Impact of Several Low-Effort Cheating-Reduction
Methods in a CS1 Class

Frank Vahid

Computer Science and Engineering
University of California, Riverside
Riverside, California, USA

Kelly Downey
Computer Science and Engineering

University of California, Riverside
Riverside, California, USA

Ashley Pang
Computer Science and Engineering

University of California, Riverside
Riverside, California, USA

vahid@cs.ucr.edu kldowney@ucr.edu apang024@ucr.edu
Also with zyBooks
Chelsea Gordon
zyBooks
Campbell, California, USA
chelsea.gordon@zybooks.com

ABSTRACT KEYWORDS
Cheating in introductory programming classes (CS1) is a well- CS1, teaching, plagiarism, cheating, academic integrity,
known problem. Various methods have been suggested to reduce programming
cheating, but many are time-consuming, resource intensive, or
don’t scale to large classes. We introduced a class intervention ACM Reference format:

having 6 low-effort commonly-suggested methods to reduce
cheating: (1) Discussing academic integrity for 20-30 minutes,
several weeks into the term, (2) Requiring an integrity quiz with
explicit do’s and don’ts, (3) Allowing students to retract program
submissions, (4) Reminding students mid-term about integrity and
consequences of getting caught, (5) Showing instructor tools in class
(including a similarity checker, statistics on time spent, and access
to a student’s full coding history), (6) Normalizing help and pointing
students to help resources. Via manual evaluation of similarity
checker results on 7 held-constant labs with one instructor teaching
100-student sections, for two pre-intervention and two intervention
sections, suspected-cheating reduced 62% (30.5% down to 11.5%).
Because manual evaluation could be biased and is time consuming,
we developed two automated coding-behavior metrics per lab --
time spent programming, and % of students with highly-similar
code -- that may suggest how much cheating is happening. Time
spent increased by 56% (7 min to 10.9 min), and % of students with
highly-similar code dropped 48% (38.5% to 20%). We later repeated
the intervention with a second instructor and different labs and
achieved similar (in fact, even stronger) results, with time rising 84%
(13 min to 24 minutes) and % dropping 66% (55.5% to 19%). All
findings were statistically significant with p < 0.0001.

CCS CONCEPTS

« Social and professional topics - Professional topics - Computing
education - Computing education programs - Computer science
education - CS1

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada.
© 2023 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9431-4/23/03. https://doi.org/10.1145/3545945.3569731

This work is licensed under a Creative Commons
Attribution International 4.0 License.

486

Frank Vahid, Kelly Downey, Ashley Pang and Chelsea Gordon. 2023. Impact
of Several Low-Effort Cheating-Reduction Methods in a CS1 Class. In
Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2023), March 15--18, 2023, Toronto, ON, Canada.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3545945.3569731

1 INTRODUCTION

Cheating programming assignments introductory
programming classes (aka CS1) is a well-known problem [1, 2]. The
temptations provided by websites dedicated to sharing class
content, low-cost help/tutoring sites, and anonymous
communication with classmates via real-time apps like Discord or

on in

GroupMe exacerbate the problem [3]. We sought cheating reducing
methods that wouldn’t require extensive resources, hours, or class
redesigns, i.e., “low effort” methods.

We define cheating as a student submitting code that is not their
own, typically by copying from a classmate or website (GitHub,
Chegg, CourseHero, Quizlet, Wyzant, etc.), or by having someone
write their code (friend, contractor, etc.), in a way that violates the
class’ policies.

Albluwi [1] proposed a framework from the field of fraud
deterrence, namely the Fraud Triangle [4], to evaluate cheating
reduction methods. Under the framework, three items are needed
for cheating to occur:

e Pressure (Press.): Students need a good grade, and cannot (or
are unwilling to) achieve the grade through non-cheating
means.

e Opportunity (Opp.): Students have access to illicit working
code, and think they won’t be caught.

e Rationalization (Rat.): Most students don’t see themselves as
cheaters, so justify their behavior. Ex: “I'm not learning from

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

»

this task”, “Everyone else is copying”, “Professionals copy all
the time”, “The expectations are unreasonable”, etc.

Many “high-effort” cheating-reduction methods exist. Examples
(and the Fraud Triangle side addressed) include:

o (Press.) Extensive help, days/nights/weekends, via office
hours, free tutors / learning assistants, rapid response to
discussion posts or emails, etc. [5]

o (Press.) Pair programming [6, 7]

o (Opp.) New programming assignments each term [1, 8]

o (Opp.) Auto-randomized assignments so each student’s task is
unique (typically auto-graded too)

o (Opp.) “Authentic assessments” wherein each student does a
custom assignment [1, 9]

e (Opp.) More proctored assessments [9]

e (Opp.) 1-on-1 grading with the student or frequent progress
checks [10, 11]

e (Opp.) Heavy plagiarism detection use [12]

Because instructors often don’t have the time or resources to apply
those methods extensively throughout a course, we sought to know:
Is there a set of “low-effort” methods that can be applied with no
substantial class redesign, and little time from an instructor (a few
hours per term), that reduce cheating? We describe several low-effort
methods and summarize our experiences illustrating their impact.

2 LOW-EFFORT CHEATING-REDUCTION
METHODS

We selected numerous low-effort cheating-reduction methods from
those proposed by various instructors and CS education
researchers. We applied six as a class intervention, in Figure 1.

Normalize >
help "
Allow sub >
retraction Show .
tools "
Integrity talk +
: questionnaire
Integrity : Reminder post
quiz - :
| | | | | | I | | | | »

I I I I I I I I I I

1 2 345 6 7 8 910 Week

T Ll

Figure 1: The intervention, consisting of six low-effort
methods, in a 10-week term.

1. Having an academic integrity talk: This method addresses
rationalization by helping students see the class’ importance, the
professor’s reasonableness, and that writing code is different than
understanding/modifying code. It addresses opportunity by
clarifying what is a violation, noting violations will be sought,
explaining similar code is not normal and tools easily detect
copying, noting that students caught cheating get stiff academic
consequernces, etc.

487

Frank Vahid, Kelly Downey, Ashley Pang, and Chelsea Gordon

2. Giving an integrity quiz: Some instructors require 100% on an
integrity quiz, whose questions explicitly cover what is allowed and
not allowed. Such a quiz ensures collaboration policies are
understood; often students don’t know what is cheating. This
method addresses rationalization by making it harder for students
to justify cheating (especially via “I thought it was OK”). The
method may address opportunity by making cheating detection
efforts and consequences clear. In previous work, 1 and 2 were
shown to decrease cheating in an online masters CS course [14].

3. Allowing students to retract submissions: Malan [15] notes much
cheating occurs in panicked desperation before a deadline, so allows
students to retract submissions (via a “regret clause”). Doing so
helps with pressure. Students may have a better perspective after a
deadline.

4. Reminding students about cheating: A reminder may help with
rationalization (reminding students of reasoning) and opportunity
(reminding of getting caught). A tradeoff exists with creating a state
of fear in students, so such a reminder might just be a simple
discussion forum post or 5 minute talk in lecture.

5. Showing tools: Although instructors may warn students that a
similarity checker like MOSS [16][17] will be run, students often
don’t believe it, or don’t realize the tool’s power. Showing tools in
class can help address opportunity, helping students realize they are
likely to get caught.

6. Normalizing help: Students in intro programming courses may not
realize that needing help is normal [18]. Instructors can remind
students that help is normal. Syllabi can point to help resources like
office hours, tutoring services, a lab where students can ask
questions, an online discussion forum, etc. This method addresses
pressure since students getting help may not get desperate. It can
address rationalization by making it harder to dismiss the professor
as unreasonable.

3 CS1 AND THE INTERVENTION

Our CS1 is at a large public state university denoted as an “R1”
(research active), offered every 10-week quarter to 300-500 students
(half computing majors, half in other science/engineering majors
that require CS1), via ~100-student sections, with two instructor-led
80-min lecture sessions and one teaching-assistant-led 110-minute
lab session per week, in C++. The course uses a zyBook [19], with
weekly: before-lecture interactive readings having ~100 learning
questions (Participation Activities or PAs), ~20 code reading or
writing homework problems (Challenge Activities or CAs), and 5-8
weekly programming assignments (Lab Activities or LAs -- we
mostly use “zyBooks maintained labs” for LAs). All are auto-graded
with immediate feedback, partial credit, and unlimited
resubmissions. The course is “flipped” with active tasks during
lecture. The course allows collaboration within constraints, and in
lab sessions students get started on the weekly LAs. All LA coding
is done in zyBook’s coding window (no external tools allowed). The
course grade is typically 10% PAs, 10% CAs, 20% LAs, 5% class
participation, and the remaining 50-60% from a midterm exam and
final exam, taken in-person, half multiple-choice and half code-
writing. The class achieves consistent results across quarters and

Impact of Several Low-Effort Cheating-Reduction Methods in a CS1 Class

instructors, with strong grades (more As/Bs than Cs/Ds/Fs) and a
low DFW rate (D, F, or withdrawal) usually below 20%. End-of-term
evaluations are positive, usually in the top 20% of all courses on
campus.

One instructor who regularly teaches two sections per year applied
the six low-effort cheating reduction methods in Spring 2021 and
Fall 2021, under an approved protocol by our university’s IRB
(institutional review board).

1. The talk was in Week 4 for 30 minutes, attendance required,
followed by a mandatory questionnaire requiring 100%
correctness. All students participated.

2. The integrity quiz was in Week 3, with 15 multiple choice
questions, 100% correctness required. Example question: ‘T am
allowed to show my non-working code to a classmate to get
help debugging” (true) or “I am allowed to show my working
code to a struggling classmate” (false). Upon answering, the quiz
system showed further explanations.

3. Students were informed via the syllabus and announcements of
a form to retract program submissions up to one week after
submitting, with no admission of anything, yielding a 0 but no
penalty or referral.

4. A 1-paragraph reminder announcement was posted in the class
learning management system in Week 6.

5. In weeks 3-8, the instructor showed the similarity checker and
student program analysis tools during lecture about 5 times
total, in natural ways like “Let’s see if anyone had similar ways
of solving quiz 3” or “Who volunteers to let us see their code
history for lab 7?”.

6. Help was normalized via syllabus text, pointers to resources,
and frequent reminders by the instructor that getting help is
normal. The instructor also live-coded in lecture and made
mistakes, and praised mistakes made by students as learning
opportunities.

The total instructor/TA time spent on the intervention was about 5
hours the first term, and about 3 hours the second term due to using
already-prepared items.

We compared the two intervention sections with the instructor’s
prior two offerings, Fall 2019 and Spring 2020, -- the “pre-
intervention” sections. The sections’ differed in those 6 methods as
shown in Table 1.

Method [Pre-intervention Intervention
1. Integ. talk ~5 min in Wk 1 ~30 min in Wk 4.
2. Integ. quiz |None (2-3 questions on [15-question Wk3 quiz
[Wk1 syllabus quiz)
3. Allow retract. [None lAnnounced & allowed
4. Remind [None (beyond perhaps [Wk 6 posted
brief comment) announcement
5. Show tools [Not deliberate, shown 1-2 |~5 deliberate showings|
times [Wks 3-8
6. Help 1-2 sentences in syllabus [Syllabus paragraph +
pointers + freq.
reminders

Table 1: Pre-intervention and intervention class sections
with respect to low-effort cheating reduction methods.

488

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

In the intervention section, the instructor was deliberate in not
doing much beyond those six methods, i.e., not making additional
discussion forum posts, or talking extensively about integrity in
later lectures, to aid in determining the impact of those specific low-
effort methods.

We found 12 labs that were identical (among ~70 labs) across the
pre-intervention and intervention terms. Among those, we selected
the 7 that had good solution variability so similarity checking could
detect copying. Table 2 summarizes the lab content, instructor
solution’s lines of code (LOC), and week. The labs spanned weeks
4-8. LOC is the number of lines of code in the instructor’s solution
including blank lines.

Lab LOC |Wk
Lab 1: Interstate highway numbers: Output

features like primary/auxiliary, N/S/E/W, etc. 36 4
Lab 2: Seasons: Takes a date as input and outputs

the date’s season. 85 4
Lab 3: Max and min: 3 ints input, output largest

and smallest. 41 5
Lab 4: Leap-year: Given year, write function

returning whether leap year. 40 5
Lab 5: Even/Odd Values in Vector: Reads ints,

outputs if all even, odd, or neither. 58 7
Lab 6: Word Frequencies - functions: Reads a list

of words, outputs the words/freq. 42 8
Lab 7: Contact List: Read list of names and phone

numbers. Lookup num by name. 36 8

Table 2: Summary of selected labs.

4 SUSPECTED CHEATING BEFORE AND
AFTER

We trained a teaching assistant (TA) with 1 year experience to
detect cheating via the zyBooks built-in similarity checker
(simchecker). For all 28 labs (7 labs * 4 terms), the TA was instructed
to focus on pairs reported by the simchecker to have above 9.0
similarity or higher (max is 10.0), with 9.0 chosen from our past
cheating investigation experiences. The TA was told to examine
each pair manually and determine whether the pair’s code was very
likely a case of copying, either from each other or a common online
source. Telltale signs included identical statement selection and
ordering, variable declaration approach (early/late, initialized or
not), variable names, spacing, brace usage, comments, and
anomalies from the class & book style (untaught constructs, highly-
optimized code, strange spellings, etc.). The TA was instructed to
flag any highly-suspected cases, though not 100% sure cheating
occurred. For each lab, the TA reported the % of students that did
the lab who were suspected of copying. The TA spent about 20
hours on the cheating analysis.

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

Figure 2 shows results. Substantial reductions are evident for nearly
all labs, averaging 32% and 29% (avg 30.5%) pre-intervention, and
13% and 10% (avg 11.5%) after.

80%
M Fall 19 PreInt. M Spring 20 Preint. W Spring 21 Interv. @ Fall 21 interv.
7]
-
o 60%
E 48 47
7]
E 40% 19 131% 0% l 33 %
£ . b |
5 20% 1957 12%13% ‘
b (I £q
x 2 L 3%
0% — i ‘ L -
Lab1 Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Average

Figure 2: % of high-similarity students before and after the
intervention. Substantial reductions are seen.

5 AUTOMATED METRICS

We sought automated metrics, to: (1) avoid human bias, (2) detect
some cheating not yielding similar code pairs, and (3) automate
future analyses. We defined two such metrics:

o Median time: zyBooks reports median time per student per
lab. We required all coding be done in the system (no
external IDEs were allowed for labs we examined). The
median is less influenced by outliers than the mean. Copying
code from online, a contractor, or classmate, may result in less
time. Note: [13] found students who copy mostly do so from
the start; only 10-20% copied after trying the lab.

® % of high-similarity students: For a given LA, we run the
simchecker and auto-count the students appearing at least
once with a 0.9 or higher, and divide by the total students who
submitted that lab. [14] used a similar metric, to avoid
instructor bias.

We sought to further verify the time metric. In Fall’21, we
sanctioned 10 students (of ~100) for cheating. Figure 3 plots average
time for all students on Week 6 labs (one of the more challenging
weeks), sorted by time, showing sanctioned students as orange
triangles. The sanctioned students generally appear on the left,
supporting the use of time as a general cheating indicator, and is
consistent with our interviews with sanctioned students who often
state they didn’t have time to work on their programs. (Note: One
of the students near 50 on the x axis was doing the work but
sanctioned for sharing solutions with another student).

To further verify the % high-similarity metric, Figure 4 shows % of
highly-similar students on four Week 6 labs. On specific labs where
students were caught cheating, similarity scores are nearly 100%,
versus 38% for the rest of the class. In fact, those students caught
cheating had higher similarity scores even on labs they weren’t
specifically caught cheating on, averaging 73%, as shown. (For 6.21,
one student had 8.9 similarity, just below our 9.0 cutoff, causing the
80% value in the plot).

489

Frank Vahid, Kelly Downey, Ashley Pang, and Chelsea Gordon

80
70

‘ 4 Sanctioned
60 }

\

\

\

[

50
Student

@ Not Sanctioned

50
40
30
20
10 ‘

o

Average Time Spent (min)

75 100

Figure 3: Average time for each student on each Week 6 lab.
Students sanctioned for cheating (on any labs, not just in
Week 6) tend to appear to the lower left.

B Not Sanctioned M Sanctioned Sanctioned on this lab

100%
100% 100% 100%
- 95%
7]
€ 75% 80%
©°
2
[2]
Z 50% 622
5
£
2 o5y
2
T
o o
6.19 - Name 6.20 - Non- 621- 6.22 - Count Average
Format Alphabetic Acronyms Characters -
Letters functions

Figure 4: % high-similarity students for 4 Week 6 labs.

Neither metric is a smoking gun -- some low-time students are fast
coders, and some similarity is due to coincidence, allowed
collaboration, or low-variability solutions. But, the data suggests the
metrics are useful as general indicators.

Our hypothesis was this: The intervention sections would see an
increase in median time, and decrease in % of high-similarity students.
Both differences might suggest students were working more
independently on their programs, and resorting less to cheating.

6 RESULTS USING AUTOMATED METRICS

Figure 5 shows time for pre-intervention and intervention terms.
Figure 6 shows % high-similarity students. Median time increased,
as hypothesized. The % dropped, also as hypothesized. Median time
for pre-intervention terms was 6.7 and 7.3, vs. 10.8 and 11 for
intervention terms, averaging 7 for pre-intervention and 10.9 for
intervention (56% increase). % of high-similarity students was 40%
and 37% for pre-intervention terms, vs. 20% and 20% for
intervention terms, averaging 38.5% vs. 20% (48% decrease).

7 RESULTS BY A SECOND INSTRUCTOR

Given the positive results obtained in Spring & Fall 2021, we enlisted
a second instructor to attempt the intervention in Spring 2022 as
well. That instructor was the “main” instructor of our CS1, usually
teaching 2-3 100-student sections each term, and leading other
instructors who teach additional sections (3-5 sections are taught
each term).

Impact of Several Low-Effort Cheating-Reduction Methods in a CS1 Class

M Fall 19 Preint. W Spring 20 Pre Int. M Spring 21 Intervention M Fall 21 Intervention
20 =
16 1 r:\ 6
13 13 13
a1z | 11
9 8 ~
- 7 77

Median Time Spent (minutes)

8
5
3'1 3|
2 |
dll 1

Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Average

Lab 1

Figure 5: Median time, before and after intervention. Time
rose as hypothesized.

M Fall 19 Pre Int. M Spring 20 Pre Int. M Spring 21 Interv. M Fall 21 Interv.
80%

bt

58”‘;
60% 5

- 39% 40%

7

40%

20%

% High-Similarity Students

0%

Lab 1

Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Average

Figure 6: % of high-similarity students, before and after
intervention. % dropped, as hypothesized.

That instructor applied the intervention in Spring 2022 for two
~100-student sections. We compared that instructor’s “pre-
intervention” Fall 2021 and Winter 2022 terms with their Spring
2022 intervention term. The instructor assigned about 50 LAs across
those terms; we compared LAs that were identical in all three terms,
and that had variability in their solutions. Labs 1, 3, 4, and 7 were
identical to those used earlier in this paper, but the instructor didn’t
use the other three labs; we replaced them with other labs the
instructor did use. Instructor-solution size and approximate week,
written as (size, week), were : (36, 4), (24, 6), (36, 6), (45, 6), (35,7),
(38,7), and (39, 9). Figures 7 and 8 show results. As hypothesized,
time rose, from 13 min (avg) to 24 minutes, and % dropped, from
55.5% (avg) to 19%.

B F21-PreInterv. W W22 - PreInterv. B S22 - Intervention

40
I
k!
2 30 o4
é 2121 0
5 | 1
20 515" 15 1615
) 15447 . . ! 1313
E g9 1010 10 11
= 10
f=
8
o
(7]
=

Lab 1

Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Average

Figure 7: Median time, second instructor. Time rose as
hypothesized. Note: Some labs differ from earlier.

490

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

W F21 - Pre Interv. W W22 - Pre Interv. W S§22 - Intervention

80% 74% 719 75%
o 68% 2o
g 504 52% " 54% o7
0 - 0
2 60% o o 505 47% 54%
0%
z 5 35%
E 40% e I
£
7 11
L 20% -
g
R 0%

Lab 1

Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Average

Figure 8: % of high-similarity students, second instructor.
The % dropped as hypothesized.

8 STATISTICAL SIGNIFICANCE

A linear mixed effects model was fitted to the data for each
instructor separately, so that the effect of our intervention could be
estimated while controlling for specific labs. The dependent variable
was the log transformation of minutes spent, as the residuals of raw
minutes spent violated the assumption of normality. We included
lab activity as a nested random effect within academic term, to
control for the varied difficulty of labs. For the first instructor, a t-
test using Satterthwaite’s method revealed a significant effect of
condition (t(1,2834) = 6.513, p < .0001). Cohen’s d was calculated in
accordance with [20] to obtain the partial effect size (d=.24). For the
second instructor, a t-test using Satterthwaite’s method revealed a
significant effect of condition (t(1,5978) = 6.059, p < .0001). Cohen’s
d was calculated to obtain the partial effect size (d=.72).

For the percentage of high-similarity students metric, a generalized
linear mixed effects model with a Poisson distribution was fitted to
the data. The dependent variable was the normalized count of high-
similarity students in each lab. We included lab activity as a nested
random effect within academic term, to control for the varied
difficulty of labs. We observed a significant effect of condition for
the first instructor (z(1,28) = -8.945, p < .0001, Cohen’s d=1.2). We
observed a significant effect of condition for the second instructor
(z(1,20) = -14.37, p < .0001, Cohen’s d=2.1).

9 DISCUSSION

Another explanation of the data could be that students -- having
been told instructors would be looking for cheating, could see a
history of runs, and could run a similarity checker -- did fake runs
to increase time, and modified code to beat the similarity checker.
However, the TA’s manual analysis, coupled with the instructor
examining code, found most code exhibited expected student
development processes. We did find a handful of students in the
intervention classes who were deemed cheating, who seemed to try
(unsuccessfully) to beat the similarity checker by modifying
variable names and spacing (horizontal and vertical) -- perhaps not
realizing that these changes do not impact the similarity checker.

Our interventions introduced six methods all at once. Ideally, the
impact of each would be known, but such isolation did not seem

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

feasible, requiring running dozens of intervention sections to create
sufficient ability to analyze the impact of each method (i.e., of each
parameter, per experimental design techniques [21]). Most schools
don’t have enough sections or students for that. Also, we suspect
doing just one method would have less impact; the collection may
be more powerful on the student’s perception that “This class
doesn’t allow cheating,” with the sum being greater than the parts.
Also, since all six methods only required a few hours total, we were
not compelled to prune methods. But, learning the impact of each
method may be future work.

We chose the six methods after studying cheating-reduction
research, conversing with instructors about cheating reduction,
attending conference sessions on cheating reduction (such as a
birds-of-a-feather session at the SIGCSE conference [22] a few years
earlier, and integrity panels involving instructors and students),
participating on our campus’ academic integrity committee and
learning of techniques from committee members, and learning from
our own teaching experiences over the past decade. We do not claim
those six methods are the best. Rather, our goal was to determine if
some set of low-effort methods could have much of an impact, and
it seems that they can.

The interventions can be used in any class whether using zyBooks
or not. The “Show tools” item requires some cheating-detection
tools to be used (they are built into zyBooks).

Upon reflection, we wish we had included a seventh method, of
accepting late LA submissions with a small penalty, or of allowing
students to make up missed LAs. While being more effort than the
other six methods, accepting lates / makeups is still relatively low
effort, and its reduction of “pressure” around deadlines may help.
We hope to add that method in future work.

A concern many instructors have is that focusing on cheating may
hurt their end-of-term student evaluation scores. Thus, for interest
(and not part of the main results of this paper, since evaluation
scores can depend on numerous other factors), we report the
evaluation scores of the first intervention instructor, shown as:
instructor score / course score. Anything above 4.0 is generally
good; our CS department average is usually 4.3-4.4:

e Pre-intervention
O Spring 2019: 4.82 / 4.64
o Fall 2021: 4.85/ 4.76

e Intervention
o Spring 2020: 4.38 / 4.29
o Fall 2021: 4.23 / 4.26

The intervention terms scores were pulled down by 3 or 4 “1” scores
(not present pre-intervention) and some comments along the lines
of: Maybe if the instructor focused more on teaching and less on
cheating, we wouldn’t need to cheat. The drop suggests instructors
wishing to keep strong evaluations may need to take special care.
Since collecting data for this paper, the instructor taught another
term (Spring 2022) using the same interventions but taking extra
care to not over-emphasize cheating. Student time and similarity
data were consistent with the other intervention terms, but
evaluation scores rose to 4.65 / 4.48. This gives hope that the

491

Frank Vahid, Kelly Downey, Ashley Pang, and Chelsea Gordon

cheating-reduction methods can be applied while maintaining good
evaluation scores, but future focused work would be needed for
more robust results on evaluation score impacts.

10 CONCLUSIONS

We examined the impact on student behavior when incorporating
six low-effort cheating-reduction methods into a CS1 class. Via
manual analysis and two automated metrics, we found those
methods appear to have a positive impact on reducing cheating and
increasing earnest behavior. As such, CS1 instructors (and
instructors of other CS courses) may wish to consider incorporating
some or all of the methods, requiring about 5 hours in a first term,
and just a couple hours in subsequent terms. Not all cheating was
eliminated, and thus future work remains to continue to try to
reduce cheating, subject to available resources.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 2111323.

REFERENCES

[1] Albluwi I Plagiarism in programming assessments: a systematic review. ACM

Transactions on Computing Education (TOCE). 2019 Dec 9;20(1):1-28.

Shaw, M., Jones, A., Knueven, P., McDermott, J., Miller, P. and Notkin, D., 1980.

Cheating policy in a computer science department. ACM SIGCSE Bulletin, 12(2),

pp-72-76.

O’Malley M, Roberts TS. Plagiarism on the rise? Combating contract cheating in

science courses. International Journal of Innovation in Science and Mathematics

Education. 2012 Nov 15;20(4).

Cendrowski H. and Martin J. 2015. The Fraud Triangle. John Wiley 8 Sons, Ltd,

Chapter 5, 41--46.

Doebling A, Kazerouni AM. Patterns of Academic Help-Seeking in Undergraduate

Computing Students. In21st Koli Calling International Conference on Computing

Education Research 2021 Nov 18 (pp. 1-10).

Williams L, Upchurch RL. In support of student pair-programming. ACM SIGCSE

Bulletin. 2001 Feb 1;33(1):327-31.

Urness T. Assessment using peer evaluations, random pair assignment, and

collaborative programing in CS1. Journal of Computing Sciences in Colleges. 2009

Oct 1;25(1):87-93.

Simon. 2017. Designing programming assignments to reduce the likelihood of

cheating. In Proceedings of the 19th Australasian Computing Education

Conference (ACE’17). ACM, New York, NY, 42-47.

Sheard J, Butler M, Falkner K, Morgan M, Weerasinghe A. Strategies for

maintaining academic integrity in first-year computing courses. In Proceedings of

the 2017 ACM Conference on Innovation and Technology in Computer Science

Education 2017 Jun 28 (pp. 244-249).

[10] Ernest Ferguson. 1987. Conference grading of computer programs. In Proceedings
of the 18th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE’87). ACM, New York, NY, 361-365.

[11] Sukhodolsky J. How to Eliminate Cheating from an Introductory Computer
Programming Course. International Journal of Computer Science Education in
Schools. 2017 Oct 31;1(4):25-34.

[12] Pawelczak D. Benefits and drawbacks of source code plagiarism detection in
engineering education. In2018 IEEE Global Engineering Education Conference
(EDUCON) 2018 Apr 17 (pp. 1048-1056). IEEE.

[13] N. Alzahrani and F. Vahid. Detecting Possible Cheating In Programming Courses
Using Drastic Code Change. ASEE 2022.

[14] Mason, T., Gavrilovska, A. and Joyner, D.A., 2019, February. Collaboration versus
cheating: Reducing code plagiarism in an online MS computer science program. In
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (pp. 1004-1010).

[15] Malan DJ, Yu B, Lloyd D. Teaching academic honesty in CS50. InProceedings of the
51st ACM Technical Symposium on Computer Science Education 2020 Feb 26 (pp.
282-288).

[16] Schleimer S, Wilkerson, DS, Aiken A. Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference
on Management of data (pp. 76-85).

[17] Novak M, Joy M, Kermek D. Source-code similarity detection and detection tools
used in academia: a systematic review. ACM Transactions on Computing
Education (TOCE). 2019 May 21;19(3):1-37.

[2]

Impact of Several Low-Effort Cheating-Reduction Methods in a CS1 Class SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

[18] Lewis CM. Twelve tips for creating a culture that supports all students in [21] Ryan TP, Morgan JP. Modern experimental design. Journal of Statistical Theory and
computing. ACM Inroads. 2017 Oct 27;8(4):17-20. Practice. 2007 Dec 1;1(3-4):501-6.

[19] zyBooks, www.zybooks.com, 2022. [22] SIGCSE 2018 birds-of-a-feather group. GitHub, Tutors, Relatives, and Friends:

[20] Westfall J, Kenny DA, Judd CM. Statistical power and optimal design in Combating the Wide Web of Plagiarism: the Discussion Continues.
experiments in which samples of participants respond to samples of stimuli. https://sigcse2018.sigese.org.

Journal of Experimental Psychology: General. 2014 Oct;143(5):2020.

492

