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Abstract. We provide sufficient conditions so that a homeomorphism of the

real line or of the circle admits an extension to a mapping of finite distortion in
the upper half-plane or the disk, respectively. Moreover, we can ensure that the

quasiconformal dilatation of the extension satisfies certain integrability condi-

tions, such as p-integrability or exponential integrability. Mappings satisfying
the latter integrability condition are also known as David homeomorphisms.

Our extension operator is the same as the one used by Beurling and Ahlfors

in their celebrated work. We prove an optimal bound for the quasiconfor-
mal dilatation of the Beurling–Ahlfors extension of a homeomorphism of the

real line, in terms of its symmetric distortion function. More specifically, the

quasiconformal dilatation is bounded above by an average of the symmetric
distortion function and below by the symmetric distortion function itself. As

a consequence, the quasiconformal dilatation of the Beurling–Ahlfors exten-
sion of a homeomorphism of the real line is (sub)exponentially integrable, is

p-integrable, or has a BMO majorant if and only if the symmetric distortion is

(sub)exponentially integrable, is p-integrable, or has a BMO majorant, respec-
tively. These theorems are all new and reconcile several sufficient extension

conditions that have been established in the past.

1. Introduction

The goal of this work is to provide extension theorems for homeomorphisms of
the real line or of the circle whose regularity is beyond the quasisymmetric class
(defined below). While quasisymmetric homeomorphisms are suitable for studying
self-similar sets, or sets with uniform geometry, they are not sufficient for the study
of fractals with non-uniform geometry. Such fractals appear often in the field of
Complex Dynamics as Julia sets of non-hyperbolic rational maps. Hence, extension
theorems for homeomorphisms beyond the quasisymmetric class provide valuable
tools for studying non-hyperbolic dynamical systems.

Several recent works in the field are based on extensions of homeomorphisms of
the circle to David homeomorphisms of the disk (defined below). More specifically,
David extensions are useful for turning a hyperbolic dynamical system into a para-
bolic one, an observation that was originally made by Häıssinsky. Thus, parabolic
systems can be studied in terms of hyperbolic systems, which are much better un-
derstood. In some instances these extensions have been constructed “by hand”; see
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[Häı98,PZ04] and also [BF14, Chapter 9]. Later Zakeri [Zak08] studied systemati-
cally extension problems and provided a useful criterion for David extensions, based
on the work of J. Chen, Z. Chen, and He [CCH96]. We will discuss these results
later in detail. We also cite the recent works [LLMM19, LMMN20], where David
extensions of circle homeomorphisms have been used successfully in the study of
geometrically finite rational maps and Kleinian groups. Our results in this paper
are stronger than the existing extension theory. Hence, we expect that they will
provide useful tools for further developments in Complex Dynamics and they will
broaden the understanding of mappings of finite distortion (defined below).

Let h : R → R be an increasing homeomorphism. For x ∈ R and t > 0 we define
the symmetric distortion function

ρh(x, t) = max

{︃
|h(x+ t)− h(x)|
|h(x)− h(x− t)|

,
|h(x)− h(x− t)|
|h(x+ t)− h(x)|

}︃
.

The symmetric distortion function measures how far the homeomorphism h is from
mapping adjacent intervals of equal length to adjacent intervals of equal length.
If there exists ϱ > 0 such that ρh(x, t) ≤ ϱ for all x ∈ R, t > 0, then h is called
quasisymmetric. Beurling and Ahlfors proved in [BA56] that if h is quasisymmetric,
then there exists a quasiconformal extension of h to the upper half plane. Recall
that a homeomorphism H : U → V between two open sets U, V ⊂ R2 is quasicon-
formal if H is orientation-preserving, H lies in the Sobolev space W 1,1

loc (U), and the
quasiconformal dilatation of H, which is defined by

KH(x, y) = inf{K ≥ 1 : ∥DH(x, y)∥2 ≤ KJH(x, y)}

for a.e. (x, y) ∈ U , lies in L∞, where ∥DH∥ denotes the operator norm and JH
denotes the Jacobian of the differential matrix DH of H.

If one relaxes the assumption thatKH ∈ L∞ to merelyKH <∞ a.e., then we say
that H is a mapping of finite distortion. See [Kos10] for an enlightening survey and
[HK14] for a treatise on the general theory of these mappings. Among mappings of
finite distortion, of particular interest are the mappings of exponentially integrable
distortion, or else David homeomorphisms, because of their increased regularity and
of the fact that they provide a substitute for quasiconformal maps in many cases
when the use of the latter is not possible, such as in the framework of Complex
Dynamics mentioned above. These maps were introduced by David in [Dav88] and
their defining condition is that∫︂

U

epKH(x,y) dσ(x, y) <∞

for some p > 0, where σ denotes the spherical measure on the Riemann sphere ˆ︁C
and U ⊂ ˆ︁C is an open set. We prove the following result, which provides extensions
of boundary homeomorphisms to mappings that have exponentially integrable dis-
tortion. We also refer to these extensions as David extensions. We denote by H the
upper half-plane and by D the unit disk in the plane.

Theorem 1.1. Let h : R → R be an increasing homeomorphism such that∫︂
H
eqρh(x,y) dσ(x, y) <∞

for some q > 0. Then there exists an extension of h to a homeomorphism of H that
has exponentially integrable distortion.
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An analogous theorem can also be formulated for homeomorphisms of the circle.
For a, b ∈ S1 we denote by ℓ(a, b) the length of the arc of the circle that connects
a to b in the positive orientation. If h : S1 → S1 is an orientation-preserving
homeomorphism, we define the circular symmetric distortion function

ρch(θ, t) = max

{︃
ℓ(h(eiθ), h(ei(θ+t)))

ℓ(h(ei(θ−t)), h(eiθ))
,
ℓ(h(ei(θ−t)), h(eiθ))

ℓ(h(eiθ), h(ei(θ+t)))

}︃
for θ ∈ [0, 2π] and t ∈ (0, π/2). One could alternatively use Euclidean distances in
the definition of the circular symmetric distortion function and obtain a quantity
that is comparable to ρch for all small t.

Theorem 1.2. Let h : S1 → S1 be an orientation-preserving homeomorphism such
that ∫︂ 2π

0

∫︂ π/2

0

eqρ
c
h(θ,t) dtdθ <∞

for some q > 0. Then there exists an extension of h to a homeomorphism of D that
has exponentially integrable distortion.

Corollary 1.3. Let h : S1 → S1 be an orientation-preserving homeomorphism and
suppose that there exists a non-negative function g ∈ L1([0, 2π]) such that

ρch(θ, t) = O

(︃
log

(︃
1 + g(θ)

t

)︃)︃
as t → 0. Then there exists an extension of h to a homeomorphism of D that has
exponentially integrable distortion.

This extension result can be applied in order to turn hyperbolic dynamical sys-
tems into parabolic ones with global David homeomorphisms of the sphere. In
fact, the main result of [LMMN20] relies on a weaker version of this corollary from
[Zak08]. Theorem 1.2 follows from the following more general result.

Theorem 1.4. There exists a uniform constant C0 > 0 such that the following
holds. Let Φ: [0,∞) → [0,∞) be an increasing convex function and suppose that
h : S1 → S1 is an orientation-preserving homeomorphism such that∫︂ 2π

0

∫︂ π/2

0

Φ(qρch(θ, t)) dtdθ <∞

for some q > 0. Then there exists an extension of h to a homeomorphism H of D
that has finite distortion and∫︂

D
Φ(qC−1

0 KH(x, y)) dxdy <∞.

The constant C0 is the same as the constant of Theorem 1.6 below. We prove
Theorem 1.4 in Section 3. For Φ(x) = ex, this theorem implies Theorem 1.2.
Moreover, if Φ(x) = xq, q ≥ 1, then we obtain extensions having q-integrable
distortion and if Φ(x) = ex/ log(e+x) then we obtain extensions of subexponentially
integrable distortion. The latter class of mappings is slightly weaker than David
homeomorphisms, but their general theory has no essential differences. Moreover,
the condition of subexponentially integrable distortion is very close to the optimal
sufficient condition for obtaining solutions to the Beltrami equation; see [AIM09,
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Section 20.5, p. 570] for more background. We remark that Theorem 1.4 generalizes
the result of Zakeri [Zak08, Theorem B], which uses supt>0 ρ

c
h(x, t) in place of ρch.

We do not know whether the assumption of Theorem 1.4 is also necessary for
extensions that have q-integrable or exponentially integrable distortion. In fact, so
far there exists a necessary and sufficient condition only for mappings of 1-integrable
distortion, due to Astala, Iwaniec, Martin, and Onninen [AIMO05, Theorem 11.1].
Namely, a homeomorphism h : S1 → S1 extends to a homeomorphism H of the disk
with KH ∈ L1(D) if and only if∫︂ 2π

0

∫︂ 2π

0

⃓⃓
log |h(eiθ)− h(eiϕ)|

⃓⃓
dθdϕ <∞.

We pose the following question.

Question 1.5. Is the sufficient condition∫︂ 2π

0

∫︂ π/2

0

eqρ
c
h(θ,t) dtdθ <∞

(︄
resp.

∫︂ 2π

0

∫︂ π/2

0

(ρch(θ, t))
q
dtdθ <∞

)︄
also necessary for obtaining an extension of exponentially integrable distortion
(resp. q-integrable distortion, q ≥ 1)?

A positive answer to the question would lead to great progress towards un-
derstanding mappings of exponentially integrable distortion and their boundary
behavior. It is pointed out in [Zak08, pp. 248–249] that the only known necessary
condition for an extension of exponentially integrable distortion is ρch(θ, t) = O(t−α)
as t→ 0 for some α > 0, which is much weaker than the condition in question.

Next, we discuss the main theorem that leads to all the mentioned results. Let
h : R → R be an increasing homeomorphism. Beurling and Ahlfors constructed in
[BA56] an operator that extends h to a C1-diffeomorphism of the upper half-plane.
We denote by Kh the quasiconformal dilatation of the extension. They showed
that if ρh(x, t) ≤ ϱ for some ϱ > 0, then the extension of h is quasiconformal and
moreover Kh ≤ ϱ2. This bound was later improved by Reed [Ree66] to Kh ≤ 8ϱ,
and by Li [Li83], who proved that Kh ≤ 4.2ϱ. Later Lehtinen [Leh83] improved
this bound to 2ϱ, which is currently the best known bound; see also [Leh84] and
[Tan87].

It is crucial for all these results to assume that ρh(x, t) ≤ ϱ for all x ∈ R, t > 0,
and one cannot obtain in general any bound of the form

Kh(x, y) ≤ Cρh(x, y),(1.1)

which would be an ideal bound for the extension problem. This was observed by Z.
Chen and He [Che01,CH06], who gave examples of homeomorphisms h such that
Kh(0, y)ρh(0, y)

−1 → ∞ as y → 0. Z. Chen [Che01] also established, under no
further assumptions on h, a bound of the form

Kh(x, y) ≤ Cρh(x, y)(ρh(x+ y/2, y/2) + ρh(x− y/2, y/2)),

which is, roughly speaking, of the form Kh = O(ρ2h). Nevertheless, this is a weak
bound and does not imply sufficient integrability of Kh for practical purposes.
Therefore, in previous works, in order to obtain favorable bounds forKh in the spirit
of (1.1), further assumptions were imposed on the symmetric distortion function
ρh.
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For instance, J. Chen, Z. Chen, and He [CCH96] proved that there exists a
uniform constant C > 0 such that if ρh(x, t) ≤ ϱ(t) for some decreasing function
ϱ(t), then

Kh(x, y) ≤ Cϱ(y/2)

for all x ∈ R, y > 0. In fact, they claim this inequality with ϱ(y) in place of ϱ(y/2),
but their proof contains an error that we point out in Remark 2.1 in the end of
Section 2.1. Zakeri in [Zak08] observed that this inequality can be used to obtain
a David extension under the condition

ϱ(y) = O(log(1/y))

as y → 0; the error mentioned above does not affect this result. We remark that
Theorems 1.1–1.2 and Corollary 1.3 are stronger. Moreover, under the assumptions
that h(x + 1) = h(x) + 1 for x ∈ R and exp(supy>0 ρh(·, y)) ∈ Lq([0, 1]) for some
q > 0, Zakeri obtains a David extension by proving the bound

Kh(x, y) ≤ 4max

{︃
sup
y>0

ρh(x, y), C1(q) log

(︃
C2(h)

y

)︃}︃
,

where the constant C2(h) depends on the Lq norm of exp(supy>0 ρh(x, y)). De Faria
[dF11] remarked that this inequality is not optimal, by constructing homeomor-
phisms h of R that extend to David homeomorphisms of H, but supy>0 ρh(x, y) = ∞
for a.e. x ∈ R. His examples, though, satisfy the sufficient condition ρh(x, y) =
O(log(1/y)).

Under no assumptions whatsoever on the homeomorphism h we prove, as our
main theorem, the following optimal bounds for the quasiconformal dilatation Kh

of the Beurling–Ahlfors extension. These bounds are close to the ideal bound (1.1),
but as we will see, for many practical purposes they are as good as that.

Theorem 1.6. There exists a uniform constant C0 > 0 such that the following
holds. Let h : R → R be an increasing homeomorphism. Then

ρh(x, y)

4
≤ Kh(x, y) ≤ C0 max

{︄
ρh(x, y),

2

y

∫︂ y/4

−y/4
ρh(x+ z, y − |z|) dz

}︄
for all x ∈ R and y > 0.

This result implies the bounds of Chen et al. and Zakeri with possibly different
constants. One can take C0 = 50, but we have not attempted to optimize the
value of the constant C0. The integral in the right-hand side is the average of
ρh on the two segments, from the point (x, y) to (x − y/4, 3y/4) and from (x, y)
to (x + y/4, 3y/4), as shown in Figure 1. Moreover, upon integration, this result
implies that Kh and ρh satisfy essentially the same integrability conditions.

Theorem 1.7. Let Φ: [0,∞) → [0,∞) be an increasing convex function and sup-
pose that h : R → R is an increasing homeomorphism. Then for all q > 0 we
have ∫︂

H
Φ(q4−1C−1

0 ρh) dσ ≤
∫︂
H
Φ(qC−1

0 Kh) dσ ≤ C

∫︂
H
Φ(qρh) dσ,

where C0 is the constant from Theorem 1.6 and C > 0 is a uniform constant.
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R

H
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(x, y)

�(x− y/4, 3y/4) �(x+ y/4, 3y/4)

Figure 1. The segments on which ρh is averaged in Theorem 1.6.

Note that Theorem 1.1 follows from Theorem 1.7. We prove Theorem 1.6 in
Section 2 and Theorem 1.7 in Section 3.

Another class of well-studied generalizations of quasiconformal maps are BMO-
quasiconformal maps. A homeomorphism H : U → V is BMO-quasiconformal if
H is a mapping of finite distortion and there exists Q ∈ BMO(U) such that

KH(x, y) ≤ Q(x, y)

a.e. in U . In other words, the quasiconformal dilatation of H has a BMO majorant
(in U). This condition is locally equivalent to the condition of exponentially inte-
grable distortion [AIM09, Theorem 20.4.1, p. 545]. These mappings were studied
by Ryazanov, Srebro, and Yakubov [RSY01].

Sastry [Sas02, Theorem 3.1] established a sufficient condition for a homeomor-
phism h : R → R to admit a BMO-quasiconformal extension to H and Zakeri
[Zak08, Theorem C] proved a stronger result for homeomorphisms of R that com-
mute with x ↦→ x + 1. Namely, he proved that if h commutes with x ↦→ x + 1
and

ρh(x, y) ≤
1

2y

∫︂ x+y

x−y
A(t) dt,

where A ∈ BMO(R) and A is 1-periodic, then h has a BMO-quasiconformal
extension to H. His proof is based on the John–Nirenberg inequality [JN61] and the
deep result of Bennett, DeVore, and Sharpley [BDS81], that the maximal function of
a BMO function is either identically equal to infinity or it lies in BMO. Using the
estimate of the main Theorem 1.6, we prove an even stronger result with elementary
means.

For a function A ∈ L1
loc(H) and for z ∈ H we define

ˆ︁A(z) = 1

|Bz|

∫︂
Bz

A,

where Bz is the ball B(z, Im(z)/2) and | · | denotes the Lebesgue measure. We also
define

Aq(z) =
1

|Qz|

∫︂
Qz

A =
1

2y2

∫︂ 3y/2

y/2

∫︂ x+y

x−y
A,
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where Qz is the 2y × y rectangle, centered at z = (x, y). We prove in Section 3.2
the elementary fact that ˆ︁· and ·q are bounded operators from BMO into itself. The
combination of this fact with the main Theorem 1.6 leads to the following result,
proved in Section 3.2. Here, ∥A∥∗ denotes the BMO semi-norm of A.

Theorem 1.8. There exists a uniform constant C > 0 such that the following
holds. Let h : R → R be an increasing homeomorphism and A ∈ BMO(H).

If ρh ≤ ˆ︁A in H then Kh ≤ C ˆ︁A+ C∥A∥∗ in H, and

if Kh ≤ ˆ︁A in H then ρh ≤ 4 ˆ︁A in H.

The same conclusions hold with Aq in place of ˆ︁A. In particular, under any of these
conditions, the Beurling–Ahlfors extension of h to the upper half-plane is BMO-
quasiconformal.

We pose some questions for further study. It is proved in [LMMN20, Proposition
2.5] that David homeomorphisms of the unit disk are invariant under composition
with quasiconformal homeomorphisms of the disk. Since the boundary maps of
quasiconformal homeomorphisms of the disk are precisely quasisymmetric home-
omorphisms of S1, it follows that the circle homeomorphisms that have a David
extension in the disk are invariant under composition with quasisymmetric maps.
We pose, therefore, the following question.

Question 1.9. Let h : S1 → S1 be an orientation-preserving homeomorphism such
that eρ

c
h ∈ Lq([0, 2π] × [0, π/2]) for some q > 0. Is is true that the pre- and post-

compositions of h with quasisymmetric homeomorphisms of S1 also have the same
property (with a possibly different q)?

If the answer to Question 1.5 is positive, then the answer to this question would
also be positive.

Another natural problem is to characterize welding homeomorphisms of David
circles, i.e., Jordan curves that arise as the image of the unit circle under a global

David homeomorphism of ˆ︁C. A welding homeomorphism is a homeomorphism of the
circle that arises as the composition of the conformal map from the unit disk onto
the interior region of a Jordan curve with a conformal map from the exterior of this
Jordan curve onto the exterior of the unit disk. The existence of a David extension
of a circle homeomorphism h inside the disk, as in the conclusion of Theorem 1.2,
implies that h is a welding homeomorphism of a David circle. This follows from
standard arguments; see, for instance, the discussion in [LMMN20, Section 5].

Question 1.10. What is a characterization of welding homeomorphisms of David
circles?

For quasicircles, i.e., images of the unit circle under global quasiconformal maps,
the characterization is known. Namely, quasisymmetric maps of the circle are
precisely the welding homeomorphisms of quasicircles. However, we do not expect
that the answer to the above question is the exponential integrability of ρch. The
reason is that the inverse of a welding homeomorphism is a welding homeomorphism
trivially. However, the inverse of a David homeomorphism is not necessarily a
David map and likewise, we do not expect that the exponential integrability of ρch
is equivalent to the exponential integrability of ρch−1 .

Finally, another related currently developing research direction is the study of
the extension problem for mappings of finite distortion between the unit disk and
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arbitrary Jordan regions in the plane. See the surveys [Kos10,GX21] and the ref-
erences therein for some results. We believe that understanding fully the extension
problem for circle maps will also provide deep insights into these problems.

Acknowledgments. We would like to thank the anonymous referees for their
valuable comments and corrections.

2. Proof of the main theorem

In this section we prove the main Theorem 1.6. We first recall some basic facts
and collect some properties of the Beurling–Ahlfors extension in Section 2.1, and
then we give the proof of the theorem in Section 2.2. Our proof is self-contained
for the convenience of the reader.

2.1. The Beurling–Ahlfors extension. We recall the definition of the exten-
sion operator of Beurling and Ahlfors [BA56]. Let h : R → R be an increasing
homeomorphism. The Beurling–Ahlfors extension H : H → H of h is defined by

H(x, y) = u(x, y) + iv(x, y),

where

u(x, y) =
1

2y

∫︂ x+y

x−y
h(t) dt and v(x, y) =

1

2y

(︃∫︂ x+y

x

h(t) dt−
∫︂ x

x−y
h(t) dt

)︃
for x ∈ R and y > 0. Moreover, we define H|R = h. Beurling and Ahlfors proved
in [BA56, p. 135] that H : H → H is a homeomorphism. Indeed, H is proper,
continuous, and locally injective and thus it is a covering map from H onto itself.
Since H is simply connected, it follows that H : H → H is a homeomorphism. This
in conjunction with the fact thatH|R = h implies thatH is continuous and bijective
on H. But H−1 is also continuous on H and hence H : H → H is a homeomorphism.

By general properties (see e.g. [AIM09, (21.1), p. 587]), the quasiconformal di-
latation Kh of H satisfies

Kh +
1

Kh
=
u2x + u2y + v2x + v2y
uxvy − uyvx

,(2.1)

where in our case

ux(x, y) =
1

2y
(h(x+ y)− h(x− y)) ,

uy(x, y) =
1

2y

(︃
h(x+ y) + h(x− y)− 1

y

∫︂ x+y

x

h(t) dt− 1

y

∫︂ x

x−y
h(t) dt

)︃
,

vx(x, y) =
1

2y
(h(x+ y) + h(x− y)− 2h(x)) , and

vy(x, y) =
1

2y

(︃
h(x+ y)− h(x− y)− 1

y

∫︂ x+y

x

h(t) dt+
1

y

∫︂ x

x−y
h(t) dt

)︃
.

We list some transformation properties of the Beurling–Ahlfors extension. We
let a > 0 and b ∈ R. The extension of a function h is denoted by H and the
extension of a function h∗ is denoted by H∗.

(BA1) If h∗(t) = ah(t) + b, then ρh∗(x, t) = ρh(x, t), H
∗(x, y) = aH(x, y) + b, and

Kh∗(x, y) = Kh(x, y).
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(BA2) If h∗(t) = h(at+b), then ρh∗(x, t) = ρh(ax+b, at), H
∗(x, y) = H(ax+b, ay),

and Kh∗(x, y) = Kh(ax+ b, ay).

(BA3) If h∗(t) = −h(−t), then ρh∗(x, t) = ρh(−x, t), H∗(x, y) = −H(−x, y), and
Kh∗(x, y) = Kh(−x, y); here H(−x, y) denotes the complex conjugate of
H(−x, y).

In all properties, the transformation of the extension H follows immediately from
the definition of the Beurling–Ahlfors extension. Moreover, the transformation of
the symmetric distortion function ρh is also immediate from the definition. The
transformation of the quasiconformal dilatation follows only from the transforma-
tion of H and does not depend on the properties of the Beurling–Ahlfors extension.

If h is a normalized homeomorphism with h(0) = 0 and h(1) = 1, then

ux(0, 1) =
1

2
(1− h(−1)), uy(0, 1) =

1

2

(︃
1 + h(−1)−

∫︂ 1

0

h(t) dt−
∫︂ 0

−1

h(t) dt

)︃
and

vx(0, 1) =
1

2
(1 + h(−1)), vy(0, 1) =

1

2

(︃
1− h(−1)−

∫︂ 1

0

h(t) dt+

∫︂ 0

−1

h(t) dt

)︃
.

If we set

β = −h(−1), ξ = 1−
∫︂ 1

0

h(t) dt, and η = 1 +
1

β

∫︂ 0

−1

h(t) dt,

then ux(0, 1) =
1
2 (1 + β), uy(0, 1) =

1
2 (ξ − βη), vx(0, 1) =

1
2 (1− β), and vy(0, 1) =

1
2 (ξ + βη). Therefore, by (2.1) we derive that

Kh(0, 1) +
1

Kh(0, 1)
=

1

ξ + η

(︃
β(1 + η2) +

1

β
(1 + ξ2)

)︃
.(2.2)

By our normalization on h, it is clear that ξ, η ∈ (0, 1).
We denote by F (ξ, η) the right-hand side of (2.2), where β is treated as a con-

stant. Beurling and Ahlfors [BA56, pp. 137–138] observed that F (ξ, η) is a convex
function for ξ, η > 0. Indeed, we set

F1(ξ, η) =
1 + η2

ξ + η
, F2(ξ, η) =

1 + ξ2

ξ + η
,

and observe that F (ξ, η) = βF1(ξ, η) + (1/β)F2(ξ, η). Hence, it suffices to see that
F1, F2 are convex. A direct calculation shows that

Hess(F1) = Hess(F2) = 2

⎡⎣(1 + η2)/(ξ + η)3 (1− ηξ)/(ξ + η)3

(1− ηξ)/(ξ + η)3 (1 + ξ2)/(ξ + η)3

⎤⎦ .
The determinant is equal to 4/(ξ + η)4 > 0 and since 2(1 + η2)/(ξ + η)3 > 0 for
ξ, η > 0, we conclude that F1 and F2 are convex; see [Roc70, Theorem 4.5].

Our proof of the upper bound of the main theorem relies on convex analysis
of the function F (ξ, η). Namely, through some careful case analysis we will find
convex polygons in the unit square [0, 1]2 that contain the potential values of (ξ, η).
The maximum of F on these polygons is attained at one of the vertices. Thus, by
evaluating F at finitely many points we will be able to obtain an upper bound for
Kh.
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Remark 2.1. The strategy of using convex analysis in order to bound the quasicon-
formal dilatation was already employed by Beurling–Ahlfors [BA56]. The subse-
quent approaches [Ree66, Leh83, Leh84,Tan87,CCH96,CH06, Zak08] use a similar
and more intricate convex analysis. However, none of these approaches was able to
derive the optimal linear pointwise bound of our main theorem. Our proof follows
some ideas from the proof of Theorem 3 in [CCH96]. We remark that there is an
error in that proof. Namely, the last inequality in (3.10) is incorrect, since h(2t−1)
is a negative number for t ∈ (0, 1/2). Since ρ is assumed to be a decreasing function,
in order to obtain a correct estimate one would have to replace ρ(y0) by ρ(y0/2)
in the last displayed formula of (3.10). This alters the conclusion of the theorem,
inequality (3.4), to the inequality D(x0 + iy0) ≤ 4ρ(y0/2) + C.

2.2. Proof of Theorem 1.6. Throughout the proof we fix x ∈ R and y > 0.
Consider the normalized self-homeomorphism of R

h∗(t) =
h(x+ yt)− h(x)

h(x+ y)− h(x)

with h∗(0) = 0 and h∗(1) = 1. By properties (BA1) and (BA2), it follows that

ρh∗(s, t) = ρh(x+ ys, yt) and Kh∗(s, t) = Kh(x+ ys, yt)

for s ∈ R and t > 0. For s = 0 and t = 1, by (2.2) we have

Kh(x, y) +
1

Kh(x, y)
=

1

ξ + η

(︃
β(1 + η2) +

1

β
(1 + ξ2)

)︃
,(2.3)

where

β = −h∗(−1), ξ = 1−
∫︂ 1

0

h∗(t) dt, and η = 1 +
1

β

∫︂ 0

−1

h∗(t) dt.(2.4)

We first establish the lower estimate in the statement of the theorem. Since
0 < ξ, η < 1 and Kh ≥ 1, by (2.3) we have

2Kh(x, y) ≥ Kh(x, y) +
1

Kh(x, y)
≥ 1

2

(︃
β +

1

β

)︃
.

Note that β is equal to either ρh∗(0, 1) = ρh(x, y) or 1/ρh∗(0, 1) = 1/ρh(x, y). Thus,

1

2

(︃
β +

1

β

)︃
=

1

2

(︃
ρh(x, y) +

1

ρh(x, y)

)︃
≥ ρh(x, y)

2
.

Therefore,

Kh(x, y) ≥
ρh(x, y)

4
.

This completes the proof of the lower estimate.

In order to prove the upper estimate for Kh(x, y), by (2.3), it suffices to prove
the required estimate for the function

F (ξ, η) =
1

ξ + η

(︃
β(1 + η2) +

1

β
(1 + ξ2)

)︃
,

which dominates Kh. We consider two main cases: β ≥ 1 and β < 1.

Case 1. Suppose that β ≥ 1. In this case, we have β = ρh(x, y). To simplify the
proof we take two further subcases.
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Case 1(a). Suppose that

h∗(−1/2) ≤ −β/2 = h∗(−1)/2.(2.5)

Essentially, this is the main non-trivial case and we will treat it in full detail. The
remaining cases are either trivial or symmetric to this one. We split the proof in
several steps for the convenience of the reader.

Step 1: We will show that∫︂ 1/4

0

h∗(t) dt ≤ 1

4
+
h∗(−1/2)

4

1

1 +A∗ ,

where

A∗ = 4

∫︂ 1/4

0

ρh∗(t, 1− t) dt = 4

∫︂ 1/4

0

ρh(x+ ty, (1− t)y) dt

=
4

y

∫︂ y/4

0

ρh(x+ z, y − z)dz.

For 0 ≤ t ≤ 1/4, we have 2t − 1 ≤ −1/2, and since h∗ is increasing, it follows
that h∗(2t − 1) ≤ h∗(−1/2). By this inequality and the definition of ρh∗(t, 1 − t),
we infer that

h∗(t)− h∗(−1/2)

h∗(1)− h∗(t)
≤ h∗(t)− h∗(2t− 1)

h∗(1)− h∗(t)
≤ ρh∗(t, 1− t) =: ρ∗

for 0 ≤ t ≤ 1/4. Thus, h∗(t)− h∗(−1/2) ≤ (1− h∗(t))ρ∗, which implies that

h∗(t) ≤ ρ∗

1 + ρ∗
+
h∗(−1/2)

1 + ρ∗
≤ 1 +

h∗(−1/2)

1 + ρ∗
.

Integrating over t ∈ [0, 1/4], we have∫︂ 1/4

0

h∗(t) dt ≤ 1

4
+
h∗(−1/2)

4

∫︂ 1/4

0

4

1 + ρ∗
dt.

Finally, by Jensen’s inequality,∫︂ 1/4

0

4

1 + ρ∗
dt ≥ 1

1 + 4
∫︁ 1/4

0
ρ∗ dt

=
1

1 +A∗ .

Since h∗(−1/2) < 0, the desired conclusion follows.

Step 2: We will show that

4ξ +
2

3

β

1 +A∗ η ≥ 2

3

β

1 +A∗ .(2.6)

Geometrically, this inequality says that the point (ξ, η) in the plane lies above a
certain line with slope −6(1 +A∗)β−1; see Figure 2.

Using the estimate from Step 1, we obtain the estimates

4ξ = 4

(︃
1−

∫︂ 1

0

h∗(t) dt

)︃
= 4− 4

(︄∫︂ 1/4

0

h∗(t) dt+

∫︂ 1

1/4

h∗(t) dt

)︄

≥ 4− 4

(︃
1

4
+
h∗(−1/2)

4

1

1 +A∗ +
3

4
· 1
)︃

= −h
∗(−1/2)

1 +A∗ .

(2.7)



12 CHRISTINA KARAFYLLIA AND DIMITRIOS NTALAMPEKOS

Moreover, by the main assumption (2.5) of Case 1(a), we have

β

1 +A∗ η =
β

1 +A∗

(︃
1 +

1

β

∫︂ 0

−1

h∗(t) dt

)︃
=

β

1 +A∗ +
1

1 +A∗

(︄∫︂ −1/2

−1

h∗(t) dt+

∫︂ 0

−1/2

h∗(t) dt

)︄

≥ β

1 +A∗ +
1

1 +A∗
h∗(−1) + h∗(−1/2)

2

≥ β

1 +A∗ +
3

2

h∗(−1/2)

1 +A∗ .

Equivalently,

2

3

β

1 +A∗ η ≥ 2

3

β

1 +A∗ +
h∗(−1/2)

1 +A∗

Adding this inequality to (2.7) leads to the claimed inequality.

Step 3: We finally estimate F (ξ, η) from above, under the restrictions 0 < ξ, η < 1
and under inequality (2.6) from Step 2. We will consider two cases, depending on

whether or not β
6(1+A∗) is less than 1.

Suppose first that
β

6(1 +A∗)
< 1.

We deduce that the point (ξ, η) lies in the convex quadrilateral Q (see Figure 2)
bounded by the lines

ξ = 1, η = 0, η = 1, and 4ξ +
2

3

β

1 +A∗ η =
2

3

β

1 +A∗ .

Since F is convex, its maximum in Q is attained at one of the vertices (0, 1), (1, 1),
(1, 0), and (β/(6(1 +A∗)), 0); see [Roc70, Corollary 32.3.4]. Estimating the values
of F at these vertices, we have

F (0, 1) = 2β +
1

β
≤ 2β + 1 ≤ 3β = 3ρh(x, y),

F (1, 1) = β +
1

β
≤ F (0, 1),

F (1, 0) = β +
2

β
≤ F (0, 1), and

F

(︃
β

6(1 +A∗)
, 0

)︃
= 6(1 +A∗)

(︃
1 +

1

β2

)︃
+

1

6(1 +A∗)

≤ 12(1 +A∗) +
1

12
≤ 25A∗,

because β,A∗ ≥ 1. Thus,

F (ξ, η) ≤ 25max {ρh(x, y), A∗} .(2.8)

If, instead,
β

6(1 +A∗)
≥ 1,
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Q

0 0 01 1 1β
6(1+A∗)

β
6(1+A∗)

1 1 1

1
4

η η η

ξ ξ ξ

Figure 2. Convex polygons containing the point (ξ, η) in Case 1.

then (ξ, η) lies in the triangle (see Figure 2) bounded by the lines

ξ = 1, η = 1, and 4ξ +
2

3

β

1 +A∗ η =
2

3

β

1 +A∗ ,

which is contained in the triangle with vertices (0, 1), (1, 1), and (1, 0). The max-
imum of F in this triangle is attained at one of the vertices. From the previous
estimates, F is bounded above by 3ρh(x, y). Thus, (2.8) also holds in this case.

Case 1(b). Suppose that h∗(−1/2) > −β/2.

Then

η = 1 +
1

β

∫︂ 0

−1

h∗(t) dt = 1 +
1

β

(︄∫︂ −1/2

−1

h∗(t) dt+

∫︂ −1

−1/2

h∗(t) dt

)︄

≥ 1 +
1

2β
(h∗(−1) + h∗(−1/2)) ≥ 1− β + β/2

2β
=

1

4
.

Since 0 < ξ < 1 and 1/4 ≤ η < 1, the point (ξ, η) lies in the rectangle (see Figure
2) bounded by the lines

ξ = 0, ξ = 1, η = 1/4, and η = 1.

Hence, the function F reaches its maximum at one of the vertices (0, 1/4), (1, 1/4),
(1, 1), and (0, 1). Since

F (0, 1/4) =
17β

4
+

4

β
≤ 17β

4
+ 4 ≤ 9β = 9ρh(x, y), and

F (1, 1/4) =
17β

20
+

8

5β
≤ 3β = 3ρh(x, y),

the relation (2.8) is still true.

Thus, in both Cases 1(a) and 1(b), we derive that

F (ξ, η) ≤ 25max {ρh(x, y), A∗} .
This in conjunction with (2.3) gives

Kh(x, y) ≤ 25max

{︄
ρh(x, y),

4

y

∫︂ y/4

0

ρh(x+ z, y − z) dz

}︄
.(2.9)
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Case 2. Suppose that β < 1. This case is symmetric to Case 1.

In this case, we have β = 1/ρh(x, y). We consider the normalized increasing home-

omorphism ˜︁h(t) = −h∗(−t)/β with ˜︁h(0) = 0 and ˜︁h(1) = 1. By properties (BA1)
and (BA3), it follows that

ρ˜︁h(s, t) = ρh∗(−s, t) = ρh(x−ys, yt) and K˜︁h(s, t) = Kh∗(−s, t) = Kh(x−ys, yt).

So, if in (2.3) and (2.4) we replace β, ξ, η, and h∗ by ˜︁β, ˜︁ξ, ˜︁η, and ˜︁h, respectively,
then we have

Kh(x, y) = K˜︁h(0, 1) ≤ 1˜︁ξ + ˜︁η
(︃˜︁β(1 + ˜︁η2) + 1˜︁β (1 + ˜︁ξ2)

)︃
=: ˜︁F (˜︁ξ, ˜︁η)

and ˜︁β = −˜︁h(−1) =
1

β
= ρh(x, y) > 1.

This reduces Case 2 to Case 1. Hence, we obtain the conclusion

˜︁F (˜︁ξ, ˜︁η) ≤ 25max{ρh(x, y), ˜︁A},
where

˜︁A = 4

∫︂ 1/4

0

ρ˜︁h(t, 1− t) dt = 4

∫︂ 1/4

0

ρh(x− ty, (1− t)y) dt

=
4

y

∫︂ 0

−y/4
ρh(x+ z, y + z) dz.

We deduce that

Kh(x, y) ≤ 25max

{︄
ρh(x, y),

4

y

∫︂ 0

−y/4
ρh(x+ z, y + z) dz

}︄
.(2.10)

Combining (2.9) from Case 1 and (2.10) from Case 2, we finally have

Kh(x, y) ≤ 50max

{︄
ρh(x, y),

2

y

∫︂ y/4

−y/4
ρh(x+ z, y − |z|) dz

}︄
.

This completes the proof. □

3. Consequences of the main theorem

In this section we establish the consequences of the main theorem; that is, The-
orem 1.7, which provides integrability conditions for homeomorphisms of the real
line, Theorem 1.4, which provides integrability conditions for homeomorphisms of
the circle, and Theorem 1.8, regarding the BMO majorants.
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3.1. Integrability conditions.

Proof of Theorem 1.7. Let Φ: [0,∞) → [0,∞) be an increasing convex function.
The first inequality of Theorem 1.6 immediately implies the first inequality of The-
orem 1.7.

For the second inequality, we multiply the second inequality of Theorem 1.6 with
qC−1

0 , and then apply the function Φ. Using Jensen’s inequality we obtain

Φ(qC−1
0 Kh(x, y)) ≤ max

{︄
Φ(qρh(x, y)),

2

y

∫︂ y/4

−y/4
Φ(qρh(x+ z, y − |z|)) dz

}︄
,

for all (x, y) ∈ H. In order to obtain the conclusion, it suffices to show that∫︂
R

∫︂ ∞

0

2

y

∫︂ y/4

−y/4
Φ(qρh(x+ z, y − |z|)) dz 4dydx

(1 + x2 + y2)2
≤ C

∫︂
H
Φ(qρh) dσ

for some uniform constant C > 0. For simplicity, we define f = Φ(qρh) and let
g(x, y) be the spherical density 4/(1 + x2 + y2)2.

We break the inner integral into two integrals, from 0 to y/4 and from −y/4 to
0. It suffices to prove the estimate for the first one, since the proof is essentially
the same for the other. By changing coordinates repeatedly and applying Fubini’s
theorem, we have∫︂

R

∫︂ ∞

0

2

y

∫︂ y/4

0

f(x+ z, y − z)g(x, y) dzdydx

=

∫︂
R

∫︂ ∞

0

2

y

∫︂ y

3y/4

f(x+ y − u, u)g(x, y) dudydx

=

∫︂ ∞

0

2

y

∫︂ y

3y/4

∫︂
R
f(x+ y − u, u)g(x, y) dxdudy

=

∫︂ ∞

0

2

y

∫︂ y

3y/4

∫︂
R
f(w, u)g(w + u− y, y) dwdudy.

Now we claim that g(w + u− y, y) ≤ 16g(w, u) for 0 < u < y and w ∈ R. Indeed,

1 + (w + u− y)2 + y2 ≥ 1 + (w − (y − u))2 +
(y − u)2 + u2

2

≥ 1 +
(w − (y − u))2 + (y − u)2

2
+
u2

2

≥ 1 +
w2

4
+
u2

2
≥ 1 + w2 + u2

4
.

The claim follows immediately. Therefore, it suffices to bound the integral of
f(w, u)g(w, u), instead of f(w, u)g(w + u− y, y). We have∫︂ ∞

0

2

y

∫︂ y

3y/4

∫︂
R
f(w, u)g(w, u) dwdudy =

∫︂
R

∫︂ ∞

0

f(w, u)g(w, u)

∫︂ 4u/3

u

2

y
dydudw.

Finally, we observe that ∫︂ 4u/3

u

2

y
dy = 2 log(4/3)

for all u > 0 and this completes the proof. □
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Next, we prove Theorem 1.4, which is a transportation of Theorem 1.7 to home-
omorphisms of the circle. Our proof follows from an adaptation of the argument of
Zakeri [Zak08, p. 243].

Proof of Theorem 1.4. Let h : S1 → S1 be an orientation-preserving homeomor-
phism of the circle. If h(1) = eiθ0 ̸= 1, we consider the homeomorphism h · e−iθ0 .
If we extend this homeomorphism to a homeomorphism H of the disk with the
desired integrability properties for KH , then H · eiθ0 will be an extension of h with
the desired properties. Therefore, it suffices to prove the theorem assuming that
h(1) = 1.

We lift the homeomorphism h to the real line, under the universal covering map

ψ(z) = e2πiz. We thus obtain an increasing homeomorphism ˜︁h of the real line

with ˜︁h(0) = 0, ˜︁h(1) = 1, and ˜︁h(x + 1) = ˜︁h(x) + 1 for all x ∈ R. Consider the

Beurling–Ahlfors extension ˜︁H of ˜︁h in the upper half-plane. By properties (BA1)

and (BA2), we have ˜︁H(z +1) = ˜︁H(z) + 1 for all z ∈ H. It follows that ˜︁H descends
to a homeomorphism H of the unit disk that extends h.

Since the circular symmetric distortion ρch is defined using arclength, we have
ρch(θ, t) = ρ˜︁h(θ/2π, t/2π) for all θ ∈ [0, 2π] and t ∈ (0, π/2]. The assumption that

Φ(qρch) ∈ L1([0, 2π]× (0, π/2]) now implies that Φ(qρ˜︁h) ∈ L1([0, 1]× (0, 1/4]). The

continuity of ρ˜︁h on [0, 1]× [1/4, 1] implies that Φ(qρ˜︁h) ∈ L1([0, 1]× (0, 1]). Since ˜︁h
commutes with x ↦→ x+1, we have that ρ˜︁h is bounded on [0, 1]× [1,∞). Therefore,

Φ(qρ˜︁h) ∈ L1([0, 1] × (0,∞); dσ). Again, since ˜︁h commutes with x ↦→ x + 1, we

conclude that Φ(qρ˜︁h) ∈ L1(H; dσ).

By Theorem 1.7, the Beurling–Ahlfors extension ˜︁H of ˜︁h satisfies Φ(qC−1
0 K ˜︁H) ∈

L1(H; dσ). Since ψ ◦ ˜︁H = H ◦ψ and ψ is locally conformal, we have K ˜︁H = KH ◦ψ.
By changing coordinates under the conformal map ψ|(0,1)×(0,∞) we obtain∫︂

D\[0,1)×{0}
Φ(qC−1

0 KH)Jσψ−1 dσ =

∫︂
(0,1)×(0,∞)

Φ(qC−1
0 K ˜︁H) dσ <∞,(3.1)

where Jσψ−1 denotes the spherical Jacobian of ψ−1(z) = log(z)
2πi , with a branch cut

along the non-negative real axis. We have

Jσψ−1(z) = Jψ−1(z)
(1 + |z|2)2

(1 + |ψ−1(z)|2)2
≃ 1

|z|2
(1 + |z|2)2

(1 + log2 |z|)2
≳ 1

for z ∈ D \ [0, 1)× {0}. Since dσ ≃ dxdy for (x, y) ∈ D, by (3.1) we have∫︂
D
Φ(qC−1

0 KH) dxdy <∞.

This completes the proof. □

3.2. Functions of bounded mean oscillation. We first recall the definition of
a function of bounded mean oscillation. Let U ⊂ Rn, n ≥ 1, be an open set and
A ∈ L1

loc(U). The function A lies in BMO(U) if

∥A∥∗ := sup
B⊂U

1

|B|

∫︂
B

|A−AB | <∞,

where AB = 1
|B|
∫︁
B
A, and the supremum is taken over all closed balls B ⊂ U .
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For A ∈ L1
loc(U), we define

ˆ︁A(z) = 1

|Bz|

∫︂
Bz

A,

where Bz = B(z,dist(z, ∂U)/2).

Lemma 3.1. There exists a uniform constant C = C(n) > 0 such that if A ∈
BMO(U), then ˆ︁A ∈ BMO(U) and ∥ ˆ︁A∥∗ ≤ C∥A∥∗.

Proof. Suppose that A ∈ BMO(U) and consider a ball B0 = B(z0, r) ⊂ B(z0, r) ⊂
U . We will show that there exists a uniform constant C = C(n) > 0 and a constant
c0 ∈ R depending on B0 such that∫︂

B0

| ˆ︁A− c0| ≤ C∥A∥∗|B0|.(3.2)

This will imply that ˆ︁A ∈ BMO(U) and ∥ ˆ︁A∥∗ ≤ 2C∥A∥∗; see [WZ15, Lemma 14.49,
p. 445].

Let z ∈ B0 and consider a chain of points z0, z1, . . . , zN = z lying on the segment
between z0 and z such that |zi − zi−1| = 2−ir for i ∈ {1, . . . , N − 1} and |zN −
zN−1| ≤ 2−Nr. We fix i ∈ {1, . . . , N}. Recall that Bzi = B(zi, di/2), where
di = dist(zi, ∂U). If di ≤ di−1, then we define

B(wi, Ri) = B(zi−1, di−1/2 + |zi − zi−1|),
while if di−1 < di, then we define

B(wi, Ri) = B(zi, di/2 + |zi − zi−1|).
In both cases we have

Bzi ∪Bzi−1
⊂ B(wi, Ri).

We observe that

di−1 ≥ d0 − |zi−1 − z0| > r − r(2−1 + · · ·+ 2−i+1) = 2−i+1r ≥ 2|zi − zi−1|.
It follows that

Ri = max{di−1, di}/2 + |zi − zi−1| < max{di−1, di}(3.3)

and thus B(wi, Ri) ⊂ B(wi, Ri) ⊂ U . Since |di − di−1| ≤ |zi − zi−1| < di−1/2,
we have di−1 < 2di and di < 3di−1/2. Therefore, max{di−1, di} < 2min{di−1, di}.
This, in conjunction with (3.3), gives

Ri/2 < min{di, di−1} ≤ max{di, di−1} < 2Ri.(3.4)

Since Bzi ⊂ B(wi, Ri) and these balls have comparable radii, we have

|ABzi
−AB(wi,Ri)| ≤

1

|Bzi |

∫︂
Bzi

|A−AB(wi,Ri)|

≤ C

|B(wi, Ri)|

∫︂
B(wi,Ri)

|A−AB(wi,Ri)|,

for a uniform constant C = C(n) > 0. The fact that the closure of B(wi, Ri)
is contained in U and the assumption that A ∈ BMO(U) imply that the latter
average is bounded by ∥A∥∗. Hence,

|ABzi
−AB(wi,Ri)| ≤ C∥A∥∗ and similarly |ABzi−1

−AB(wi,Ri)| ≤ C∥A∥∗
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for a uniform constant C = C(n) > 0. Therefore, we have

| ˆ︁A(z)− ˆ︁A(z0)| ≤ N∑︂
i=1

| ˆ︁A(zi)− ˆ︁A(zi−1)|

≤
N∑︂
i=1

(|ABzi
−AB(wi,Ri)|+ |ABzi−1

−AB(wi,Ri)|)

≤ 2CN∥A∥∗.

Note that |z − z0| ≥
∑︁N−1
i=1 |zi − zi−1| = r

∑︁N−1
i=1 2−i = r(1− 2−N+1). Therefore,

N ≤ 1 + (log 2)−1 log

(︃
1

1− |z − z0|/r

)︃
.

Finally, by integrating over B0 we have∫︂
B0

| ˆ︁A(z)− ˆ︁A(z0)| dz ≤ C ′|B0|∥A∥∗ + C ′∥A∥∗
∫︂
B0

log

(︃
1

1− |z − z0|/r

)︃
dz,

where C ′ = C ′(n) > 0 is a uniform constant. By integrating in polar coordinates,
we see that the latter integral is bounded by C ′′|B0| for a constant C ′′ = C ′′(n) > 0.

Hence, we have proved (3.2) with c0 = ˆ︁A(z0). □

Recall that for A ∈ L1
loc(H) we have defined

Aq(z) =
1

|Qz|

∫︂
Qz

A =
1

2y2

∫︂ 3y/2

y/2

∫︂ x+y

x−y
A,

where Qz is the 2y × y open rectangle, centered at z = (x, y).

Lemma 3.2. There exists a uniform constant C > 0 such that if A ∈ BMO(H),
then

(i) |Aq − ˆ︁A| ≤ C∥A∥∗ in H, and

(ii) Aq ∈ BMO(H) with ∥Aq∥∗ ≤ C∥A∥∗.

Of course, the particular choice of the dimensions of the rectangle Qz is not of
importance, as long as the lengths of the sides of Qz are comparable to the distance
of Qz to the boundary of H.

Proof. For any z = (x, y) ∈ H there exists a ball B0 ⊂ B0 ⊂ H with radius
comparable to y, such that B0 ⊃ Bz = B(z, y/2) and B0 ⊃ Qz. For example, one

can take the center to be (x, 2y) and the radius to be y
√
13/2. We now have

|Aq(z)− ˆ︁A(z)| ≤ |Aq(z)−AB0
|+ |AB0

− ˆ︁A(z)|
≤ 1

|Qz|

∫︂
Qz

|A−AB0
|+ 1

|Bz|

∫︂
Bz

|A−AB0
|

≤ C ′

|B0|

∫︂
B0

|A−AB0
| ≤ C ′∥A∥∗

for a uniform constant C ′ > 0, since A ∈ BMO(H).
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Upon integration, it follows that |(Aq)B − ( ˆ︁A)B | ≤ C ′∥A∥∗ for any ball B ⊂ B ⊂
H. Therefore, by the above and Lemma 3.1 we have

1

|B|

∫︂
B

|Aq − (Aq)B | ≤
1

|B|

∫︂
B

|Aq − ˆ︁A|+ 1

|B|

∫︂
B

| ˆ︁A− ( ˆ︁A)B |+ 1

|B|

∫︂
B

|( ˆ︁A)B − (Aq)B |

≤ C ′∥A∥∗ + C∥A∥∗ + C ′∥A∥∗ = (2C ′ + C)∥A∥∗,

where C is the constant from Lemma 3.1. This completes the proof. □

Proof of Theorem 1.8. If Kh ≤ ˆ︁A, then ρh ≤ 4 ˆ︁A by the first inequality of Theorem

1.6. The same claim holds with Aq in place of ˆ︁A.
Conversely, suppose that ρh ≤ ˆ︁A. By the second inequality of Theorem 1.6, we

have

Kh(x, y) ≤ C0
ˆ︁A(x, y) + C0

2

y

∫︂ y/4

−y/4
ˆ︁A(x+ z, y − |z|) dz,

Hence, it suffices to show that

2

y

∫︂ y/4

−y/4
ˆ︁A(x+ z, y − |z|) dz ≤ ˆ︁A(x, y) + C∥A∥∗

for a uniform constant C > 0. We fix z ∈ (−y/4, y/4) and consider the ball

B = B((x, y), R), where R = y
√
2/4 + y/2 < y, so that

B ⊂ H, B((x, y), y/2) ⊂ B, and B((x+ z, y − |z|), (y − |z|)/2) ⊂ B.

We now estimate

| ˆ︁A(x+ z, y − |z|)− ˆ︁A(x, y)| ≤ | ˆ︁A(x+ z, y − |z|)−AB |+ |AB − ˆ︁A(x, y)|
≤ C

|B|

∫︂
B

|A−AB | ≤ C∥A∥∗

for a uniform constant C > 0. Therefore,

ˆ︁A(x+ z, y − |z|) ≤ ˆ︁A(x, y) + C∥A∥∗

for all z ∈ (−y/4, y/4). Upon integration, this completes the proof in this case.

If we have ρh ≤ Aq , then by Lemma 3.2 (i) we have

ρh ≤ ˆ︁A+ C ′∥A∥∗ = ˆ︂(A+ C ′∥A∥∗)

for a uniform constant C ′ > 0. By the previous case, we have

Kh ≤ C ′′( ˆ︂(A+ C ′∥A∥∗) + ∥A+ C ′∥A∥∗∥∗) = C ′′ ˆ︁A+ C ′′(C ′ + 1)∥A∥∗

for some uniform constant C ′′ > 0. Applying again Lemma 3.2 (i) and switching

back to Aq leads to the desired conclusion. □
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