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instructors, with strong grades (more As/Bs than Cs/Ds/Fs) and a 

low DFW rate (D, F, or withdrawal) usually below 20%. End-of-term 

evaluations are positive, usually in the top 20% of all courses on 

campus. 

One instructor who regularly teaches two sections per year applied 

the six low-effort cheating reduction methods in Spring 2021 and 

Fall 2021, under an approved protocol by our university’s IRB 

(institutional review board).  

1. The talk was in Week 4 for 30 minutes, attendance required, 

followed by a mandatory questionnaire requiring 100% 

correctness. All students participated. 

2. The integrity quiz was in Week 3, with 15 multiple choice 

questions, 100% correctness required. Example question: “I am 

allowed to show my non-working code to a classmate to get 

help debugging” (true) or “I am allowed to show my working 

code to a struggling classmate” (false). Upon answering, the quiz 

system showed further explanations. 

3. Students were informed via the syllabus and announcements of 

a form to retract program submissions up to one week after 

submitting, with no admission of anything, yielding a 0 but no 

penalty or referral.  

4. A 1-paragraph reminder announcement was posted in the class 

learning management system in Week 6. 

5. In weeks 3-8, the instructor showed the similarity checker and 

student program analysis tools during lecture about 5 times 

total, in natural ways like “Let’s see if anyone had similar ways 

of solving quiz 3” or “Who volunteers to let us see their code 

history for lab 7?”. 
6. Help was normalized via syllabus text, pointers to resources, 

and frequent reminders by the instructor that getting help is 

normal. The instructor also live-coded in lecture and made 

mistakes, and praised mistakes made by students as learning 

opportunities.  

The total instructor/TA time spent on the intervention was about 5 

hours the first term, and about 3 hours the second term due to using 

already-prepared items.  

We compared the two intervention sections with the instructor’s 
prior two offerings, Fall 2019 and Spring 2020, -- the “pre-

intervention” sections. The sections’ differed in those 6 methods as 

shown in Table 1.  

Method Pre-intervention Intervention 

1. Integ. talk ~5 min in Wk 1 ~30 min in Wk 4.  

2. Integ. quiz None (2-3 questions on 
Wk1 syllabus quiz) 

15-question Wk3 quiz  

3. Allow retract. None Announced & allowed 

4. Remind None (beyond perhaps 
brief comment) 

Wk 6 posted 
announcement 

5. Show tools Not deliberate, shown 1-2 
times 

~5 deliberate showings 
Wks 3-8 

6. Help 1-2 sentences in syllabus Syllabus paragraph + 
pointers + freq. 
reminders 

Table 1: Pre-intervention and intervention class sections 

with respect to low-effort cheating reduction methods.  

In the intervention section, the instructor was deliberate in not 

doing much beyond those six methods, i.e., not making additional 

discussion forum posts, or talking extensively about integrity in 

later lectures, to aid in determining the impact of those specific low-

effort methods. 

We found 12 labs that were identical (among ~70 labs) across the 

pre-intervention and intervention terms. Among those, we selected 

the 7 that had good solution variability so similarity checking could 

detect copying. Table 2 summarizes the lab content, instructor 

solution’s lines of code (LOC), and week. The labs spanned weeks 

4-8. LOC is the number of lines of code in the  instructor’s solution 

including blank lines. 

Lab LOC Wk 

Lab 1: Interstate highway numbers: Output 

features like primary/auxiliary, N/S/E/W, etc. 36 4 

Lab 2: Seasons: Takes a date as input and outputs 

the date’s season. 85 4 

Lab 3: Max and min: 3 ints input, output largest 

and smallest.  41 5 

Lab 4: Leap-year: Given year, write function 

returning whether leap year. 40 5 

Lab 5: Even/Odd Values in Vector: Reads ints, 

outputs if all even, odd, or neither. 58 7 

Lab 6: Word Frequencies - functions: Reads a list 

of words, outputs the words/freq. 42 8 

Lab 7: Contact List: Read list of names and phone 

numbers. Lookup num by name. 36 8 

Table 2: Summary of selected labs.  

4 SUSPECTED CHEATING BEFORE AND 
AFTER  

We trained a teaching assistant (TA) with 1 year experience to 

detect cheating via the zyBooks built-in similarity checker 

(simchecker). For all 28 labs (7 labs * 4 terms), the TA was instructed 

to focus on pairs reported by the simchecker to have above 9.0 

similarity or higher (max is 10.0), with 9.0 chosen from our past 

cheating investigation experiences. The TA was told to examine 

each pair manually and determine whether the pair’s code was very 

likely a case of copying, either from each other or a common online 

source. Telltale signs included identical statement selection and 

ordering, variable declaration approach (early/late, initialized or 

not), variable names, spacing, brace usage, comments, and 

anomalies from the class & book style  (untaught constructs, highly-

optimized code, strange spellings, etc.). The TA was instructed to 

flag any highly-suspected cases, though not 100% sure cheating 

occurred. For each lab, the TA reported the % of students that did 

the lab who were suspected of copying. The TA spent about 20 

hours on the cheating analysis.  

488



SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada                             Frank Vahid, Kelly Downey, Ashley Pang, and Chelsea Gordon 

 

 

Figure 2 shows results. Substantial reductions are evident for nearly 

all labs, averaging 32% and 29% (avg 30.5%) pre-intervention, and 

13% and 10% (avg 11.5%) after. 

 

Figure 2: % of high-similarity students before and after the 

intervention. Substantial reductions are seen.   

5 AUTOMATED METRICS 

We sought automated metrics, to: (1) avoid human bias, (2) detect 

some cheating not yielding similar code pairs, and (3) automate 

future analyses. We defined two such metrics: 

● Median time: zyBooks reports median time per student per 

lab. We required all coding be done in the system  (no 

external IDEs were allowed for labs we examined). The 

median is less influenced by outliers than the mean. Copying 

code from online, a contractor, or classmate, may result in less 

time. Note: [13] found students who copy mostly do so from 

the start; only 10-20% copied after trying the lab. 

● % of high-similarity students: For a given LA, we run the 

simchecker and auto-count the students appearing at least 

once with a 0.9 or higher, and divide by the total students who 

submitted that lab. [14] used a similar metric, to avoid 

instructor bias.  

We sought to further verify the time metric. In Fall’21, we 

sanctioned 10 students (of ~100) for cheating. Figure 3 plots average 

time for all students on Week 6 labs (one of the more challenging 

weeks), sorted by time, showing sanctioned students as orange 

triangles. The sanctioned students generally appear on the left, 

supporting the use of time as a general cheating indicator, and is 

consistent with our interviews with sanctioned students who often 

state they didn’t have time to work on their programs. (Note: One 

of the students near 50 on the x axis was doing the work but 

sanctioned for sharing solutions with another student).  

To further verify the % high-similarity metric, Figure 4 shows % of 

highly-similar students on four Week 6 labs. On specific labs where 

students were caught cheating, similarity scores are nearly 100%, 

versus 38% for the rest of the class. In fact, those students caught 

cheating had higher similarity scores even on labs they weren’t 
specifically caught cheating on, averaging 73%, as shown. (For 6.21, 

one student had 8.9 similarity, just below our 9.0 cutoff, causing the 

80% value in the plot).  

 

 

Figure 3: Average time for each student on each Week 6 lab. 

Students sanctioned for cheating (on any labs, not just in 

Week 6) tend to appear to the lower left. 

Figure 4: % high-similarity students for 4 Week 6 labs. 

Neither metric is a smoking gun -- some low-time students are fast 

coders, and some similarity is due to coincidence, allowed 

collaboration, or low-variability solutions. But, the data suggests the 

metrics are useful as general indicators. 

Our hypothesis was this: The intervention sections would see an 

increase in median time, and decrease in % of high-similarity students. 

Both differences might suggest students were working more 

independently on their programs, and resorting less to cheating. 

6 RESULTS USING AUTOMATED METRICS 

Figure 5 shows time for pre-intervention and intervention terms. 

Figure 6 shows % high-similarity students. Median time increased, 

as hypothesized. The % dropped, also as hypothesized. Median time 

for pre-intervention terms was 6.7 and 7.3, vs. 10.8 and 11 for 

intervention terms, averaging 7 for pre-intervention and 10.9 for 

intervention (56% increase). % of high-similarity students was 40% 

and 37% for pre-intervention terms, vs. 20% and 20% for 

intervention terms, averaging 38.5% vs. 20% (48% decrease). 

7 RESULTS BY A SECOND INSTRUCTOR 

Given the positive results obtained in Spring & Fall 2021, we enlisted 

a second instructor to attempt the intervention in Spring 2022 as 

well. That instructor was the “main” instructor of our CS1, usually 

teaching 2-3 100-student sections each term, and leading other 

instructors who teach additional sections (3-5 sections are taught 

each term). 
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Figure 5: Median time, before and after intervention. Time 
rose as hypothesized. 

 

Figure 6: % of high-similarity students, before and after 
intervention. % dropped, as hypothesized.   

That instructor applied the intervention in Spring 2022 for two 

~100-student sections. We compared that instructor’s “pre-

intervention” Fall 2021 and Winter 2022 terms with their Spring 

2022 intervention term. The instructor assigned about 50 LAs across 

those terms; we compared LAs that were identical in all three terms, 

and that had variability in their solutions. Labs 1, 3, 4, and 7 were 

identical to those used earlier in this paper, but the instructor didn’t 
use the other three labs; we replaced them with other labs the 

instructor did use. Instructor-solution size and approximate week, 

written as (size, week), were : (36, 4), (24, 6), (36, 6), (45, 6), (35,7), 

(38,7), and (39, 9). Figures 7 and 8 show results. As hypothesized, 

time rose, from 13 min (avg) to 24 minutes, and % dropped, from 

55.5% (avg)  to 19%.  

 

Figure 7: Median time, second instructor. Time rose as 
hypothesized. Note: Some labs differ from earlier. 

 

 

Figure 8: % of high-similarity students, second instructor. 
The % dropped as hypothesized.   

8 STATISTICAL SIGNIFICANCE 

A linear mixed effects model was fitted to the data for each 

instructor separately, so that the effect of our intervention could be 

estimated while controlling for specific labs. The dependent variable 

was the log transformation of minutes spent, as the residuals of raw 

minutes spent violated the assumption of normality. We included 

lab activity as a nested random effect within academic term, to 

control for the varied difficulty of labs. For the first instructor, a t-

test using Satterthwaite’s method revealed a significant effect of 

condition (t(1,2834) = 6.513, p < .0001). Cohen’s d was calculated in 

accordance with [20] to obtain the partial effect size (d=.24). For the 

second instructor, a t-test using Satterthwaite’s method revealed a 

significant effect of condition (t(1,5978) = 6.059, p < .0001). Cohen’s 
d was calculated to obtain the partial effect size (d=.72). 

For the percentage of high-similarity students metric, a generalized 

linear mixed effects model with a Poisson distribution was fitted to 

the data. The dependent variable was the normalized count of high-

similarity students in each lab. We included lab activity as a nested 

random effect within academic term, to control for the varied 

difficulty of labs. We observed a significant effect of condition for 

the first instructor (z(1,28) = -8.945, p < .0001, Cohen’s d=1.2). We 

observed a significant effect of condition for the second instructor 

(z(1,20) = -14.37, p < .0001, Cohen’s d=2.1). 

9 DISCUSSION 

Another explanation of the data could be that students -- having 

been told instructors would be looking for cheating, could see a 

history of runs, and could run a similarity checker -- did fake runs 

to increase time, and modified code to beat the similarity checker. 

However, the TA’s manual analysis, coupled with the instructor 

examining code, found most code exhibited expected student 

development processes. We did find a handful of students in the 

intervention classes who were deemed cheating, who seemed to try 

(unsuccessfully) to beat the similarity checker by modifying 

variable names and spacing (horizontal and vertical) -- perhaps not 

realizing that these changes do not impact the similarity checker.  

Our interventions introduced six methods all at once. Ideally, the 

impact of each would be known, but such isolation did not seem 
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feasible, requiring running dozens of intervention sections to create 

sufficient ability to analyze the impact of each method (i.e., of each 

parameter, per experimental design techniques [21]). Most schools 

don’t have enough sections or students for that. Also, we suspect 

doing just one method would have less impact; the collection may 

be more powerful on the student’s perception that “This class 

doesn’t allow cheating,” with the sum being greater than the parts. 

Also, since all six methods only required a few hours total, we were 

not compelled to prune methods. But, learning the impact of each 

method may be future work. 

We chose the six methods after studying cheating-reduction 

research, conversing with instructors about cheating reduction, 

attending conference sessions on cheating reduction (such as a 

birds-of-a-feather session at the SIGCSE conference [22] a few years 

earlier, and integrity panels involving instructors and students), 

participating on our campus’ academic integrity committee and 

learning of techniques from committee members, and learning from 

our own teaching experiences over the past decade. We do not claim 

those six methods are the best. Rather, our goal was to determine if 

some set of low-effort methods could have much of an impact, and 

it seems that they can.  

The interventions can be used in any class whether using zyBooks 

or not. The “Show tools” item requires some cheating-detection 

tools to be used (they are built into zyBooks).  

Upon reflection, we wish we had included a seventh method, of 

accepting late LA submissions with a small penalty, or of allowing 

students to make up missed LAs. While being more effort than the 

other six methods, accepting lates / makeups is still relatively low 

effort, and its reduction of “pressure” around deadlines may help. 

We hope to add that method in future work.   

A concern many instructors have is that focusing on cheating may 

hurt their end-of-term student evaluation scores. Thus, for interest 

(and not part of the main results of this paper, since evaluation 

scores can depend on numerous other factors), we report the 

evaluation scores of the first intervention instructor, shown as: 

instructor score / course score. Anything above 4.0 is generally 

good; our CS department average is usually 4.3-4.4:   

● Pre-intervention  

○ Spring 2019: 4.82 / 4.64 

○ Fall 2021: 4.85 / 4.76 

● Intervention 

○ Spring 2020: 4.38 / 4.29 

○ Fall 2021: 4.23 / 4.26 

The intervention terms scores were pulled down by 3 or 4 “1” scores 

(not present pre-intervention) and some comments along the lines 

of: Maybe if the instructor focused more on teaching and less on 

cheating, we wouldn’t need to cheat. The drop suggests instructors 

wishing to keep strong evaluations may need to take special care. 

Since collecting data for this paper, the instructor taught another 

term (Spring 2022) using the same interventions but taking extra 

care to not over-emphasize cheating. Student time and similarity 

data were consistent with the other intervention terms, but 

evaluation scores rose to 4.65 / 4.48. This gives hope that the 

cheating-reduction methods can be applied while maintaining good 

evaluation scores, but future focused work would be needed for 

more robust results on evaluation score impacts.  

10 CONCLUSIONS 

We examined the impact on student behavior when incorporating 

six low-effort cheating-reduction methods into a CS1 class. Via 

manual analysis and two automated metrics, we found those 

methods appear to have a positive impact on reducing cheating and 

increasing earnest behavior. As such, CS1 instructors (and 

instructors of other CS courses) may wish to consider incorporating 

some or all of the methods, requiring about 5 hours in a first term, 

and just a couple hours in subsequent terms. Not all cheating was 

eliminated, and thus future work remains to continue to try to 

reduce cheating, subject to available resources. 
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