

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Frank Vahid, Kelly Downey, Lizbeth Areizaga, & Ashley Pang

Coral’s code version has an executable pseudocode-like syntax

with just 9 constructs for variables, input, output, assignment,

branches, while loops, for loops, functions, arrays and with just a

couple data types. Each construct has an equivalent flowchart

syntax. Figure 1 shows a simple example using Coral’s code and

flowchart languages. Figure 2 shows the free web-based simulator

[8], which shows variable values, input/output, and step-by-step

program execution on either the code view (shown) or flowchart

view (which is auto-derived from the code). Coral was used by

20,000+ students in 2021 [8].

Figure 2: Coral’s web-based simulator.

Coral enforces rules that aim to reduce non-logic-focused

decisions for learners, such as all indents being 3 spaces, one

statement per line, and all declarations before statements. Coral is

strongly typed. Coral’s simulator gives learner-focused feedback

for syntax errors, such as:

“Integer” is not recognized. Did you mean: integer? Note:

Capitalization matters.

McKinney [9] found better grades using Coral in CS0 vs non-

executable pseudocode or flowcharts in Raptor [10].

Previous research on CS1 courses has examined using learner-

focused languages like Scratch, Snap, or Alice in early weeks

before transitioning to a commercial textual language like Python,

Java, or C++, but problems exist [7]. For example, Powers [11]

found students were confused due to different object models and

frustrated having to deal with syntax errors in the textual

language, and performed less well after transitioning vs. a

comparison group. Garlick [5] found students were frustrated

having to learn a language that wasn’t a “real language”. In

contrast, using Coral in CS1 prior to C++, Allen [12, 13] found

students liked the language and simulator and performed equally

well on an identical final exam as C++-only students. But, they

taught Coral for 5 weeks and found some students would have

preferred to start C++ sooner.

In this work, we taught Coral for our CS1’s first 3 weeks, then

switched to our main language of C++, and had an excellent

teaching experience. We make frequent use of the simulator

during lectures and office hours to help students visualize

sequential execution, storage and updating of variable values, and

branch and loop execution in both code and flowchart views.

Students indicate appreciation for the simulator too. But, we

wanted to know if students were learning more easily and if the

transition to C++ was going smoothly, neither of which was

addressed in previous work. Furthermore, we wanted to know

how Coral-treated students did on later C++ programming tasks

vs. C++-only students (and not just doing well on the final exam

as in previous work). This paper provides analyses aiming to

answer those questions.

2 CS1 AND CORAL USE

2.1 CS1

Our CS1 is at a 30,000-student public state “R1” (research active)

university, being a mature course, teaching about 1,500 students

per year, half computing majors and half non-majors (mostly

required to take CS1 by their science/engineering major). The 10-

week quarter course teaches C++ with weekly topics (before we

started using Coral) generally being: I/O, Assignments, Branches,

Loops(1), Loops(2) + Strings, Midterm, Functions(1), Functions(2),

Vectors, File I/O + Classes, Classes + Misc.

The course uses zyBooks [14] for reading, homework, and

programs, configured so that every week is one chapter. Every

week follows the same pattern: “reading” with ~100 learning

questions (Participation Activities or PAs, due before Tuesday’s
lecture), ~20 homework problems (Challenge Activities or CAs,

either code reading or code writing to complete a small program,

due Friday night), and 5-8 programming assignments (Lab

Activities or LAs, typically with solutions 20-50 lines each, due

Sunday night). PAs, CAs, and LAs are all in the zyBook, and are

auto-graded with immediate feedback, partial credit, and

unlimited resubmissions (until instructor-set deadlines if any).

2.2 Coral use

zyBooks has similar intro programming content for both Coral

and C++ (among other languages). We configured our zyBook to

combine Coral and C++ content. Our initial attempt three years

ago involved 4.5 weeks of Coral: I/O + Assignments, Branches,

Loops + Arrays, Functions(1), Function(2). The end of Week 5 had

a Coral-only midterm, and the remaining 5 weeks taught C++,

redoing all the above topics plus strings and a few additional

topics. While overall a good experience, many students were

eager to start with C++ sooner, and some struggled with the C++

programs compressed into 5 weeks. Thus, we now teach 3 weeks

of Coral before switching to C++, as shown in Figure 3. In Week

4, the topics in Weeks 1-3 are covered again but in C++.

341

Experiences Teaching Coral Before C++ in CS1 SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

Figure 3: Our CS1 now teaches Coral in Weeks 1-3 up to
loops, then switches to C++ in Week 4.

This Coral approach was used Fall 2021 in a ~100-student section

and compared with two ~100-student C++-only sections that

quarter, to address our research questions.

3 ANALYSES

3.1 Do students learn programming more easily
in Coral than in C++?

We enjoyed the first weeks’ teaching experience using Coral,

largely due to the easy syntax, the visual step-by-step simulator,

and the auto-creation of flowcharts. However, we wished to also

test the following hypothesis:

● H1: In the first weeks of learning programming, students

spend less time learning basic programming concepts

using Coral than using C++.

To compare, we focused on a particular kind of zyBooks

Challenge Activity known as a “progression CA”, whose features

include: (1) multiple parts of increasing challenge, and (2) each

part’s problem is auto-generated. We focused on progression CAs

because the auto-generation greatly reduces the confounding that

may occur on other programming tasks where students might be

copying from classmates or from online solutions websites.

zyBook progression CAs either involve code reading (“What does

this code output?”) or code writing (“Complete this code to do X)”;
we focused only on code writing progression CAs.

We found four Coral CAs in our 3-week Coral content nearly

identical to C++ CAs in the early weeks of the C++-only sections.

More specifically, we found several Coral CA parts that were

nearly identical to C++ CA parts. Results are shown in Figure 4,

comparing time spent by students, which we determined using

CA log data provided by zyBooks. The logs have time stamps for

every run. We computed the time spent using the difference

between timestamps, ignoring breaks of 10 minutes or more.

CA
C++
score

Coral
score

C++
time

Coral
time

C++
runs

Coral
runs

Writing
output

1.00 1.00 8.2 2.5 11.2 7.8

Calling math
functions

0.99 0.98 1.8 2.6 4.2 7.8

Writing if
branches

0.98 0.98 5.9 6.3 9.4 23.9

Writing if-
else branches

0.94 0.97 7.1 6.9 8.7 13.7

Average 0.98 0.98 5.7 4.6 8.4 13.3

Figure 4: Coral students vs. C++ students on nearly-

identical progression CA parts, in the first few weeks of the

quarter. Time is in minutes.

Based on time spent, the data does not support the hypothesis.

Writing output seemed easier in Coral, but the activities with

more logic seemed about the same. Coral students did not spend

more time either. These results match research comparing block-

based and textual languages for learners where a research meta-

analysis showed insignificant differences [15]. It seems that the

difficulty of learning the logic of programming overshadows the

difficulty of learning commercial language syntax.

The data did yield an interesting point: Coral students ran code

more than C++ students for two CAs having branches. This is

likely due to students using the simulator to visualize step-by-step

execution of the code and flowchart views. In contrast, the C++

CAs simply show the code’s results (the student presses “Run”,
causing compilation/running on a cloud server, with the output

results being returned). Even with those additional runs by Coral

students, the total time solving those coding problems did not

increase.

3.2 Do students easily transition?

A concern is the Coral to C++ switch may cause students trouble

as they mix up syntax. Our Coral section switched to C++ in Week

4, in which Coral-treated students did many of the same content

sections that the C++-only students had done or would be doing.

Many of those C++ content sections were review for Coral

students, nearly identical to Coral sections but using C++ instead.

Our hypothesis was:

● H2: Coral students would not take more time doing C++

CAs during the transition in Week 4, and would achieve

the same scores, vs. the C++-only students doing those

same CAs.

We examined that week’s C++ CAs and found several that also

appeared in the C++ section’s zyBook. Figure 5 provides results.

342

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Frank Vahid, Kelly Downey, Lizbeth Areizaga, & Ashley Pang

CA
C++
score

Coral
score

C++
time

Coral
time

C++
runs

Coral
runs

Writing
output

1 0.99 8.2 3.4 11.2 5.8

Calling
math

functions
0.99 1.00 1.8 1.2 4.2 3.4

If branches 0.98 0.97 5.9 4.2 9.4 6.2

If-else
branches

0.94 0.98 7.1 5.7 8.7 6.2

Average 0.98 0.99 5.7 3.6 8.4 5.4

Figure 5: Coral-treated students doing C++ CAs in Week 4,
versus C++-only students doing those same CAs. Time is in
minutes. Coral-treated students do not spend more time as
was the concern.

The data supports the hypothesis. Coral students did not spend

more time, and in fact spent less time (3.6 min vs. 5.7 min on

average, or 40% less) due to those CAs being a review of concepts

with different syntax. Coral students achieved virtually the same

score (0.99 vs. 0.98). The data suggests Coral-treated students

transitioned easily.

3.3 Do Coral students do equally well on later
C++ programs?

We wanted to ensure the early Coral treatment did not harm

students’ learning of C++. We had the following hypothesis:

● H3: Coral-treated students will perform equally well on

later C++ programs as C++-only students, achieving

similar scores in similar times.

CA
C++
score

Coral
score

C++
time

Coral
time

C++
runs

Coral
runs

For loops 0.99 1.00 4.3 5.0 6.5 7.1

Functions
with loops

0.95 0.89 9.6 14.8 10.6 14.3

Check
password

0.88 0.93 9.4 7.8 9.4 9.2

String
manipul.

0.92 0.99 7.0 5.7 8.2 8.0

Vectors 0.75 0.70 18.7 16.8 14.3 14.3

Average 0.90 0.90 9.8 10.0 9.8 10.6

Figure 6: Coral-treated students doing C++ CAs in latter
weeks, versus C++-only students doing those same CAs.
Time is in minutes. Coral-treated students do not perform
worse as was the concern.

Allen [12] previously compared Coral-treated students with C++-

only students on final exam performance and found no difference,

thus supporting the hypothesis. Here, we examine performance

on progression CAs. Our data also supports the hypothesis. Coral-

treated and C++ students both achieved the same scores

(averaging 0.90 out of 1.0) and spent nearly identical time (10.0

min vs. 9.8 min).

4 THREATS TO VALIDITY

The Coral section was taught by a different instructor (Instructor

A) than the two C++ sections (Instructor B). The instructor

differences could have impacted the analyses. For H1, perhaps

Coral students would have learned more easily but Instructor A’s
weak teaching negated any benefit. For H2 and H3, perhaps Coral

students would have struggled but A’s great teaching

compensated. But, Instructors A and B are both experienced (over

10 CS1 terms each) with strong teaching evaluations and

consistent grades. Beyond that, both instructors taught Spring

2022 CS1 as one course, using the same zyBook, syllabus, exams,

graders, etc., and both used the early-Coral approach. Figure 7

shows results on the same CAs. Students performed similarly

across Instructors A and B, which increased confidence that the

different instructors were not strongly confounding (p-value for

time was 0.55, and runs 0.72, far from 0.05 for statistical

significance, using a two-tailed unpaired t-test).

CA
Score

(A)

Score

(B)

Time

(A)

Time

(B)

Runs

(A)
Runs (B)

1 0.99 1.00 3.5 5.7 14.8 22.9

2 0.99 0.98 2.1 2.7 7.8 7.9

3 0.97 0.98 5.1 6.7 20.5 23.4

4 0.98 0.98 7.2 6.4 14.1 11.9

5 1.00 0.98 2.9 3.6 5.8 6.0

6 0.99 0.99 1.5 1.3 4.1 3.8

7 0.97 0.99 4.3 3.1 7.3 5.3

8 0.98 1.00 5.5 5.7 6.0 6.4

9 1.00 1.00 2.3 2.8 4.1 4.3

10 0.96 0.99 4.0 4.2 5.9 6.5

11 0.91 0.99 10.7 12.6 12.0 13.3

12 0.95 0.89 7.4 8.8 7.8 6.7

13 0.95 0.86 8.5 11.4 6.5 8.8

Average 1.0 1.0 5.0 5.8 9.0 9.8

Figure 7: Results on the same CAs as earlier, but in a later

quarter when Instructors A and B taught the same class. No

significant difference is observed.

Ideally, in the Fall 2021 comparison, the Coral-treated and C++-

only students would have taken the same C++ final exam on

which students could then have been compared. However, as the

course was transitioning from the Covid-pandemic era back to

regular classes, Instructor A chose to continue with online

programming exams (auto-graded), while Instructor B switched

back to the regular in-person written exams (half multiple choice,

half code writing with manual grading). Due to the different exam

modalities, though the two groups both did about the same on

343

Experiences Teaching Coral Before C++ in CS1 SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

their exams, drawing conclusions from that comparison did not

seem appropriate, so we do not report those results.

This analysis was performed on progression CAs rather than LAs,

because we have found progression CAs are less likely to involve

cheating due to generating unique problems for each student.

Ideally, we would also analyze the larger “Lab Activity” (LA)

programs. But, for LAs, great care must be taken to control

cheating because students in CS1 classes (nationwide) are known

to copy from classmates, to obtain solutions from online sites, to

hire contract programers, etc. Because Coral is not as widely used

as C++, it might be expected that C++ students would have more

ability to copy solutions or hire contractors, potentially skewing

results. Furthermore, for the terms under consideration, our

different CS1 sections involved differences in the prevention,

detection, and punishment of cheating on LAs, also skewing

results. However, analysis of LAs would be an interesting future

work.

6 TIME SPENT

zyBooks provides instructors with per-student time data for PAs,

CAs, and LAs. As additional analysis beyond this paper’s main

focus, Figure 8 shows that time data for the Coral-treated and

C++-only students in the weeks preceding the midterm (Weeks 1-

5). As a reminder:

● Coral students studied: 1 Coral I/O/Assignments, 2 Coral

Branches, 3 Coral Loops, 4 C++ I/O/Assignments, Branches,

Loop, 5 C++ Functions/Strings.

● C++-only students studied: 1 I/O, 2 Assignments, 3 Branches,

4 Strings/Loops, 5 Loops.

The time data indicates that both groups of students spent roughly

the same time in Weeks 1-3, with Coral students spending slightly

more. However, the data shows that the Coral-treated students

spent more time during Week 4 (the transition week), but then

C++ students spent a bit more in Week 5. We plan to investigate

ways to smooth Week 4’s time commitment for Coral-treated

students; the number of CAs in particular might be a good target

for reduction, and we might reduce LAs as well, perhaps

combining some.

7 CONCLUSIONS

As in dozens of university courses, in our CS1 course, we have

begun teaching Coral in the first weeks then transitioning to a

commercial language (in our case, C++). We found the teaching

and learning experience using Coral to be excellent largely due to

Coral’s simple learner-focused code syntax, the auto-creation of

flowcharts from the code, and the free online education-focused

Coral simulator. We found that Coral students don’t spend

significantly less time doing their auto-graded coding homework

problems (CAs) in early weeks -- perhaps there is simply a

minimum time needed to learn programming logic, and C++’s

more complex syntax doesn’t impose too much of a barrier in the

(a)

(b)

Figure 8: Weekly time spent prior to the midterm: (a)

students using Coral in Weeks 1-3, then transitioning in

Week 4 by redoing content in C++, (b) C++-only students.

early weeks. Coral students did conduct more runs, without

spending more time, for the CAs involving branches, suggesting

they were making good use of the educational simulator. We

found Coral students easily transitioned to C++, spending no

more time doing the C++ CAs during the transition week -- in

fact, spending 40% less time on the particular CAs being

compared, as those CAs were largely a review for them. Doing

such a review is a strategy some professors follow intentionally,

along a spiral learning process. We also found that Coral students

did equally well on later C++ CAs, suggesting no harm in their

learning of C++ imposed by learning Coral first. As such,

instructors wishing to experiment with using Coral in the first

weeks of their CS1 before teaching a commercial language,

perhaps to ease students nerves, to make use of Coral’s free

educational simulator, and/or to level the playing field a bit

regarding prior programming experience (since most students

won’t already know Coral), can likely do so confident that their

students will transition easily to the commercial language and will

learn the commercial language equally well.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 2111323.

REFERENCES
[1] Edgcomb, A.D., Vahid, F. and Lysecky, R., 2019, June. Coral: An ultra-simple

language for learning to program. In 2019 ASEE Annual Conference &
Exposition.

[2] Cooper, S., Dann, W. and Pausch, R., 2000. Alice: a 3-D tool for introductory
programming concepts. Journal of computing sciences in colleges, 15(5),
pp.107-116.

344

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Frank Vahid, Kelly Downey, Lizbeth Areizaga, & Ashley Pang

[3] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B. and Kafai, Y.,
2009. Scratch: programming for all. Communications of the ACM, 52(11),
pp.60-67

[4] Harvey, B., Garcia, D.D., Barnes, T., Titterton, N., Armendariz, D., Segars, L.,
Lemon, E., Morris, S. and Paley, J., 2013, March. Snap!(build your own blocks).
In Proceedings of the 44th ACM technical symposium on Computer science
education (pp. 759-759).

[5] Garlick, R. and Cankaya, E.C., 2010, June. Using Alice in CS1: A quantitative
experiment. In Proceedings of the fifteenth annual conference on Innovation
and technology in computer science education (pp. 165-168)

[6] Moors, L., Luxton-Reilly, A. and Denny, P., 2018, April. Transitioning from
block-based to text-based programming languages. In 2018 International
Conference on Learning and Teaching in Computing and Engineering
(LaTICE) (pp. 57-64). IEEE.

[7] Blanchard, J., Gardner-McCune, C. and Anthony, L., 2020, February. Dual-
modality instruction and learning: A case study in CS1. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education (pp. 818-824).

[8] CoralLanguage.org, accessed 2022.

[9] McKinney, D., Edgcomb, A.D., Lysecky, R. and Vahid, F., 2020, June. Improving
pass rates by switching from a passive to an active learning textbook in cs0. In
2020 ASEE Virtual Annual Conference Content Access.

[10] Carlisle, M.C., Wilson, T.A., Humphries, J.W. and Hadfield, S.M., 2004. Raptor:
introducing programming to non-majors with flowcharts. Journal of
Computing Sciences in Colleges, 19(4), pp.52-60.

[11] Powers, K., Ecott, S. and Hirshfield, L.M., 2007, March. Through the looking
glass: teaching CS0 with Alice. In Proceedings of the 38th SIGCSE technical
symposium on Computer science education (pp. 213-217).

[12] Allen, J.M. and Vahid, F., 2020, June. Teaching Coral before C++ in a CS1
Course. In 2020 ASEE Virtual Annual Conference Content Access.

[13] Vahid, F., Allen, J.M., Edgcomb, A.D. and Lysecky, R., 2020, July. Using the free
Coral language and simulator to simplify first-year programming courses. In
2020 First-Year Engineering Experience.

[14] zyBooks.com, accessed 2022.
[15] Xu, Z., Ritzhaupt, A.D., Tian, F. and Umapathy, K., 2019. Block-based versus

text-based programming environments on novice student learning outcomes:
A meta-analysis study. Computer Science Education, 29(2-3), pp.177-204.

345

