

Impact of Several Low-Effort Cheating-Reduction Methods in a CS1 Class SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

instructors, with strong grades (more As/Bs than Cs/Ds/Fs) and a

low DFW rate (D, F, or withdrawal) usually below 20%. End-of-term

evaluations are positive, usually in the top 20% of all courses on

campus.

One instructor who regularly teaches two sections per year applied

the six low-effort cheating reduction methods in Spring 2021 and

Fall 2021, under an approved protocol by our university’s IRB

(institutional review board).

1. The talk was in Week 4 for 30 minutes, attendance required,

followed by a mandatory questionnaire requiring 100%

correctness. All students participated.

2. The integrity quiz was in Week 3, with 15 multiple choice

questions, 100% correctness required. Example question: “I am

allowed to show my non-working code to a classmate to get

help debugging” (true) or “I am allowed to show my working

code to a struggling classmate” (false). Upon answering, the quiz

system showed further explanations.

3. Students were informed via the syllabus and announcements of

a form to retract program submissions up to one week after

submitting, with no admission of anything, yielding a 0 but no

penalty or referral.

4. A 1-paragraph reminder announcement was posted in the class

learning management system in Week 6.

5. In weeks 3-8, the instructor showed the similarity checker and

student program analysis tools during lecture about 5 times

total, in natural ways like “Let’s see if anyone had similar ways

of solving quiz 3” or “Who volunteers to let us see their code

history for lab 7?”.
6. Help was normalized via syllabus text, pointers to resources,

and frequent reminders by the instructor that getting help is

normal. The instructor also live-coded in lecture and made

mistakes, and praised mistakes made by students as learning

opportunities.

The total instructor/TA time spent on the intervention was about 5

hours the first term, and about 3 hours the second term due to using

already-prepared items.

We compared the two intervention sections with the instructor’s
prior two offerings, Fall 2019 and Spring 2020, -- the “pre-

intervention” sections. The sections’ differed in those 6 methods as

shown in Table 1.

Method Pre-intervention Intervention

1. Integ. talk ~5 min in Wk 1 ~30 min in Wk 4.

2. Integ. quiz None (2-3 questions on
Wk1 syllabus quiz)

15-question Wk3 quiz

3. Allow retract. None Announced & allowed

4. Remind None (beyond perhaps
brief comment)

Wk 6 posted
announcement

5. Show tools Not deliberate, shown 1-2
times

~5 deliberate showings
Wks 3-8

6. Help 1-2 sentences in syllabus Syllabus paragraph +
pointers + freq.
reminders

Table 1: Pre-intervention and intervention class sections

with respect to low-effort cheating reduction methods.

In the intervention section, the instructor was deliberate in not

doing much beyond those six methods, i.e., not making additional

discussion forum posts, or talking extensively about integrity in

later lectures, to aid in determining the impact of those specific low-

effort methods.

We found 12 labs that were identical (among ~70 labs) across the

pre-intervention and intervention terms. Among those, we selected

the 7 that had good solution variability so similarity checking could

detect copying. Table 2 summarizes the lab content, instructor

solution’s lines of code (LOC), and week. The labs spanned weeks

4-8. LOC is the number of lines of code in the instructor’s solution

including blank lines.

Lab LOC Wk

Lab 1: Interstate highway numbers: Output

features like primary/auxiliary, N/S/E/W, etc. 36 4

Lab 2: Seasons: Takes a date as input and outputs

the date’s season. 85 4

Lab 3: Max and min: 3 ints input, output largest

and smallest. 41 5

Lab 4: Leap-year: Given year, write function

returning whether leap year. 40 5

Lab 5: Even/Odd Values in Vector: Reads ints,

outputs if all even, odd, or neither. 58 7

Lab 6: Word Frequencies - functions: Reads a list

of words, outputs the words/freq. 42 8

Lab 7: Contact List: Read list of names and phone

numbers. Lookup num by name. 36 8

Table 2: Summary of selected labs.

4 SUSPECTED CHEATING BEFORE AND
AFTER

We trained a teaching assistant (TA) with 1 year experience to

detect cheating via the zyBooks built-in similarity checker

(simchecker). For all 28 labs (7 labs * 4 terms), the TA was instructed

to focus on pairs reported by the simchecker to have above 9.0

similarity or higher (max is 10.0), with 9.0 chosen from our past

cheating investigation experiences. The TA was told to examine

each pair manually and determine whether the pair’s code was very

likely a case of copying, either from each other or a common online

source. Telltale signs included identical statement selection and

ordering, variable declaration approach (early/late, initialized or

not), variable names, spacing, brace usage, comments, and

anomalies from the class & book style (untaught constructs, highly-

optimized code, strange spellings, etc.). The TA was instructed to

flag any highly-suspected cases, though not 100% sure cheating

occurred. For each lab, the TA reported the % of students that did

the lab who were suspected of copying. The TA spent about 20

hours on the cheating analysis.

488

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Frank Vahid, Kelly Downey, Ashley Pang, and Chelsea Gordon

Figure 2 shows results. Substantial reductions are evident for nearly

all labs, averaging 32% and 29% (avg 30.5%) pre-intervention, and

13% and 10% (avg 11.5%) after.

Figure 2: % of high-similarity students before and after the

intervention. Substantial reductions are seen.

5 AUTOMATED METRICS

We sought automated metrics, to: (1) avoid human bias, (2) detect

some cheating not yielding similar code pairs, and (3) automate

future analyses. We defined two such metrics:

● Median time: zyBooks reports median time per student per

lab. We required all coding be done in the system (no

external IDEs were allowed for labs we examined). The

median is less influenced by outliers than the mean. Copying

code from online, a contractor, or classmate, may result in less

time. Note: [13] found students who copy mostly do so from

the start; only 10-20% copied after trying the lab.

● % of high-similarity students: For a given LA, we run the

simchecker and auto-count the students appearing at least

once with a 0.9 or higher, and divide by the total students who

submitted that lab. [14] used a similar metric, to avoid

instructor bias.

We sought to further verify the time metric. In Fall’21, we

sanctioned 10 students (of ~100) for cheating. Figure 3 plots average

time for all students on Week 6 labs (one of the more challenging

weeks), sorted by time, showing sanctioned students as orange

triangles. The sanctioned students generally appear on the left,

supporting the use of time as a general cheating indicator, and is

consistent with our interviews with sanctioned students who often

state they didn’t have time to work on their programs. (Note: One

of the students near 50 on the x axis was doing the work but

sanctioned for sharing solutions with another student).

To further verify the % high-similarity metric, Figure 4 shows % of

highly-similar students on four Week 6 labs. On specific labs where

students were caught cheating, similarity scores are nearly 100%,

versus 38% for the rest of the class. In fact, those students caught

cheating had higher similarity scores even on labs they weren’t
specifically caught cheating on, averaging 73%, as shown. (For 6.21,

one student had 8.9 similarity, just below our 9.0 cutoff, causing the

80% value in the plot).

Figure 3: Average time for each student on each Week 6 lab.

Students sanctioned for cheating (on any labs, not just in

Week 6) tend to appear to the lower left.

Figure 4: % high-similarity students for 4 Week 6 labs.

Neither metric is a smoking gun -- some low-time students are fast

coders, and some similarity is due to coincidence, allowed

collaboration, or low-variability solutions. But, the data suggests the

metrics are useful as general indicators.

Our hypothesis was this: The intervention sections would see an

increase in median time, and decrease in % of high-similarity students.

Both differences might suggest students were working more

independently on their programs, and resorting less to cheating.

6 RESULTS USING AUTOMATED METRICS

Figure 5 shows time for pre-intervention and intervention terms.

Figure 6 shows % high-similarity students. Median time increased,

as hypothesized. The % dropped, also as hypothesized. Median time

for pre-intervention terms was 6.7 and 7.3, vs. 10.8 and 11 for

intervention terms, averaging 7 for pre-intervention and 10.9 for

intervention (56% increase). % of high-similarity students was 40%

and 37% for pre-intervention terms, vs. 20% and 20% for

intervention terms, averaging 38.5% vs. 20% (48% decrease).

7 RESULTS BY A SECOND INSTRUCTOR

Given the positive results obtained in Spring & Fall 2021, we enlisted

a second instructor to attempt the intervention in Spring 2022 as

well. That instructor was the “main” instructor of our CS1, usually

teaching 2-3 100-student sections each term, and leading other

instructors who teach additional sections (3-5 sections are taught

each term).

489

Impact of Several Low-Effort Cheating-Reduction Methods in a CS1 Class SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

Figure 5: Median time, before and after intervention. Time
rose as hypothesized.

Figure 6: % of high-similarity students, before and after
intervention. % dropped, as hypothesized.

That instructor applied the intervention in Spring 2022 for two

~100-student sections. We compared that instructor’s “pre-

intervention” Fall 2021 and Winter 2022 terms with their Spring

2022 intervention term. The instructor assigned about 50 LAs across

those terms; we compared LAs that were identical in all three terms,

and that had variability in their solutions. Labs 1, 3, 4, and 7 were

identical to those used earlier in this paper, but the instructor didn’t
use the other three labs; we replaced them with other labs the

instructor did use. Instructor-solution size and approximate week,

written as (size, week), were : (36, 4), (24, 6), (36, 6), (45, 6), (35,7),

(38,7), and (39, 9). Figures 7 and 8 show results. As hypothesized,

time rose, from 13 min (avg) to 24 minutes, and % dropped, from

55.5% (avg) to 19%.

Figure 7: Median time, second instructor. Time rose as
hypothesized. Note: Some labs differ from earlier.

Figure 8: % of high-similarity students, second instructor.
The % dropped as hypothesized.

8 STATISTICAL SIGNIFICANCE

A linear mixed effects model was fitted to the data for each

instructor separately, so that the effect of our intervention could be

estimated while controlling for specific labs. The dependent variable

was the log transformation of minutes spent, as the residuals of raw

minutes spent violated the assumption of normality. We included

lab activity as a nested random effect within academic term, to

control for the varied difficulty of labs. For the first instructor, a t-

test using Satterthwaite’s method revealed a significant effect of

condition (t(1,2834) = 6.513, p < .0001). Cohen’s d was calculated in

accordance with [20] to obtain the partial effect size (d=.24). For the

second instructor, a t-test using Satterthwaite’s method revealed a

significant effect of condition (t(1,5978) = 6.059, p < .0001). Cohen’s
d was calculated to obtain the partial effect size (d=.72).

For the percentage of high-similarity students metric, a generalized

linear mixed effects model with a Poisson distribution was fitted to

the data. The dependent variable was the normalized count of high-

similarity students in each lab. We included lab activity as a nested

random effect within academic term, to control for the varied

difficulty of labs. We observed a significant effect of condition for

the first instructor (z(1,28) = -8.945, p < .0001, Cohen’s d=1.2). We

observed a significant effect of condition for the second instructor

(z(1,20) = -14.37, p < .0001, Cohen’s d=2.1).

9 DISCUSSION

Another explanation of the data could be that students -- having

been told instructors would be looking for cheating, could see a

history of runs, and could run a similarity checker -- did fake runs

to increase time, and modified code to beat the similarity checker.

However, the TA’s manual analysis, coupled with the instructor

examining code, found most code exhibited expected student

development processes. We did find a handful of students in the

intervention classes who were deemed cheating, who seemed to try

(unsuccessfully) to beat the similarity checker by modifying

variable names and spacing (horizontal and vertical) -- perhaps not

realizing that these changes do not impact the similarity checker.

Our interventions introduced six methods all at once. Ideally, the

impact of each would be known, but such isolation did not seem

490

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Frank Vahid, Kelly Downey, Ashley Pang, and Chelsea Gordon

feasible, requiring running dozens of intervention sections to create

sufficient ability to analyze the impact of each method (i.e., of each

parameter, per experimental design techniques [21]). Most schools

don’t have enough sections or students for that. Also, we suspect

doing just one method would have less impact; the collection may

be more powerful on the student’s perception that “This class

doesn’t allow cheating,” with the sum being greater than the parts.

Also, since all six methods only required a few hours total, we were

not compelled to prune methods. But, learning the impact of each

method may be future work.

We chose the six methods after studying cheating-reduction

research, conversing with instructors about cheating reduction,

attending conference sessions on cheating reduction (such as a

birds-of-a-feather session at the SIGCSE conference [22] a few years

earlier, and integrity panels involving instructors and students),

participating on our campus’ academic integrity committee and

learning of techniques from committee members, and learning from

our own teaching experiences over the past decade. We do not claim

those six methods are the best. Rather, our goal was to determine if

some set of low-effort methods could have much of an impact, and

it seems that they can.

The interventions can be used in any class whether using zyBooks

or not. The “Show tools” item requires some cheating-detection

tools to be used (they are built into zyBooks).

Upon reflection, we wish we had included a seventh method, of

accepting late LA submissions with a small penalty, or of allowing

students to make up missed LAs. While being more effort than the

other six methods, accepting lates / makeups is still relatively low

effort, and its reduction of “pressure” around deadlines may help.

We hope to add that method in future work.

A concern many instructors have is that focusing on cheating may

hurt their end-of-term student evaluation scores. Thus, for interest

(and not part of the main results of this paper, since evaluation

scores can depend on numerous other factors), we report the

evaluation scores of the first intervention instructor, shown as:

instructor score / course score. Anything above 4.0 is generally

good; our CS department average is usually 4.3-4.4:

● Pre-intervention

○ Spring 2019: 4.82 / 4.64

○ Fall 2021: 4.85 / 4.76

● Intervention

○ Spring 2020: 4.38 / 4.29

○ Fall 2021: 4.23 / 4.26

The intervention terms scores were pulled down by 3 or 4 “1” scores

(not present pre-intervention) and some comments along the lines

of: Maybe if the instructor focused more on teaching and less on

cheating, we wouldn’t need to cheat. The drop suggests instructors

wishing to keep strong evaluations may need to take special care.

Since collecting data for this paper, the instructor taught another

term (Spring 2022) using the same interventions but taking extra

care to not over-emphasize cheating. Student time and similarity

data were consistent with the other intervention terms, but

evaluation scores rose to 4.65 / 4.48. This gives hope that the

cheating-reduction methods can be applied while maintaining good

evaluation scores, but future focused work would be needed for

more robust results on evaluation score impacts.

10 CONCLUSIONS

We examined the impact on student behavior when incorporating

six low-effort cheating-reduction methods into a CS1 class. Via

manual analysis and two automated metrics, we found those

methods appear to have a positive impact on reducing cheating and

increasing earnest behavior. As such, CS1 instructors (and

instructors of other CS courses) may wish to consider incorporating

some or all of the methods, requiring about 5 hours in a first term,

and just a couple hours in subsequent terms. Not all cheating was

eliminated, and thus future work remains to continue to try to

reduce cheating, subject to available resources.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 2111323.

REFERENCES
[1] Albluwi I. Plagiarism in programming assessments: a systematic review. ACM

Transactions on Computing Education (TOCE). 2019 Dec 9;20(1):1-28.

[2] Shaw, M., Jones, A., Knueven, P., McDermott, J., Miller, P. and Notkin, D., 1980.
Cheating policy in a computer science department. ACM SIGCSE Bulletin, 12(2),
pp.72-76.

[3] O’Malley M, Roberts TS. Plagiarism on the rise? Combating contract cheating in
science courses. International Journal of Innovation in Science and Mathematics
Education. 2012 Nov 15;20(4).

[4] Cendrowski H. and Martin J. 2015. The Fraud Triangle. John Wiley 8 Sons, Ltd,
Chapter 5, 41--46.

[5] Doebling A, Kazerouni AM. Patterns of Academic Help-Seeking in Undergraduate
Computing Students. In21st Koli Calling International Conference on Computing
Education Research 2021 Nov 18 (pp. 1-10).

[6] Williams L, Upchurch RL. In support of student pair-programming. ACM SIGCSE
Bulletin. 2001 Feb 1;33(1):327-31.

[7] Urness T. Assessment using peer evaluations, random pair assignment, and
collaborative programing in CS1. Journal of Computing Sciences in Colleges. 2009
Oct 1;25(1):87-93.

[8] Simon. 2017. Designing programming assignments to reduce the likelihood of
cheating. In Proceedings of the 19th Australasian Computing Education
Conference (ACE’17). ACM, New York, NY, 42–47.

[9] Sheard J, Butler M, Falkner K, Morgan M, Weerasinghe A. Strategies for
maintaining academic integrity in first-year computing courses. In Proceedings of
the 2017 ACM Conference on Innovation and Technology in Computer Science
Education 2017 Jun 28 (pp. 244-249).

[10] Ernest Ferguson. 1987. Conference grading of computer programs. In Proceedings
of the 18th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE’87). ACM, New York, NY, 361–365.

[11] Sukhodolsky J. How to Eliminate Cheating from an Introductory Computer
Programming Course. International Journal of Computer Science Education in
Schools. 2017 Oct 31;1(4):25-34.

[12] Pawelczak D. Benefits and drawbacks of source code plagiarism detection in
engineering education. In2018 IEEE Global Engineering Education Conference
(EDUCON) 2018 Apr 17 (pp. 1048-1056). IEEE.

[13] N. Alzahrani and F. Vahid. Detecting Possible Cheating In Programming Courses
Using Drastic Code Change. ASEE 2022.

[14] Mason, T., Gavrilovska, A. and Joyner, D.A., 2019, February. Collaboration versus
cheating: Reducing code plagiarism in an online MS computer science program. In
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (pp. 1004-1010).

[15] Malan DJ, Yu B, Lloyd D. Teaching academic honesty in CS50. InProceedings of the
51st ACM Technical Symposium on Computer Science Education 2020 Feb 26 (pp.
282-288).

[16] Schleimer S, Wilkerson, DS, Aiken A. Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference
on Management of data (pp. 76-85).

[17] Novak M, Joy M, Kermek D. Source-code similarity detection and detection tools
used in academia: a systematic review. ACM Transactions on Computing
Education (TOCE). 2019 May 21;19(3):1-37.

491

Impact of Several Low-Effort Cheating-Reduction Methods in a CS1 Class SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

[18] Lewis CM. Twelve tips for creating a culture that supports all students in
computing. ACM Inroads. 2017 Oct 27;8(4):17-20.

[19] zyBooks, www.zybooks.com, 2022.
[20] Westfall J, Kenny DA, Judd CM. Statistical power and optimal design in

experiments in which samples of participants respond to samples of stimuli.
Journal of Experimental Psychology: General. 2014 Oct;143(5):2020.

[21] Ryan TP, Morgan JP. Modern experimental design. Journal of Statistical Theory and
Practice. 2007 Dec 1;1(3-4):501-6.

[22] SIGCSE 2018 birds-of-a-feather group. GitHub, Tutors, Relatives, and Friends:
Combating the Wide Web of Plagiarism: the Discussion Continues.
https://sigcse2018.sigcse.org.

492

