˜X) − 1

n

n
∑

i=1

f (˜X,˜Zi )

]

+ [

F(X∗) − F(˜X)
]

≤ 2 max
X∈E3,p

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f (X,˜Zi ) − F(X)

∣

∣

∣

∣

∣

+ F(X∗) − F(˜X)

≤ 2 max
X∈E3,p

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f (X,˜Zi ) − F(X)

∣

∣

∣

∣

∣

, (38)

where the last inequality is due to F(X∗) ≤ F(X) for all X ∈ Sp by the definition of X∗.
Define that

E4 := {

(˜X, ˜Zn
1) ∈ BR × Wn : ˜X satisfies S3 ONC (˜Zn

1)
}

E5, p̂ :=
{

˜Zn
1 ∈ Wn : max

X∈BR : rk(X)≤ p̂

∣

∣Fn(X,˜Zn
1) − F(X)

∣

∣ ≤ K√
n

√

2 p̂(2p + 1)

c
	1(ε)

+ K

n
· 2 p̂(2p + 1)

c
	1(ε) + ε

}

,

Now let us examine the following set:

� ={(˜X,˜Zn
1) : (˜X,˜Zn

1) ∈ E1 ∩ E4} ∩ {(˜X,˜Zn
1) : ˜X ∈ E3,p ∩ E2} ∩ {(˜X,˜Zn

1) : ˜Zn
1 ∈ E5, p̂}.

Combined with (37) and (38), � �= ∅ �⇒ ( p̂ − s) · Pλ(aλ) ≤ 2K√
n

√

2 p̂(2p+1)
c 	1(ε) +

2K
n · 2 p̂(2p+1)

c 	1(ε) + 2ε + �, which contradicts with (36) for all p̂ : p̃u ≤ p̂ ≤ p. Now
we recall the definition of XRSAA ∈ BR , which is a solution that satisfies the S3ONC(Zn

1),
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w.p.1., andFn,λ(XRSAA, ˜Zn
1) ≤ Fn,λ(X∗, ˜Zn

1)+�, w.p.1. Invoking Proposition 21, we have
P
[

(XRSAA,Zn
1) ∈ E1 ∩ E4, XRSAA ∈ E2

] = 1. Hence,

0 = P [�] ≥ 1 − P

[

XRSAA /∈ E3,p
]

− P
[

Zn
1 /∈ E5, p̂

]

−
{

1 − P

[

(XRSAA,Zn
1) ∈ E1 ∩ E4, XRSAA ∈ E2

]}

,

for all p̂ : p̃u ≤ p̂ ≤ p. The above then implies that P
[

Zn
1 /∈ E5, p̂

] ≥ P
[

XRSAA ∈ E3,p
]

for all p̂ : p̃u ≤ p̂ ≤ p. Therefore, P[rk(XRSAA) = p̂] ≤ 1 − P
[

Zn
1 ∈ E5, p̂

]

for all
p̂ : p̃u ≤ p̂ ≤ p. Together with Proposition 22, we have that

P[rk(XRSAA) ≤ p̃u − 1] = P[rk(XRSAA) /∈ { p̃u, p̃u + 1, ..., p}]

= 1 − P

⎡

⎣

p
⋃

p̂= p̃u

{rk(XRSAA) = p̂}
⎤

⎦

≥ 1 −
p
∑

p̂= p̃u

P[rk(XRSAA) = p̂]

≥ 1 −
p
∑

p̂= p̃u

(

1 − P
[

Zn
1 ∈ E5, p̂

])

≥ 1 − 2(p − p̃u + 1) exp(−c̃n)

−
p
∑

p̂= p̃u

2 exp (− p̂(2p + 1) · 	1(ε)) . (39)

where c̃ > 0 is some universal constant. Observing that 	1(ε) = ln
(

18·(KC+Cμ)·p·R
ε

)

> 1

by observing that the above (39) involves a geometric sequence, we have

P[rk(XRSAA) ≤ p̃u − 1] ≥1 − 2 exp (− p̃u(2p + 1)	1(ε))

1 − exp (−(2p + 1)	1(ε))
− 2p exp(−c̃n). (40)

Further noting that 2 exp(− p̃u (2p+1)	1(ε))
1−exp(−(2p+1)	1(ε))

≤ 4 exp (− p̃u(2p + 1)	1(ε)), we then have the
desired result. ��
Proposition 24 Let 	1(ε) := ln

(

18·(KC+Cμ)·p·R
ε

)

. Assume that (i) the solution XRSAA sat-

isfies S3ONC(Zn
1) almost surely; (ii)Fn,λ(XRSAA, Zn

1) ≤ Fn,λ(X∗, Zn
1)+� with probability

one; and (iii) for some integer p̃u : p̃u > s, it holds that

p̂ > s + 4K · p̂ · (2p + 1)

cn · Pλ(aλ)
	1(ε) + 2K√

n · Pλ(aλ)

√

2 p̂ · (2p + 1)

c
	1(ε) + � + 2ε

Pλ(aλ)
, (41)

for all p̃ : p̃u ≤ p̃ ≤ p, any � ≥ 0, and any ε ∈ (0, 1]. It then holds that

F(XRSAA) − F(X∗)

≤ 4K · p̂ · (p + 1)

cn
	1(ε) + 2K√

n

√

2 p̂ · (2p + 1)

c
	1(ε) + � + 2ε + sPλ(aλ), (42)

with probability at least P∗ := 1 − 2(p + 1) exp(−c̃n) − 6 exp (− p̃u(2p + 1)	1(ε)) for
some universal constant c̃ > 0.
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Proof We first observe that 	1(ε) := ln
(

18·(KC+Cμ)·p·R
ε

)

≥ ln 36 because p ≥ 1,

KC , Cμ, R ≥ 1 and 0 < ε ≤ 1. By assumption,

Fn,λ(XRSAA, Zn
1) ≤ Fn,λ(X∗, Zn

1) + �,

w.p.1., Pλ(t) ≥ 0 for all t ≥ 0, and rk(X∗) = s, yields that 1
n

∑n
i=1 f (XRSAA, Zi ) ≤

1
n

∑n
i=1 f (X∗, Zi ) + sPλ(aλ) + �, a.s. Furthermore, conditioning on the events that

(a) rk(XRSAA) ≤ p̃u , (b) maxX∈B p̃u ,R

∣

∣
1
n

∑n
i=1 f (X, Zi ) − E

[ 1
n

∑n
i=1 f (X, Zi )

]∣

∣ ≤
K√
n

√

p̃u ·(2p+1)
c 	1(ε) + K

n
p̃u ·(2p+1)

c 	1(ε) + ε, we obtain that F(XRSAA) − F(X∗) ≤
s · Pλ(aλ) + 2K√

n

√

2 p̃u ·(2p+1)
c 	1(ε) + 4K

n
p̃u ·(2p+1)

c 	1(ε) + 2ε + �, a.s. Further invoking
Propositions 22 and 23, we have that both events hold simultaneously with probability at
least as in P∗, which verifiably implies the claimed results. ��

A.1.6 Useful Lemmata

Lemma 25 Under Assumption 4, it holds that, for some universal constant c > 0, with
probability at least 1 − 2 exp(−c · n), it holds that

max
X1,X2∈Sp

∩{X: σmax(X)≤R,
‖X1−X2‖≤τ }

{|Fn(X1,Zn
1) − Fn(X2,Zn

1)|} ≤ (

2KC + Cμ

) · τ.

for any given τ ≥ 0.

Proof This proof follows a closely similar lemma by [22]. Similar proof has also been pro-
vided by [13], but some subtle differences in the problem context present and thus we redo
the the proof herein. By Assumption 4, for some c > 0,

P

(∣

∣

∣

∣

∣

n
∑

i=1

1

n
{C(Zi ) − E[C(Zi )]}

∣

∣

∣

∣

∣

> KC

(

t

n
+
√

t

n

))

≤ 2 exp (−ct) , ∀t ≥ 0.

If we let t := n and observe that E[C(Zi )] ≤ Cμ, we immediately have that

P

(

n
∑

i=1

C(Zi )

n
≤ 2KC + Cμ

)

≤ 1 − 2 exp (−cn) . (43)

If we invoke Assumption 4 again given the event that
{

∑n
i=1

C(Zi )
n ≤ 2KC + Cμ

}

, we have

that for any X1,X2 ∈ Sp ,

max
X1,X2∈Sp

∩{X: σmax(X)≤R,
‖X1−X2‖≤τ }

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f (X1, Zi ) − 1

n

n
∑

i=1

f (X2, Zi )

∣

∣

∣

∣

∣

≤ max
X1,X2∈Sp

∩{X: σmax(X)≤R,
‖X1−X2‖≤τ }

1

n

n
∑

i=1

‖ f (X1, Zi ) − f (X2, Zi )‖

≤ max
X1,X2∈Sp

∩{X: σmax(X)≤R,
‖X1−X2‖≤τ }

1

n

n
∑

i=1

C(Zi )‖X1 − X2‖ ≤ (2KC + Cμ) · τ
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We have the desired result by combining the above with (43). ��
Lemma 26 Under Assumption 4, for all

X1, X2 ∈ Sp : max{σmax(X1), σmax(X2)} ≤ R,

it holds that
∣

∣E[Fn(X1,Zn
1)] − E[Fn(X2,Zn

1)]
∣

∣ ≤ Cμ · ‖X1 − X2‖. (44)

Proof This proof follows a closely similar lemma by [22]. Again, a similar proof has also
been provided by [13], but some subtle differencesmake it necessary to conduct the repetition
herein. As per Assumption 4, it holds that

E
[|Fn(X1,Zn

1) − Fn(X2,Zn
1)|
] ≤ E

[

n
∑

i=1

C(Zi )

n
‖X1 − X2‖

]

.

Due to the convexity of the function | · |, it therefore holds that
∣

∣E
[Fn(X1,Zn

1)
]− E

[Fn(X2,Zn
1)
]∣

∣ ≤ E

[

n
∑

i=1

C(Zi )

n
‖X1 − X2‖

]

= E

[

n
∑

i=1

C(Zi )

n

]

· ‖X1 − X2‖.

Invoking Assumption 4 again, it holds that E
[

∑n
i=1

C(Zi )
n

]

=
∑n

i=1 E[C(Zi )]
n ≤ Cμ for all

i = 1, ..., n, which immediately leads to the desired result. ��

Lemma 27 Denote thatX�1
λ ∈ arg min

X∈S p
Fn(X, Zn

1)+λ ‖X‖∗ , it holds that Fn,λ(X
�1
λ , Zn

1) ≤
Fn,λ(X∗, Zn

1) + λ‖X∗‖∗.

Proof This proof generalizes a similar one in [13] from sparsity-inducing penalty to
low-rankness-inducing penalty; that is, from �1 regularization to nuclear norm-based reg-
ularization. As per Assumption 4, it holds that We first invoke the definition of Pλ to obtain

0 ≤ Pλ(t) =
∫ t

0

[aλ − θ ]+
a

dθ ≤
∫ t

0

aλ

a
dθ = λ · t . (45)

for all t ≥ 0. Secondly, by the definition of X�1
λ ,

Fn(X
�1
λ , Zn

1) + λ‖X�1
λ ‖∗ ≤ Fn(X∗, Zn

1) + λ‖X∗‖∗. (46)

Combining (45) and (46), it holds that

Fn(X
�1
λ , Zn

1) +
p
∑

j=1

Pλ

(

|σ j (X
�1
λ )|
)

≤ Fn(X
�1
λ , Zn

1) +
p
∑

j=1

λ · |σ j (X
�1
λ )|

≤ Fn(X∗, Zn
1) +

p
∑

j=1

Pλ

(|σ j (X∗)|)+ λ‖X∗‖∗,

as desired. ��
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Lemma 28 Let Sr ,R := {X ∈ �p×p : rk(X) ≤ r , σmax(X) ≤ R}. Then, in terms of the

Frobenius norm, there exists an ε-net S̄r obeying |S̄r | ≤
(

9
√
r R
ε

)(2p+1)r
.

Proof The proof is closely similar to Lemma 3.1 of [4] with minor differences. We still
present the proof here for completeness and for ensuring the minor difference would not
result in a gap in our theory. Denote by X := U�V	 the singular value decomposition
(SVD) of a matrix in Sr ,R . Let D be the set of rank-r diagonal matrices with nonnegative
diagonal entries and nuclear norm smaller than R, and thus any matrix within set D has the
Frobenius norm smaller than

√
r · R. We take D̄ be an ε

3 -net (in terns of Frobenius norm) for

D with |D̄| ≤
(

9
√
r R
ε

)r
.

Let Op,r := {U ∈ �p×r : U	U = I }. For the convenience of analysis on Op,r , we may
as well consider ̂Qp,r := {X ∈ �p×r : ‖X‖1,2 ≤ 1} and ‖X‖1,2 = max j ‖X j‖, where X j

denotes the j th column of X . Verifiably, Op,r ⊂ ̂Qp,r . We may create an ε

3
√
r R

-net for ̂Qp,r ,

denoted by Ōp,r , which satisfies that |Ōp,r | ≤ (9
√
r R/ε)pr .

For any X ∈ Sr ,R , one may decompose X and obtain X = U�V	. There exists X̄ =
Ū�̄V̄	 ∈ S̄r ,R with Ū , V̄ ∈ Ōp,r , and �̄ ∈ D̄ such that ‖U − Ū‖1,2 ≤ ε/(3

√
r R), ‖V −

V̄ ‖1,2 ≤ ε/(3
√
r R), and ‖�−�̄‖F ≤ ε/3. This gives ‖X− X̄‖F = ‖U�V	−Ū �̄V̄	‖F =

‖U�V	−Ū�V	+Ū�V	−Ū�̄V	+Ū�̄V	−Ū�̄V̄	‖F ≤ ‖(U−Ū )�V	‖F+‖Ū (�−
�̄)V	‖F + ‖Ū�̄(V − V̄ )‖F . Since V is orthonormal matrix, ‖(U − Ū )�V	‖F = ‖(U −
Ū )�‖F =

√

∑

1≤ j≤r [σ j (X)]2 · ‖Ū j −Uj‖22 ≤
√

‖�‖2F · ‖U − Ū‖21,2 ≤ ε/3, where Uj is

the j th column ofU . By a symmetric argument, wemay also obtain that ‖Ū�̄(V − V̄ )	‖F ≤
ε/3. To bound the second term, we also notice that ‖Ū (� − �̄)V	‖F = ‖� − �̄‖F ≤ ε/3.
Combining the above provides the desired result. ��

A.2 Proof of results concerning the computation of an S3ONC solution

Proof of Theorem 18 To show the closed-form solution.Without loss of generality, we may
reduce (20) into the following problem: For a fixed Y ∈ Sp , solve the minimization problem
of

min
X∈S+

p

G(X) := L

2
‖X − Y‖2F +

p
∑

j=1

Pλ(σ j (X)). (47)

In fact, when Y := X0 − 1
L ∇ f (X0), we recover the exact form of (20).

We will divide the rest of the proof of the closed-form solution into three steps.
Step 1. This step shows a useful inequality σ̂ j /∈ (0, aλ) for all j = 1, ..., p, where σ̂ j is

the optimal solution to (53).
Observe that the optimal solution must satisfy the second-order necessary conditions,

when the second-order derivative exists. In particular, when σ̂ j ∈ (0, aλ), the second-order

necessary condition is written as

[

∂2
[

L
2 (σ j (Y)−σ j)

2+Pλ(σ j )
]

∂σ 2
j

]

σ j=σ̂ j

= L − 1
a ≥ 0. However,

the last inequality here contradicts with the assumption that 1
a > L . This contradiction

indicates that

σ̂ j /∈ (0, a · λ), (48)

as desired in this step.
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Step 2. We will further derive a sequence of equivalent reformulations to (20). These
reformulations will eventually lead to the conclusion that (20) is equivalent to solving a
sequence of one-dimensional problems.

Because Y is symmetric, it admits eigndecomposition Y = Q�YQ−1. By the orthogonal
invariance of the Frobenius norm, (47) is reformulated into

min
X∈S+

p

L

2
‖�Y − Q−1XQ‖2F +

p
∑

j=1

Pλ(σ j (X)). (49)

In view of the results from Step 1 and the fact that Pλ(t) = aλ2

2 for all t ≥ aλ, the reformu-
lation in (49) is equivalent to

min
X∈S+

p

L

2
‖�Y − Q−1XQ‖2F +

p
∑

j=1

aλ2

2
· I(σ j (X) �= 0). (50)

where I(σ j (X) �= 0) is the index function that outputs the value 1 if σ j (X) �= 0 and outputs
0, otherwise.

The optimal solution ̂X is an element of S+
p (that is, ̂X must be symmetric and positive

semidefinite) and thus admits an eigendecomposition. We may verify that ̂X = Q�
̂XQ

−1,
where the same Q is shared by both decompositions. This is because, for any feasible solution
X, we may write Q−1XQ := �X + H , where �X is a diagonal matrix and H is a hollow
matrix, and thus ‖�Y−�X‖2F = ‖�Y−�X‖2F +‖H‖2F . If ‖H‖F �= 0, then one may always
construct a solution that has a smaller objective function value for (50). Therefore, (47) is
equivalently rewritten as

min
�X

{

L

2
‖�Y − �X‖2F +

p
∑

j=1

Pλ(σ j (X)) :

�X is a positive semidefinite and diagonal matrix

}

. (51)

If the optimal solution is�
̂X, then the optimal solution to (47) can be recovered as Q�

̂XQ
−1.

By noticing that both�Y and�
̂X are diagonalmatrices, wemay further reformulate the above

problem into the below:

min
(σ j )

⎧

⎨

⎩

L

2

p
∑

j=1

(

σ j (Y) − σ j
)2 +

p
∑

j=1

Pλ(σ j ) : σ j ≥ 0, ∀ j = 1, ..., p

⎫

⎬

⎭

. (52)

Let σ̂ j , j = 1, ..., p, be the optimal solution. Then, the optimal solution to (47) can be
recovered as Q diag({̂σ j : j = 1, ..., p})Q−1. Furthermore, (52) can be solved by solving a
sequence of one-dimensional optimization problems: For all j = 1, ..., p,

min

{

g(σ j ) := L

2

(

σ j (Y) − σ j
)2 + Pλ(σ j ) : σ j ≥ 0

}

. (53)

This completes Step 1 of our proof. This one-dimensional optimization formulation will be
essential to the rest of the proof.

Step 3.We now start proving the correctness of the claimed closed form solution. We will
consider three different cases.
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• Case 3.1. If σ j (Y) < aλ, we will show below that it must hold that σ̂ j = 0. Suppose the
otherwise; that is, σ̂ j > 0. Then (48) implies that σ̂ j ≥ aλ. Then (recalling g defined in

(53)) g(̂σ j )−g(0) = L
2 (σ j (Y)− σ̂ j )

2+ aλ2

2 − L
2 [σ j (Y)]2 = L

2 σ̂ 2
j −Lσ j (Y) · σ̂ j + aλ2

2 >

L
2 σ̂ 2

j − Laλ · σ̂ j + a2λ2·L
2 = L

2 (̂σ j − aλ)2, where the second from last relationship is
due to σ j (Y) < aλ and aL < 1 by assumption. To summarize, we have shown that
g(̂σ j ) > g(0), which means that we have identified a strictly better solution 0 than a
solution σ̂ j > 0. Further invoking (48) again, we know that the only choice of the optimal
solution is then σ̂ j = 0.

• Case 3.2. If σ j (Y) ≥ aλ, we will show below that σ̂ j = σ j (Y). To that end, we
will first show that σ j (Y) is a better solution than 0. This can be seen by observing

that g(σ j (Y)) − g(0) = aλ2

2 − L
2 · [σ j (Y)]2. Because σ j (Y) ≥ aλ, we know that

g(σ j (Y))−g(0) = aλ2

2 − L
2 a

2 ·λ2 > 0, where the last inequality is due to the assumption
that aL < 1.
Now that σ j (Y) is a better solution than 0, we can further verify the closed form that
σ̂ j = σ j (Y). Because σ̂ j �= 0, by (48), it must hold that σ̂ j ≥ aλ. In such a case, Problem

(52), is equivalent to the optimal solution to min
{

L
2

(

σ j (Y) − σ j
)2 + aλ2

2 : σ j ≥ 0
}

,

which can be further rewritten into min
{

L
2

(

σ j (Y) − σ j
)2 : σ j ≥ 0

}

by removing a

constant term. Therefore, the optimal solution must be σ̂ j = σ(Y).

This then completes the proof of the closed-form solution.
To show the satisfaction of S3ONC. For the second part of the theorem, we observe that

the closed form solution obeys that σ j (̂X) /∈ (0, aλ) for all j . By definition, it is an S3ONC
solution. ��
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