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AND APPLICATIONS TO UNIFORMIZATION
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Abstract. We prove that any length metric space homeomorphic to a
2-manifold with boundary, also called a length surface, is the Gromov–
Hausdorff limit of polyhedral surfaces with controlled geometry. As
an application, using the classical uniformization theorem for Riemann
surfaces and a limiting argument, we establish a general “one-sided”
quasiconformal uniformization theorem for length surfaces with locally
finite Hausdorff 2-measure. Our approach yields a new proof of the
Bonk–Kleiner theorem characterizing Ahlfors 2-regular quasispheres.
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1. Introduction

1.1. Polyhedral approximation. Surfaces of bounded curvature were in-
troduced in the 1940s by A. D. Alexandrov as a generalization of Riemannian
2-manifolds. They provide a natural setting to develop the intrinsic geome-
try of surfaces. See monographs by Alexandrov–Zalgaller [3] and Reshetnyak
[43] for overviews of this subject. A foundational result, due to Alexandrov
[2], is that any surface of bounded curvature is the uniform limit of polyhe-
dral surfaces of uniformly bounded curvature.
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The objective of this paper is an analogous theorem on polyhedral approx-
imation for arbitrary length surfaces. Instead of the property of bounded
curvature, we find it most useful to consider the behavior of the Hausdorff
2-measure H2. By length surface, we mean a length metric space homeo-
morphic to a 2-manifold, with or without boundary. A polyhedral surface
is a surface formed by gluing locally finitely many planar polygonal faces
isometrically along edges, equipped with the induced length metric. Such
a surface is locally flat except in a discrete set of vertex points. We say
that a sequence of maps fn : Xn → Yn, n ∈ N, between metric spaces is an
approximately isometric sequence if fn is a εn-isometry for some εn > 0 for
all n ∈ N, where εn → 0 as n→ ∞. We refer to Section 2 for more detailed
definitions.

Theorem 1.1. Let X be a length surface. There exists a sequence of poly-
hedral surfaces {Xn}∞n=1 each homeomorphic to X such that the following
properties hold for an absolute constant K ≥ 1.

(1) There exists an approximately isometric sequence of maps fn : Xn →
X, n ∈ N. Moreover, each fn is a topological embedding.

(2) For each compact set A ⊂ X,

lim sup
n→∞

H2(f−1
n (A)) ≤ KH2(A).

In particular, the sequence {Xn}∞n=1 converges in the Gromov–Hausdorff
sense to X [9, Corollary 7.3.28]. This theorem should be compared to the
standard fact that any length surface is the Gromov–Hausdorff limit of lo-
cally finite embedded graphs; see Proposition 7.5.5 and the following exer-
cise in [9]. By filling in such a graph with polyhedral surfaces so that the
length metric on the graph remains unchanged, one obtains a sequence of
polyhedral surfaces also converging in the Gromov–Hausdorff sense to the
original surface. The point of Theorem 1.1 is to find approximating sur-
faces whose geometry is controlled by that of the original space. Compare
also Theorem 1.1 to the classical theorem of Bing [6, Theorem 7] that any
topological surface in a 3-manifold M may be uniformly approximated by
homeomorphic polyhedral surfaces in the ambient space M .

There are three conceptual ingredients in the proof of Theorem 1.1. The
first is a recent result on the existence of decompositions of arbitrary length
surfaces into non-overlapping convex triangular regions by Creutz and the
second-named author in [13]. The second is the following fact about bi-
Lipschitz embedding metric triangles into the Euclidean plane, denoted here
by C, which we state in more generality than what is needed for Theorem 1.1.
Despite its simple statement and proof, it appears to be new. By metric
triangle, we mean a metric space consisting of three points, called vertices,
and three closed arcs, called edges, each isometric to an interval, connecting
these vertices pairwise. Note that this definition allows the edges to intersect
at interior points.



POLYHEDRAL APPROXIMATION AND UNIFORMIZATION 3

Proposition 1.2. Every metric triangle is L-bi-Lipschitz embeddable in C
with L = 4.

The third ingredient needed to prove Theorem 1.1 is a variant of the
Besicovitch inequality. See [40, Section 13.2] for a statement of this result,
including a version for metric spaces (Exercise 13.22). The classical Besi-
covitch inequality states that the minimal Riemannian filling of a planar
Jordan curve is the Jordan domain that it bounds. The precise result we
need is given as Theorem 2.1 below.

The outline of the proof of Theorem 1.1 is as follows. We start with a
sufficiently fine triangular decomposition T of the surfaceX and correspond-
ing edge graph E(T ), equipped with the induced length metric. For each
triangular region T ∈ T , we use Proposition 1.2 to obtain a bi-Lipschitz em-
bedding F : ∂T → C. Using this embedding, we build a polyhedral surface˜︁T of Hausdorff 2-measure comparable to the area of the region bounded by

F (∂T ) with the property that the length metric on ∂ ˜︁T is no smaller than
the metric on ∂T . Proposition 1.2 together with the Besicovitch inequality

imply that the Hausdorff 2-measure of ˜︁T is not too much larger than that

of T . The polyhedral surfaces ˜︁T are then glued together according to the
edge graph E(T ) to form the surface Xn. In other words, we build Xn by
replacing each triangular region T ⊂ X with the corresponding polyhedral

surface ˜︁T . Our construction guarantees that X and Xn are approximately
isometric.

1.2. Uniformization of surfaces. In the second part of this paper, we give
applications to the uniformization problem for surfaces. This asks for the
existence of geometrically well-behaved parametrizations of metric surfaces
in the spirit of the classical uniformization theorem for Riemann surfaces.
The classical uniformization theorem states that any simply connected Rie-
mann surface can be mapped conformally onto either the complex plane, the
open unit disk or the 2-sphere. In the setting of metric spaces, conformality
is a restrictive requirement, and it is more appropriate to consider instead
some notion of quasiconformal mapping.

Any orientable polyhedral surface can be given the structure of a Rie-
mann surface compatible with its metric. As a result, Theorem 1.1 gives a
new approach to proving uniformization-type theorems for metric surfaces
by invoking the classical uniformization theorem together with a limiting
argument. Our main result on this topic, Theorem 1.3, gives the existence
of “one-sided” quasiconformal parametrizations in great generality.

For K ≥ 1, we say that a mapping h : X → Y between two metric
surfaces of locally finite Hausdorff 2-measure is weakly K-quasiconformal
if it is continuous, surjective, and monotone and if it satisfies the modulus
inequality

(1.1) modΓ ≤ Kmodh(Γ)
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for every path family Γ in X; here mod refers to the 2-modulus. Recall that
a continuous map between topological spaces is monotone if the preimage
of each point is connected. By a result of Youngs [53], monotone mappings
between 2-manifolds are precisely the uniform limits of homeomorphisms.
Inequality (1.1) is commonly referred to as the KO-inequality, and a map h
satisfying (1.1) is said to have bounded outer dilatation.

Theorem 1.3. Let X be a length surface of locally finite Hausdorff 2-

measure homeomorphic to ˆ︁C, D, or C. Then there is a weakly K-quasi-

conformal mapping h : Ω → X for K = 4/π, where Ω is either ˆ︁C, D, or D
or C, respectively.

Here, D denotes the open unit disk in the complex plane C, and ˆ︁C is the
Riemann sphere, with the spherical metric and measure. To prove Theo-
rem 1.3, it is enough to find a weakly K-quasiconformal mapping h for some
K ≥ 1. This value can be improved to the constant K = 4/π using the
argument in [42, Section 14] or [44]. The constant 4/π is sharp, as can be
shown using the example of the ℓ∞-metric on R2; see Example 2.2 in [42].

Theorem 1.3 is motivated by the question of finding minimal assumptions
required for producing a uniformizing parametrization of a metric surface. In
particular, it gives an affirmative answer to Question 1.1 in [26], attributed
to Rajala and Wenger, under the mild assumption that the metric on X is
a length metric. We discuss the relation between Theorem 1.3 and previous
results on the uniformization problem later in this section.

Equivalently, we can replace (1.1) in the definition of weak quasiconfor-

mality by the statement that h ∈ N1,2
loc (X,Y ) and the pointwise distortion

inequality gh(x)
2 ≤ KJh(x) holds for almost every x ∈ X. Here, gh is the

minimal weak upper gradient of h and Jh is the Jacobian of h, that is, the
Radon–Nikodym derivative of the measure H2 ◦ h with respect to H2.

Theorem 1.4. Let X,Y be metric surfaces of locally finite Hausdorff 2-
measure and K ≥ 1. A continuous, surjective, and monotone mapping
h : X → Y is weakly K-quasiconformal if and only if h ∈ N1,2

loc (X,Y ) and

gh(x)
2 ≤ KJh(x)

for a.e. x ∈ X.

In the case that h is a homeomorphism, this result follows from a theorem
of Williams [52]. We prove the equivalence in the case of monotone mappings
in Section 7. One of the technicalities here is to justify existence of the
Jacobian.

We note that in the case that X is homeomorphic to C in Theorem 1.3,
there is no clear distinction between the situations where Ω = D and where
Ω = C, as the following example shows.

Proposition 1.5. There exists a length surface X of locally finite Hausdorff
2-measure, homeomorphic to C, admitting weakly quasiconformal parametri-
zations by both D and C.
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This contrasts with uniformization by quasiconformal mappings, since C
is not quasiconformally equivalent to any proper subdomain. We present
this example in Section 8, where we also discuss other examples.

As a corollary to Theorem 1.3, we obtain a result on the existence of
minimal disks or solutions to Plateau’s problem in metric spaces. This topic
has been studied in great depth by Lytchak–Wenger and collaborators in
[16, 20, 31, 32, 33]. Following [31], for a given metric space and Jordan
curve Γ ⊂ X we let Λ(Γ, X) denote the family of maps in the Sobolev space
N1,2(D, X) whose trace is a monotone parametrization of Γ. A solution to
Plateau’s problem for Γ is a map in Λ(Γ, X) having minimal parametrized
area and minimal (Reshetnyak) energy among area minimizers. See the
references above for more complete definitions. It is shown in [31] that
every Jordan curve in a complete proper metric space X can be spanned by
a minimal disk provided that Λ(Γ, X) is non-empty. Lytchak and Wenger
rely on the assumption that X satisfies a quadratic isoperimetric inequality
to guarantee that Λ(Γ, X) is indeed non-empty for any rectifiable curve Γ.

In the case where X is a length surface and Γ bounds a closed disk, Theo-
rem 1.3 allows us to remove this dependency on the quadratic isoperimetric
inequality. Instead, we require only that the Hausdorff 2-measure is finite.
Note as well that we do not require Γ to be rectifiable.

Corollary 1.6. Let X be a length surface of finite Hausdorff 2-measure
homeomorphic to a closed disk and let Γ = ∂X. The family Λ(Γ, X) is
non-empty. Consequently, Plateau’s problem for Γ has a solution.

Finally, we use Theorem 1.3 to give a new proof of the well-known Bonk–
Kleiner theorem characterizing Ahlfors 2-regular quasispheres, i.e., metric
spaces quasisymmetrically equivalent to the standard 2-sphere. See Sec-
tion 6.2 for definitions of the terms here.

Corollary 1.7 (Bonk–Kleiner theorem). Let X be a metric space home-

omorphic to ˆ︁C that is Ahlfors 2-regular. Then there is a quasisymmetric

homeomorphism from X onto ˆ︁C if and only if X is linearly locally con-
nected.

Since this result was originally proved by Bonk and Kleiner in [7], al-
ternative proofs have been given by Rajala [42] and Lytchak–Wenger [34].
We now give a brief summary of the three approaches. The basic common
step to all these proofs is to produce a mapping (or sequence of mappings)
and to use the geometric assumptions to show that the mapping is indeed
a quasisymmetric homeomorphism (or that the sequence subconverges to a
quasisymmetric homeomorphism). Thus the main difference is how such a
mapping is produced.

In the original proof [7], Bonk–Kleiner use the geometric assumptions to
find an embedded graph that approximates the original space X at a given
scale. They apply the Andreev–Koebe–Thurston circle packing theorem to
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produce a map from the vertex set of this graph into ˆ︁C. These maps sub-

converge to a quasisymmetric homeomorphism from the whole space to ˆ︁C.
Next, in [42], Rajala obtains the Bonk–Kleiner theorem as a consequence a
general uniformization theorem for quasiconformal mappings. The proof is
based on the construction of a harmonic function and corresponding con-
jugate function on an arbitrary quadrilateral. Pairing these functions gives
a quasiconformal homeomorphism from this quadrilateral onto a rectangle
in the plane. Rajala’s proof is especially notable in that he carries out
this construction essentially from scratch. Finally, in the Lytchak–Wenger
proof [34], the existence of the required mapping is provided by the au-
thors’ solution to Plateau’s problem in metric spaces satisfying a quadratic
isoperimetric inequality in [31], [33].

Our approach, in turn, establishes the Bonk–Kleiner theorem as a con-
sequence of the classical uniformization theorem for Riemann surfaces. In
particular, our proof gives a direct connection between the classical uni-
formization theorem and contemporary work on the uniformization of metric
surfaces. That Theorem 1.3 implies the Bonk–Kleiner theorem is standard;
see Theorem 4.9 in [23] and Section 16 in [42]. The idea is that the assump-
tion that X is Ahlfors 2-regular and linearly locally connected allows one to
promote the map h in Theorem 1.3 to a quasisymmetric homeomorphism.

In addition to the results already mentioned, the uniformization prob-
lem has also been studied for metric surfaces of other topological type
[18, 25, 50, 51]. One ingredient in [18] and [25] is the use of the classical
uniformization theorem to pass from local quasiconformal or quasisymmet-
ric charts to a globally defined mapping. In contrast, our proof uses the
classical uniformization theorem to handle both the local and global aspects
of the problem.

Finally, a version of Theorem 1.3 has been proved concurrently and inde-
pendently by Meier and Wenger in [36] using a different method, building
on the machinery for studying Plateau’s problem in [31] and related papers.
They also derive the Bonk–Kleiner theorem as a consequence, along with
additional applications.

1.3. Outline of the paper. In Section 2, we review terminology and back-
ground related to metric geometry and analysis in metric spaces. Next,
Section 3 contains the proof of Proposition 1.2 on bi-Lipschitz embeddings
of metric triangles in the plane. In Section 4, we give the construction of
polyhedral fillings for any simple metric triangle. The proof of Theorem 1.1
is then presented in Section 5. Next, in Section 6, we prove Theorem 1.3,
Corollary 1.6, and Corollary 1.7 giving our applications to the uniformiza-
tion problem. In Section 7, we investigate further the regularity properties
of the parametrizations in Theorem 1.3 and prove Theorem 1.4. Finally,
Section 8 contains several examples, including the example used to prove
Proposition 1.5.
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2. Preliminaries

2.1. Metric geometry. We assume that the reader is familiar with the
basics of metric geometry as presented, for example, in [8] and [9]. We
recall a few definitions of particular interest. In the following, X and Y will
denote metric spaces, with dX and dY the respective metrics. We assume
that all metrics are finite valued. The Euclidean norm on the plane C is
denoted by | · |.

A path or curve is a continuous map γ : I → X, where I is a compact
interval. The length of the path γ is denoted by ℓ(γ), or by ℓdX (γ) to clarify
the metric being used. The trace of γ, i.e., the set γ(I), is denoted by |γ|.
The metric space X is a length space if dX(x, y) = infγ ℓ(γ) for all x, y ∈ X,
the infimum taken over all paths γ whose trace contains x and y. The
metric space X is quasiconvex if there exists C ≥ 1 such that any two points
x, y ∈ X are in the image of a path γ : I → X satisfying ℓ(γ) ≤ CdX(x, y).
A path γ between points x, y ∈ X is a geodesic if ℓ(γ) = dX(x, y). A subset
A ⊂ X is convex if any two points in A can be joined by a geodesic in A.
In this case, A is a length space with the restriction of the metric on X and
the inclusion map from A to X is an isometric embedding. The diameter of
a set A ⊂ X is denoted by diam(A), or by diamdX (A) to specify the metric
being used.

For any metric space and s > 0, the Hausdorff s-measure of a set A ⊂ X
is defined by

Hs(A) = lim
δ→0

Hs
δ(A),

where

Hs
δ(A) = inf

⎧⎨⎩
∞∑︂
j=1

C(s) diam(Aj)
s

⎫⎬⎭
and the infimum is taken over all collections of sets {Aj}∞j=1 such that A ⊂⋃︁∞

j=1Aj and diam(Aj) < δ for each j. Here C(s) is a positive normalization
constant, chosen so that the Hausdorff n-measure coincides with Lebesgue
measure in Rn. The quantity Hs

δ(A) is called the δ-Hausdorff s-content of
A. If we need to emphasize the metric dX being used for the Hausdorff
s-measure, we write Hs

dX
instead of Hs.

A map f : X → Y between metric spaces is bi-Lipschitz if there exists
L ≥ 1 such that

L−1dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y)
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for all x, y ∈ X. In this case, we say that f is L-bi-Lipschitz. A map f : X →
Y is co-Lipschitz if the first of these inequalities holds for all x, y ∈ X, and
Lipschitz if the second of these inequalities holds for all x, y ∈ X. In these
cases, we say that f is, respectively, L-co-Lipschitz and L-Lipschitz.

We use ∂X to denote the boundary of a manifold X and int(X) to denote
its interior. Throughout this paper, the terms boundary and interior refer
to manifold boundary and interior rather than topological boundary and
interior. The following theorem can be viewed as a consequence of the
Besicovitch inequality for metric spaces; see Exercise 13.25 in [40, Section
13.F].

Theorem 2.1. Let X be a metric space homeomorphic to a closed topological
disk with boundary ∂X. If Ω ⊂ R2 is a closed Jordan domain such that for
some L > 0 there exists an L-Lipschitz map f : ∂X → ∂Ω of non-zero
topological degree, then

H2(X) ≥ π

4L2
H2(Ω).

The inequality is optimal, as one can see by takingX to be the unit square
[0, 1]2 with the ℓ∞ metric and Ω = [0, 1]2 (with the Euclidean metric).

Proof. Since the ℓ∞-metric does not exceed the Euclidean ℓ2-metric on R2,
it follows that f : (∂X, d) → (R2, ℓ∞) is also an L-Lipschitz embedding.
By the McShane–Whitney extension theorem (see [22, Theorem 2.3]), there

exists an L-Lipschitz extension ˜︁f : (X, d) → (R2, ℓ∞). Namely, if we write

f = (f1, f2), then define ˜︁f = ( ˜︁f1, ˜︁f2) by˜︁fi(x) = inf
y∈∂X

{fi(y) + Ld(x, y)}

for i = 1, 2. Since ˜︁f |∂X : ∂X → ∂Ω has non-zero degree, it follows that˜︁f(X) ⊃ Ω. Moreover, since ˜︁f is L-Lipschitz, it follows that H2
ℓ∞(Ω) ≤

L2H2(X), directly from the definition of Hausdorff 2-measure. Finally, we
have H2

ℓ∞ = (π/4)H2
ℓ2 ; see [28, Lemma 6] or [14, pp. 2–3] for a proof of this

fact. □

2.2. Gromov–Hausdorff convergence. Let X be a metric space and let
E ⊂ X and ε > 0. We denote by Nε(E) the open ε-neighborhood of E.
We say that E is ε-dense (in X) if for each x ∈ X we have d(x,E) < ε
or equivalently Nε(E) = X. A map f : X → Y (not necessarily continu-
ous) between metric spaces is an ε-isometry if f(X) is ε-dense in Y and
|dX(x, y)− dY (f(x), f(y))| < ε for each x, y ∈ X.

We define the Hausdorff distance of two sets E,F ⊂ X to be the infimal
value r > 0 such that E ⊂ Nr(F ) and F ⊂ Nr(E). We denote the Hausdorff
distance by dH(E,F ). A sequence of sets En ⊂ X converges in the Hausdorff
sense to a set E ⊂ X if dH(En, E) → 0 as n→ ∞. It is immediate that the
diameters of En converge to the diameter of E.
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The Gromov–Hausdorff distance between two metric spaces X,Y is de-
fined as the infimal value r > 0 such that there is a metric space Z with

subsets ˜︁X, ˜︁Y ⊂ Z such that X and Y are isometric to ˜︁X and ˜︁Y , respec-

tively, and dH( ˜︁X, ˜︁Y ) < r. This is denoted by dGH(X,Y ). We say that a
sequence of metric spaces Xn converges in the Gromov–Hausdorff sense to a
metric space X if dGH(Xn, X) → 0 as n→ ∞. By [9, Corollary 7.3.28], this
is equivalent to the property that there exists a sequence of εn-isometries
fn : Xn → X, where εn > 0 and εn → 0 as n→ ∞. In this case, we say that
fn is an approximately isometric sequence.

We collect some immediate properties of Gromov–Hausdorff convergence.

Proposition 2.2. Let {Xn}∞n=1 be a sequence of compact metric spaces
converging in the Gromov–Hausdorff sense to a compact metric space X,
and consider an approximately isometric sequence fn : Xn → X.

(i) Suppose that γn : [0, 1] → Xn is a sequence of paths, parametrized by
rescaled arc length, such that

lim inf
n→∞

ℓ(γn) <∞.

Then there is a subsequence of fn ◦ γn : [0, 1] → X that converges
uniformly to a path γ : [0, 1] → X with

ℓ(γ) ≤ lim inf
n→∞

ℓ(γn).

(ii) Suppose, in addition, that each space Xn is a length space. Then for
each path γ : [0, 1] → X and for each sequences of points an, bn ∈ Xn

with limn→∞ fn(an) = γ(0) and limn→∞ fn(bn) = γ(1) there exists a
sequence of paths γn : [0, 1] → Xn such that γn(0) = an, γn(1) = bn,
and fn ◦ γn converges uniformly to γ.

(iii) For each sequence of compact sets En ⊂ Xn there exists a subse-
quence Ekn such that fkn(Ekn) converges in the Hausdorff sense to a
compact set E ⊂ X and diam(Ekn) converges to diam(E). Moreover,
if each set En is connected, then E is also connected.

The proof of the proposition is elementary, based on the definitions, and
the experienced reader can safely skip it. Alternatively, one can prove the
statement by embedding isometrically the sequence {Xn}∞n=1 and the space
X to a common space X and thus reducing Gromov–Hausdorff convergence
to Hausdorff convergence in X ; see [40, Property 5.23].

Proof. By assumption, each map fn is an εn-isometry, where εn → 0 as
n→ ∞.

First we prove (i), which follows from a version of the Arzelà–Ascoli theo-
rem [9, Theorem 2.5.14]. Consider the curves γn as in the statement. Then
for each p, q ∈ [0, 1] we have dXn(γn(p), γn(q)) ≤ ℓ(γn)|p − q|. Since fn is a
εn-isometry, we have

dX(fn(γn(p)), fn(γn(q))) < εn + dXn(γn(p), γn(q)) ≤ εn + ℓ(γn)|p− q|.
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By passing to a subsequence, we assume that L = limn→∞ ℓ(γn) <∞. This
implies that for each ε > 0 there exists δ > 0 and N ∈ N such that for all
n ≥ N and |p− q| < δ, we have

dX(fn(γn(p)), fn(γn(q))) < ε.

Hence, the mappings fn◦γn : [0, 1] → X are uniformly equicontinuous. Since
X is compact, by the Arzelà–Ascoli theorem, there exists a subsequence
converging uniformly to a map γ : [0, 1] → X with the property that

dX(γ(p), γ(q)) ≤ L|p− q|
for every p, q ∈ [0, 1]. Hence, γ is a rectifiable path with ℓ(γ) ≤ L.

Next, we prove (ii). By the uniform continuity of γ, for each n ∈ N there
exists δn > 0 such that if |p− q| < δn, then dX(γ(p), γ(q)) < 1/n. We pick a
finite set Qn ⊂ [0, 1] that contains 0 and 1 so that each of the complementary
intervals of Qn has length less than δn. We define γn(0) = an and γn(1) = bn.
By the definition of an εn-isometry, for each q ∈ Qn \ {0, 1} there exists a
point γn(q) ∈ Xn such that dX(fn(γn(q)), γ(q)) < εn. This defines a map
γn : Qn → Xn. If (q1, q2) is a complementary interval of Qn, we define γn on
[q1, q2] to be a geodesic in Xn with endpoints γn(q1) and γn(q2). This gives
a path γn : [0, 1] → Xn. For each p ∈ [0, 1] there exists a complementary
interval (q1, q2) of Qn whose closure contains p. If q1, q2 /∈ {0, 1}, then

dX(γ(p), fn(γn(p))) ≤ dX(γ(p), γ(q1)) + dX(γ(q1), fn(γn(q1)))

+ dX(fn(γn(q1)), fn(γn(p)))

≤ 1/n+ εn + εn + dXn(γn(q1), γn(p)).

Since γn is a geodesic, it follows that

dX(γ(p), fn(γn(p))) ≤ 1/n+ 2εn + dXn(γn(q1), γn(q2))

≤ 1/n+ 3εn + dX(fn(γn(q1)), fn(γn(q2)))

≤ 1/n+ 3εn + 2εn + dX(γ(q1), γ(q2))

≤ 2/n+ 5εn.

If q1 = 0, then in the same way we obtain the estimate

dX(γ(p), fn(γn(p))) ≤ 2/n+ 3εn + 2dX(γ(0), fn(γn(0)))

and an analogous estimate holds if q2 = 1. By assumption, the quantities
dX(γ(0), fn(γn(0))), dX(γ(1), fn(γn(1))), and εn converge to 0 as n → ∞.
Hence, fn ◦ γn converges uniformly to γ, as desired.

For part (iii), the existence of the set E as the Hausdorff limit of a sub-
sequence of fn(En) follows from [9, Theorem 7.3.8, p. 253], which asserts
that the space of compact subsets of a compact metric space is compact
in the Hausdorff topology. The convergence of the diameters is also im-
mediate from the properties of Hausdorff convergence and the fact that
| diam(En)− diam(fn(En))| → 0, since fn is an εn-isometry. We now show
the connectedness of E. After passing to a subsequence, we assume that
fn(En) converges to E. Suppose, on the contrary that E is disconnected.
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Then there exists a continuous non-constant function φ : E → {0, 1}. We
define F0 = φ−1(0) and F1 = φ−1(1). These are non-empty, compact, and
disjoint subsets of X, so they have a positive distance δ > 0. We fix a
large n so that fn(En) ⊂ Nδ/4(E) and E ⊂ Nδ/4(fn(En)). Now, we define a
function φn : En → {0, 1} by

φn(x) =

{︄
1, fn(x) ∈ Nδ/4(F1)

0, fn(x) ∈ Nδ/4(F0)
.

We note that φn is non-constant, since F0, F1 ⊂ Nδ/4(fn(En)). Moreover,
φn is continuous for large n. Indeed, if x, y ∈ En and dXn(x, y) < εn, then
dX(fn(x), fn(y)) < 2εn. We choose a large n so that 2εn < δ/2. Then
both fn(x) and fn(y) have to lie in either Nδ/4(F0) or Nδ/4(F1). Thus,
φn(x) = φn(y) and continuity follows. The existence of φn contradicts the
connectedness of En. □

Lemma 2.3. Let X be a length space homeomorphic to a closed topological
disk and {Xn}∞n=1 be a sequence of length spaces homeomorphic to X. Sup-
pose that there exists an approximately isometric sequence fn : Xn → X of
topological embeddings. Then

lim inf
n→∞

diam(∂Xn) ≥ diam(∂X).

In fact, the result holds without the assumption that fn is a topological
embedding and one actually gets convergence of the diameters, but we do
not need this generality here; see [9, Section 7.5.2] for such considerations.

Proof. Suppose that each fn is an εn-isometry, where εn → 0. We claim
that ∂X ⊂ Nεn(fn(∂Xn)), which implies the desired statement. To see this,
note that ∂X ⊂ Nεn(fn(Xn)) by the definition of an εn-isometry. Thus, if
x ∈ ∂X, then there exists y ∈ fn(Xn) such that d(x, y) < εn. Consider a
geodesic in X connecting x and y. Then there exists a point z ∈ ∂fn(Xn)
lying on that geodesic such that d(x, z) ≤ d(x, y) < εn. Finally, note that
∂fn(Xn) = fn(∂Xn), since fn is an embedding. □

2.3. Modulus. Let X be a metric space and Γ be a family of curves in
X. A Borel function ρ : X → [0,∞] is admissible for the path family Γ if∫︁
γ ρ ds ≥ 1 for all locally rectifiable paths γ ∈ Γ. We define the 2-modulus

of Γ as

modΓ = inf
ρ

∫︂
X
ρ2 dH2,

where the infimum is taken over all admissible functions ρ for Γ. By con-
vention, modΓ = ∞ if there are no admissible functions for Γ. Observe that
we consider X to be equipped with the Hausdorff 2-measure. This defini-
tion may be generalized by allowing for an exponent different from 2 or a
different measure, though this generality is not needed for this paper.
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Let X be a metric space. For each pair of disjoint continua E,F ⊂ X,
we define Γ∗(E,F ;X) to be the family of rectifiable curves in X \ (E ∪ F )
separating E from F . That is, for each γ ∈ Γ∗(E,F ;X), the sets E and F
lie in different components of X \ |γ|.

Lemma 2.4. Let {Xn}∞n=1 be a sequence of compact length spaces con-
verging in the Gromov–Hausdorff sense to a compact length surface X.
Moreover, suppose that lim supn→∞H2(Xn) < ∞. Then for each δ >
0 and for any sequence of pairs of disjoint continua En, Fn ⊂ Xn with
min{diam(En), diam(Fn)} ≥ δ we have

lim sup
n→∞

modΓ∗(En, Fn;Xn) <∞.

Proof. We claim that that there exists η > 0, depending on δ but not
on n, such that if En, Fn ⊂ Xn is a pair of disjoint continua satisfying
min{diam(En), diam(Fn)} ≥ δ, then ℓ(γ) ≥ η for every γ ∈ Γ∗(En, Fn;Xn).
Assuming that this is the case, we see that the function ρ = η−1 is admissible
for Γ∗(En, Fn;Xn), so

modΓ∗(En, Fn;Xn) ≤ η−2H2(Xn)

for each n ∈ N. Passing to the limit gives the desired conclusion.
In order to prove the claim, we argue by contradiction. Let fn : Xn → X

be a sequence of εn-isometries, where εn → 0. Suppose that there exist se-
quences of disjoint continua En, Fn ⊂ Xn with min{diam(En),diam(Fn)} ≥
δ and a sequence of paths γn ∈ Γ∗(En, Fn;Xn) with ℓ(γn) → 0 as n → ∞.
By Proposition 2.2 (i), after reparametrizing γn, there exists a subsequence
of fn ◦ γn that converges uniformly to a constant path in X, i.e., to a point
x0 ∈ X. After passing to a further subsequence, by Proposition 2.2 (iii) the
sets fn(En) and fn(Fn) converge in the Hausdorff sense to continua E and
F , respectively, with min{diam(E), diam(F )} ≥ δ.

Since X is a surface, X \ {x0} is path connected. Thus, there exists a
path η : [0, 1] → X \ {x0} with η(0) ∈ E and η(1) ∈ F . By the Hausdorff
convergence of fn(En) and fn(Fn) to E and F , respectively, there exist
points an ∈ En and bn ∈ Fn such that fn(an) converges to η(0) and fn(bn)
converges to η(1). By Proposition 2.2 (ii), there exist paths ηn : [0, 1] → Xn

such that ηn(0) = an ∈ En, ηn(1) = bn ∈ Fn, and fn◦ηn converges uniformly
to η.

Since γn separates En from Fn and ηn connects En and Fn, the paths γn
and ηn intersect each other for each n ∈ N. The uniform convergence of
fn ◦ γn and fn ◦ ηn to x0 and η, respectively, implies that η intersects the
point x0. This is a contradiction. □

2.4. Metric Sobolev spaces. Let h : X → Y be a mapping between metric
spaces. We say that a Borel function g : X → [0,∞] is an upper gradient of
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h if

dY (h(a), h(b)) ≤
∫︂
γ
g ds(2.1)

for all a, b ∈ X and every locally rectifiable path γ in X joining a and b.
This is called the upper gradient inequality. If, instead the above inequality
holds for all curves γ outside a curve family of 2-modulus zero, then we say
that g is a weak upper gradient of h. In this case, there exists a curve family
Γ0 with modΓ0 = 0 such that all paths outside Γ0 and all subpaths of such
paths satisfy the upper gradient inequality.

We equip the space X with the Hausdorff 2-measure H2. Let Lp(X)
denote the space of p-integrable Borel functions from X to the extended

real line ˆ︁R, where two functions are identified if they agree H2-almost ev-
erywhere. The Sobolev space N1,p(X,Y ) is defined as the space of Borel
mappings h : X → Y with a weak upper gradient g in Lp(X) such that
the function x ↦→ dY (y, h(x)) is in L

p(X) for some y ∈ Y , again where two
functions are identified if they agree almost everywhere. The spaces Lp

loc(X)

and N1,p
loc (X,Y ) are defined in the obvious manner. See the monograph [24]

for background on metric Sobolev spaces.
We now restrict to mappings h : X → Y , where X and Y are metric sur-

faces with locally finite Hausdorff 2-measure. We use the facts that topolog-
ical surfaces are second countable, separable, and they admit an exhaustion
by precompact open sets. Thus, the Hausdorff 2-measure is σ-finite if it is
locally finite.

Lemma 2.5. Let X,Y be metric surfaces with locally finite Hausdorff 2-
measure, h : X → Y be a mapping in N1,2

loc (X,Y ), and g ∈ L2
loc(X) be a

weak upper gradient of h.

(i) There exists an exceptional family of curves Γ0 with modΓ0 = 0
such that for any Borel function ρ : Y → [0,∞] and for all locally
rectifiable curves γ /∈ Γ0 we have∫︂

h◦γ
ρ ds ≤

∫︂
γ
(ρ ◦ h)g ds.

(ii) Suppose, in addition, that h is continuous and there exists K > 0
such that for every Borel set E ⊂ Y we have∫︂

h−1(E)
g2 dH2 ≤ KH2(E).

Then, for every curve family Γ in X we have

modΓ ≤ Kmodh(Γ).

Here, if h : X → Y is continuous and Γ is a curve family in X, then h(Γ)
denotes the curve family {h ◦ γ : γ ∈ Γ}.
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Proof. Part (i) follows from [24, Proposition 6.3.3, p. 157], which assumes
that

∫︁
γ g ds < ∞ and the upper gradient inequality (2.1) holds for all sub-

paths of γ. Since g lies in L2
loc(X) and X can be written as a countable union

of open sets of finite Hausdorff 2-measure, we conclude that there exists a
curve family Γ0 with modulus zero such that the required conditions hold
for paths γ /∈ Γ0.

For (ii), note that the continuity assumption implies that for any Borel
function ρ : Y → [0,∞], the function ρ ◦ h is also Borel measurable. More-
over, by monotone convergence we have∫︂

X
(ρ ◦ h)g2 dH2 ≤ K

∫︂
Y
ρ dH2.

Let ρ be an admissible function for h(Γ). By (i), for γ ∈ Γ \ Γ0 we have

1 ≤
∫︂
h◦γ

ρ ds ≤
∫︂
γ
(ρ ◦ h)g ds.

Thus, (ρ ◦ h)g is a Borel function that is admissible for Γ \ Γ0. It follows
that

modΓ = mod(Γ \ Γ0) ≤
∫︂
X
(ρ ◦ h)2g2 dH2 ≤ K

∫︂
Y
ρ2 dH2.

Infimizing over ρ gives the conclusion. □

It is a non-trivial result of Williams [52, Theorem 1.1] that the converse of
Lemma 2.5 (ii) is also true. This result will be used in the proof of Theorem
1.4.

Theorem 2.6 (Definitions of quasiconformality). Let X,Y be metric sur-
faces with locally finite Hausdorff 2-measure and let h : X → Y be a contin-
uous mapping. The following are equivalent.

(i) h ∈ N1,2
loc (X,Y ) and there exists a weak upper gradient g of h such

that for every Borel set E ⊂ X we have∫︂
h−1(E)

g2 dH2 ≤ KH2(E).

(ii) For every curve family Γ in X we have

modΓ ≤ Kmodh(Γ).

In fact, the argument of Williams [52, Proof of Theorem 1.1] is more gen-
eral and relies on the local finiteness of the measures and the separability of
the spaces. We note that the referenced result is stated for homeomorphisms,
but the proof applies identically to the case of continuous mappings.
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2.5. Polyhedral surfaces. A 1-dimensional polyhedral space is a locally
finite connected graph, considered as a metric space by assigning a length
to each edge and taking the corresponding length metric. Next, we define
a 2-dimensional polyhedral space in the following manner. Let Γ be a 1-
dimensional polyhedral space and P a collection of planar polygonal domains
homeomorphic to a closed disk. Each P ∈ P is equipped with the length
metric induced by the Euclidean metric on C, which we denote by dP . The
boundary ∂P is subdivided into finitely many non-overlapping line segments
called edges. For each P ∈ P, let ψP : ∂P → Γ be an injective mapping such
that each edge of ∂P is mapped by arc length onto an edge of Γ. Assume
that each point in Γ is in the image of at least one and finitely many maps
ψP . We obtain a metric space S by gluing the disjoint union of the sets
in P with Γ along the maps ψP . More precisely, we define ∼ to be the
equivalence relation on (

⨆︁
P) ⊔ Γ generated by declaring x ∼ y if x ∈ ∂P

for some P ∈ P, y ∈ Γ, and ψP (x) = y. Take S = (
⨆︁
P)⊔ Γ/ ∼. Define the

metric d on S by

d(x, y) = inf
n∑︂

k=1

dPk
(xk, yk),

the infimum taken over all chains of points x1, y1, . . . , xn, yn such that xk, yk
belong to the same polygonal domain Pk for all k ∈ {1, . . . , n} and yk ∼ xk+1

for all k ∈ {1, . . . , n − 1}, and x = x1 and y = yn. It is straightforward to
verify that d is indeed a metric. We say that S equipped with the metric d
is a 2-dimensional polyhedral space and the metric d is called the polyhedral
metric on S. We identify the graph Γ with the subset

⨆︁
∂P/ ∼ of S in

the natural way. Observe that each polygon P ∈ P is locally isometric to
its image in S at every non-vertex point. Each polygon P ∈ P is called a
face of S, while the vertices and edges of each P are called the vertices and
edges, respectively, of S.

A polyhedral surface is a 2-dimensional polyhedral space homeomorphic
to a 2-manifold with boundary. Each point in a polyhedral surface has a
neighborhood isometric to a ball in the Euclidean cone over a circle or closed
interval; this property can also be taken as a definition of polyhedral surface
[29]. In particular, a polyhedral surface is locally isometric to a subset of the
closed half-plane at each non-vertex point. See [8, Section I.5.19], [9, Section
3.1–3.2] and [46] for an overview of polyhedral spaces and the operation of
gluing.

2.5.1. Complex structure. It is known that each orientable polyhedral sur-
face X has a complex structure that agrees with the complex structure of
the polygons that constitute it [11, II.4, pp. 66–67]. More precisely, suppose
that X =

⨆︁
Pi/ ∼, where each Pi is a closed planar polygonal domain and

the boundaries of the polygons are identified according to some equivalence
relation ∼ as above. By the orientability of X, we may assign an orientation
to each ∂Pi so that the orientations of adjacent polygons are compatible;
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that is, orientations of neighboring edges from different polygons are point-
ing in opposite directions. Thus, by replacing each Pi ⊂ C with a reflected
copy if necessary, we may assume that the orientation of Pi as a subset of
X is the positive one when Pi is considered as a subset of the plane.

We let φi be a homeomorphism, acting as the identity map, that identifies
Pi as a subset of X with itself as a subset of C. Then φi serves as a
local chart at each interior point of Pi and at each boundary point of X
that is contained in ∂Pi and is not a vertex. If the polygons Pi, Pj ⊂
X share an open boundary segment J , then there exists a local chart φJ

in a neighborhood U ⊂ X of J such that, up to orientation-preserving
isometries of the plane, φJ agrees with φi and φj in U∩ int(Pi) ⊂ X and U∩
int(Pj) ⊂ X, respectively. In particular, the transition from φi(int(Pi)) and
φj(int(Pj)) to φJ(U) is conformal. Finally, at each vertex v ∈ X consider a
small r > 0 such that each face Pi that has v as a vertex contains a circular
sector Si of radius r, centered at v, and whose two sides are contained in
two edges of Pi. Let θ = θ(v) be the sum of the angles of these sectors. To
each of these sectors, we apply a map of the form z ↦→ zα, where α = θ/2π if
v is an interior point of X and α = θ/π if v is a boundary point of X; more
precisely, consider the maps (φi − φi(v))

α mapping the sector Si ⊂ X onto
a sector S′

i centered at 0 in the plane. Then the sectors S′
i may be rotated

and fitted together to form a disk of radius rα if v ∈ int(X) and a semidisk
if v ∈ ∂X. In this way we can also define conformal coordinates at the
vertices. In summary, every orientable polyhedral surface X is a Riemann
surface with the described natural conformal structure. Thus we call X a
polyhedral Riemann surface.

A homeomorphism h : X → Y between Riemann surfaces is conformal if
it is complex differentiable in local coordinates. Specifically, at each x ∈ X
we require that if φ is a conformal chart from a neighborhood of x in X
into C and ψ is a conformal chart from a neighborhood of h(x) in Y into C,
then ψ ◦ h ◦ φ−1 is a conformal map defined on a neighborhood of φ(x) in
C. If x ∈ ∂X, this definition entails the requirement that ψ ◦ h ◦ φ−1 has a
conformal extension in a neighborhood of φ(x).

Let Y be a polyhedral Riemann surface. If Y homeomorphic to a topo-
logical 2-sphere, then, by the uniformization theorem [35, Theorem 15.12,
p. 242], there exists a conformal homeomorphism h from the Riemann sphereˆ︁C to Y . If Y is a closed topological disk, then we obtain a conformal home-
omorphism from Y to D in the following way. Glue Y to an isometric

copy of itself along the boundary to obtain a polyhedral sphere ˜︁Y . By the

uniformization theorem, there is a conformal homeomorphism h : ˜︁Y → ˆ︁C.
Define the involution φ : ˜︁Y → ˜︁Y by mapping each point in Y to the same
point in its isometric copy. Then g = h ◦φ ◦h−1 is an anti-conformal home-

omorphism of ˆ︁C and thus is an anti-Möbius transformation with fixed set
h(∂Y ). This implies that h(∂Y ) is a circle. By normalizing h, we ensure that
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h(∂Y ) is the equator of ˆ︁C. Thus h restricts to a conformal homeomorphism
from Y to the upper hemisphere. We summarize these facts below.

Theorem 2.7 (Uniformization theorem). Let Ω = ˆ︁C or Ω = D. If Y
is a polyhedral Riemann surface homeomorphic to Ω, then there exists a
conformal homeomorphism from Ω onto Y .

A polyhedral surface with its polyhedral metric becomes a surface of lo-

cally finite Hausdorff 2-measure. We endow the Riemann sphere ˆ︁C with the
spherical metric σ, which is given by the length element 2(1 + |z|2)−1 ds in
planar coordinates z = x + iy through stereographic projection. We also
consider the spherical measure given by the density dσ =4(1+ |z|2)−2dx dy,

which agrees with the Hausdorff 2-measure on ˆ︁C arising from the spherical
metric. Similarly, we endow the closed unit disk D with the planar Eu-
clidean metric and the Lebesgue measure, which agrees with the Hausdorff
2-measure.

Lemma 2.8. Let Ω = ˆ︁C or Ω = D. Suppose that Y is a polyhedral Riemann
surface homeomorphic to Ω and h : Ω → Y is a conformal homeomorphism.
There exist Borel measurable functions |Dh| : Ω → [0,∞) and |Dh−1| : Y →
[0,∞) such that the following hold.

(i) |Dh| and |Dh−1| are upper gradients of h and h−1, respectively.
(ii) For all Borel sets E ⊂ Ω and F ⊂ Y we have∫︂

E
|Dh|2 dH2 = H2(h(E)) and

∫︂
F
|Dh−1|2 dH2 = H2(h−1(F )).

(iii) For every curve family Γ in Ω we have

modΓ = modh(Γ).

Proof. We show the existence of the upper gradient |Dh| of h that satisfies
the change of coordinates formula in (ii). Then, from Lemma 2.5, it follows
that modΓ ≤ modh(Γ) for all curve families Γ in Ω. The claims for h−1 are
proved similarly.

We write Y =
⨆︁
Pi/ ∼, where Pi are polygonal domains in the plane, and

denote by φi the complex chart identifying Pi ⊂ Y with itself as as subset
of C; see the discussion in the beginning of Section 2.5.1. Let V denote the
set of vertices of X and note that V is finite.

On h−1(V ) we define |Dh| = 0. On Ω \ h−1(V ) we define |Dh| as follows.
Let x ∈ Ω \ h−1(V ) and consider a polygon Pi with h(x) ∈ Pi. We define
|Dh| to be the absolute value of the derivative of φi◦h as a holomorphic map

from a subset of Ω to the planar polygon Pi. (If Ω = ˆ︁C, using the coordinates
of the stereographic projection gives |Dh|(z) = 2−1(1 + |z|2)|(φi ◦ h)′(z)|,
although we do not need this formula.) If h(x) does not lie on any polygon
Pj for j ̸= i then |Dh|(x) is clearly well-defined. Suppose that h(x) lies in
the interior of a common edge J of Pi and Pj . There exists a local chart φJ

in a neighborhood U ⊂ Y of J such that, up to isometries of the plane, φJ
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agrees with φi and φj in U ∩ int(Pi) ⊂ Y and U ∩ int(Pj) ⊂ Y , respectively.
This shows that the absolute values of the derivatives of φi ◦ h and φj ◦ h
agree on h−1(J), so |Dh|(x) is also well-defined in this case.

With this definition of |Dh|, we claim that if γ is a locally rectifiable path
in Ω connecting points a and b, then

dY (h(a), h(b)) ≤ ℓ(h ◦ γ) =
∫︂
γ
|Dh| ds,

so (i) is true. We only have to justify the equality. The statement holds for
paths avoiding the finite set h−1(V ) because |Dh| is the absolute value of
the derivative of appropriate conformal maps and the metric of Y is locally
isometric to the Euclidean metrics of the polygons away from the vertices.
The general statement is proved by partitioning a path γ : [0, 1] → Ω into
possibly infinitely many subpaths γi : Ii → Ω, i ∈ N, where Ii, i ∈ N, are
the components of [0, 1] \ γ−1(h−1(V )). Each path γi satisfies the claimed
equality. Since V is a finite set (in fact, it suffices that H1(V ) = 0; see
Proposition 8.1 (iii)), one can show that

ℓ(h ◦ γ) =
∑︂
i∈N

ℓ(h ◦ γi)

This completes the proof of the claim.
The change of coordinates formula in (ii) is true for Borel sets E ⊂ Ω \

h−1(V ), since |Dh|2 is the Jacobian of appropriate conformal maps and the
metric of Y is locally isometric to the Euclidean metrics of the polygons
away from the vertices. On the other hand, the vertices have measure zero
both in Ω and in Y . Thus, the change of coordinates holds for all Borel sets
E ⊂ Ω. □

3. Bi-Lipschitz embedding triangles into the plane

In this section, we prove Proposition 1.2, stating that every metric trian-
gle can be bi-Lipschitz embedded into the plane with a uniform bi-Lipschitz
constant. Recall that a metric triangle is a metric space consisting of three
closed arcs, called edges, each isometric to an interval that connect pairwise
a set of three points, called vertices. More precisely, we can define a metric
triangle as the quotient metric space induced by equipping S1 with a pseu-
dometric such that S1 is the union of three non-overlapping closed arcs each
isometric to an interval. Here, two sets are non-overlapping if their interiors
are disjoint. This definition allows the possibility that the edges intersect in
interior points. We say that a metric triangle is simple if it is homeomorphic
to S1. A tripod is a length metric space consisting of three closed arcs glued
at a common endpoint but otherwise disjoint. Note that a tripod is also a
metric triangle with vertices the non-glued endpoints of the original closed
arcs.



POLYHEDRAL APPROXIMATION AND UNIFORMIZATION 19

For any triple of points p, q, r in a metric space (X, d), the Gromov product
(p · q)r is defined by

(p · q)r =
1

2
(d(p, r) + d(q, r)− d(p, q)).

To such a triple p, q, r ∈ X, we can associate a tripod ∆̄ with outer vertices
p̄, q̄, r̄ and central vertex ō, where ℓ([ō, p̄]) = (q · r)p, ℓ([ō, q̄]) = (r · p)q, and
ℓ([ō, r̄]) = (p · q)r. Observe that

d(p, q) = (q · r)p + (r · p)q = ℓ([p̄, ō]) + ℓ([ō, q̄]) = ℓ([p̄, q̄]),(3.1)

and similarly for d(p, r) and d(r, q). For more background on the Gromov
product, see [8, Chapter III.H.1]. We denote the metric on ∆̄ by D.

If p, q, r are the vertices of a metric triangle ∆, then there is a natural
projection Φ: ∆ → ∆̄ such that Φ(p) = p̄, Φ(q) = q̄, Φ(r) = r̄, and Φ is an
isometry on each edge of ∆. For a point x ∈ ∆, we write x̄ to denote Φ(x).

Lemma 3.1. The natural projection Φ: ∆ → ∆̄ is 1-Lipschitz. More specif-
ically, we have

(3.2) D(x̄, ȳ) ≤ d(x, y)

for all x, y ∈ ∆, with equality whenever x, y lie on the same edge of ∆.

Proof. By definition, we haveD(x̄, ȳ) = d(x, y) whenever x, y lie on the same
edge of ∆. Without loss of generality, we assume that x lies on the edge
[p, q] and y lies on [p, r] and that d(y, p) ≥ d(x, p). We consider two cases.

Suppose first that d(x, p) ≤ ℓ([ō, p̄]). Then there exists a point x′ ∈ [p, r]
such that d(x′, p) = d(x, p) and x̄′ = x̄. Using the fact that [p, q] and [p, r]
are geodesics, we have

D(x̄, ȳ) = D(x̄′, ȳ) = d(x′, y) = d(y, p)− d(x′, p)

= d(y, p)− d(x, p) ≤ d(x, y).

Next, suppose that d(x, p) > ℓ([ō, p̄]). Then d(x, q) < ℓ([ō, q̄]) by (3.1). In
this case, there exists a point x′ ∈ [q, r] such that d(x′, q) = d(x, q) and x̄′ =
x̄. Moreover, since d(y, p) ≥ d(x, p) > ℓ([ō, p̄]), we have d(y, r) < ℓ([ō, r̄]).
Hence, there exists a point y′ ∈ [q, r] such that d(y′, r) = d(y, r) and ȳ′ = ȳ.
We have

D(x̄, ȳ) = D(x̄′, ȳ′) = d(x′, y′) = d(q, r)− d(y′, r)− d(x′, q)

= d(q, r)− d(y, q)− d(x, r) ≤ d(x, y).

This completes the proof. □

We consider such a tripod ∆̄ as being embedded in C, with the central
vertex ō at the origin and p = (q · r)p, q = (r · p)qe2πi/3, and r = (p ·
q)re

4πi/3. Here and throughout this section, we use complex notation for
points in C. We call such ∆̄ the canonical tripod determined by ∆. Our
strategy for proving Proposition 1.2 is to project the metric triangle ∆ onto
the corresponding tripod ∆̄ and then add a transverse component whose
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magnitude is the distance from a given point to the union of the other two
sides. A typical embedding is illustrated in Figure 1.

3.1. Tripodal metric on C. It is convenient to introduce a new metric
on C that is compatible with embedded tripods. Let u1 = 1, u2 = e2πi/3,
u3 = e4πi/3, v1 = eπi/3, v2 = −1, and v3 = e5πi/3. For each j ∈ {1, 2, 3},
let Zj = {tuj : t ≥ 0}, and let Z =

⋃︁3
j=1 Zj . Then C \ Z consists of

three components U1, U2, U3, indexed so that vj ∈ Uj for each j ∈ {1, 2, 3}.
Observe that each point x ∈ Uj can be written uniquely as x = x̄+ txvj for
some x̄ ∈ ∂Uj and tx ≥ 0. We employ this notation for a given point x ∈ C.

We define the metric D on C in the following way. First, D|Z×Z is the
intrinsic metric on Z. Next, for x, y ∈ U1, let D(x, y) = |tx − ty|+D(x̄, ȳ).

Define D similarly on U2 × U2 and U3 × U3. Finally, for x ∈ Uj and y ∈ Ui,
where i ̸= j, define

(3.3) D(x, y) = tx + ty +D(x̄, ȳ).

We note that D(x, y) is the Euclidean length of a certain polygonal path
joining x and y. Observe that each set Ui is convex with respect to D, and
in particular that D is a length metric on C.

We observe that D is bi-Lipschitz equivalent to the Euclidean metric. In
fact, a straightforward argument shows that

(3.4) |x− y| ≤ D(x, y) ≤ 2|x− y|

for all x, y ∈ C. The right inequality is sharp, as seen by taking x = 1 and
y = eiπ/3.

3.2. Proof of Proposition 1.2. We first restate Proposition 1.2 in a more
precise form. For each x ∈ ∆, let I(x) denote an edge of ∆ containing x

and ˆ︁I(x) the union of the other two edges of ∆. For a point x ∈ ∆, denote
by x̄ the natural projection of x in the canonical tripod ∆̄. Recall from
the previous section the notation uj = e(2j−2)πi/3 and vj = e(2j−1)πi/3 for
j ∈ {1, 2, 3}.

Proposition 3.2. Let ∆ be a metric triangle with vertices p, q, r and edges
I1 = [p, q], I2 = [q, r], I3 = [r, p]. Let ∆̄ denote the canonical tripod deter-
mined by ∆. Define the mapping F : ∆ → C by

F (x) = x̄+ dist(x, ˆ︁I(x))vj if x ∈ Ij , j = 1, 2, 3.

Then F is L-bi-Lipschitz for L = 4.

Proof. Recall that ∆̄ is the tripod [ō, p̄] ∪ [ō, q̄] ∪ [ō, r̄], where p̄ = (q · r)pu1,
q̄ = (r · p)qu2, r̄ = (p · q)ru3, and ō = 0. We use D to denote the tripodal
metric on C defined in Section 3.1, which agrees with the length metric on
∆̄ as a tripod.
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p̄

q̄

r̄

∆̄

F (∆)

Figure 1

Observe that F is well-defined, and in particular that F (x) = x̄ in the
case that x ∈ Ij ∩ Ik for j ̸= k. Let x, y ∈ ∆. By symmetry, it suffices to
consider the case that x ∈ I1.

If y ∈ I1 as well, then

D(F (x), F (y)) =
⃓⃓⃓
dist(x, ˆ︁I(x))− dist(y, ˆ︁I(y))⃓⃓⃓+D(x, y).

Thus, we have D(F (x), F (y)) ≥ D(x̄, ȳ) = d(x, y) by (3.2). Moreover, since⃓⃓⃓
dist(x, ˆ︁I(x))− dist(y, ˆ︁I(y))⃓⃓⃓ ≤ d(x, y),

we have D(F (x), F (y)) ≤ 2d(x, y). Summarizing, in this case we have

d(x, y) ≤ D(F (x), F (y)) ≤ 2d(x, y).

Next, we suppose that y /∈ I1. The Lipschitz inequality follows immedi-
ately, since by (3.3) and (3.2) we have

D(F (x), F (y)) = dist(x, ˆ︁I(x)) + dist(y, ˆ︁I(y)) +D(x̄, ȳ) ≤ 3d(x, y).

For the co-Lipschitz inequality, let z ∈ ˆ︁I(x) be such that d(x, z) =

dist(x, ˆ︁I(x)), and let w ∈ ˆ︁I(y) be such that d(y, w) = dist(y, ˆ︁I(y)). We
split into cases.

Case 1. Suppose the points y, z lie on the same edge. Then, d(y, z) = D(ȳ, z̄)
by (3.2). Moreover, also applying (3.2), we have

d(x, y) ≤ d(x, z) + d(y, z) = d(x, z) +D(ȳ, z̄) ≤ d(x, z) +D(x̄, ȳ) +D(x̄, z̄)

≤ 2d(x, z) +D(x̄, ȳ).

Therefore, (3.3) gives

D(F (x), F (y)) = D(x̄, ȳ) + d(x, z) + d(y, w) ≥ D(x̄, ȳ) + d(x, z) ≥ 1

2
d(x, y).

Case 2. Suppose the points x,w lie on the same edge. This follows from
Case 1 by reversing the roles of x and y.
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Case 3. Suppose the points z, w lie on the same edge. Then, by (3.2), we
have

d(z, w) = D(z̄, w̄) ≤ D(z̄, x̄) +D(x̄, ȳ) +D(ȳ, w̄)

≤ d(x, z) +D(x̄, ȳ) + d(y, w) = D(F (x), F (y)).

Therefore,

D(F (x), F (y)) =
1

2
(D(F (x), F (y)) +D(x̄, ȳ) + d(x, z) + d(y, w))

≥ 1

2
(d(z, w) + d(x, z) + d(y, w)) ≥ 1

2
d(x, y).

We conclude that
1

2
d(x, y) ≤ D(F (x), F (y)) ≤ 3d(x, y)

for all x, y ∈ ∆. Combining this with (3.4), we have

1

4
d(x, y) ≤ |F (x)− F (y)| ≤ 3d(x, y)

for all x, y ∈ ∆. □

Remark 3.3. By the definition of F , it is clear that every line parallel to
the vector vj intersects F (Ij) in at most one point, for each j ∈ {1, 2, 3}.
Suppose now that ∆ is a simple metric triangle. If we partition F (∆) into
arcs [xi−1, xi], i ∈ {1, . . . , n}, where x0 = xn, such that the collection {xi}ni=1
contains the vertices of F (∆), then the polygonal curve formed by joining
xi−1 with xi for each i is a simple closed curve.

4. Fillings of simple metric triangles

A polygonal metric disk or polygonal disk is a metric space homeomorphic
to a closed disk whose boundary can be represented as the union of finitely
many non-overlapping geodesics, each of which is called an edge. The end-
points of the edges are called vertices. If a polygonal disk has three edges,
we call it a triangular disk. Observe that the boundary of a triangular disk
is a simple metric triangle. A polygonal disk is planar if it is a subset of C,
equipped with the length metric induced by the Euclidean metric, and its
boundary consists of finitely many non-overlapping line segments. Thus the
boundary of a planar polygonal disk is a polygon in the ordinary sense of
the word. In this section, we construct polyhedral fillings of simple metric
triangles based on the bi-Lipschitz embedding of the previous section. We
first give a preliminary lemma.

Lemma 4.1. For every planar polygonal disk P ⊂ C and each ε > 0 there
exists a decomposition {Pk}k∈K of P into non-overlapping polygonal disks
satisfying the following.

(i) ℓ(∂Pk) < ε for each k ∈ K.
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(ii) Any points x, y ∈
⋃︁

k∈K ∂Pk can be joined by a path in
⋃︁

k∈K ∂Pk

with length at most ℓ(∂P ).

(iii)
∑︂
k∈K

ℓ(∂Pk)
2 ≤ 17H2(P ).

Proof. Let ε > 0. Choose ε′ ∈ (0, ε) sufficiently small that any square of
side length ε′ intersects at most two edges of ∂P . The square grid ε′Z2

divides C into non-overlapping square regions Q of the form [ε′j1, ε
′(j1 +

1)] × [ε′j2, ε
′(j2 + 1)] for some j1, j2 ∈ Z. Note that Q ∩ P can be written

as the union of at most two polygonal regions for each square region Q.
Enumerate by Pk, k ∈ K1, the square regions Q that are contained in P and
by Pk, k ∈ K2, the polygonal regions arising as the intersection of P with
those Q whose interior intersects ∂P . We set K = K1 ⊔K2. By taking ε′

sufficiently small, we also ensure that ℓ(∂Pk) < ε for each k ∈ K.
Each x ∈

⋃︁
k∈K ∂Pk belongs to a horizontal line segment in

⋃︁
k∈K ∂Pk

or a vertical line segment in
⋃︁

k∈K ∂Pk. In the first case, let Lx denote
the maximal horizontal line segment contained in P passing through x.
Otherwise, let Lx denote the maximal vertical line segment contained in
P passing through x. Let px denote a point in Lx ∩ ∂P nearest to x; then
the line segment Ax ⊂ Lx from x to px has length at most ℓ(∂P )/4. Given
two points x, y ∈

⋃︁
k∈K ∂Pk, we can join px to py by a subarc Cxy ⊂ ∂P of

length at most ℓ(∂P )/2. Joining Ax, Cxy, and Ay gives a path in
⋃︁

k∈K ∂Pk

with length at most ℓ(∂P ).
For all k ∈ K1, Pk is a square region and we have ℓ(∂Pk)

2 = 16H2(Pk).
Thus, ∑︂

k∈K1

ℓ(∂Pk)
2 ≤ 16H2(P ).

For each k ∈ K2, let Qk denote the square region above used to define Pk,
and observe that the correspondence Pk ↦→ Qk is at most two-to-one. Note
that Qk has diameter less than 2ε′ and that ℓ(∂Pk) ≤ 2ℓ(∂Qk). Thus,∑︂

k∈K2

ℓ(∂Pk)
2 ≤ 4

∑︂
k∈K2

ℓ(∂Qk)
2 = 64

∑︂
k∈K2

H2(Qk)

≤ 64 · 2 · H2(N2ε′(∂P )) ≤ 64 · 2 · 2(2ε′)ℓ(∂P ),

where the last inequality follows from [4, Theorem 10–41, p. 285]. Therefore∑︂
k∈K

ℓ(∂Pk)
2 ≤ 17H2(P )

upon choosing ε′ to be sufficiently small. □

We continue with the main result of this section, giving a polyhedral filling
of an arbitrary simple metric triangle with controlled Hausdorff 2-measure.

Theorem 4.2. Let (T, d) be a triangular metric disk with edges αj, j ∈
{1, 2, 3}. There exists a polyhedral surface (S, dS) that is a triangular metric
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disk with edges βj, j ∈ {1, 2, 3}, and a homeomorphism φ : S → T such that
the following hold for an absolute constant L > 0 independent of T .

(1) diamdS (S) ≤ Ldiamd(T ).
(2) H2

dS
(S) ≤ LH2

d(T ).

(3) φ||βj | maps |βj | isometrically onto |αj | for each j ∈ {1, 2, 3}. In

particular, φ|∂S is length-preserving.
(4) For all x, y ∈ ∂S, dS(x, y) ≥ d(φ(x), φ(y)).

Proof. Let ∆ = ∂T . Thus ∆ is a metric triangle equipped with the metric
d. Let F : ∆ → C be the 4-bi-Lipschitz embedding in Proposition 3.2, and
let Ω be the closed region in C bounded by F (∆). Moreover, let βj = F ◦αj

for each j ∈ {1, 2, 3}. We use the embedded curve F (∆) to construct a
polyhedral surface S with the desired properties. We note that as soon as
S is homeomorphic to a closed disk, (3) and (4) imply immediately that S
is a triangular metric disk.

Equip F (∆) with the pushforward metric of d under F , which we also
denote by d. Given two points x, y ∈ F (∆), let [x, y] denote the positively
oriented subarc of F (∆) from x to y, according to the counterclockwise
orientation on the curve F (∆) ⊂ C. For each ε > 0 there exists a par-
tition of F (∆) into arcs [xm−1, xm], m ∈ {1, . . . , n}, where x0 = xn, and
d(xm−1, xm) < ε for each m. We also require that the images of the vertices
of T are contained in the collection {xm}nm=1. This guarantees that

n∑︂
m=1

d(xm−1, xm) =

n∑︂
m=1

ℓd([xm−1, xm]) = ℓd(F (∆)).

Consider the Euclidean polygon formed by joining xm−1 with xm for all m ∈
{1, . . . , n}. Our definition of the embedding F ensures that the polygon does
not have self-intersections; see Remark 3.3. Denote the polygonal region
bounded by that polygon by P . By taking ε to be sufficiently small, we have
that the region P is arbitrarily close to the region Ω bounded by F (∆). In
particular, we choose ε so that

H2
|·|(P ) ≤ 2H2

|·|(Ω).

Since F is 4-bi-Lipschitz, we have

ℓ|·|(∂P ) =

n∑︂
m=1

|xm − xm−1| ≤ 4

n∑︂
m=1

d(xm−1, xm) = 4ℓd(F (∆)).(4.1)

We consider a polygonal decomposition {Pk}k∈K of the region P satisfying
the conclusions of Lemma 4.1 with the given ε.

We declare the length of each edge of the polygonal decomposition {Pk}k∈K
to be 4 times its Euclidean length. Thus the 1-skeleton of the decomposi-
tion is a 1-dimensional polyhedral space with the resulting length metric.
We add to this polyhedral space the arcs [xm−1, xm] ⊂ F (∆), each with
length ℓd([xm−1, xm]). Note that we do not consider [xm−1, xm] as a subset
of the plane, which could intersect the interior of some triangles Pk, but
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as an abstract segment. We denote the resulting 1-dimensional polyhedral
space by S1 and its length metric by d1. Denote by T1 the copy of F (∆) in
S1.

Let γ be a path in S1 \ T1 joining two points xm, xl ∈ T1 for some m, l ∈
{1, . . . , n}. Then

d(xm, xl) ≤ 4|xm − xl| ≤ 4ℓ|·|(γ) = ℓd1(γ).

From this, it follows that d(x, y) ≤ d1(x, y) for all points x, y ∈ T1. If x, y ∈
|βj | for some j ∈ {1, 2, 3}, then there exists a subpath γ of βj connecting x
and y with d(x, y) = ℓd(γ) = ℓd1(γ). Thus d(x, y) ≥ d1(x, y), and it follows
that d = d1 on |βj |. Moreover, by property (ii) of Lemma 4.1, (4.1), and the
relation ℓd(F (∆)) = ℓd(∆) ≤ 3 diam(T ), we have

diamd1(S1) ≤ 4ℓ|·|(∂P ) + 2ε ≤ 16ℓd(F (∆)) + 2ε ≤ 48 diamd(T ) + 2ε.(4.2)

We wish to fill in the 1-skeleton S1 with faces so that we obtain a polyhe-
dral surface S with the desired properties. To each Jordan curve ∂Pk ⊂ S1
we glue a cube S(Pk) with bottom face removed isometrically along its
boundary, where the boundary of S(Pk) necessarily has length equal to
ℓd1(∂Pk). Thus

(4.3) H2(S(Pk)) = (5/16)ℓd1(∂Pk)
2 = 5ℓ|·|(∂Pk)

2.

Next, consider a Jordan curve formed by an arc [xm−1, xm] and a line seg-
ment I ⊂ ∂P . We observe first that ℓd1(I)=4ℓ|·|(I) ≤ 16d(xm−1, xm), since
F is 4-bi-Lipschitz. Glue a cube S(xm) with bottom face removed isomet-
rically into this Jordan curve along its boundary. Then ∂S(xm) has length
at most 17d(xm−1, xm) and thus

(4.4) H2(S(xm)) ≤ L0d(xm−1, xm)2

for L0 = 5 · (17/4)2. Denote by S the resulting polyhedral space and by dS
the resulting length metric. By construction, S is a closed topological disk
with boundary T1. We define φ : S → T to be an arbitrary homeomorphism
such that φ|∂S = F−1.

It is immediate that dS(x, y) = d1(x, y) for all x, y ∈ S1 ⊂ S. Indeed, any
path inside an attached cube with endpoints on the boundary has longer
length than the path on the boundary of the cube that has the same end-
points. This is the reason for attaching cubes to S1. Since d ≤ d1 = dS
on T1, we immediately obtain (4). Moreover, d = d1 = dS on |βj | for each
j ∈ {1, 2, 3}, so we also obtain (3). For (2), we use (4.3) and (4.4) to get

H2(S) =
∑︂
k∈K

H2(S(Pk)) +

n∑︂
m=1

H2(S(xm))

≤
∑︂
k∈K

5ℓ|·|(∂Pk)
2 +

n∑︂
m=1

L0d(xm−1, xm)2.
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Applying property (iii) from Lemma 4.1 and the relationship d(xm−1, xm) <
ε, we obtain

H2(S) ≤ 85H2(P ) + L0ε
n∑︂

m=1

d(xm−1, xm)

≤ 170H2(Ω) + L0εℓd(F (∆)).

We choose a sufficiently small ε so that the second term of the sum is
bounded by H2(Ω). Then, by Theorem 2.1, we have

H2(Ω)≤ (4/π) · 16H2(T ) ≤ 32H2(T ).

It follows that H2(S) ≤ LH2(T ) for L = 32 · 171.
Finally, we verify (1). Since ℓ|·|(∂Pk) < ε, we have

diamdS (S(Pk)) ≤
3

4
ℓdS (∂S(Pk)) =

12

4
ℓ|·|(∂Pk) ≤ 3ε.

Moreover,

diamdS (S(xm)) ≤ 3

4
ℓdS (∂S(xm)) ≤ 3

4
· 17d(xm−1, xm) ≤ 13ε.

Therefore, by (4.2),

diamdS (S) ≤ diamdS (S1) + 2max
k∈K

diamdS (S(Pk))

+ 2 max
m∈{1,...,n}

diamdS (S(xm))

≤ (48 diamd(T ) + 2ε) + 6ε+ 26ε.

Choose ε so that 34ε < diamd(T ). Thus diamdS (S) ≤ 49 diamd(T ). This
completes the proof. □

5. Building the approximating surfaces

This section is dedicated to the proof of Theorem 1.1. First, we carry
out some technical preparations in Section 5.1. We then give the proof of
Theorem 1.1 in Section 5.2. We conclude this section with a discussion of
the case where X is homeomorphic to C, in preparation for the proof of
Theorem 1.3.

5.1. Improved triangulations. We start by stating the main result by
Creutz and the second-listed author in [13] on the existence of decomposi-
tions of a length surface into non-overlapping convex triangles. Let X be a
length surface. We say that a collection T of non-overlapping closed Jordan
regions T ⊂ X is a geometric triangulation of X if it is locally finite, it covers
X, and each T ∈ T is a triangular disk, endowed with the restriction of the
metric of X. We remark that a geometric triangulation is not necessarily
a triangulation in the usual topological sense, since we do not require that
the edges of triangles match exactly.
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We employ the following terminology. Recall that a set P ⊂ X is convex
if any two points x, y ∈ P can be joined by a geodesic contained in P , and
in this case P is a length space with the restriction of the metric of X and
the inclusion map from P to X is an isometric embedding. If all triangular
disks in the geometric triangulation T of X are convex, then we say that
T is convex. For a geometric triangulation T , we also define mesh(T ) to
be the supremum of diameters of triangular disks T ∈ T . Finally, a surface
X has polygonal boundary if each boundary component of X consists of
non-overlapping geodesics. Note that if a boundary component of X is
homeomorphic to R, then it may consist of infinitely many such geodesics.
Moreover, any surface whose boundary is empty necessarily has polygonal
boundary.

Now we state the main result of [13].

Theorem 5.1. Let X be a length surface with polygonal boundary and ε > 0.
Then there exists a convex triangulation T of X with mesh(T ) < ε.

For the proof of Theorem 1.1, we need to refine the triangulation given by
Theorem 5.1 to guarantee that the edge graph is approximately isometric
to the original space X. This is similar to Proposition 7.5.5 of [9].

Given two triangulations T1 and T2 of X, we say that T2 is a refinement
of T1 if for every triangular disk T ∈ T2 there exists a triangular disk T ′ ∈ T1
such that T ⊂ T ′. For a triangulation T ofX, let E(T ) denote the embedded
graph in X consisting of the edges of triangles in T . This is equipped with
the length metric induced by X. If D ⊂ X is a connected set that is the
union of triangular disks in T , then we denote by E(T |D) the set E(T )∩D,
again equipped with the induced length metric.

Proposition 5.2. Let X be a length surface and ε > 0. Then for each

convex triangulation ˜︁T of X with mesh(˜︁T ) < ε/8 there exists a convex

triangulation T that is a refinement of ˜︁T with the property that the inclusion
map from E(T ) to X is an ε-isometry. More generally, if D is a connected

union of triangular disks T ∈ ˜︁T , then the inclusion map from E(T |D) to D,
equipped with the length metric induced by X, is an ε-isometry.

Proof. Let (X, d) be a length surface, ε > 0, and ε′ < ε/8. Let ˜︁T be a convex

triangulation of X such that diam( ˜︁T ) ≤ ε′ for every ˜︁T ∈ ˜︁T . Enumerate ˜︁T
as { ˜︁Tj}j∈ ˜︁J , where ˜︁J = N or ˜︁J = {1, . . . , n} for some n ∈ N.

Consider a triangle ˜︁Tj . Then ∂ ˜︁Tj is the union of three geodesics ˜︁α1
j , ˜︁α2

j , ˜︁α3
j .

Pick a finite set of points Wj = {w1
j , . . . , w

kj
j } in ∂ ˜︁Tj such that every point

x ∈ ∂ ˜︁Tj is within distance 2−jε′ of a point in Wj on the same edge as x. We

also include the vertices of ∂ ˜︁Tj in the collection Wj . For each pair of points

in Wj we add a geodesic in ˜︁Tj connecting them. By applying Lemma 4.3 of
[13] inductively, we can do this so that the resulting system of geodesics is
a finite graph.
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These additional geodesics subdivide ˜︁Tj into a finite number of smaller
polygonal disks. By Lemma 3.3 in [13], each of the resulting polygonal disks
is still convex and thus is a length space with polygonal boundary (with
the restriction of the metric of X). By Theorem 5.1, we can subdivide
these polygonal disks further so that we again have triangular disks. This
gives a new convex triangulation T = {Tj}j∈J , with the same notational

conventions that we used for ˜︁T , that refines ˜︁T .
LetD be a connected union of triangular disks of the original triangulation˜︁T . We show that the inclusion map from E(T |D) to D is an ε-isometry,

where D is endowed with the length metric dD induced by X. First, note

that E(T |D) contains E(˜︁T |D), which is within dD-distance ε
′ < ε from every

point of D. Hence E(T |D) is ε-dense in D.
Let dT denote the length metric on E(T |D). Clearly we have dD ≤ dT

on the set E(T |D), which is a subset of D. We claim that dT < dD + ε
on E(T |D) and this will complete the proof. Let x, y ∈ E(T |D). Then,

by the construction of T , there exist points x′, y′ ∈ E(˜︁T |D) such that
dD(x, x

′) =dT (x, x
′) ≤ ε′ and dD(y, y

′) =dT (y, y
′) ≤ ε′. In particular, we

have dT (x, y) ≤ dT (x
′, y′) + 2ε′ and dD(x

′, y′) ≤ dD(x, y) + 2ε′. Thus it

suffices to show that dT (x
′, y′) ≤ dD(x

′, y′) + 4ε′ for every x′, y′ ∈ E(˜︁T |D).

Let x′, y′ ∈ E(˜︁T |D) and γ a curve in D joining x′ and y′. Inductively

define curves γj for each j ∈ ˜︁J in the following way. Take γ0 = γ. If |γj−1|
intersects the interior of ˜︁Tj , then let z1, z2 denote the first and last points

of intersection with ˜︁Tj . Let γz2z1 denote the maximal subcurve of γ from z1
to z2. Choose points w1, w2 ∈ Wj so that d(wk, zk) ≤ 2−jε′ and wk belongs
to the same edge as zk for each k ∈ {1, 2}. There are geodesics from z1 to
w1, from w1 to w2, and from w2 to z2 contained in E(T |D). Let ˜︁γz2z1 be the
concatenation of these three paths. It is immediate that

ℓ(˜︁γz2z1 ) = d(z1, w1) + d(w1, w2) + d(w2, z2)

≤ d(z1, z2) + 2d(z1, w1) + 2d(w2, z2)

≤ ℓ(γz2z1 ) + 4 · 2−jε′.

Let γj be the curve formed by replacing γz2z1 with ˜︁γz2z1 . If |γj−1| does not

intersect the interior of ˜︁Tj , then take γj = γj−1. Note that γ intersects

only finitely many of the triangles in ˜︁T , so this process must terminate after
finitely many steps. This yields a curve ˜︁γ in D. It is immediate that ℓ(˜︁γ) ≤
ℓ(γ)+4ε′. Since γ is arbitrary, we have that dT (x

′, y′) ≤ dD(x
′, y′)+4ε′. □

Theorem 5.1 requires the surface to have polygonal boundary. Since we do
not impose this restriction in Theorem 1.1, we give the following additional
lemma on polygonal approximation of the boundary.

Lemma 5.3. Let X be a length surface and ε > 0. There exists a convex

set ˜︁X ⊂ X homeomorphic to X having polygonal boundary such that the

inclusion map from ˜︁X to X is an ε-isometry.
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Here, the distance between two points in ˜︁X is the length of a shortest curve
in X that connects them. By convexity, there is such a curve contained in˜︁X, so this implies that the length metric on ˜︁X is the same as the metric
inherited from X.

Proof. For each component Y of the boundary ∂X, apply the following
procedure. Note that Y is homeomorphic to either R or S1; assume in the
following that it is homeomorphic to R.

As a consequence of the tubular neighborhood theorem [19, p. 76], there
is a neighborhood UY of Y in X that is homeomorphic to the closed upper
half-plane in C, denoted by H. By restricting to a smaller neighborhood if
needed, we may assume that UY is contained in

⋃︁
y∈Y B(y,dist(y, ∂X\Y )/2).

Thus, for any two distinct components Y1, Y2 ⊂ ∂X, the neighborhoods UY1

and UY2 are disjoint.
Choose a sequence of points (yj)

∞
j=−∞ in Y , indexed in increasing order

according to the parametrization of Y by R. By adding more points if
needed, we may assume that d(yj , yj+1) < d(yj , X \ UY ) for each j ∈ Z. In
particular, since the closed ball at yj of radius d(yj , yj+1) is compact, each
point yj is joined to yj+1 by a geodesic γj contained in UY . Moreover, we may
assume the (possibly empty) open region Wj ⊂ X enclosed by Y and γj has
diameter at most ε (given in the statement). Note that each component of
Wj is a Jordan region. This follows from Kerékjártó’s theorem [37, Chapter
IV.16, p. 168].

Finally, by redefining the geodesics if needed, we may assume that for
all distinct values j, k ∈ Z the sets Wj and Wk are disjoint. To justify
this claim, fix a bijection φ : N → Z and apply the following inductive pro-
cedure. For some n ∈ N, suppose that γφ(1), . . . , γφ(n) are such that the
sets Wφ(1), . . . ,Wφ(n) are mutually disjoint. Suppose that γφ(n+1) intersects

Wφ(1). For each component (t1, t2) of γ
−1
φ(n+1)(Wφ(1)), we redefine γφ(n+1) on

[t1, t2] to coincide with the subarc of γφ(1) from γφ(n+1)(t1) to γφ(n+1)(t2);
note that the interior of this subarc lies insideWφ(n+1). The resulting curve,
still denoted by γφ(n+1), does not intersect Wφ(1) and is also a geodesic. As
a byproduct, we also have that γφ(1) does not intersect Wφ(n+1) and that
Wφ(1) and Wφ(n+1) are disjoint. Since Wφ(1), . . . ,Wφ(n) are mutually dis-
joint, we also see that this redefining of γφ(n+1) does not introduce new
intervals of intersection between γφ(n+1) and Wφ(k) for some k ∈ {1, . . . , n}.
Finally, this procedure only makes the set Wφ(n+1) smaller, so the property
that Wφ(n+1) has diameter at most ε remains. Apply this same redefining
procedure for Wφ(k) for all k ∈ {2, . . . , n}. This completes the inductive
step.

Let ˜︁EY =
⋃︁∞

j=−∞ |γj |. Consider its image ˜︁E′
Y in C under the homeomor-

phism from UY to H. Let V denote the unbounded component of C \ ˜︁E′
Y

in H and ˆ︁V the same set as a subset of the Riemann sphere ˆ︁C. Then ∂ ˆ︁V
is connected and locally connected. By Theorem IV.6.7 in [49], there is a
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Jordan curve in ∂ ˆ︁V (in fact, ∂ ˆ︁V itself) separating ˆ︁V and ˆ︁C \ ˆ︁V . From this
we obtain an arc E′

Y in ∂V separating V and C \ V . The preimage of E′
Y is

an open arc EY ⊂ ˜︁EY in X. Let VY denote the component of UY \ EY not
intersecting Y . Observe that, since UY and VY are both topological closed
half-planes there is a homeomorphism from UY to VY that is the identity
outside of some neighborhood of the closed region bounded by EY and Y .

If Y is homeomorphic to S1, then we apply a similar procedure to obtain
a Jordan curve EY separating Y and ∂X \ Y and sets UY and VY .

Let E =
⋃︁
EY , where the union ranges over all components Y of ∂X.

Note that EY1 and EY2 are disjoint for any distinct components Y1, Y2 ⊂ ∂X.

Then X \E contains a unique component X ′ not intersecting ∂X. Let ˜︁X be
the union of the sets EY and X ′. Gluing the respective homeomorphisms
for each component Y ⊂ ∂X and the identity map on a suitable subset of

X ′, we obtain a homeomorphism from X to ˜︁X.

Next, we show that ˜︁X is a convex subset ofX. Consider a path γ : [t1, t2] →
X between two points in ˜︁X. We wish to find a path ˜︁γ contained in ˜︁X of
shorter length connecting the same endpoints. If γ is already contained in˜︁X, then we take ˜︁γ = γ. Otherwise, by restricting to subcurves if needed,
we may assume that γ(t1) and γ(t2) are in the same boundary component

EY ⊂ ∂ ˜︁X and γ((t1, t2)) ⊂ X \ ˜︁X. Let ˜︁γ : [t1, t2] → X be the path in EY

from γ(t1) to γ(t2).
We claim that ℓ(˜︁γ) ≤ ℓ(γ). To show this, define a path ζ in the following

way: for each component (t3, t4) of γ
−1(Wj) for each j ∈ Z, define ζ on [t3, t4]

to traverse the subarc of γj homotopic to γ|[t3,t4] relative to the endpoints.
Since γj is a geodesic, we must have ℓ(ζ|[t3,t4]) ≤ ℓ(γ|[t3,t4]). Define ζ to
coincide with γ otherwise. It follows that ℓ(ζ) ≤ ℓ(γ).

Consider a point x = ˜︁γ(t) for some t ∈ (t1, t2). Then x ∈ ∂Wj for some
j ∈ Z. Since each component ofWj is a Jordan region, we can find a curve η
from x to Y \|γj | contained inWj except for its endpoints. Observe that the

curve η separates X \ ˜︁X. Now γ(t1) and γ(t2) are in different components
of EY \ {x}. Consequently, γ−1(Wj) must contain a component (t3, t4) such
that γ(t3) and γ(t4) are in different components of ∂Wj \ |η|. Then ζ|[t3,t4]
joins the same endpoints and has image contained in |γj |. It follows that
x ∈ |ζ|. Thus |˜︁γ| ⊂ |ζ|, and we have ℓ(˜︁γ) ≤ ℓ(ζ) ≤ ℓ(γ).

It remains to show that the inclusion map ˜︁X → X is a ε-isometry. Since˜︁X is convex, it follows that the inclusion map is an isometric embedding.

Finally, each point in X is within distance ε of a point in ˜︁X. This completes
the proof. □

5.2. Proof of Theorem 1.1. Let (X, d) be a length surface. Choose a
sequence (εn)

∞
n=1 of positive reals satisfying εn → 0 as n→ ∞.
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We apply Lemma 5.3 to find a surface ˜︁Xn ⊂ X that is homeomorphic to
X and has polygonal boundary such that the inclusion map is a εn-isometry.

Moreover, ˜︁Xn is convex as a subset of X, so that the restriction of d to ˜︁Xn

is still a length metric.

Since the space ˜︁Xn has polygonal boundary, we can apply Theorem 5.1

and Proposition 5.2 with the parameter εn to obtain a decomposition ˜︁Tn
of ˜︁Xn into convex triangular disks with mesh(˜︁Tn) < εn. We consider the

edge graph ˜︁En = E(˜︁Tn) as having the induced length metric ˜︁dn. As given

by Proposition 5.2, the inclusion map id : ˜︁En → ˜︁Xn is a εn-isometry. More

precisely, d(x, y) ≤ ˜︁dn(x, y) < d(x, y) + εn for all x, y ∈ ˜︁En.
For each triangular disk T ∈ ˜︁Tn with metric d, consider the polyhedral

surface S and the corresponding homeomorphism φT : S → T given by The-
orem 4.2. Observe that φT |∂S is length-preserving as a map from ∂S into˜︁En, with either the metric d or the metric ˜︁dn. Thus we may define a length

surface Xn by gluing each disk S into ˜︁En along the map φT . Denote the

metric on Xn by dn. We obtain a homeomorphism Φn : Xn → ˜︁Xn by gluing

the maps φT . Let En = Φ−1
n (˜︁En). For each x ∈ En, put ˜︁x = Φn(x) ∈ ˜︁En.

Since ˜︁dn is a length metric on ˜︁En and dn is a length metric on Xn, it is

immediate that dn(x, y) ≤ ˜︁dn(˜︁x, ˜︁y) for all x, y ∈ En. On the other hand, let
x, y ∈ En and consider an arbitrary path γ in Xn from x to y. For each disk
S, consider each component (a, b) of the set γ−1(int(S)). We deduce from
Theorem 4.2 (4) that ℓdn(γ|(a,b)) ≥ dS(γ(a), γ(b)) ≥ d(Φn(γ(a)),Φn(γ(b))),
where dS denotes the length metric on S. This implies that ℓdn(γ) ≥ d(˜︁x, ˜︁y).
Since γ is arbitrary, we have d(˜︁x, ˜︁y) ≤ dn(x, y) for all x, y ∈ En. In summary,
we have

(5.1) d(˜︁x, ˜︁y) ≤ dn(x, y) ≤ ˜︁dn(˜︁x, ˜︁y) < d(˜︁x, ˜︁y) + εn

for all x, y,∈ En.
Define the map fn : Xn → X as the composition of Φn : Xn → ˜︁Xn and

the inclusion map of ˜︁Xn in X. We claim that fn is ((2L+ 3)εn)-isometric,
where L is the constant in Theorem 4.2. First note that fn(Xn) is εn-

dense in X, since Φn is surjective and the inclusion map from ˜︁Xn to X is
a εn-isometry. Next, let x, y ∈ Xn. Then, by Theorem 4.2 (1) and the

fact that mesh(˜︁Tn) < εn, there exist x′, y′ ∈ En such that dn(x
′, x) < Lεn,

dn(y
′, y) < Lεn, d(fn(x

′), fn(x)) < εn, and d(fn(y
′), fn(y)) < εn. These

properties and (5.1) imply that

d(fn(x), fn(y)) < d(fn(x
′), fn(y

′)) + 2εn

≤ dn(x
′, y′) + 2εn < dn(x, y) + (2L+ 2)εn.
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In the other direction, we have

dn(x, y) < dn(x
′, y′) + 2Lεn

< d(fn(x
′), fn(y

′)) + (2L+ 1)εn

< d(fn(x), fn(y)) + (2L+ 3)εn.

This concludes the proof that fn is ((2L+ 3)εn)-isometric.
Next, we verify the property (2) regarding the Hausdorff 2-measure. Let

A ⊂ X be a compact set and fix δ > 0. Let n be sufficiently large so that

diam(T ) < δ for every triangular disk T ∈ ˜︁Tn. Then T ⊂ Nδ(A) whenever
T ∩ A ̸= ∅. The set f−1

n (A) (which could be empty) is covered by the
sets f−1

n (T ) for which T ∩ A ̸= ∅. Moreover, by Theorem 4.2 (2) we have

H2(f−1
n (T )) ≤ LH2(T ) for each T ∈ ˜︁Tn. Since the boundary of each triangle

T has Hausdorff 2-measure zero, we have

H2(f−1
n (A)) ≤ LH2(Nδ(A)).

Hence, letting n→ ∞ and then δ → 0 gives

lim sup
n→∞

H2(f−1
n (A)) ≤ LH2(A),

as desired. □

5.3. The case where X is homeomorphic to C. To prepare for the proof
of Theorem 1.3, we refine the work in this section for the case where X is
homeomorphic to C. Note that X has no boundary as a manifold. Choose
a decreasing sequence (εn)

∞
n=1 of positive real numbers such that εn → 0 as

n→ ∞.
First, we describe the existence of a sequence of nested triangulations of

X. By Theorem 5.1 and Proposition 5.2, there exists a triangulation T1 of
X such that the inclusion from the edge graph E(T1) to X is a ε1-isometry.
Now, to each triangular disk T ∈ T1 we apply Theorem 5.1 to obtain a
triangulation of T with mesh less than ε2/8. Note that the union of these
triangulations gives a triangulation of X also with mesh less than ε2/8. By
Proposition 5.2 we may refine this triangulation to obtain a triangulation
T2 of X such that the inclusion from E(T2) to X is a ε2-isometry. By
construction, T2 is a refinement of T1. We proceed in the same way to obtain
triangulations Tn such that Tn+1 is a refinement of Tn and the inclusion from
E(Tn) to X is a εn-isometry for each n ∈ N.

Moreover, according to the last part of Proposition 5.2, for each connected
union D of triangular disks T ∈ Tn the inclusion map from E(Tn+1|D) to
D, endowed with the length metric induced by X, is a εn+1-isometry. Note
that for each k ∈ N, if D is a connected union of triangular disks of Tk, then
D is also a connected union of triangular disks of Tn for n ≥ k. Thus, the
inclusion map from E(Tn|D) to D is a εn-isometry for every n ≥ k + 1.

Since X is homeomorphic to C, for each k ∈ N there exists a closed
topological disk Dk that is the union of triangular disks of Tk and such that
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Dk ⊂ Dk+1 and X =
⋃︁∞

k=1Dk. We consider Dk as being equipped with
the length metric induced by d, denoted by dk. For each k, n ∈ N such
that n ≥ k, let T n

k denote the subset of Tn consisting of triangular disks

contained in Dk. By the above, for n ≥ k+1 the inclusion map from E(T n
k )

to Dk, considered with the metric dk, is a εn-isometry.
Consider the polyhedral surfaces Xn and the maps fn : Xn → X as con-

structed in Section 5.2, corresponding to the triangulations Tn. Since X
has no boundary, the maps fn as constructed are homeomorphisms (rather
than topological embeddings). For each k, n ∈ N satisfying n ≥ k, let
Dn

k = f−1
n (Dk). The metric on Xn induces a length metric on Dn

k , which

we denote by dnk . Because the triangulations are nested, the space Dn
k is a

polyhedral surface for all n ≥ k.
We claim that the conclusions of Theorem 1.1 are also valid for each fixed

k ∈ N and for the sequence fn : (Dn
k , d

n
k) → (Dk, dk), n ≥ k.

Lemma 5.4. For each k ∈ N, the sequence of homeomorphisms

fn : (Dn
k , d

n
k) → (Dk, dk), n ≥ k,

is approximately isometric. Moreover, for each compact set A ⊂ Dk we have

lim sup
n→∞

H2(f−1
n (A)) ≤ KH2(A).

Here the Hausdorff 2-measures refer to the metrics of dnk and dk, respec-
tively, but one can use instead the measures with respect to the metrics of
Xn and X.

We now justify the lemma. For each n ≥ k, let Sn
k = {f−1

n (T ) : T ∈ T n
k }.

Then Sn
k covers Dn

k and consists of those triangular disks used to construct

Xn that are contained in Dn
k . From here, we follow the same argument as in

the second part of Section 5.2, with E(Sn
k ) and E(T n

k ) taking the roles of En
and ˜︁En in Section 5.2, respectively, to conclude that fn|Dn

k
is a ((2L+3)εn)-

isometry from Dn
k to Dk, for n ≥ k + 1. The details are omitted.

Finally, since the Hausdorff 2-measures on Dk with respect to d and dk
coincide, and similarly for Dn

k , we see directly from the argument in Section
5.2 that the conclusion regarding the Hausdorff 2-measure is also satisfied.

6. Uniformization of surfaces

In this section, we prove our main result on the uniformization problem,
Theorem 1.3, as well as Corollary 1.6 and Corollary 1.7. In Section 6.1, we

prove the compact case of Theorem 1.3, i.e., where X is homeomorphic to ˆ︁C
or D, along with Corollary 1.6. In Section 6.2, we use a standard argument to
derive the Bonk–Kleiner theorem (Corollary 1.7) from Theorem 1.3. Finally,
in Section 6.3, we complete the proof of Theorem 1.3 in the non-compact
case where X is homeomorphic to C.
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We start with some definitions that are used throughout this section.
Recall that a continuous map ν : X → Y between topological spaces is
monotone if the preimage of every point under ν is connected.

Let X,Y be metric spaces of locally finite Hausdorff 2-measure. A map-
ping h : X → Y is quasiconformal (according to the geometric definition)
if h is a homeomorphism and there exists K ≥ 1 such that for all curve
families Γ in X we have

K−1modΓ ≤ modh(Γ) ≤ KmodΓ.

In this case, we say that h is K-quasiconformal. A mapping h : X → Y
is weakly quasiconformal if h is continuous, surjective, and monotone and
there exists K ≥ 1 such that for every curve family Γ in X we have

modΓ ≤ Kmodh(Γ).

In this case, we say that h is weakly K-quasiconformal. Recall that if
h : X → Y is continuous and Γ is a curve family in X, then h(Γ) denotes
the curve family {h ◦ γ : γ ∈ Γ}.

6.1. Compact metric surfaces. Here, we give the proof of Theorem 1.3

in the case where X is homeomorphic to ˆ︁C or Ω = D. This theorem follows
readily from the following auxiliary result.

Theorem 6.1. Let Ω = ˆ︁C or Ω = D. Suppose that X is a length sur-
face homeomorphic to Ω with H2(X) < ∞ and {Xn}∞n=1 is a sequence of
polyhedral Riemann surfaces homeomorphic to Ω converging in the Gromov–
Hausdorff sense to X. Let fn : Xn → X be an approximately isometric
sequence such that there exists K ≥ 1 with

lim sup
n→∞

H2(f−1
n (A)) ≤ KH2(A)

for all compact sets A ⊂ X. If hn : Ω → Xn, n ∈ N, is a normalized
sequence of conformal parametrizations, then fn ◦hn has a subsequence that
converges uniformly to a weakly K-quasiconformal map h : Ω → X with
h ∈ N1,2(Ω, X).

Here we say that a sequence hn : Xn → Yn of homeomorphisms between
compact metric spaces is normalized if there exists a value δ > 0 and a se-
quence of triples an, bn, cn ∈ Xn with mutual distances bounded from below
by δ such that the mutual distances between the points hn(an), hn(bn), hn(cn)
are also bounded from below by δ, where δ is independent of n ∈ N.

In fact, Theorem 2.6 implies that the conclusion that h ∈ N1,2(Ω, X) is
redundant and follows from the weak quasiconformality. Moreover, one may
obtain the conclusions of Theorem 6.1 (with a different constant) under the
more general assumptions that Xn are length spaces, rather than polyhedral
surfaces, and the mappings hn areK ′-quasiconformal for some uniformK ′ ≥
1, rather than conformal. However, we do not need this generality for the
proof of Theorem 1.3.
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Assuming Theorem 6.1, we prove Theorem 1.3 in the compact case.

Proof of Theorem 1.3 for compact X. Let Ω = ˆ︁C or Ω = D. Suppose that
X is homeomorphic to Ω with H2(X) < ∞. By Theorem 1.1, there exists
a sequence Xn of polyhedral surfaces homeomorphic to Ω that converges in
the Gromov–Hausdorff sense to X. Moreover, there exists an approximately
isometric sequence fn : Xn → X of topological embeddings such that for
some K ≥ 1 we have

lim sup
n→∞

H2(f−1
n (A)) ≤ KH2(A)

for all compact sets A ⊂ X. We endow each Xn with the natural complex
structure, as in Section 2.5.1. By the uniformization theorem for polyhedral
surfaces (Theorem 2.7), there exists a sequence of conformal parametriza-
tions hn : Ω → Xn. In order to apply Theorem 6.1, it only remains to
normalize the sequence hn.

Suppose that Ω = ˆ︁C. Since Xn converges in the Gromov–Hausdorff sense
to X, there exists a sequence of triples a′n, b

′
n, c

′
n ∈ Xn with mutual dis-

tances uniformly bounded away from 0. By precomposing hn with a Möbius

transformation of ˆ︁C, we may assume that the preimages of these points
under hn also have the same property. If Ω = D, then, by Lemma 2.3,
diam(∂Xn) is uniformly bounded below away from 0. Hence, we may find
points a′n, b

′
n, c

′
n ∈ ∂Xn with mutual distances uniformly bounded below.

We now precompose hn with a Möbius transformation of D, so that the
preimages of a′n, b

′
n, c

′
n are the points 1, i,−1 ∈ ∂D. □

Next, we derive Corollary 1.6 from Theorem 1.3 and the following lemma.

Lemma 6.2. Let X and Y be compact 2-manifolds with boundary that are
homeomorphic and h : X → Y be a continuous, surjective, and monotone
mapping. Then intY ⊂ h(intX), ∂Y = h(∂X), and h|∂X : ∂X → ∂Y is
monotone.

Proof. This result follows from a theorem of Youngs [53, p. 92], which asserts
that h is the uniform limit of homeomorphisms fromX onto Y . In particular,
this theorem implies that ∂Y = h(∂X). The monotonicity of h|∂X : ∂X →
∂Y is immediate from the monotonicity of h. Since h is surjective, we
conclude that intY ⊂ h(intX). □

Proof of Corollary 1.6. Consider the weakly quasiconformal map h : D →
X given by Theorem 1.3, which lies in N1,2(D, X). From Lemma 6.2 we
conclude that h|∂D : ∂D → ∂X is a monotone parametrization of ∂X. □

We now start the proof of Theorem 6.1. The proof is split into two parts:
the proof of uniform convergence and the proof of quasiconformality.

In what follows, we assume, as in the statement of Theorem 6.1, that

Ω = ˆ︁C or Ω = D. Moreover, X is a length surface homeomorphic to Ω with
H2(X) < ∞ and {Xn}∞n=1 is a sequence of polyhedral surfaces homeomor-
phic to Ω converging in the Gromov–Hausdorff sense to X. Let fn : Xn → X
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be a sequence of εn-isometries, where εn → 0 as n → ∞, such that there
exists K ≥ 1 with

lim sup
n→∞

H2(f−1
n (A)) ≤ KH2(A)

for all compact sets A ⊂ X.

6.1.1. Equicontinuity and existence of the limiting mapping. We prove here
that if hn : Ω → Xn is a normalized sequence of conformal homeomorphisms,
then the sequence fn ◦ hn : Ω → X is uniformly equicontinuous. Recall
that a mapping between Riemann surfaces is conformal if it is complex
differentiable in local coordinates; see Section 2.5. By Lemma 2.8 (iii), hn
is also 1-quasiconformal (according to the geometric definition). The proof
of the equicontinuity relies on the fact that that lim supn→∞H2(Xn) ≤
KH2(X), which allows us to apply Lemma 2.4.

Lemma 6.3 (Equicontinuity). The sequence fn ◦ hn : Ω → X, n ∈ N, is
uniformly equicontinuous.

Proof. We claim that for each ε > 0 there exists δ > 0 and N ∈ N such that
if E is a continuum in Ω with diam(E) < δ, then diam(fn(hn(E))) < ε for
all n ≥ N . Since fn is an εn-isometry with εn → 0, it suffices instead to
show that diam(hn(E)) < ε for all n ≥ N .

We argue by contradiction. Suppose that there exists ε0 > 0 such that
for every n ∈ N there exists a continuum En ⊂ Ω with diam(En) < 1/n, but
diam(hkn(En)) ≥ ε0 for a subsequence hkn of hn. To simplify the notation,
we write hn instead of hkn .

Since the sequence hn is normalized, there exist points an, bn, cn ∈ Ω with
mutual distances bounded away from 0, such that their images under hn
also have mutual distances bounded away from 0.

Since diam(En) → 0, by passing to a subsequence we may assume that En

converges to a point in the Hausdorff sense. Then for each n ∈ N there exists
a curve in Ω between a pair of the points an, bn, cn that does not intersect
En and whose distance to En is bounded below away from 0, uniformly in n.
Indeed En can be very close to only one of the points an, bn, cn, so the other
two can be joined by a curve that is away from En; this can be justified
formally using the linear local connectivity of Ω, as defined in Section 6.2.
We define Fn to be the trace of that curve. We note that

modΓ∗(En, Fn; Ω) → ∞,

since the relative distance between En and Fn, defined by

∆(En, Fn) =
dist(En, Fn)

min{diam(En),diam(Fn)}
,

tends to infinity. In fact, since En converges to a point and dist(En, Fn) is
bounded away from 0, for all sufficiently large n ∈ N one can find an annulus
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separating En and Fn with inner radius rn, where rn → 0, and fixed outer
radius R > 0 so that

modΓ∗(En, Fn; Ω) ≥ c log(R/rn),

where c > 0 is a uniform constant. See [21, Section 7.9] for similar estimates.
Consider the continua hn(En), hn(Fn) ⊂ Xn. By Lemma 2.8 (iii), the

mappings hn are 1-quasiconformal, so we have

modΓ∗(hn(En), hn(Fn);Xn) → ∞.

Note that there exists η > 0 such that diam(hn(Fn)) > η for all n ∈ N,
since hn(Fn) joins a pair of the points h(an), h(bn), h(cn). Moreover, by
assumption, diam(hn(En)) ≥ ε0. Now, Lemma 2.4 with δ = min{η, ε0}
implies that

lim sup
n→∞

modΓ∗(hn(En), hn(Fn);Xn) <∞.

This is a contradiction. □

Next, we prove the convergence of the sequence fn ◦ hn, n ∈ N.

Lemma 6.4 (Convergence). The sequence fn ◦ hn : Ω → X, n ∈ N, has a
subsequence that converges uniformly to a continuous, surjective, and mono-
tone mapping h : Ω → X.

For the conclusion regarding monotonicity, we will use the fact that each
space Xn is a length space, which allows us to apply Proposition 2.2 (ii).

Proof. The proof of uniform convergence to a continuous map follows from
the Arzelà–Ascoli theorem, applied to the uniformly equicontinuous se-
quence fn ◦ hn : Ω → X. The surjectivity follows from the fact that the
set fn(hn(Ω)) = fn(Xn) is εn-dense in X, i.e., dX(fn(Xn), x) < εn for all
x ∈ X. Thus, the uniform convergence implies that h(Ω) = X.

It remains to show that the mapping h is monotone. Suppose that for
some x ∈ X the set h−1(x) is a disconnected compact subset of Ω. Consider
points a, b lying in distinct components of h−1(x). Then, by planar topology,
there exists a simple curve γ in Ω \ h−1(x) separating the points a and b;
see [48, Corollary 3.11, p. 35]. Since each hn is a homeomorphism, hn ◦ γ
separates the points hn(a) and hn(b). The convergence of fn ◦ hn to h
implies that fn(hn(a)) and fn(hn(b)) converge to x, which we consider as
a constant path. By Proposition 2.2 (ii), there exists a sequence of paths
γn : [0, 1] → Xn such that γn(0) = hn(a), γn(1) = hn(b), and fn◦γn converges
uniformly to the constant path x. Since hn ◦ γ separates hn(a) and hn(b)
and γn joins the two points, we conclude that the two paths intersect. By
the uniform convergence of fn◦hn◦γ to h◦γ and of fn◦γn to x, we conclude
that h ◦ γ intersects x, a contradiction. □
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6.1.2. Regularity of the limiting parametrization. If hn : Ω → Xn is a nor-
malized sequence of conformal parametrizations, then by Lemma 6.4 the
sequence fn ◦ hn has a subsequence that converges uniformly to a continu-
ous, surjective, and monotone mapping h : Ω → X. By passing to a subse-
quence, we assume that fn◦hn converges to h. We now complete the proof of
Theorem 6.1 by proving that the limiting map h is weakly quasiconformal.

Recall that fn : Xn → X is an εn-isometry, where εn → 0, with the
property that for every compact set A ⊂ X we have

lim sup
n→∞

H2(f−1
n (A)) ≤ KH2(A)(6.1)

for some uniform constant K > 0. By Lemma 2.8, each mapping hn has an
upper gradient |Dhn| with the property that∫︂

E
|Dhn|2 dH2 = H2(hn(E))

for each Borel set E ⊂ Ω. We first prove that the upper gradients |Dhn|
converge to a weak upper gradient of h.

Lemma 6.5 (Upper gradient). The sequence of upper gradients |Dhn| of
hn, n ∈ N, has a subsequence that converges weakly in L2(Ω) to a function
gh that is a weak upper gradient of h.

The argument is classical for mappings between fixed spaces. See, for
example, [24, Theorem 7.3.9, p. 194]. Since here we also have the additional
complication of Gromov–Hausdorff convergence of spaces, we include the
proof.

Proof. For each n ∈ N and for all locally rectifiable paths γ in Ω connecting
points a, b we have

dXn(hn(a), hn(b)) ≤
∫︂
γ
|Dhn| ds.(6.2)

Moreover, ∥Dhn∥2L2(Ω) = H2(Xn) and the latter is uniformly bounded from

above by (6.1). By the Banach–Alaoglu theorem (see [24, Theorem 2.4.1]),
there exists a function gh ∈ L2(Ω) such that a subsequence of |Dhn| con-
verges weakly in L2(Ω) to gh. We choose a Borel representative of gh. We
claim that gh is a weak upper gradient of h, which is the uniform limit of
fn ◦ hn.

Note that since each fn is an εn-isometry with εn → 0, we have

lim
n→∞

dXn(hn(a), hn(b)) = lim
n→∞

dX(fn(hn(a)), fn(hn(b))) = dX(h(a), h(b))

for every a, b ∈ Ω. Also, by Mazur’s lemma [24, p. 19], there exists a sequence
of convex combinations

gn =

Mn∑︂
i=n

λi,n|Dhi|,
Mn∑︂
i=n

λi,n = 1, 0 ≤ λi,n ≤ 1, i ∈ {n, . . . ,Mn}, n ∈ N,
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that converge strongly to gh in L2(Ω). By Fuglede’s lemma [24, p. 131],
there exists a curve family Γ0 in Ω with modΓ0 = 0 such that

lim
n→∞

∫︂
γ
|gn − gh| ds = 0

for all γ /∈ Γ0. Taking the corresponding convex combinations in (6.2) and
passing to the limit, shows that gh is a weak upper gradient of h. □

Thus, by passing to a subsequence, we may assume that |Dhn| converges
weakly in L2(Ω) to gh.

Lemma 6.6 (Quasiconformality). For each Borel set E ⊂ X we have∫︂
h−1(E)

g2h dH2 ≤ KH2(E).

Proof. Let E ⊂ X be a Borel set and A ⊂ h−1(E) be a compact set. By the
inner regularity of Hausdorff 2-measure in Ω, it suffices to show that∫︂

A
g2h dH2 ≤ KH2(h(A)) ≤ KH2(E).

Since h(A) is compact and H2 is finite on X, for each ε > 0 there exists an
open set U ⊃ h(A) such that

H2(U) ≤ H2(h(A)) + ε.(6.3)

By the uniform convergence of fn ◦ hn to h, we conclude that fn(hn(A))
converges in the Hausdorff sense to h(A) as n→ ∞, so fn(hn(A)) ⊂ U and
thus hn(A) ⊂ f−1

n (U) for all sufficiently large n ∈ N. Combining this with
Lemma 2.8 (ii), we have∫︂

A
|Dhn|2 dH2 = H2(hn(A)) ≤ H2(f−1

n (U))

for all sufficiently large n ∈ N. Passing to the limit and using (6.1) and
(6.3), we obtain

lim sup
n→∞

∫︂
A
|Dhn|2 dH2 ≤ KH2(U) ≤ KH2(h(A)) +Kε.

Next, we let ε → 0. Finally, since |Dhn| converges weakly in L2(Ω) to gh,
we see that |Dhn|χA also converges weakly to ghχA, which implies that∫︂

A
g2h dH2 ≤ lim inf

n→∞

∫︂
A
|Dhn|2 dH2.

This completes the proof. □

Lemma 6.7. We have h ∈ N1,2(Ω, X). Moreover, for every curve family Γ
in Ω we have

modΓ ≤ Kmodh(Γ).

Proof. By Lemma 6.5, gh is a weak upper gradient of h. The conclusions
now follow from Lemma 6.6 and Lemma 2.5 (ii). □
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With this lemma, the proof of Theorem 6.1 is complete.

6.2. Quasisymmetric uniformization. In this section, we give an alter-
native proof of the Bonk–Kleiner theorem, stated as Corollary 1.7. We first
recall the necessary definitions. Let (X, dX) and (Y, dY ) be metric spaces.
A homeomorphism f : X → Y is quasisymmetric if there exists a homeo-
morphism η : [0,∞) → [0,∞) such that

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(︃
dX(x, y)

dX(x, z)

)︃
for all distinct points x, y, z ∈ X. Next, a metric space X is Ahlfors 2-regular
if there exists a constant C ≥ 1 such that for all 0 < r < diam(X) we have

C−1r2 ≤ H2(B(x, r)) ≤ Cr2.

Moreover, we say that X is linearly locally connected (abbreviated LLC ) if
there exists λ ≥ 1 such that for any ball B(a, r) ⊂ X the following conditions
hold:

LLC(1): If x, y ∈ B(a, r), then there exists a continuum E ⊂ B(a, λr)
containing x and y.

LLC(2): If x, y ∈ X \ B(a, r), then there exists a continuum E ⊂ X \
B(a, r/λ) containing x and y.

In this case, we say that X is λ-LLC.
Let X be a metric 2-sphere that is Ahlfors 2-regular and LLC. By a

result of Semmes [45, Theorem B.6], X is quasiconvex, quantitatively. That
is, there exists a constant c ≥ 1 depending only on the Ahlfors regularity
and linear local connectivity constants such that for any two points x, y ∈ X
there exists a curve γ connecting them with

ℓ(γ) ≤ cd(x, y).

Alternatively, one can obtain the quasiconvexity from a result of Wildrick
[51, Corollary 4.8]. This implies that we can replace the metric on X with
a bi-Lipschitz equivalent length metric that is Ahlfors 2-regular and LLC,
quantitatively. Therefore, in order to prove Corollary 1.7, we may assume
in addition that X is a length space.

By Theorem 1.3, there exists a weakly quasiconformal mapping h : ˆ︁C →
X. Under the Ahlfors 2-regularity condition, such a mapping h is necessarily
a homeomorphism, as follows from Theorem 7.4 below. Finally, the following
general result implies that h is quasisymmetric, thus completing the proof
of Corollary 1.7.

Theorem 6.8. Let X be a metric 2-sphere that is Ahlfors 2-regular and

LLC. Suppose that g : ˆ︁C → X is homeomorphism such that

modΓ ≤ Kmod g(Γ)

for some K ≥ 1 and for all curve families Γ in ˆ︁C. Then g is quasisymmetric.
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See [34, Theorem 2.5] or [42, Proof of Corollary 1.7] for a proof.

6.3. Non-compact metric surfaces. Suppose that X is a non-compact
length space homeomorphic to C that has locally finite Hausdorff 2-measure.
In this subsection, we show that there exists a weakly K-quasiconformal
map h : Ω → X, where Ω = D or Ω = C. This proves Theorem 1.3 in the
non-compact case.

Consider an approximately isometric sequence fn : Xn → X of topological
embeddings as in Theorem 1.1. By the discussion in Section 5.3, fn can be
chosen so that the following additional conditions hold. There exists an
exhaustion of X by an increasing sequence of closed topological disks Dk,
k ∈ N, such that for all n ≥ k, Dn

k = f−1
n (Dk) is a polyhedral closed

topological disk and fn|Dn
k
: Dn

k → Dk is a homeomorphism. Moreover, Dk

is a length space with metric

dk(x, y) = inf
γ
ℓdX (γ),

where the infimum is taken over all paths γ ⊂ Dk connecting x and y and
the length of γ is computed with the metric of X. Note that dX ≤ dk and
that dk is locally isometric to dX in Dk = int(Dk). Similarly, Dn

k is a length
space with metric dnk defined analogously. Finally, as stated in Lemma 5.4,

the conclusions of Theorem 1.1 are true for the restriction of fn to Dn
k .

We split the proof of the existence of a weakly K-quasiconformal para-
metrization of X into several parts.

Step 1: Normalizations in Xn and X. We fix distinct points p, q ∈ D1. Since
fn : Xn → X is an approximately isometric sequence, there exist points
pn, qn ∈ Dn

1 , n ∈ N, such that fn(pn) → p and fn(qn) → q. Here, Dn
k =

int(Dn
k ). Since fn|Dn

1
: Dn

1 → D1 is a homeomorphism, we have fn(∂D
n
1 ) =

∂D1 and

lim inf
n→∞

distdXn
(pn, ∂D

n
1 ) ≥ distX(p, ∂D1) > 0.

In particular, the distance from pn to ∂Dn
1 is uniformly bounded away from

0. Since Dn
1 ⊂ Dn

k , k ∈ N, n ≥ k, it follows that for each k ∈ N, the distance
from pn to ∂Dn

k is bounded away from 0, uniformly in n ≥ k. The same
conclusions hold for the point qn. Finally, the distance from pn to qn is
uniformly bounded away from 0. All these conclusions hold for the metric
dXn and thus also the metric dnk , which is larger than dXn .

Step 2: Uniformization by disks and normalizations in the plane. By The-
orem 2.7, for each k ∈ N and for n ≥ k there exists a conformal map from
D onto Dn

k . By precomposing with a Möbius transformation, we obtain a

conformal map hnk from a disk B(0, rnk ) ⊂ C with rnk > 1 onto Dn
k such that

hnk(0) = pn and hnk(1) = qn.
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We claim that for each fixed k ∈ N the sequence {rnk}n≥k is bounded
above. Let E be the unit interval [0, 1] inside B(0, rnk ) and Fn = ∂B(0, rnk ).
Consider the continua hnk(E) and hnk(Fn) = ∂Dn

k , and recall from Lemma

5.4 that the sequence fn|Dn
k
: (Dn

k , d
n
k) → (Dk, dk), n ≥ k, is approximately

isometric. From Lemma 2.3, ∂Dn
k has diameter uniformly bounded below

away from 0 for n ≥ k. Since pn, qn ∈ hnk(E), that set also has diame-
ter uniformly bounded away from 0. From Lemma 2.4, we conclude that
modΓ∗(hnk(E), hnk(Fn);Dn

k ) is uniformly bounded above in n ≥ k. Since hnk
is conformal, it follows that modΓ∗(E,Fn;B(0, rnk )) is uniformly bounded

above. On the other hand, Γ∗(E,Fn;B(0, rnk )) contains the circles ∂B(0, r)
for all 1 < r < rnk , so

1

2π
log (rnk ) ≤ modΓ∗(E,Fn;B(0, rnk )).

The boundedness of rnk follows.

For fixed k ∈ N, consider the sequence gn(z) = hnk(r
n
k z), n ≥ k, from D

onto Dn
k . We show that this sequence is normalized in the sense Theorem

6.1, using the metric dnk in the target. Note that the points 0, 1/rnk , and

−1 of D have mutual distances uniformly bounded away from 0 as n→ ∞.
Moreover, we have gn(0) = pn, gn(1/r

n
k ) = qn, and gn(−1) ∈ ∂Dn

k , and by
Step 1 the mutual distances of these points are also bounded away from 0.
Thus, the sequence gn is normalized, as claimed.

Step 3: Weakly quasiconformal parametrizations. By Theorem 6.1, for each
k ∈ N, there exists a subsequence of fn ◦gn, n ≥ k, that converges uniformly
on D to a weaklyK-quasiconformal map ontoDk. Since r

n
k is bounded above

and below in n ≥ k, we conclude that there exists a subsequential limit rk
of rnk such that the sequence fn ◦ hnk has a subsequence that converges to

a weakly K-quasiconformal map hk : B(0, rk) → Dk. We remark that the
modulus of curve families in Dk is computed with respect to the metric dk
here. Note that hk(B(0, rk)) ⊃ Dk by Lemma 6.2. By passing to a diagonal
subsequence, we assume that rnk converges to rk and fn ◦hnk converges to hk
for each k ∈ N.

Step 4: Normal families argument. Now we fix n ≥ l ≥ k. In B(0, rnk ), we
have

fn ◦ hnl ◦ (hnl )−1 ◦ hnk = fn ◦ hnk .

Note that the conformal embedding (hnl )
−1 ◦hnk : B(0, rnk ) → B(0, rnl ) fixes 0

and 1, and that the balls B(0, rnl ) are uniformly bounded in n. By Montel’s
theorem [35, Theorem 10.7, p. 160], as n → ∞ these maps subconverge lo-
cally uniformly to a conformal homeomorphism φk,l : B(0, rk) → Ωk,l, where
Ωk,l ⊂ B(0, rl). Moreover, since Dn

k ⊂ Dn
k+1, we have Ωk,l ⊂ Ωk+1,l for

all l ≥ k + 1. By passing to a diagonal subsequence, we may assume that
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(hnl )
−1 ◦ hnk converges to φk,l for each l ≥ k and

hl ◦ φk,l = hk

in B(0, rk) for all l ≥ k.
Next, note that for fixed k ∈ N and for l ≥ k the conformal maps

φk,l : B(0, rk) → Ωk,l form a normal family since they fix the points 0 and 1;
see [10, Exercise 12.29 (v), p. 441]. Thus they converge along a subsequence
to a conformal homeomorphism φk : B(0, rk) → Ωk, where Ωk ⊂ C is a sim-
ply connected domain. Hence, hl = hk ◦φ−1

k,l converges along a subsequence

of l → ∞ locally uniformly on Ωk to the map h = hk ◦φ−1
k : Ωk → Dk. Note

that the limiting map h is independent of k, since it was obtained as a limit
of hl. Moreover, h(Ωk) = hk(B(0, rk)) ⊃ Dk, and h : Ωk → h(Ωk) is weakly
K-quasiconformal, where the modulus in h(Ωk) ⊂ Dk is computed with the
metric dk.

By considering a diagonal sequence, we may obtain a map h that maps
Ωk onto h(Ωk) with Dk ⊂ h(Ωk) ⊂ Dk for each k ∈ N and is weakly K-
quasiconformal on Ωk (using the metric dk in the image). Additionally, we
have Ωk ⊂ Ωk+1. This is true by Carathéodory’s kernel convergence theorem
[41, Chapter I, Theorem 1.8], since Ωk,l converges to Ωk as l → ∞.

Step 5: The limiting parametrization. Since Ωk ⊂ Ωk+1, the set Ω =⋃︁∞
k=1Ωk is a simply connected domain in C. The map h is a continuous

map from Ω onto X =
⋃︁∞

k=1Dk. Since h|Ωk
is monotone and Ωk ⊂ Ωk+1, it

follows that h is monotone on Ω.
Finally, we argue that h is weakly quasiconformal on Ω. By the mono-

tonicity of modulus, it suffices to show that if Γ is a curve family contained
in a compact subset of Ω, then modΓ ≤ Kmodh(Γ). By continuity, h(Γ)
is contained in a compact subset of X, so there exists k ∈ N such that
h(Γ) ⊂ Dk. Recall that h|Ωk

is weakly K-quasiconformal, so we obtain the
desired inequality but with the modulus of h(Γ) computed in the metric dk
rather than in dX . However, dk is locally isometric to dX in Dk, so the
modulus of h(Γ) is the same in both metrics.

As the final step, by precomposing h with a conformal map, we may
obtain that Ω = D or Ω = C. □

7. Further properties of weakly quasiconformal mappings

In this section we establish further properties of weakly quasiconformal
mappings h : X → Y , where X and Y are metric surfaces with locally
finite Hausdorff 2-measure. Recall that h is weakly quasiconformal if it
is continuous, surjective, monotone, and there exists K ≥ 1 such that for all
curve families Γ in X we have

modΓ ≤ Kmodh(Γ).
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The main result in this section concerns the equivalence of different defi-
nitions of weak quasiconformality. In general, if X and Y are metric surfaces
with locally finite Hausdorff 2-measure and h ∈ N1,2

loc (X,Y ), then there exists
a minimal weak upper gradient of h that we denote by gh; see [24, Theorem
6.3.20, p. 162].

Theorem 7.1 (Definitions of quasiconformality). Let X,Y be metric sur-

faces with locally finite Hausdorff 2-measure and let h ∈ N1,2
loc (X,Y ) be a

continuous and monotone mapping. The following are equivalent.

(i) For every Borel set E ⊂ Y we have∫︂
h−1(E)

g2h dH2 ≤ KH2(E).

(ii) The set function ν(E) = H2(h(E)) is an outer regular, locally fi-
nite Borel measure on X. Moreover, if Jh is the Radon–Nikodym
derivative of ν with respect to H2, then for H2-a.e. x ∈ X we have

gh(x)
2 ≤ KJh(x).

Combining this theorem with the result of Williams stated in Theorem
2.6, we obtain Theorem 1.4; that is, h is weakly K-quasiconformal if and
only if it satisfies (ii).

The more intricate implication is from (i) to (ii), because h is not assumed
to be a homeomorphism. One needs to make sense of the Jacobian of h first.
We note that it is not immediate that E ↦→ H2(h(E)) is a measure on Ω,
since h is not a homeomorphism. Instead, we use the weak quasiconformality
of h to derive this.

Remark 7.2. We note that if one uses the Borel measure (see [15, Theorem
2.10.10, p. 176])

˜︁ν(E) =

∫︂
Y
#(h−1(y) ∩ E) dH2(y) ≥ H2(h(E))

in place of ν, where #(A) denotes the cardinality of the set A, then the
equivalence between (i) and (ii) is immediate provided that this measure is
σ-finite (so that one can define its Radon–Nikodym derivative). The latter
is guaranteed if h is a homeomorphism, but it is not true in general under
merely continuity and monotonicity. Our proof below in fact shows that˜︁ν = ν for weakly quasiconformal mappings, since #(h−1(y)) = 1 for H2-a.e.
y ∈ Y ; see Lemma 7.8.

Remark 7.3. The discussion in this section and the equivalence of defini-
tions of weak quasiconformality can be generalized immediately to metric
n-manifolds, n ≥ 3, provided that an n-dimensional version of Lemma 7.7
holds. We are not aware of any such result in the literature, so we consider
only the case of 2-manifolds.

The techniques used in the proof of Theorem 7.1 allow us to derive the
following topological consequence.
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Theorem 7.4. Let X,Y be metric surfaces without boundary and with lo-
cally finite Hausdorff 2-measure and let h : X → Y be a weakly quasiconfor-
mal mapping. If the modulus of the family of non-constant curves passing
through y is zero for every y ∈ Y , then h is a homeomorphism. Moreover,
a sufficient condition for this property is that

lim inf
r→0

H2(B(y, r))

r2
<∞

for every y ∈ Y .

This result follows immediately from Lemma 7.8 below.

7.1. Proof of Theorem 7.1. In what follows, we assume that X and Y are
metric surfaces with locally finite Hausdorff 2-measure. We freely use the
property that the Hausdorff 2-measure is an outer regular Borel measure
[15, Section 2.10, p. 171]. Moreover, recall that topological surfaces are
second countable and separable and admit a compact exhaustion. Thus,
the Hausdorff 2-measure is σ-finite if it is locally finite. Let B(Y ) be the set
of points y ∈ Y such that

lim
r→0

H2(B(y, r))

r2
= ∞.

Lemma 7.5. The set B(Y ) is Borel measurable and has Hausdorff 2-measure
zero.

Proof. The fact that B(Y ) has measure zero follows from [15, 2.10.19 (5),
p. 181], which implies that there exists a uniform constant C > 0 such that

lim sup
r→0

H2(B(y, r))

r2
≤ C

for a.e. y ∈ Y .
We prove the measurability statement. For fixed r > 0 the function

y ↦→ H2(B(y, r)) is lower semi-continuous, thus Borel measurable. Indeed,
by Fatou’s lemma, whenever yn → y, we have

H2(B(y, r)) =

∫︂
χB(y,r) dH2 ≤ lim inf

n→∞

∫︂
χB(yn,r) dH

2.

Moreover, by the monotone convergence theorem we see that for fixed y ∈ Y
the function r ↦→ H2(B(y, r)) is left-continuous. We conclude that the
function f(y, r) = r−2H(B(y, r)), y ∈ Y , r > 0, is Borel measurable in
y and left-continuous in r. It now follows that the set B(Y ) = {y ∈ Y :
limr→0 f(y, r) = ∞} is Borel measurable by writing

B(Y ) =
∞⋂︂
k=1

∞⋃︂
n=1

⋂︂
r∈(0,1/n)∩Q

{y ∈ Y : f(y, r) > k}.

This completes the proof. □
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We denote by C(Y ) the set of points of y ∈ Y such that the modulus of
the family of non-constant curves passing through y is positive.

Lemma 7.6. We have C(Y ) ⊂ B(Y ).

Proof. We show that for each y ∈ Y \ B(Y ), the modulus of the family of
non-constant curves passing through y is zero. For each δ > 0, let Γδ denote
the family of curves passing through y with diameter bounded below by δ.
By the subadditivity of modulus, it suffices to show the conclusion for the
family Γδ for all δ > 0.

Since y ∈ Y \ B(Y ), there exists k > 0 such that H2(B(y, r)) ≤ kr2 for
a sequence of arbitrarily small r > 0. We also fix N ∈ N. Let R1 < δ/2 be
a radius such that H2(B(y,R1)) ≤ kR2

1, and let r1 := R1/2. In the annulus
A1 = A(y; r1, R1) := {x ∈ Y : r1 < d(x, y) < R1}, we set ρ = N−1(R1 −
r1)

−1. Now, consider R2 < r1 so small that H2(B(y,R2)) ≤ kR2
2, define

r2 := R2/2, and set ρ = N−1(R2 − r2)
−1 in the annulus A2 = A(y; r2, R2).

We repeat this procedure N times, until we obtain a last annulus AN =
A(y; rN , RN ). We set ρ = 0 outside the union of these annuli.

Note that ρ is an admissible function for Γδ. Indeed, any curve γ ∈ Γδ

connects y to ∂B(y,R1), since diam(|γ|) ≥ δ > 2R1. Thus, γ intersects all
annuli Ai, i ∈ {1, . . . , N}, with∫︂

γ
χAi ds ≥ Ri − ri.

for each i ∈ {1, . . . , N}. This implies admissibility. We now have

modΓδ ≤
∫︂
ρ2 dH2 =

1

N2

N∑︂
j=1

H2(Aj)

(Rj − rj)2
≤ k

N2

N∑︂
j=1

R2
j

R2
j/4

=
4k

N
.

This converges to 0 as N → ∞, completing the proof. □

Lemma 7.7. Suppose that E,F ⊂ X are disjoint, non-trivial continua.
Then the modulus of the family of curves connecting E and F is positive.

This result requires that X is a metric surface and thus has locally Eu-
clidean topology. It can be proved by a slight modification of [42, Proposition
3.5]. The idea is to consider a fixed curve γ joining E and F and define the
function u : X → R by u(x) = d(|γ|, x). Then there exists T > 0 such that
for almost every t ∈ (0, T ) the level set u−1(t) contains a rectifiable curve
joining E and F . The family of such curves has positive modulus.

Lemma 7.8. Suppose that h : X → Y is a continuous, non-constant, and
monotone mapping such that

modΓ ≤ Kmodh(Γ)

for each curve family Γ in X. Then h is injective in X \ h−1(C(Y )). In
particular, h is injective in X \ h−1(B(Y )).
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This lemma proves Theorem 7.4. Indeed, the assumption of the theorem
implies that C(Y ) = ∅ or B(Y ) = ∅. It follows from Lemma 7.8 that h
is injective on X. By the invariance of domain theorem, h is a topological
embedding.

Proof. It suffices to show that h−1(y) is a singleton for each y ∈ h(X)\C(Y ).
Suppose that h−1(y) contains more than one point. By the monotonicity
of h, h−1(y) is a closed connected subset of X. By assumption, h is non-
constant, so X \ h−1(y) is a non-empty open set. Since X is a metric
surface, there exists a non-trivial continuum E ⊂ X \ h−1(y). Since X is
locally compact, h−1(y) contains a non-trivial continuum F . Let Γ be the
family of curves connecting E and F . Then modΓ > 0 by Lemma 7.7.
By assumption, we have modh(Γ) > 0. Note that each curve of h(Γ) is a
non-constant curve joining y to h(E), and that h(E) does not contain y. By
the definition of C(Y ), we have modh(Γ) = 0, a contradiction. Thus, h is
injective in X \ h−1(C(Y )). By Lemma 7.6, we conclude that h is injective
on X \ h−1(B(Y )). □

Corollary 7.9. Suppose that h is as in Lemma 7.8. If E ⊂ X is a Borel set,
then h(E)\B(Y ) is a Borel set. Moreover, the set function ν(E) = H2(h(E))
is an outer regular, locally finite, Borel measure on X.

Proof. By Lemma 7.5, B(Y ) is a Borel subset of Y . Since h is continuous,
h−1(B(Y )) is a Borel subset of X. By Lemma 7.8, h is injective on X \
h−1(B(Y )). By the Lusin–Souslin theorem [27, Theorem 15.1, p. 89] it
follows that if E is a Borel subset of X \ h−1(B(Y )), then h(E) is a Borel
subset of Y . Now, if E is any Borel subset of X, then

h(E) \B(Y ) = h(E \ h−1(B(Y ))) = h(E ∩ (X \ h−1(B(Y )))),

which implies that h(E) \B(Y ) is a Borel set.
Since H2 is a Borel measure on Y , it is immediate that the set function

ν(E) = H2(h(E)), restricted to X \ h−1(B(Y )), where h is injective, is a
Borel measure. Since H2(B(Y )) = 0, it follows that ν extends to a Borel
measure on X.

Since h is continuous and the Hausdorff 2-measure of Y is locally finite,
it follows that ν(E) < ∞ whenever E is compact. For the outer regularity,
recall thatH2 is outer regular on Y . Thus, for any set E ⊂ X, there exists an
open set U in Y containing h(E) such that H2(U) approximates H2(h(E)).
The set h−1(U) is open by continuity and contains E. Moreover ν(h−1(U)) =
H2(h(h−1(U))) ≤ H2(U), so the ν-measure of h−1(U) approximates the ν-
measure of E, as desired. □

Proof of Theorem 7.1. We assume that h : X → Y is a non-constant map-
ping, otherwise the implications are trivial.

Suppose first that (i) is true. Lemma 2.5 implies that for each curve family
Γ in X we have modΓ ≤ Kmodh(Γ). By Corollary 7.9, ν = H2 ◦ h is an
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outer regular, locally finite, Borel measure on X. Now, by the Lebesgue–
Radon–Nikodym decomposition theorem [17, Theorem 3.8, p. 91], we can
write ν = JhdH2+νs, where Jh ∈ L1

loc(X) and νs is a measure singular with
respect to H2.

By (i), we have ∫︂
h−1(E)

g2h dH2 ≤ KH2(E)

for each Borel set E ⊂ Y . Since B(Y ) has measure zero by Lemma 7.5, we
have gh = 0 a.e. on h−1(B(Y )). Let E ⊂ X be an arbitrary Borel set. By
Corollary 7.9, h(E) \B(Y ) is a Borel set. Thus,∫︂

E
g2h dH2 =

∫︂
E\h−1(B(Y ))

g2h dH2 ≤
∫︂
h−1(h(E)\B(Y ))

g2h dH2

≤ KH2(h(E) \B(Y )) = KH2(h(E)).

It follows that ∫︂
E
g2h dH2 ≤ K

∫︂
E
Jh dH2 +Kνs(E).

The singularity of νs with respect to H2 implies that g2h ≤ KJh a.e. in X
with respect to H2, as desired.

Conversely, if g2h ≤ KJh, then for every Borel set E ⊂ Y we have∫︂
h−1(E)

g2h dH2 ≤ K

∫︂
h−1(E)

Jh dH2

≤ Kν(h−1(E)) = KH2(h(h−1(E))) ≤ KH2(E).

This proves (i). □

8. Examples

In this section, we present concisely several known examples illustrating
some of the possible behavior of weakly quasiconformal maps. We then give
a detailed example in Section 8.4 showing that in the non-compact case of
Theorem 1.3 there is no clear distinction between the situations where Ω = C
and Ω = D. This example verifies Proposition 1.5 in the introduction.

8.1. Example: Failure of the Lusin (N) property. Let (X,µ), (Y, ν)
be measure spaces. A mapping f : X → Y satisfies the Lusin (N) prop-
erty if µ(E) = 0 implies ν(f(E)) = 0 for every measurable set E ⊂ X.
Every metric surface becomes a measure space by giving it the Hausdorff
2-measure. Rajala [42, Section 17] proves that there exists a quasiconformal
homeomorphism h from a planar domain Ω onto a length surface X ⊂ R3

with H2(X) < ∞ such that h maps a Cantor set of 2-measure zero in Ω
onto a Cantor set of positive Hausdorff 2-measure in X. Thus, we cannot
guarantee that the weakly quasiconformal mapping h of Theorem 1.3 has
the Lusin (N) property, even if it is quasiconformal.
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8.2. Example: Collapsing a ball to point. Let B be a closed ball in C
and consider the metric space X obtained from C by identifying points in B,
equipped with the quotient metric. Then X is a length space homeomorphic
to C with locally finite Hausdorff 2-measure, and the natural projection
P : C → X is weakly 1-quasiconformal. However, X is not quasiconformally
equivalent to any planar subset because there exists a point of X, namely
the point P (B), such that the modulus of the family non-constant curves
passing through that point is positive. On the other hand, in the Euclidean
plane, the modulus of non-constant curves passing through a given point is
always zero.

This space serves as an example where the Lusin (N−1) property fails.
That is, a set of positive 2-measure in C is mapped by P to a set of 2-
measure zero in X. Of course, P is not a homeomorphism. A less trivial
example is given in [38]. By inspecting the construction there, it can be
shown that there exists a length surface X ⊂ R3 (with metric induced
by the Euclidean metric) with locally finite Hausdorff 2-measure such that
there exists a weakly quasiconformal homeomorphism h : C → X with the
property that a set of positive 2-measure of C is mapped to a set of 2-
measure zero in X. In fact, h is the restriction of a global quasiconformal
homeomorphism of R3.

8.3. Example: Traveling for free in a Cantor set. Let Ω ⊂ C be a
domain and C be a totally disconnected, relatively closed subset of Ω. We
consider the density χΩ\C on Ω, which gives rise to a pseudometric on Ω.
Namely,

d(x, y) = inf
γ

∫︂
γ
χΩ\C ds

where the infimum is taken over all rectifiable curves in Ω joining x and y.

Proposition 8.1. The function d : Ω × Ω → [0,∞) is a metric with the
following properties.

(i) (Ω, d) is a length space with locally finite Hausdorff 2-measure.
(ii) The identity map id : (Ω, | · |) → (Ω, d) is a homeomorphism that

is locally 1-Lipschitz and weakly 1-quasiconformal on Ω, and locally
isometric on Ω \ C.

(iii) Let γ : [a, b] → Ω be a curve, denote by [ai, bi], i ∈ I, the closures
of the components of γ−1(Ω \ C) and set γi = γ|[ai,bi], i ∈ I. If
ℓ|·|(γ) <∞, then

ℓd(γ) =
∑︂
i∈I

ℓd(γi) =
∑︂
i∈I

ℓ|·|(γi) =

∫︂
γ
χΩ\C ds

and H1(|γ| ∩ C) = 0. Conversely, if H1(|γ| ∩ C) = 0, then

ℓd(γ) =
∑︂
i∈I

ℓd(γi) =
∑︂
i∈I

ℓ|·|(γi).
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If C has positive area, then by following the argument of [42, Example
2.1], it can be shown that (Ω, d) is not quasiconformally equivalent to any
planar domain. We do not provide the details of the general case here, but
in Example 8.4 we give a specific example (Ω, d) with the same property.
The general question of when constructions of this type yield a surface qua-
siconformally equivalent to a planar domain has been investigated in [26].

Proof. We first show that d is a metric that is topologically equivalent to
the Euclidean metric. Let x, y ∈ Ω. We trivially have d(x, y) ≤ |x − y|
if the line segment between x and y is contained in Ω. On the other
hand, if x and y are distinct points, and x /∈ C or y /∈ C, then d(x, y) ≥
max{dist|·|(x,C),dist|·|(y, C)} > 0. If x, y ∈ C, then there exists a topo-
logical annulus A ⊂ Ω \ C separating x from y [48, Corollary 3.11, p. 35].
Hence d(x, y) is bounded below by the distance of the boundary components
of the annulus A. Thus, d(x, y) > 0. If {xn}n∈N is a sequence in Ω with
d(xn, x) → 0 for some x ∈ Ω, then for any given annulus A ⊂ Ω \ C and
all sufficiently large n ∈ N, xn cannot be separated from x by A. In fact,
by the result referenced above, we can consider arbitrarily small such annuli
surrounding x. We conclude that xn converges to x in the Euclidean metric.
This completes the proof of the topological equivalence of d with the Eu-
clidean metric. To summarize, (Ω, d) is a metric space such that the identity
map id : (Ω, | · |) → (Ω, d) is a locally 1-Lipschitz homeomorphism. This also
implies that (Ω, d) has locally finite Hausdorff 2-measure. Moreover, d is by
definition locally isometric on Ω \ C to the Euclidean metric.

Next, we show that the identity map id : (Ω, | · |) → (Ω, d) is weakly 1-
quasiconformal. The function g = χΩ\C is trivially an upper gradient of id
and for any Borel set E ⊂ Ω we have∫︂

E
g2 dH2

d = H2
d(E \ C) ≤ H2

d(E) ≤ H2
|·|(E),

since id is locally 1-Lipschitz. We now employ Lemma 2.5 (ii), which implies
that id is weakly 1-quasiconformal.

It remains to show (iii), which also implies that d is a length metric. First,
suppose that γ is rectifiable with respect to the Euclidean metric. Then

ℓd(γ) ≥
∑︂
i∈I

ℓd(γi) =
∑︂
i∈I

ℓ|·|(γi) =

∫︂
γ
χΩ\C ds.

For the reverse inequality, let a = t0 < t1 < · · · < tn = b be a partition of
[a, b], and note that by the definition of d we have

n∑︂
j=1

d(γ(tj−1), γ(tj)) ≤
n∑︂

j=1

∫︂
γ|[tj−1,tj ]

χΩ\C ds =

∫︂
γ
χΩ\C ds.

This shows the first part of (iii).
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Next, we recall the area formula

ℓd(γ) =

∫︂
Ω
#(γ−1(x)) dH1

d(x),

where #(A) denotes the cardinality of the set A. See [15, Theorem 2.10.13,
p. 177] for a proof. In general, we have∫︂

Ω
#(γ−1(x)) dH1

d(x)

=
∑︂
i∈I

∫︂
Ω\C

#(γ−1(x) ∩ (ai, bi)) dH1
d(x) +

∫︂
C
#(γ−1(x)) dH1

d(x)

=
∑︂
i∈I

ℓd(γi) +

∫︂
C
#(γ−1(x)) dH1

d(x).

If ℓ|·|(γ) <∞, then the left-hand side is finite and equal to
∑︁

i∈I ℓd(γi) by the

previous, so
∫︁
C #(γ−1(x)) dH1

d(x) = 0, which is equivalent to H1(|γ| ∩C) =
0. Conversely, if H1(|γ| ∩ C) = 0, then by the area formula we obtain that
ℓd(γ) =

∑︁
i∈I ℓd(γi) =

∑︁
i∈I ℓ|·|(γi). □

8.4. Example: No distinction between the plane and the disk. We
show that there exists a length surface X homeomorphic to C with locally fi-
nite Hausdorff 2-measure such that there exist two weakly 1-quasiconformal
maps, one from D onto X and one from C onto X. This proves Proposi-
tion 1.5. See Example 6.2 in [12] for a similar construction in the context of
Plateau’s problem for metric spaces.

In fact, such a space X cannot be quasiconformally mapped to a planar
domain. Indeed, suppose there were a quasiconformal map from X onto a
planar domain Ω. By postcomposing with a conformal map, we may assume
that Ω = D or Ω = C. Since there exist weakly quasiconformal maps
from D onto X and from C onto X, we obtain a weakly quasiconformal
map f from D onto C or from C onto D. In fact, Theorem 7.4 implies
that f is a homeomorphism. It is well-known that a weakly quasiconformal
homeomorphism between planar domains is quasiconformal. Specifically, by
definition, a quasiconformal homeomorphism between Euclidean domains is
a priori required to satisfy only one modulus inequality; see [30, Section 3].
Thus, we obtain a contradiction by Liouville’s theorem for quasiconformal
mappings [47, Theorem 17.4].

Next, we describe the construction of the space X, which relies on the
next lemma.

Lemma 8.2. There exists a totally disconnected, closed set C ⊂ C that is
contained in the the union of countably many rectifiable curves, a domain
V ⊂ D one of whose boundary components is ∂D, and a conformal map g
from V onto the domain U = C \ C such that g(z) → ∞ as z → ∂D.

For the proof we recall the general fact that a homeomorphism f : U → V

between domains U, V ⊂ ˆ︁C extends to a bijection f∗ between the boundary
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components of U and the boundary components of V . Namely, if B is a
boundary component of U , then f∗(B) is precisely the boundary component
B∗ of V with the property that f(zn) accumulates at B∗ whenever {zn}n∈N
is a sequence in U accumulating at B. Moreover, f−1 extends analogously
to a bijection (f−1)∗ between the boundary components of V and U and
has the property (f−1)∗ = (f∗)−1. See [39, Proposition 3.1] for a proof of
these standard facts.

Proof. Let C0 ⊂ R be a linear Cantor set that is not removable for confor-
mal maps. Such sets have been studied by Ahlfors and Beurling [1]. By
definition, there exists a non-Möbius conformal homeomorphism f0 from
U0 = C \ C0 onto a domain V0 in C.

If all boundary components of V0 are points, then in fact f0 extends to a
homeomorphism from C onto C that is conformal on C \ C0. Since C0 has
finite length, it follows that C0 is removable for continuous analytic functions
[5, Theorem 2] and thus f0 extends conformally to C; alternatively one can
argue using the fact that C0 is removable for conformal homeomorphisms
[47, Theorem 35.1]. Hence f0 is a Möbius transformation, a contradiction.

Therefore, there exists a boundary component of V0 that is a non-de-
generate continuum E. We consider a conformal map ψ from the simply

connected domain ˆ︁C\E onto the unit disk D. We set V = ψ(V0). Note that
∂D is a boundary component of V that corresponds to E.

Next, consider a Möbius transformation φ of ˆ︁C that maps the boundary
point (f∗0 )

−1(E) of U0 to ∞. Thus, φ maps a point of C0 = ∂U0 to ∞ and
φ(C0) is contained in a great circle through ∞. We set U = φ(U0) and note
that the set C = ∂U∩C is totally disconnected and is contained in two locally
rectifiable curves passing through ∞, and thus in the union of countably
many rectifiable curves in the plane. Then the map g = φ◦f−1

0 ◦ψ−1 : V → U
has the desired properties. □

Consider the set C, the domains U = C \ C, V ⊂ D, and the map
g : V → U as in Lemma 8.2. By Example 8.3, there exists a length space
(C, d) arising from the density χU such that (C, d) has locally finite Haus-
dorff 2-measure and the identity map id : (C, | · |) → (C, d) is a weakly 1-
quasiconformal homeomorphism. The fact that ∂U is contained in countably
many rectifiable paths (in the Euclidean metric), together with Proposition
8.1 (iii), imply that H1

d(∂U) = 0.
Since all boundary components of U are points and g∗ is a bijection be-

tween the boundary components of V and U , it follows that g extends con-
tinuously to a map from D onto C. We denote the extension by g. Moreover,
g is a monotone map. Indeed, the preimage of each point of C under g is
either a point or connected component of ∂V ∩ D.

We claim that g : (D, | · |) → (C, d) is a weakly 1-quasiconformal map.
Suppose that this is the case and define X to be the space (C, d). Then the
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maps

id : (C, | · |) → X and g : (D, | · |) → X

are both weakly 1-quasiconformal. This concludes the construction.
Now we prove the claim that g is weakly 1-quasiconformal. This follows

from Lemma 2.5 (ii) upon verifying that |g′|χV is an upper gradient of g
and for any Borel set E ⊂ C we have∫︂

g−1(E)
|g′|2χV dH2

|·| ≤ H2
d(E).(8.1)

First, we verify (8.1). Since g−1(∂U) = ∂V ∩ D, it suffices to verify the
inequality for Borel sets E ⊂ U . Since the Hausdorff 2-measure agrees there
with the Lebesgue measure, the desired inequality follows from the confor-
mality of g on V and the fact that d is locally isometric to the Euclidean
metric in U .

Next, we prove that |g′|χV is an upper gradient of g. It is crucial here
that H1

d(∂U) = 0. It suffices to prove that for every path γ : [a, b] → D that
is rectifiable with respect to the Euclidean metric we have

d(g(γ(a)), g(γ(b))) ≤
∫︂
γ
|g′|χV ds.

Let [ai, bi], i ∈ I, be the closures of the components of γ−1(V ) and consider
the subpaths γi = γ|[ai,bi], i ∈ I, of γ. Since H1

d(∂U) = 0, by Proposition
8.1 (iii), we have

d(g(γ(a)), g(γ(b))) ≤ ℓd(g ◦ γ) =
∑︂
i∈I

ℓ|·|(g ◦ γi)

=
∑︂
i∈I

∫︂
γi

|g′| ds =
∑︂
i∈I

∫︂
γi

|g′|χV ds ≤
∫︂
γ
|g′|χV ds.

This completes the proof. □
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applications to Sobolev and Poincaré inequalities. Selecta Math. (N.S.), 2(2):155–
295, 1996.

[46] M. Troyanov. Les surfaces euclidiennes à singularités coniques. Enseign. Math. (2),
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