POLYHEDRAL APPROXIMATION OF METRIC SURFACES
AND APPLICATIONS TO UNIFORMIZATION

DIMITRIOS NTALAMPEKOS AND MATTHEW ROMNEY

ABSTRACT. We prove that any length metric space homeomorphic to a
2-manifold with boundary, also called a length surface, is the Gromov—
Hausdorff limit of polyhedral surfaces with controlled geometry. As
an application, using the classical uniformization theorem for Riemann
surfaces and a limiting argument, we establish a general “one-sided”
quasiconformal uniformization theorem for length surfaces with locally
finite Hausdorff 2-measure. Our approach yields a new proof of the
Bonk-Kleiner theorem characterizing Ahlfors 2-regular quasispheres.
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1. INTRODUCTION

1.1. Polyhedral approximation. Surfaces of bounded curvature were in-
troduced in the 1940s by A. D. Alexandrov as a generalization of Riemannian
2-manifolds. They provide a natural setting to develop the intrinsic geome-
try of surfaces. See monographs by Alexandrov—Zalgaller [3] and Reshetnyak
[43] for overviews of this subject. A foundational result, due to Alexandrov
[2], is that any surface of bounded curvature is the uniform limit of polyhe-
dral surfaces of uniformly bounded curvature.
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The objective of this paper is an analogous theorem on polyhedral approx-
imation for arbitrary length surfaces. Instead of the property of bounded
curvature, we find it most useful to consider the behavior of the Hausdorff
2-measure H2. By length surface, we mean a length metric space homeo-
morphic to a 2-manifold, with or without boundary. A polyhedral surface
is a surface formed by gluing locally finitely many planar polygonal faces
isometrically along edges, equipped with the induced length metric. Such
a surface is locally flat except in a discrete set of vertex points. We say
that a sequence of maps f,: X,, — Y,, n € N, between metric spaces is an
approximately isometric sequence if f, is a ey-isometry for some ¢, > 0 for
all n € N, where &, — 0 as n — co. We refer to Section 2] for more detailed
definitions.

Theorem 1.1. Let X be a length surface. There exists a sequence of poly-
hedral surfaces {X,,}52; each homeomorphic to X such that the following
properties hold for an absolute constant K > 1.

(1) There exists an approzimately isometric sequence of maps fn: Xpn —
X, n € N. Moreover, each f, is a topological embedding.
(2) For each compact set A C X,
lim sup H(f, ' (A)) < KH?(A).
n—oo

In particular, the sequence {X,,}7° ; converges in the Gromov-Hausdorff
sense to X [9, Corollary 7.3.28]. This theorem should be compared to the
standard fact that any length surface is the Gromov—Hausdorff limit of lo-
cally finite embedded graphs; see Proposition 7.5.5 and the following exer-
cise in [9]. By filling in such a graph with polyhedral surfaces so that the
length metric on the graph remains unchanged, one obtains a sequence of
polyhedral surfaces also converging in the Gromov—Hausdorff sense to the
original surface. The point of Theorem is to find approximating sur-
faces whose geometry is controlled by that of the original space. Compare
also Theorem to the classical theorem of Bing [6, Theorem 7] that any
topological surface in a 3-manifold M may be uniformly approximated by
homeomorphic polyhedral surfaces in the ambient space M.

There are three conceptual ingredients in the proof of Theorem The
first is a recent result on the existence of decompositions of arbitrary length
surfaces into non-overlapping convex triangular regions by Creutz and the
second-named author in [I3]. The second is the following fact about bi-
Lipschitz embedding metric triangles into the Euclidean plane, denoted here
by C, which we state in more generality than what is needed for Theorem 1.1}
Despite its simple statement and proof, it appears to be new. By metric
triangle, we mean a metric space consisting of three points, called vertices,
and three closed arcs, called edges, each isometric to an interval, connecting
these vertices pairwise. Note that this definition allows the edges to intersect
at interior points.
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Proposition 1.2. Every metric triangle is L-bi-Lipschitz embeddable in C
with L = 4.

The third ingredient needed to prove Theorem [1.1| is a variant of the
Besicovitch inequality. See [40, Section 13.2] for a statement of this result,
including a version for metric spaces (Exercise 13.22). The classical Besi-
covitch inequality states that the minimal Riemannian filling of a planar
Jordan curve is the Jordan domain that it bounds. The precise result we
need is given as Theorem [2.1] below.

The outline of the proof of Theorem [I.1] is as follows. We start with a
sufficiently fine triangular decomposition 7 of the surface X and correspond-
ing edge graph £(T), equipped with the induced length metric. For each
triangular region T € T, we use Proposition to obtain a bi-Lipschitz em-
bedding F': 9T — C. Using this embedding, we build a polyhedral surface
T of Hausdorff 2-measure comparable to the area of the region bounded by
F(0T) with the property that the length metric on 97 is no smaller than
the metric on 9T. Proposition together with the Besicovitch inequality
imply that the Hausdorff 2-measure of T" is not too much larger than that
of T. The polyhedral surfaces T' are then glued together according to the
edge graph £(7) to form the surface X,,. In other words, we build X,, by
replacing each triangular region 7' C X with the corresponding polyhedral
surface T. Our construction guarantees that X and X,, are approximately
isometric.

1.2. Uniformization of surfaces. In the second part of this paper, we give
applications to the uniformization problem for surfaces. This asks for the
existence of geometrically well-behaved parametrizations of metric surfaces
in the spirit of the classical uniformization theorem for Riemann surfaces.
The classical uniformization theorem states that any simply connected Rie-
mann surface can be mapped conformally onto either the complex plane, the
open unit disk or the 2-sphere. In the setting of metric spaces, conformality
is a restrictive requirement, and it is more appropriate to consider instead
some notion of quasiconformal mapping.

Any orientable polyhedral surface can be given the structure of a Rie-
mann surface compatible with its metric. As a result, Theorem gives a
new approach to proving uniformization-type theorems for metric surfaces
by invoking the classical uniformization theorem together with a limiting
argument. Our main result on this topic, Theorem [1.3] gives the existence
of “one-sided” quasiconformal parametrizations in great generality.

For K > 1, we say that a mapping h: X — Y between two metric
surfaces of locally finite Hausdorff 2-measure is weakly K -quasiconformal
if it is continuous, surjective, and monotone and if it satisfies the modulus
inequality

(1.1) modI" < K mod h(T")
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for every path family I' in X'; here mod refers to the 2-modulus. Recall that
a continuous map between topological spaces is monotone if the preimage
of each point is connected. By a result of Youngs [53], monotone mappings
between 2-manifolds are precisely the uniform limits of homeomorphisms.
Inequality ([1.1)) is commonly referred to as the Kp-inequality, and a map h
satisfying (|1.1)) is said to have bounded outer dilatation.

Theorem 1.3. Let X be a length surface of locally finite Hausdorff 2-
measure homeomorphic to (@, D, or C. Then there is a weakly K-quasi-
conformal mapping h: Q@ — X for K = 4/m, where § is either @, D, or D
or C, respectively.

Here, D denotes the open unit disk in the complex plane C, and C is the
Riemann sphere, with the spherical metric and measure. To prove Theo-
rem it is enough to find a weakly K-quasiconformal mapping h for some
K > 1. This value can be improved to the constant K = 4/ using the
argument in [42 Section 14] or [44]. The constant 4/7 is sharp, as can be
shown using the example of the /*°-metric on R?; see Example 2.2 in [42].

Theorem is motivated by the question of finding minimal assumptions
required for producing a uniformizing parametrization of a metric surface. In
particular, it gives an affirmative answer to Question 1.1 in [26], attributed
to Rajala and Wenger, under the mild assumption that the metric on X is
a length metric. We discuss the relation between Theorem and previous
results on the uniformization problem later in this section.

Equivalently, we can replace in the definition of weak quasiconfor-
mality by the statement that h € Ni)’f (X,Y) and the pointwise distortion
inequality gp(z)? < KJp(z) holds for almost every = € X. Here, gy is the
minimal weak upper gradient of h and Jj is the Jacobian of h, that is, the
Radon-Nikodym derivative of the measure H? o h with respect to H?2.

Theorem 1.4. Let X,Y be metric surfaces of locally finite Hausdorff 2-
measure and K > 1. A continuous, surjective, and monotone mapping
h: X =Y is weakly K-quasiconformal if and only if h € Ni)’cz(X, Y) and

gn(x)? < KJp(x)
for a.e. x € X.

In the case that h is a homeomorphism, this result follows from a theorem
of Williams [52]. We prove the equivalence in the case of monotone mappings
in Section [/} One of the technicalities here is to justify existence of the
Jacobian.

We note that in the case that X is homeomorphic to C in Theorem
there is no clear distinction between the situations where 2 = D and where
Q) = C, as the following example shows.

Proposition 1.5. There exists a length surface X of locally finite Hausdorff
2-measure, homeomorphic to C, admitting weakly quasiconformal parametri-
zations by both D and C.
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This contrasts with uniformization by quasiconformal mappings, since C
is not quasiconformally equivalent to any proper subdomain. We present
this example in Section [§] where we also discuss other examples.

As a corollary to Theorem we obtain a result on the existence of
minimal disks or solutions to Plateau’s problem in metric spaces. This topic
has been studied in great depth by Lytchak—Wenger and collaborators in
[16, 20, B1, B2, B3]. Following [31], for a given metric space and Jordan
curve I' € X we let A(T", X') denote the family of maps in the Sobolev space
N'2(D, X) whose trace is a monotone parametrization of I'. A solution to
Plateau’s problem for I' is a map in A(I', X') having minimal parametrized
area and minimal (Reshetnyak) energy among area minimizers. See the
references above for more complete definitions. It is shown in [3I] that
every Jordan curve in a complete proper metric space X can be spanned by
a minimal disk provided that A(T', X) is non-empty. Lytchak and Wenger
rely on the assumption that X satisfies a quadratic isoperimetric inequality
to guarantee that A(T", X) is indeed non-empty for any rectifiable curve T'.

In the case where X is a length surface and I" bounds a closed disk, Theo-
rem allows us to remove this dependency on the quadratic isoperimetric
inequality. Instead, we require only that the Hausdorff 2-measure is finite.
Note as well that we do not require I to be rectifiable.

Corollary 1.6. Let X be a length surface of finite Hausdorff 2-measure
homeomorphic to a closed disk and let T' = 0X. The family A(T', X) is
non-empty. Consequently, Plateau’s problem for I' has a solution.

Finally, we use Theorem to give a new proof of the well-known Bonk—
Kleiner theorem characterizing Ahlfors 2-regular quasispheres, i.e., metric
spaces quasisymmetrically equivalent to the standard 2-sphere. See Sec-
tion [6.2] for definitions of the terms here.

Corollary 1.7 (Bonk—Kleiner theorem). Let X be a metric space home-
omorphic to C that is Ahlfors 2-reqular. Then there is a quasisymmetric

homeomorphism from X onto C if and only if X is linearly locally con-
nected.

Since this result was originally proved by Bonk and Kleiner in [7], al-
ternative proofs have been given by Rajala [42] and Lytchak-Wenger [34].
We now give a brief summary of the three approaches. The basic common
step to all these proofs is to produce a mapping (or sequence of mappings)
and to use the geometric assumptions to show that the mapping is indeed
a quasisymmetric homeomorphism (or that the sequence subconverges to a
quasisymmetric homeomorphism). Thus the main difference is how such a
mapping is produced.

In the original proof [7], Bonk—Kleiner use the geometric assumptions to
find an embedded graph that approximates the original space X at a given
scale. They apply the Andreev—-Koebe-Thurston circle packing theorem to
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~

produce a map from the vertex set of this graph into C. These maps sub-
converge to a quasisymmetric homeomorphism from the whole space to C.
Next, in [42], Rajala obtains the Bonk—Kleiner theorem as a consequence a
general uniformization theorem for quasiconformal mappings. The proof is
based on the construction of a harmonic function and corresponding con-
jugate function on an arbitrary quadrilateral. Pairing these functions gives
a quasiconformal homeomorphism from this quadrilateral onto a rectangle
in the plane. Rajala’s proof is especially notable in that he carries out
this construction essentially from scratch. Finally, in the Lytchak—Wenger
proof [34], the existence of the required mapping is provided by the au-
thors’ solution to Plateau’s problem in metric spaces satisfying a quadratic
isoperimetric inequality in [31], [33].

Our approach, in turn, establishes the Bonk—Kleiner theorem as a con-
sequence of the classical uniformization theorem for Riemann surfaces. In
particular, our proof gives a direct connection between the classical uni-
formization theorem and contemporary work on the uniformization of metric
surfaces. That Theorem implies the Bonk—Kleiner theorem is standard;
see Theorem 4.9 in [23] and Section 16 in [42]. The idea is that the assump-
tion that X is Ahlfors 2-regular and linearly locally connected allows one to
promote the map h in Theorem to a quasisymmetric homeomorphism.

In addition to the results already mentioned, the uniformization prob-
lem has also been studied for metric surfaces of other topological type
[18, 25, 50, 5I]. One ingredient in [I8] and [25] is the use of the classical
uniformization theorem to pass from local quasiconformal or quasisymmet-
ric charts to a globally defined mapping. In contrast, our proof uses the
classical uniformization theorem to handle both the local and global aspects
of the problem.

Finally, a version of Theorem [1.3] has been proved concurrently and inde-
pendently by Meier and Wenger in [36] using a different method, building
on the machinery for studying Plateau’s problem in [31] and related papers.
They also derive the Bonk—Kleiner theorem as a consequence, along with
additional applications.

1.3. Outline of the paper. In Section[2, we review terminology and back-
ground related to metric geometry and analysis in metric spaces. Next,
Section [3| contains the proof of Proposition on bi-Lipschitz embeddings
of metric triangles in the plane. In Section [4, we give the construction of
polyhedral fillings for any simple metric triangle. The proof of Theorem
is then presented in Section [f] Next, in Section [6 we prove Theorem [I.3
Corollary and Corollary giving our applications to the uniformiza-
tion problem. In Section [7] we investigate further the regularity properties
of the parametrizations in Theorem and prove Theorem Finally,
Section [§] contains several examples, including the example used to prove
Proposition (1.5
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2. PRELIMINARIES

2.1. Metric geometry. We assume that the reader is familiar with the
basics of metric geometry as presented, for example, in [§ and [9]. We
recall a few definitions of particular interest. In the following, X and Y will
denote metric spaces, with dx and dy the respective metrics. We assume
that all metrics are finite valued. The Euclidean norm on the plane C is
denoted by | - |.

A path or curve is a continuous map y: I — X, where I is a compact
interval. The length of the path v is denoted by ¢(v), or by 44, () to clarify
the metric being used. The trace of ~, i.e., the set v(I), is denoted by |v|.
The metric space X is a length space if dx (x,y) = inf, £(y) for all z,y € X,
the infimum taken over all paths v whose trace contains z and y. The
metric space X is quasiconvex if there exists C' > 1 such that any two points
x,y € X are in the image of a path v: I — X satisfying ¢(y) < Cdx(z,y).
A path 7 between points z,y € X is a geodesic if () = dx(x,y). A subset
A C X is conver if any two points in A can be joined by a geodesic in A.
In this case, A is a length space with the restriction of the metric on X and
the inclusion map from A to X is an isometric embedding. The diameter of
a set A C X is denoted by diam(A), or by diamg, (A) to specify the metric
being used.

For any metric space and s > 0, the Hausdorff s-measure of a set A C X
is defined by

He(4) = lim H3(A),

where
H3(A) =inf { Y " C(s) diam(4;)*
j=1

and the infimum is taken over all collections of sets {A;}22; such that A C
U7, 4; and diam(A;) < ¢ for each j. Here C(s) is a positive normalization
constant, chosen so that the Hausdorff n-measure coincides with Lebesgue
measure in R”. The quantity #Hj(A) is called the 0-Hausdorff s-content of
A. If we need to emphasize the metric dx being used for the Hausdorff
s-measure, we write Hj_  instead of H?.

A map f: X — Y between metric spaces is bi-Lipschitz if there exists
L > 1 such that

L7 Ydx(z,y) < dy(f(z), f(y)) < Ldx(z,y)
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for all z,y € X. In this case, we say that f is L-bi-Lipschitz. A map f: X —
Y is co-Lipschitz if the first of these inequalities holds for all z,y € X, and
Lipschitz if the second of these inequalities holds for all z,y € X. In these
cases, we say that f is, respectively, L-co-Lipschitz and L-Lipschitz.

We use 0X to denote the boundary of a manifold X and int(X) to denote
its interior. Throughout this paper, the terms boundary and interior refer
to manifold boundary and interior rather than topological boundary and
interior. The following theorem can be viewed as a consequence of the
Besicovitch inequality for metric spaces; see Exercise 13.25 in [40), Section
13.F].

Theorem 2.1. Let X be a metric space homeomorphic to a closed topological
disk with boundary 0X. If Q@ C R? is a closed Jordan domain such that for
some L > 0 there exists an L-Lipschitz map f: 0X — 0Q of non-zero
topological degree, then
2 T 442
HA(X) > 4L2H (Q).

The inequality is optimal, as one can see by taking X to be the unit square

[0, 1]? with the £°° metric and = [0, 1]? (with the Euclidean metric).

Proof. Since the £>*-metric does not exceed the Euclidean ¢>-metric on R?,
it follows that f: (0X,d) — (R?,¢>) is also an L-Lipschitz embedding.
By the McShane-Whitney extension theorem (see [22, Theorem 2.3]), there
exists an L-Lipschitz extension f: (X,d) — (R% /). Namely, if we write
f = (flaf?)u then define f = (flqu) by

File) = inf {(w) + Lda.v))

for i+ = 1,2. Since ﬂaxi 0X — 0L has non-zero degree, it follows that
f(X) D Q. Moreover, since f is L-Lipschitz, it follows that H2.(Q) <
L?*H?(X), directly from the definition of Hausdorff 2-measure. Finally, we
have Hj.. = (w/4)H%; see [28, Lemma 6] or [14, pp. 2-3] for a proof of this
fact. O

2.2. Gromov—Hausdorff convergence. Let X be a metric space and let
E C X and € > 0. We denote by N.(E) the open e-neighborhood of E.
We say that E is e-dense (in X) if for each z € X we have d(z,F) < ¢
or equivalently N.(E) = X. A map f: X — Y (not necessarily continu-
ous) between metric spaces is an e-isometry if f(X) is e-dense in Y and
ldx (2, y) — dy (f(z), f(y))] < = for each z,y € X.

We define the Hausdorff distance of two sets E, F C X to be the infimal
value r > 0 such that E C N,(F) and F' C N,(E). We denote the Hausdorff
distance by dg (F, F'). A sequence of sets E,, C X converges in the Hausdorff
sense to aset E C X if dy(Ey, E) — 0 as n — oo. It is immediate that the
diameters of E,, converge to the diameter of E.
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The Gromov-Hausdorff distance between two metric spaces X,Y is de-
fined as the infimal value 7 > 0 such that there is a metric space Z with
subsets X, Y C Z such that X and Y are isometric to X and Y, respec-
tively, and dy(X,Y) < r. This is denoted by dgu(X,Y). We say that a
sequence of metric spaces X,, converges in the Gromov-Hausdorff sense to a
metric space X if dgg (X, X) — 0 as n — co. By [9, Corollary 7.3.28], this
is equivalent to the property that there exists a sequence of &,-isometries
fn: X — X, where g, > 0 and &, — 0 as n — oo. In this case, we say that
fn is an approximately isometric sequence.

We collect some immediate properties of Gromov—Hausdorff convergence.

Proposition 2.2. Let {X,,}7°, be a sequence of compact metric spaces
converging in the Gromov—Hausdorff sense to a compact metric space X,
and consider an approzimately isometric sequence fr: X, — X.

(i) Suppose that vy, : [0,1] — X, is a sequence of paths, parametrized by
rescaled arc length, such that

hnrr_lgoréf U(yn) < 0.

Then there is a subsequence of fn o yn: [0,1] — X that converges
uniformly to a path ~v: [0,1] — X with

{(v) < liminf £(vy).

(ii) Suppose, in addition, that each space X, is a length space. Then for
each path ~y: [0,1] — X and for each sequences of points an, b, € X,
with limy, 00 frn(an) = ¥(0) and limy, o0 frn(bn) = (1) there exists a
sequence of paths v, : [0,1] — X, such that v,(0) = an, Yn(1) = by,
and fn 0 v, converges uniformly to .

(iii) For each sequence of compact sets E, C X, there exists a subse-
quence Ey, such that fy, (Ey, ) converges in the Hausdorff sense to a
compact set E C X and diam(Ey,,) converges to diam(E). Moreover,
if each set E, is connected, then E is also connected.

The proof of the proposition is elementary, based on the definitions, and
the experienced reader can safely skip it. Alternatively, one can prove the
statement by embedding isometrically the sequence {X,,}>°; and the space
X to a common space X and thus reducing Gromov—Hausdorff convergence
to Hausdorff convergence in X'; see [40, Property 5.23].

Proof. By assumption, each map f, is an e,-isometry, where ¢, — 0 as
n — oo.

First we prove which follows from a version of the Arzela—Ascoli theo-
rem [9, Theorem 2.5.14]. Consider the curves 7, as in the statement. Then

for each p,g € [0, 1] we have dy, (3 (p), 1n(9)) < £()lp — gl- Since f, is a
€p-isometry, we have

dx (fn(7(p)), fa(1n(q)) < en +dx, (Vn(p), W(q)) < en +£(vn)lp — ql-
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By passing to a subsequence, we assume that L = lim,,_, #(7,) < co. This
implies that for each € > 0 there exists 6 > 0 and N € N such that for all
n > N and |p — q| < 0, we have

dX(fn('Yn(p))v fn(’Yn(Q))) <E.

Hence, the mappings f,, 079, : [0,1] — X are uniformly equicontinuous. Since
X is compact, by the Arzela—Ascoli theorem, there exists a subsequence
converging uniformly to a map v: [0,1] — X with the property that

dx(v(p),v(q)) < Llp — |

for every p,q € [0,1]. Hence, + is a rectifiable path with ¢(v) < L.

Next, we prove By the uniform continuity of «, for each n € N there
exists d,, > 0 such that if [p — ¢| < d,, then dx(v(p),7(¢)) < 1/n. We pick a
finite set @, C [0, 1] that contains 0 and 1 so that each of the complementary
intervals of @, has length less than d,,. We define 7,,(0) = a,, and v,,(1) = b,,.
By the definition of an e,-isometry, for each ¢ € @,, \ {0, 1} there exists a
point v,(q) € X, such that dx(fn(vn(q)),7(¢)) < €n. This defines a map
Yn: Qn — Xn. If (q1,¢2) is a complementary interval of @, we define 7,, on
[q1, 2] to be a geodesic in X,, with endpoints 7,,(¢1) and ~,(g2). This gives
a path v,: [0,1] — X,,. For each p € [0,1] there exists a complementary
interval (q1, g2) of @, whose closure contains p. If q1,¢2 ¢ {0,1}, then

dx (v(p); fa(v(®))) < dx(v(p),v(q1)) + dx (v(q1), fu(mlar)))
+ dX(fn('Yn(QI))7fn(7n(p)>)
< 1/n +ént+ent an(’Yn(Ch),’Yn(P))-

Since 7, is a geodesic, it follows that

dx(v(p); fa(m(p))) < 1/n+ 22, + dx, (Val(q1), n(g2))
< 1/n+ 3en + dx (fr(yn(q1)); fn(m(a2)))
< 1/” + 3en + 2e, + dX(’V(ql)a ’V(Q2))
<2/n+ bep.

If ¢; = 0, then in the same way we obtain the estimate

dx (Y(p), fa(1n(p))) < 2/n + 3en + 2dx (7(0), fu(7n(0)))
and an analogous estimate holds if go = 1. By assumption, the quantities
dx (7(0), fn(1(0))), dx(v(1), fa(n(1))), and &, converge to 0 as n — oc.
Hence, f, o7y, converges uniformly to -, as desired.

For part the existence of the set F as the Hausdorff limit of a sub-
sequence of f,(FE,) follows from [9 Theorem 7.3.8, p. 253], which asserts
that the space of compact subsets of a compact metric space is compact
in the Hausdorff topology. The convergence of the diameters is also im-
mediate from the properties of Hausdorff convergence and the fact that
| diam(E,,) — diam(f,(E,))| — 0, since f, is an e,-isometry. We now show
the connectedness of E. After passing to a subsequence, we assume that
fn(Ey) converges to E. Suppose, on the contrary that E is disconnected.
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Then there exists a continuous non-constant function ¢: E — {0,1}. We
define Fy = »~1(0) and F; = ¢~ !(1). These are non-empty, compact, and
disjoint subsets of X, so they have a positive distance § > 0. We fix a
large n so that f,,(En) C Ns/u(E) and E C Ns/a(fn(En)). Now, we define a
function ¢, : E, — {0,1} by

(ZL‘) _ 1, fn(l‘) €N5/4(F1)
" 0, fn(ﬁ) € N5/4(F0) '

We note that ¢, is non-constant, since Fy, F1 C Ns/4(fn(Ep)). Moreover,
¢p, is continuous for large n. Indeed, if z,y € E, and dx, (x,y) < €,, then
dx(fn(z), fn(y)) < 2e,. We choose a large n so that 2¢, < §/2. Then
both f,(x) and f,(y) have to lie in either Nj4(Fo) or Ns/4(F1). Thus,
on(z) = ©n(y) and continuity follows. The existence of ¢, contradicts the
connectedness of E,,. O

Lemma 2.3. Let X be a length space homeomorphic to a closed topological
disk and {X,}22, be a sequence of length spaces homeomorphic to X. Sup-
pose that there exists an approrimately isometric sequence fn: X, — X of
topological embeddings. Then

lirginf diam(90X,,) > diam(0X).

In fact, the result holds without the assumption that f, is a topological
embedding and one actually gets convergence of the diameters, but we do
not need this generality here; see [9, Section 7.5.2] for such considerations.

Proof. Suppose that each f, is an e,-isometry, where ¢, — 0. We claim
that 0X C N¢, (fn(0X,)), which implies the desired statement. To see this,
note that 0X C N, (fn(Xy)) by the definition of an e,-isometry. Thus, if
x € 0X, then there exists y € f,(X,) such that d(z,y) < &,. Consider a
geodesic in X connecting x and y. Then there exists a point z € 9f,(X,)
lying on that geodesic such that d(x,z) < d(z,y) < &,. Finally, note that
Ofn(Xyn) = fn(0X,), since f, is an embedding. O

2.3. Modulus. Let X be a metric space and I" be a family of curves in
X. A Borel function p: X — [0,00] is admissible for the path family I' if
f7 pds > 1 for all locally rectifiable paths v € I'. We define the 2-modulus
of ' as

modF—inf/ p* dH?,
pJXx

where the infimum is taken over all admissible functions p for I'. By con-
vention, mod I' = oo if there are no admissible functions for I'. Observe that
we consider X to be equipped with the Hausdorff 2-measure. This defini-
tion may be generalized by allowing for an exponent different from 2 or a
different measure, though this generality is not needed for this paper.
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Let X be a metric space. For each pair of disjoint continua E, F C X,
we define I'™(E, F; X) to be the family of rectifiable curves in X \ (F U F)
separating E from F. That is, for each v € I'*(E, F; X), the sets F and F
lie in different components of X \ |v|.

Lemma 2.4. Let {X,}5°, be a sequence of compact length spaces con-
verging in the Gromov—Hausdorff sense to a compact length surface X.
Moreover, suppose that limsup,,_,., H*(X,) < oo. Then for each § >
0 and for any sequence of pairs of disjoint continua E,, F, C X, with
min{diam(E,, ), diam(F,)} > § we have

lim sup mod ' (E,,, Fy; X)) < o0.
n—oo
Proof. We claim that that there exists 7 > 0, depending on ¢ but not
on n, such that if F,, F, C X, is a pair of disjoint continua satisfying
min{diam(E,), diam(F,,)} > ¢, then ¢(y) > n for every v € I'"(E,, Fy; X,,).
Assuming that this is the case, we see that the function p = ! is admissible
for T*(E,, Fn; X,,), so

mod I (E,, F,; X,,) < 77_27{2()(%)

for each n € N. Passing to the limit gives the desired conclusion.

In order to prove the claim, we argue by contradiction. Let f,,: X, —» X
be a sequence of ¢,-isometries, where &, — 0. Suppose that there exist se-
quences of disjoint continua FE,, F,, C X,, with min{diam(E, ), diam(F,,)} >
d and a sequence of paths v, € I'*(E,, F,,; X;,) with £(vy,) — 0 as n — oo.
By Proposition after reparametrizing -, there exists a subsequence
of f, o7, that converges uniformly to a constant path in X, i.e., to a point
xo € X. After passing to a further subsequence, by Proposition the
sets fn(Ey) and f,,(F,) converge in the Hausdorff sense to continua E and
F, respectively, with min{diam(F), diam(F)} > 0.

Since X is a surface, X \ {zo} is path connected. Thus, there exists a
path n: [0,1] — X \ {x0} with n(0) € E and n(1) € F. By the Hausdorff
convergence of f,(E,) and f,(F,) to E and F, respectively, there exist
points a, € E, and b, € F,, such that f,(a,) converges to n(0) and f,(b,)
converges to 7(1). By Proposition there exist paths 7,: [0,1] — X,
such that 7,,(0) = a,, € Ep, n,(1) = b, € F,,, and f,, on, converges uniformly
to 7.

Since 7, separates E, from F,, and 7, connects E, and F},, the paths v,
and 7, intersect each other for each n € N. The uniform convergence of
fn oy, and f, on, to zg and 7, respectively, implies that n intersects the
point xg. This is a contradiction. O

2.4. Metric Sobolev spaces. Let h: X — Y be a mapping between metric
spaces. We say that a Borel function g: X — [0, 00| is an upper gradient of
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h if
(2.1) dy (h(a),h(b)) < /gds

-
for all a,b € X and every locally rectifiable path v in X joining a and b.
This is called the upper gradient inequality. If, instead the above inequality
holds for all curves v outside a curve family of 2-modulus zero, then we say
that g is a weak upper gradient of h. In this case, there exists a curve family
I'p with mod I'g = 0 such that all paths outside I'y and all subpaths of such
paths satisfy the upper gradient inequality.

We equip the space X with the Hausdorff 2-measure H2. Let LP(X)
denote the space of p-integrable Borel functions from X to the extended
real line f&, where two functions are identified if they agree H?-almost ev-
erywhere. The Sobolev space N'P(X,Y) is defined as the space of Borel
mappings h: X — Y with a weak upper gradient g in LP(X) such that
the function = — dy (y, h(z)) is in LP(X) for some y € Y, again where two

functions are identified if they agree almost everywhere. The spaces LT (X))

and Nlt’f (X,Y) are defined in the obvious manner. See the monograph [24]
for background on metric Sobolev spaces.

We now restrict to mappings h: X — Y, where X and Y are metric sur-
faces with locally finite Hausdorff 2-measure. We use the facts that topolog-
ical surfaces are second countable, separable, and they admit an exhaustion
by precompact open sets. Thus, the Hausdorff 2-measure is o-finite if it is

locally finite.

Lemma 2.5. Let XY be metric surfaces with locally finite Hausdorff 2-
measure, h: X — Y be a mapping in Nﬁj’f(X,Y), and g € L (X) be a
weak upper gradient of h.

(i) There exists an exceptional family of curves T'g with modTy = 0
such that for any Borel function p:Y — [0,00] and for all locally
rectifiable curves v ¢ T'g we have

/ pdsg/(poh)gds.
hoy Y

(ii) Suppose, in addition, that h is continuous and there exists K > 0
such that for every Borel set E C'Y we have

/h . g? dH? < KH*(E).

Then, for every curve family I' in X we have
modI" < K mod h(T").

Here, if h: X — Y is continuous and I is a curve family in X, then A(T")
denotes the curve family {ho~y:~v €T}
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Proof. Part follows from [24, Proposition 6.3.3, p. 157], which assumes
that fﬁ/ gds < oo and the upper gradient inequality holds for all sub-
paths of 7. Since g liesin L2 (X ) and X can be written as a countable union
of open sets of finite Hausdorff 2-measure, we conclude that there exists a
curve family I'g with modulus zero such that the required conditions hold
for paths v ¢ T'y.

For note that the continuity assumption implies that for any Borel
function p: Y — [0, 00], the function p o h is also Borel measurable. More-
over, by monotone convergence we have

/(poh)g%m? < K/ pdH?.
X

Let p be an admissible function for i (T). By [([i)} for v € T'\ 'y we have

1§/ pds < /pohgds
hoy v

Thus, (p o h)g is a Borel function that is admissible for I' \ T'g. It follows
that

modI" = mod(I"\ T'y) < / (poh)?g*dH? < K/ p? dH>.
X Y
Infimizing over p gives the conclusion. (]

It is a non-trivial result of Williams [52, Theorem 1.1] that the converse of
Lemma is also true. This result will be used in the proof of Theorem
L4

Theorem 2.6 (Definitions of quasiconformality). Let X,Y be metric sur-
faces with locally finite Hausdorff 2-measure and let h: X — Y be a contin-
uwous mapping. The following are equivalent.

(i) h € NM2(X,Y) and there exists a weak upper gradient g of h such

loc

that for every Borel set E C X we have
/ g?dH? < KH*(E).
“HE)

(ii) For every curve family I' in X we have
mod T < K mod h(T).

In fact, the argument of Williams [52], Proof of Theorem 1.1] is more gen-
eral and relies on the local finiteness of the measures and the separability of
the spaces. We note that the referenced result is stated for homeomorphisms,
but the proof applies identically to the case of continuous mappings.
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2.5. Polyhedral surfaces. A 1-dimensional polyhedral space is a locally
finite connected graph, considered as a metric space by assigning a length
to each edge and taking the corresponding length metric. Next, we define
a 2-dimensional polyhedral space in the following manner. Let I' be a 1-
dimensional polyhedral space and P a collection of planar polygonal domains
homeomorphic to a closed disk. Each P € P is equipped with the length
metric induced by the Euclidean metric on C, which we denote by dp. The
boundary 0P is subdivided into finitely many non-overlapping line segments
called edges. For each P € P, let ¥p: OP — T be an injective mapping such
that each edge of P is mapped by arc length onto an edge of I'. Assume
that each point in I' is in the image of at least one and finitely many maps
1¥p. We obtain a metric space S by gluing the disjoint union of the sets
in P with I' along the maps ¥p. More precisely, we define ~ to be the
equivalence relation on (| |P) UT generated by declaring = ~ y if z € 9P
for some P € P,y € T, and ¢¥p(z) = y. Take S = (| |P)UT'/ ~. Define the
metric d on S by

d(z,y) =inf Y dp, (zk, yi),

k=1
the infimum taken over all chains of points z1, 41, ..., ZTn, Yn such that z, yi
belong to the same polygonal domain Py for all k € {1,...,n} and yg ~ zx41

forall k € {1,...,n— 1}, and x = z1 and y = y,,. It is straightforward to
verify that d is indeed a metric. We say that S equipped with the metric d
is a 2-dimensional polyhedral space and the metric d is called the polyhedral
metric on S. We identify the graph I'" with the subset | |[OP/ ~ of S in
the natural way. Observe that each polygon P € P is locally isometric to
its image in S at every non-vertex point. Each polygon P € P is called a
face of S, while the vertices and edges of each P are called the vertices and
edges, respectively, of S.

A polyhedral surface is a 2-dimensional polyhedral space homeomorphic
to a 2-manifold with boundary. Each point in a polyhedral surface has a
neighborhood isometric to a ball in the Euclidean cone over a circle or closed
interval; this property can also be taken as a definition of polyhedral surface
[29]. In particular, a polyhedral surface is locally isometric to a subset of the
closed half-plane at each non-vertex point. See [§, Section 1.5.19], [9 Section
3.1-3.2] and [46] for an overview of polyhedral spaces and the operation of
gluing.

2.5.1. Complex structure. It is known that each orientable polyhedral sur-
face X has a complex structure that agrees with the complex structure of
the polygons that constitute it [11) 11.4, pp. 66-67]. More precisely, suppose
that X = | | P;/ ~, where each P; is a closed planar polygonal domain and
the boundaries of the polygons are identified according to some equivalence
relation ~ as above. By the orientability of X, we may assign an orientation
to each OPF; so that the orientations of adjacent polygons are compatible;
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that is, orientations of neighboring edges from different polygons are point-
ing in opposite directions. Thus, by replacing each P; C C with a reflected
copy if necessary, we may assume that the orientation of P; as a subset of
X is the positive one when P; is considered as a subset of the plane.

We let ¢; be a homeomorphism, acting as the identity map, that identifies
P; as a subset of X with itself as a subset of C. Then ¢; serves as a
local chart at each interior point of P; and at each boundary point of X
that is contained in OF; and is not a vertex. If the polygons P;, P; C
X share an open boundary segment J, then there exists a local chart ¢
in a neighborhood U C X of J such that, up to orientation-preserving
isometries of the plane, ¢ agrees with ¢; and ¢; in UNint(P;) C X and UN
int(P;) C X, respectively. In particular, the transition from ¢;(int(F;)) and
@;(int(P})) to ¢ s(U) is conformal. Finally, at each vertex v € X consider a
small 7 > 0 such that each face P; that has v as a vertex contains a circular
sector S; of radius r, centered at v, and whose two sides are contained in
two edges of P;. Let 8 = 6(v) be the sum of the angles of these sectors. To
each of these sectors, we apply a map of the form z +— 2%, where o = 0 /27 if
v is an interior point of X and o = 6/ if v is a boundary point of X; more
precisely, consider the maps (¢; — i(v))® mapping the sector S; C X onto
a sector S] centered at 0 in the plane. Then the sectors S, may be rotated
and fitted together to form a disk of radius 7 if v € int(X) and a semidisk
if v € 0X. In this way we can also define conformal coordinates at the
vertices. In summary, every orientable polyhedral surface X is a Riemann
surface with the described natural conformal structure. Thus we call X a
polyhedral Riemann surface.

A homeomorphism h: X — Y between Riemann surfaces is conformal if
it is complex differentiable in local coordinates. Specifically, at each x € X
we require that if ¢ is a conformal chart from a neighborhood of z in X
into C and v is a conformal chart from a neighborhood of A(z) in Y into C,
then ¢ o h o p~ ! is a conformal map defined on a neighborhood of ¢(z) in
C. If z € 0X, this definition entails the requirement that ¢ o h o ™! has a
conformal extension in a neighborhood of p(x).

Let Y be a polyhedral Riemann surface. If ¥ homeomorphic to a topo-
logical 2-sphere, then, by the uniformization theorem [35, Theorem 15.12,
p. 242], there exists a conformal homeomorphism A from the Riemann sphere
CtoY. IfY is a closed topological disk, then we obtain a conformal home-
omorphism from Y to D in the following way. Glue Y to an_isometric
copy of itself along the boundary to obtain a polyhedral sphere Y. By the
uniformization theorem, there is a conformal homeomorphism h: Y — C.
Define the involution ¢: Y — Y by mapping each point in Y to the same
point in its isometric copy. Then g = howoh~!is an anti-conformal home-
omorphism of C and thus is an anti-Mo6bius transformation with fixed set
h(0Y). This implies that h(9Y) is a circle. By normalizing h, we ensure that
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h(9Y) is the equator of C. Thus h restricts to a conformal homeomorphism
from Y to the upper hemisphere. We summarize these facts below.

Theorem 2.7 (Uniformization theorem). Let 2 = CorQ=D. IfY
is a polyhedral Riemann surface homeomorphic to ), then there exists a
conformal homeomorphism from £ onto Y.

A polyhedral surface with its polyhedral metric becomes a surface of lo-
cally finite Hausdorff 2-measure. We endow the Riemann sphere C with the
spherical metric o, which is given by the length element 2(1 + |z|?)~! ds in
planar coordinates z = x + iy through stereographic projection. We also
consider the spherical measure given by the density do =4(1 4+ |z|?)~2dx dy,
which agrees with the Hausdorff 2-measure on C arising from the spherical
metric. Similarly, we endow the closed unit disk D with the planar Eu-
clidean metric and the Lebesgue measure, which agrees with the Hausdorff
2-measure.

Lemma 2.8. Let Q = C or Q = D. Suppose that Y is a polyhedral Riemann
surface homeomorphic to Q and h: Q@ — Y is a conformal homeomorphism.
There exist Borel measurable functions |Dh|: Q — [0,00) and |[Dh™Y|: Y —
[0,00) such that the following hold.

(i) |Dh| and |Dh~Y| are upper gradients of h and h™*, respectively.

(ii) For all Borel sets E C Q and F C'Y we have

/|Dh|2dH2:H2(h(E)) and /|Dh—1|2dH2:H2(h—1(F)).
E F

(iii) For every curve family I' in Q we have
mod I" = mod h(T").

Proof. We show the existence of the upper gradient |Dh| of h that satisfies
the change of coordinates formula in Then, from Lemma it follows
that modI' < mod h(T") for all curve families " in Q. The claims for h~! are
proved similarly.

We write Y = | | P;/ ~, where P; are polygonal domains in the plane, and
denote by ¢; the complex chart identifying P; C Y with itself as as subset
of C; see the discussion in the beginning of Section Let V denote the
set, of vertices of X and note that V is finite.

On h=Y(V) we define |[Dh| = 0. On Q\ h=}(V) we define |Dh| as follows.
Let # € Q\ h~%(V) and consider a polygon P; with h(z) € P;. We define
| Dh| to be the absolute value of the derivative of ;oh as a holomorphic map
from a subset of €2 to the planar polygon P;. (If Q = (E, using the coordinates
of the stereographic projection gives |Dh|(z) = 271(1 + |2|?)|(¢i o h)'(2)],
although we do not need this formula.) If A(z) does not lie on any polygon
P; for j # i then |Dh|(z) is clearly well-defined. Suppose that h(z) lies in
the interior of a common edge J of P; and P;. There exists a local chart ¢
in a neighborhood U C Y of J such that, up to isometries of the plane, ¢
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agrees with ¢; and ¢; in UNint(P;) C Y and U Nint(P;) C Y, respectively.
This shows that the absolute values of the derivatives of p; o h and ¢; o h
agree on h~1(J), so |Dh|(z) is also well-defined in this case.

With this definition of |Dh|, we claim that if +y is a locally rectifiable path
in Q connecting points a and b, then

dy (h(a),h(8) < €(h o) = [ [Dh]ds,
gl
so|(i)|is true. We only have to justify the equality. The statement holds for
paths avoiding the finite set h~1(V') because |Dh| is the absolute value of
the derivative of appropriate conformal maps and the metric of Y is locally
isometric to the Euclidean metrics of the polygons away from the vertices.
The general statement is proved by partitioning a path v: [0,1] — € into
possibly infinitely many subpaths +v;: I; — Q, i € N, where [;, i € N, are
the components of [0,1] \ v 1(h~1(V)). Each path ; satisfies the claimed
equality. Since V is a finite set (in fact, it suffices that H!(V) = 0; see

Proposition , one can show that
Uhoy) =2 t(ho)

€N
This completes the proof of the claim.

The change of coordinates formula in is true for Borel sets E C Q '\
h=Y(V), since |Dh|? is the Jacobian of appropriate conformal maps and the
metric of Y is locally isometric to the Euclidean metrics of the polygons
away from the vertices. On the other hand, the vertices have measure zero
both in 2 and in Y. Thus, the change of coordinates holds for all Borel sets
EcCqQ. O

3. BI-LIPSCHITZ EMBEDDING TRIANGLES INTO THE PLANE

In this section, we prove Proposition stating that every metric trian-
gle can be bi-Lipschitz embedded into the plane with a uniform bi-Lipschitz
constant. Recall that a metric triangle is a metric space consisting of three
closed arcs, called edges, each isometric to an interval that connect pairwise
a set of three points, called vertices. More precisely, we can define a metric
triangle as the quotient metric space induced by equipping S' with a pseu-
dometric such that S! is the union of three non-overlapping closed arcs each
isometric to an interval. Here, two sets are non-overlapping if their interiors
are disjoint. This definition allows the possibility that the edges intersect in
interior points. We say that a metric triangle is simple if it is homeomorphic
to S'. A tripod is a length metric space consisting of three closed arcs glued
at a common endpoint but otherwise disjoint. Note that a tripod is also a
metric triangle with vertices the non-glued endpoints of the original closed
arcs.
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For any triple of points p, ¢, 7 in a metric space (X, d), the Gromov product
(p- q), is defined by

S (dlp,r) + dla, ) ~ d(p, )

To such a triple p, ¢, r € X, we can associate a tripod A with outer vertices
D,q,T and central vertex o, where ¢([0,p]) = (q - 1)p, £([0,q]) = (r - p)q, and
{([0,7]) = (p- q)r. Observe that

(3.1) d(p,q) = (q-71)p + (r-p)g = ([P, 0]) + £([0,9]) = £([p, q));

and similarly for d(p,r) and d(r,q). For more background on the Gromov
product, see [8, Chapter III.H.1]. We denote the metric on A by D.

If p,q,r are the vertices of a metric triangle A, then there is a natural
projection ®: A — A such that ®(p) = p, ®(q) = ¢, ®(r) =7, and ® is an
isometry on each edge of A. For a point z € A, we write Z to denote ®(z).

(p-q)r =

Lemma 3.1. The natural projection ®: A — A is 1-Lipschitz. More specif-
ically, we have

(32) D(z,y) < d(z,y)
for all x,y € A, with equality whenever x,y lie on the same edge of A.

Proof. By definition, we have D(Z,y) = d(z,y) whenever x, y lie on the same
edge of A. Without loss of generality, we assume that z lies on the edge
[p, q] and y lies on [p,r] and that d(y,p) > d(z,p). We consider two cases.

Suppose first that d(z,p) < £([0,p]). Then there exists a point 2’ € [p, 7]
such that d(z’,p) = d(x,p) and ¥’ = Z. Using the fact that [p, ¢] and [p,r]
are geodesics, we have

D(i7@) = D(:E/a g) = d($/7y) = d(yap) - d($/7p)
= d(y,p) — d(z,p) < d(z,y).
Next, suppose that d(z,p) > ¢([0,p]). Then d(z,q) < £([0,7]) by (3.1). In
this case, there exists a point 2’ € [g, r] such that d(2/, q) = d(z, q) and 7’

Z. Moreover, since d(y,p) > d(x,p) > {([0,p]), we have d(y,r) < £
Hence, there exists a point y’ € [g,r] such that d(y/,r) = d(y,r) and ¥y

=7
We have
D(z,y) = D(a",y) = d(a',y) = d(q,7) — d(y',r) — d(a’, q)
=d(q,7) —d(y,q) — d(z,r) < d(z,y).
This completes the proof. O

We consider such a tripod A as being embedded in C, with the central
vertex o at the origin and p = (¢ -7)p, ¢ = (r - p)ge*™/3, and r = (p -
q)re‘m/ 3. Here and throughout this section, we use complex notation for
points in C. We call such A the canonical tripod determined by A. Our
strategy for proving Proposition [I.2]is to project the metric triangle A onto
the corresponding tripod A and then add a transverse component whose
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magnitude is the distance from a given point to the union of the other two
sides. A typical embedding is illustrated in Figure

3.1. Tripodal metric on C. It is convenient to introduce a new metric
on C that is compatible with embedded tripods. Let u; = 1, ug = 27/3,
uz = e*™/3 y) = e™/3 vy = —1, and vz = €>™/3. For each j € {1,2,3},
let Z; = {tu; : t > 0}, and let Z = U?Zl Zj. Then C\ Z consists of
three components Uy, Uz, Us, indexed so that v; € U; for each j € {1,2,3}.
Observe that each point z € 73 can be written uniquely as v = ¥ + t,v; for
some T € OU; and t, > 0. We employ this notation for a given point x € C.

We define the metric D on C in the following way. First, D|z«z is the
intrinsic metric on Z. Next, for z,y € Uy, let D(z,y) = |t, — t,| + D(Z, 7).
Define D similarly on Uy x Uy and Uz x Us. Finally, for = € 7] and y € U;,
where i # j, define

(3.3) D(z,y) =ty +t,+ D(Z,7).

We note that D(z,y) is the Euclidean length of a certain polygonal path
joining x and y. Observe that each set U; is convex with respect to D, and
in particular that D is a length metric on C.

We observe that D is bi-Lipschitz equivalent to the Euclidean metric. In
fact, a straightforward argument shows that

(3.4) |z —y| < D(z,y) < 2|z —y|

for all z,y € C. The right inequality is sharp, as seen by taking z =1 and
y = 627T/3.

3.2. Proof of Proposition We first restate Proposition [1.2]in a more
precise form. For each x € A, let I(x) denote an edge of A containing x
and f(ac) the union of the other two edges of A. For a point € A, denote
by Z the natural projection of = in the canonical tripod A. Recall from
the previous section the notation u; = e(2I=2mi/3 anq vj = e(2I=1)mi/3 {5
j€{1,2,3}.

Proposition 3.2. Let A be a metric triangle with vertices p,q,r and edges
I = [p,q], Io = [q,7], Is = [r,p]. Let A denote the canonical tripod deter-
mined by A. Define the mapping F: A — C by

~

F(z) =z +dist(z, I(x))v; ifxel;, j=1,2,3.
Then F s L-bi-Lipschitz for L = 4.
Proof. Recall that A is the tripod [0, p] U [0,4] U [0, 7], where p = (¢ - r)pu1,
qg=(r-p)qua, 7= (p-q)rus, and 0 = 0. We use D to denote the tripodal

metric on C defined in Section 3.1} which agrees with the length metric on
A as a tripod.
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FIGURE 1

Observe that F' is well-defined, and in particular that F'(z) = Z in the
case that x € I; NI}, for j # k. Let z,y € A. By symmetry, it suffices to
consider the case that = € I;.

If y € I; as well, then

D(F(2), F(y)) = |dist(x, I(x)) — dist(y, I())| + D(@7).
Thus, we have D(F(z), F(y)) > D(z,y) = d(z,y) by (3.2)). Moreover, since

~ ~

dist(zx, I(z)) — dist(y, I(y))‘ <d(z,y),
we have D(F(x), F(y)) < 2d(x,y). Summarizing, in this case we have
d(z,y) < D(F(x), F(y)) < 2d(z,y).
Next, we suppose that y ¢ I;. The Lipschitz inequality follows immedi-

ately, since by (3.3]) and (3.2)) we have

D(F (), F(y)) = dist(z, I(x)) + dist(y, I (y)) + D(z,7) < 3d(z,y).

For the co-Lipschitz inequality, let z € I(x) be such that d(z,z) =

~ ~ ~

dist(z, I(z)), and let w € I(y) be such that d(y,w) = dist(y,I(y)). We
split into cases.

Case 1. Suppose the points y, z lie on the same edge. Then, d(y, z) = D(y, z)
by (3.2]). Moreover, also applying (3.2), we have

d(z,y) < d(x,z)+d(y,z) =d(x,z) + D(y,z) < d(z,z) + D(z,y) + D(z, z)
<2d(z,z) + D(z,y).

Therefore, gives

D(F(z), F(y)) = D(z,y) + d(z,z) + d(y,w) > D(z,y) + d(z,z) = Sd(z,y).

Case 2. Suppose the points z,w lie on the same edge. This follows from
Case [1] by reversing the roles of x and y.

| =
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Case 3. Suppose the points z,w lie on the same edge. Then, by (3.2)), we
have

z)+ D(z,y) + D(y,w)
) + d(y,w) = D(F(z), F(y))-

Therefore,

D(F(x), F(y)) = 5 (D(F(2), F(y)) + D(z,9) + d(x, 2) + d(y,w))

(A2
DO =N =

(d(z,w) + d(x, z) + d(y,w)) > %d(w,y).
We conclude that
Sdlay) < D(F(), F(y) < 3d(z,y)
for all x,y € A. Combining this with , we have
10y) < |F() ~ F(y)| < 3d(z,y)
for all z,y € A. O

Remark 3.3. By the definition of F', it is clear that every line parallel to
the vector v; intersects F'(I;) in at most one point, for each j € {1,2,3}.
Suppose now that A is a simple metric triangle. If we partition F/(A) into
arcs [x;—1,x;), @ € {1,...,n}, where g = x,, such that the collection {z;}?_,
contains the vertices of F(A), then the polygonal curve formed by joining
x;—1 with x; for each 7 is a simple closed curve.

4. FILLINGS OF SIMPLE METRIC TRIANGLES

A polygonal metric disk or polygonal disk is a metric space homeomorphic
to a closed disk whose boundary can be represented as the union of finitely
many non-overlapping geodesics, each of which is called an edge. The end-
points of the edges are called vertices. If a polygonal disk has three edges,
we call it a triangular disk. Observe that the boundary of a triangular disk
is a simple metric triangle. A polygonal disk is planar if it is a subset of C,
equipped with the length metric induced by the Euclidean metric, and its
boundary consists of finitely many non-overlapping line segments. Thus the
boundary of a planar polygonal disk is a polygon in the ordinary sense of
the word. In this section, we construct polyhedral fillings of simple metric
triangles based on the bi-Lipschitz embedding of the previous section. We
first give a preliminary lemma.

Lemma 4.1. For every planar polygonal disk P C C and each € > 0 there
exists a decomposition {Py}rex of P into non-overlapping polygonal disks
satisfying the following.

(i) £(0Py) < € for each k € K.
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(ii) Any points x,y € Upex 0Pk can be joined by a path in \Jjcx 0P
with length at most £(OP).
(i) > L(OP)? < 1TH?(P).

keK

Proof. Let € > 0. Choose ¢ € (0,¢) sufficiently small that any square of
side length &’ intersects at most two edges of OP. The square grid ¢'Z?
divides C into non-overlapping square regions @ of the form [¢'j1,¢'(j1 +
1)] x [¢'j2,€'(j2 + 1)] for some ji,jo € Z. Note that @ N P can be written
as the union of at most two polygonal regions for each square region Q.
Enumerate by Py, k € K1, the square regions ) that are contained in P and
by P, k € Ko, the polygonal regions arising as the intersection of P with
those Q whose interior intersects OP. We set K = K U K5. By taking &’
sufficiently small, we also ensure that ¢(0Py) < ¢ for each k € K.

Each € (J,cx OFy belongs to a horizontal line segment in J;cx 0P
or a vertical line segment in (J,cz OP;. In the first case, let L, denote
the maximal horizontal line segment contained in P passing through =x.
Otherwise, let L, denote the maximal vertical line segment contained in
P passing through z. Let p, denote a point in L, N P nearest to x; then
the line segment A, C L, from x to p, has length at most ¢(OP)/4. Given
two points x,y € |J,cx 0Pk, we can join p, to p, by a subarc Cy, C P of
length at most £(0P)/2. Joining A, Cyy, and Ay gives a path in (J, o5 0P
with length at most ¢(OP).

For all k € K;, P, is a square region and we have £(0P;)? = 16H?(Py).
Thus,

> 00P)? < 16H*(P).
ke K1

For each k € Ko, let Qi denote the square region above used to define Py,
and observe that the correspondence Py +— Q) is at most two-to-one. Note
that @y has diameter less than 2¢’ and that £(9Py) < 20(0Qy). Thus,

D UOP)? <4 ) H0Qk)? =64 Y H(Qu)

keK> keKo keKo
< 64-2-HA(Now (OP)) < 64 -2-2(26")€(OP),

where the last inequality follows from [4, Theorem 10-41, p. 285]. Therefore
> U0P)? < 1TH(P)

keK
upon choosing &’ to be sufficiently small. O

We continue with the main result of this section, giving a polyhedral filling
of an arbitrary simple metric triangle with controlled Hausdorff 2-measure.

Theorem 4.2. Let (T,d) be a triangular metric disk with edges «j, j €
{1,2,3}. There ezists a polyhedral surface (S,dgs) that is a triangular metric
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disk with edges B;, j € {1,2,3}, and a homeomorphism ¢: S — T such that
the following hold for an absolute constant L > 0 independent of T'.
(1) diamg(S) < Ldiamgy(T).
(2) M3, (S) < LH3(T).
(3) @lig;| maps |B;| isometrically onto || for each j € {1,2,3}. In
particular, ¢|gs is length-preserving.
(4) For all x,y € 0S, dg(z,y) > d(p(x),¢(y)).

Proof. Let A = 9T. Thus A is a metric triangle equipped with the metric
d. Let F': A — C be the 4-bi-Lipschitz embedding in Proposition [3.2} and
let ©2 be the closed region in C bounded by F(A). Moreover, let 8; = Foa;
for each j € {1,2,3}. We use the embedded curve F(A) to construct a
polyhedral surface S with the desired properties. We note that as soon as
S is homeomorphic to a closed disk, and imply immediately that S
is a triangular metric disk.

Equip F(A) with the pushforward metric of d under F, which we also
denote by d. Given two points x,y € F(A), let [z,y] denote the positively
oriented subarc of F(A) from x to y, according to the counterclockwise
orientation on the curve F(A) C C. For each £ > 0 there exists a par-
tition of F(A) into arcs [Tm—1,Zm], m € {1,...,n}, where xy = z,, and
d(Tm—1,Tm) < € for each m. We also require that the images of the vertices
of T are contained in the collection {z,}}’,_;. This guarantees that

> d@mor,wm) =Y lal[tm-1,3m]) = La(F(A)).
m=1 m=1

Consider the Euclidean polygon formed by joining x,,—1 with z,, for all m €
{1,...,n}. Our definition of the embedding F' ensures that the polygon does
not have self-intersections; see Remark Denote the polygonal region
bounded by that polygon by P. By taking ¢ to be sufficiently small, we have
that the region P is arbitrarily close to the region 2 bounded by F(A). In
particular, we choose € so that

M \(P) < 2H7 ().
Since F' is 4-bi-Lipschitz, we have

(41)  L4@OP) =D |om — 2ma| 4 d(@m-1,2m) = Ug(F(A)).
m=1 m=1

We consider a polygonal decomposition { Py }recx of the region P satisfying
the conclusions of Lemma with the given e.

We declare the length of each edge of the polygonal decomposition { Py }rex
to be 4 times its Euclidean length. Thus the 1-skeleton of the decomposi-
tion is a 1-dimensional polyhedral space with the resulting length metric.
We add to this polyhedral space the arcs [z;,—1,2,] C F(A), each with
length £4([xm—1,2Zm]). Note that we do not consider [x,,—1, %] as a subset
of the plane, which could intersect the interior of some triangles P, but
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as an abstract segment. We denote the resulting 1-dimensional polyhedral
space by S7 and its length metric by d;. Denote by 77 the copy of F(A) in
S1.

Let v be a path in S7 \ T} joining two points z,,, z; € T} for some m,[ €
{1,...,n}. Then

d(xm, 27) < 4‘xm - xl‘ < 4€|\(7) =Lg, (7)

From this, it follows that d(x,y) < di(z,y) for all points z,y € T1. If z,y €
|B;| for some j € {1,2,3}, then there exists a subpath ~ of 3; connecting z
and y with d(z,y) = li(y) = £q, (). Thus d(x,y) > di(x,y), and it follows

that d = d; on |5;|. Moreover, by property of Lemma (4.1), and the
relation £4(F(A)) = £q(A) < 3diam(T"), we have

(4.2) diamdl (Sl) < 4(||(8P) + 2 < 16€d(F(A)) 4+ 2¢ <48 diamd(T) + 2e.

We wish to fill in the 1-skeleton S; with faces so that we obtain a polyhe-
dral surface S with the desired properties. To each Jordan curve 0P, C Sp
we glue a cube S(Py) with bottom face removed isometrically along its
boundary, where the boundary of S(Pj) necessarily has length equal to
L4, (0Py). Thus

(4.3) H*(S(Py)) = (5/16)La, (0P)? = 50/ (0F;)>.

Next, consider a Jordan curve formed by an arc [2,,—1,Zy] and a line seg-
ment I C 9P. We observe first that {4, (I)=4£)(I) < 16d(zm-1,7m), since
F is 4-bi-Lipschitz. Glue a cube S(z,,) with bottom face removed isomet-
rically into this Jordan curve along its boundary. Then 0S(x,,) has length
at most 17d(x;,—1, Zm,) and thus

(4.4) H2(S(2m)) < Lod(Tm—1,Tm)?

for Lo = 5-(17/4)2. Denote by S the resulting polyhedral space and by dg
the resulting length metric. By construction, S is a closed topological disk
with boundary 7. We define ¢: S — T to be an arbitrary homeomorphism
such that ¢|gs = F~L.

It is immediate that ds(x,y) = di(z,y) for all x,y € S} C S. Indeed, any
path inside an attached cube with endpoints on the boundary has longer
length than the path on the boundary of the cube that has the same end-
points. This is the reason for attaching cubes to S;. Since d < di = dg
on Tp, we immediately obtain Moreover, d = d; = dg on |f3;| for each

j € {1,2,3}, so we also obtain [(3)] For[(2)] we use and to get
HAS) =D HA(S(PL) + Y HA(S(wm))
m=1

keK

< Z 5€|.\(8Pk)2 + Z LOd(CUm—ha?m)Q’

keK m=1
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Applying property [(iii)| from Lemma[4.1]and the relationship d(zm—1, Tm) <
€, we obtain

H?(S) < 85H*(P) + Loe Y d(zm—1,2m)

m=1
< 17T0H*(Q) + Loely(F(A)).

We choose a sufficiently small £ so that the second term of the sum is
bounded by H?(£2). Then, by Theorem we have

H2(Q)< (4)7) - 16HA(T) < 32H?(T).

It follows that H2(S) < LH?(T) for L = 32 - 171.
Finally, we verify Since {).|(0P) < €, we have

. 3 12
d1amdS(S(Pk)) < Zfds(aS(Pk)) = qu(apk) < 3e.
Moreover,

A7d(xm—1, Tm) < 13e.

e~ w

i (S(rm) < 30, (05 (rm) <

Therefore, by (4.2)),
diamg (S) < diamgg(S1) + 2 max diamg, (S(Py))
€

+2 max _diamg,(S(zm))

me{l,...,n}

< (48 diamg(T) + 2¢) + 6¢ + 26¢.

Choose ¢ so that 34e < diamg(7"). Thus diamg,(S) < 49diamg(7"). This
completes the proof. O

5. BUILDING THE APPROXIMATING SURFACES

This section is dedicated to the proof of Theorem First, we carry
out some technical preparations in Section We then give the proof of
Theorem [L.1] in Section [5.2l We conclude this section with a discussion of
the case where X is homeomorphic to C, in preparation for the proof of
Theorem [L.3l

5.1. Improved triangulations. We start by stating the main result by
Creutz and the second-listed author in [I3] on the existence of decomposi-
tions of a length surface into non-overlapping convex triangles. Let X be a
length surface. We say that a collection 7 of non-overlapping closed Jordan
regions T' C X is a geometric triangulation of X if it is locally finite, it covers
X, and each T € T is a triangular disk, endowed with the restriction of the
metric of X. We remark that a geometric triangulation is not necessarily
a triangulation in the usual topological sense, since we do not require that
the edges of triangles match exactly.
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We employ the following terminology. Recall that a set P C X is convex
if any two points z,y € P can be joined by a geodesic contained in P, and
in this case P is a length space with the restriction of the metric of X and
the inclusion map from P to X is an isometric embedding. If all triangular
disks in the geometric triangulation 7 of X are convex, then we say that
T is conver. For a geometric triangulation 7, we also define mesh(7) to
be the supremum of diameters of triangular disks 1" € 7. Finally, a surface
X has polygonal boundary if each boundary component of X consists of
non-overlapping geodesics. Note that if a boundary component of X is
homeomorphic to R, then it may consist of infinitely many such geodesics.
Moreover, any surface whose boundary is empty necessarily has polygonal
boundary.

Now we state the main result of [I3].

Theorem 5.1. Let X be a length surface with polygonal boundary and e > 0.
Then there exists a convex triangulation T of X with mesh(7T) < e.

For the proof of Theorem we need to refine the triangulation given by
Theorem to guarantee that the edge graph is approximately isometric
to the original space X. This is similar to Proposition 7.5.5 of [9].

Given two triangulations 77 and T3 of X, we say that 73 is a refinement
of T if for every triangular disk T' € 75 there exists a triangular disk 77 € Ty
such that T'C T". For a triangulation T of X, let £(T") denote the embedded
graph in X consisting of the edges of triangles in 7. This is equipped with
the length metric induced by X. If D C X is a connected set that is the
union of triangular disks in 7, then we denote by £(7T|D) the set £(T)N D,
again equipped with the induced length metric.

Proposition 5.2. Let X be a length surface and € > 0. Then for each
convex triangulation T of X with mesh(%) < €/8 there exists a convex
triangulation T that is a refinement 0f’7~' with the property that the inclusion
map from E(T) to X is an e-isometry. More generally, if D is a connected
union of triangular disks T € '7', then the inclusion map from E(T|D) to D,
equipped with the length metric induced by X, is an e-isometry.

Proof. Let (X, d) be a length surface, € > 0, and &’ < /8. Let T be a convex
triangulation of X such that dlam(T) < ¢ for every T € T. Enumerate T
as {T}eJ’ where J =N or J = {1,...,n} for some n € N.

Consider a triangle T Then 8T is the union of three geodesics al, a2, a2

]’a]’aj

Pick a finite set of points W; = {wj, e w/} in 8Tj such that every point
T € éﬁj is within distance 277¢’ of a point in W; on the same edge as x. We
also include the vertices of 9T in the collection W;. For each pair of points

in W; we add a geodesic in T} connecting them. By applying Lemma 4.3 of
[13] inductively, we can do this so that the resulting system of geodesics is
a finite graph.
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These additional geodesics subdivide f] into a finite number of smaller
polygonal disks. By Lemma 3.3 in [13], each of the resulting polygonal disks
is still convex and thus is a length space with polygonal boundary (with
the restriction of the metric of X). By Theorem 5.1 we can subdivide
these polygonal disks further so that we again have triangular disks. This
gives a new convex triangulation 7 = {T}};ecs, with the same notational
conventions that we used for %, that refines 7.

Let D be a connected union of triangular disks of the original triangulation
T. We show that the inclusion map from £(T|D) to D is an e-isometry,
where D is endowed with the length metric dp induced by X. First, note
that £(T|D) contains £(T|D), which is within dp-distance ¢’ < € from every
point of D. Hence E(T|D) is e-dense in D.

Let d7 denote the length metric on E(T|D). Clearly we have dp < dr
on the set £(T|D), which is a subset of D. We claim that dr < dp + ¢
on E(T|D) and this will complete the proof. Let z,y € E(T|D). Then,
by the construction of 7, there exist points 2,3’ € &(T|D) such that
dp(z,2') =dr(z,2") < ¢ and dp(y,y’) =d7(y,y’) < &’. In particular, we
have dr(z,y) < dr(2',y') + 2¢’ and dp(2',y') < dp(x,y) + 2¢’. Thus it
suffices to show that dr(z/,y') < dp(a’,y’) + 4¢' for every o/, € E(T|D).

Let o',y € E(T|D) and v a curve in D joining 2’ and 3. Inductively
define curves «; for each j € J in the following way. Take vyo = . If |v;_1]
intersects the interior of Tj, then let z1, z9 denote the first and last points
of intersection with TVJ Let 732 denote the maximal subcurve of v from 2y
to zo. Choose points wi,ws € W so that d(wy, z1,) < 27J¢" and wy, belongs
to the same edge as zj for each k € {1,2}. There are geodesics from z; to
wy, from wy to wa, and from ws to 2 contained in £(7|D). Let 722 be the
concatenation of these three paths. It is immediate that

((VZF) = d(z1,w1) + d(wy, wa) + d(wa, 22)
< d(Zl, 22) + 2d(zl, wl) —+ 2d(w2, 22)
< f(y2) 4270,
Let v; be the curve formed by replacing 772 with ¥72. If |y;_1| does not

intersect the interior of Tj, then take v; = ;1. Note that v intersects

only finitely many of the triangles in 7, so this process must terminate after
finitely many steps. This yields a curve ¥ in D. It is immediate that () <
£(y)+4¢€’. Since 7 is arbitrary, we have that dr(2/,vy') < dp(2/,y')+4¢’. O

Theorem [5.1]requires the surface to have polygonal boundary. Since we do
not impose this restriction in Theorem we give the following additional
lemma on polygonal approximation of the boundary.

Lemma 5.3. Let X be a length surface and € > 0. There exists a convex
set X C X homeomorphic to X having polygonal boundary such that the
inclusion map from X to X is an e-isometry.
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Here, the distance between two points in X is the length of a shortest curve
in X that connects them. By convexity, there is such a curve contained in
X, so this implies that the length metric on X is the same as the metric
inherited from X.

Proof. For each component Y of the boundary 90X, apply the following
procedure. Note that Y is homeomorphic to either R or S'; assume in the
following that it is homeomorphic to R.

As a consequence of the tubular neighborhood theorem [19) p. 76], there
is a neighborhood Uy of Y in X that is homeomorphic to the closed upper
half-plane in C, denoted by H. By restricting to a smaller neighborhood if
needed, we may assume that Uy is contained in (J, ¢y B(y, dist(y, 0X\Y)/2).
Thus, for any two distinct components Y7, Ys C 0X, the neighborhoods Uy,
and Uy, are disjoint.

Choose a sequence of points (y;)52_, in Y, indexed in increasing order
according to the parametrization of ¥ by R. By adding more points if
needed, we may assume that d(y;,y;+1) < d(y;, X \ Uy) for each j € Z. In
particular, since the closed ball at y; of radius d(y;,y;+1) is compact, each
point y; is joined to y;41 by a geodesic «y; contained in Uy. Moreover, we may
assume the (possibly empty) open region W; C X enclosed by Y and +; has
diameter at most € (given in the statement). Note that each component of
W; is a Jordan region. This follows from Kerékjart6’s theorem [37, Chapter
IV.16, p. 168].

Finally, by redefining the geodesics if needed, we may assume that for
all distinct values j,k € Z the sets W; and W, are disjoint. To justify
this claim, fix a bijection ¢: N — Z and apply the following inductive pro-
cedure. For some n € N, suppose that y,(1),...,7,(n) are such that the
sets Wy 1y, -+, Wy(n) are mutually disjoint. Suppose that 7, (,11) intersects
W1y For each component (t1,t2) of ’y;(lnﬂ)(Ww
[t1,2] to coincide with the subarc of v,y from Y11y (t1) to Vo1 (t2);
note that the interior of this subarc lies inside W, (,,1.1). The resulting curve,
still denoted by 7,(541), does not intersect W1y and is also a geodesic. As
a byproduct, we also have that v,y does not intersect W, 1) and that
Woa) and W, 11y are disjoint. Since Wy, ..., Wy, are mutually dis-
joint, we also see that this redefining of 7,(,11) does not introduce new
intervals of intersection between v, (,4.1) and W, for some k € {1,...,n}.
Finally, this procedure only makes the set W, 1) smaller, so the property
that W, 41) has diameter at most & remains. Apply this same redefining
procedure for W,y for all k € {2,...,n}. This completes the inductive
step. _

Let By = J;Z_ |j]. Consider its image £y, in C under the homeomor-

(1)), we redefine v,,(,,4.1) on

phism from Uy to H. Let V denote the unbounded component of C\ ng

in H and V the same set as a subset of the Riemann sphere C. Then OV
is connected and locally connected. By Theorem IV.6.7 in [49], there is a
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Jordan curve in OV (in fact, OV itself) separating V and C \? From this
we obtain an arc E} in 0V separating V and C\ V. The preimage of E}, is

an open arc By C Fy in X. Let V3 denote the component of Uy \ Ey not
intersecting Y. Observe that, since Uy and V- are both topological closed
half-planes there is a homeomorphism from Uy to V3 that is the identity
outside of some neighborhood of the closed region bounded by Ey and Y.

If Y is homeomorphic to S!, then we apply a similar procedure to obtain
a Jordan curve Ey separating Y and 0X \ Y and sets Uy and Vy.

Let E = |J Ey, where the union ranges over all components Y of 0.X.
Note that Ey, and Ey, are disjoint for any distinct components Y7, Yo C 0X.
Then X \ E contains a unique component X’ not intersecting 0.X. Let X be
the union of the sets Ey and X’. Gluing the respective homeomorphisms
for each component ¥ C X and the identity map on a suitable subset of
X', we obtain a homeomorphism from X to X.

Next, we show that X is a convex subset of X. Consider a path ~: [t1,t2] —
X between two points in X. We wish to find a path 7 contained in X of
shorter length connecting the same endpoints. If 7 is already contained in
X, then we take ¥ = «. Otherwise, by restricting to subcurves if needed,
we may assume that v(t1) and «(t2) are in the same boundary component
By C 0X and v((t1,t2)) € X \ X. Let 3: [t1,t2] — X be the path in Ey
from ~(t1) to y(t2).

We claim that £(7) < (). To show this, define a path ¢ in the following
way: for each component (t3,t4) of y~1(W;) for each j € Z, define ¢ on [t3, t4]
to traverse the subarc of v; homotopic to v, ;,) relative to the endpoints.
Since 7; is a geodesic, we must have £(Cly, 1) < £(7jty,1,])- Define ¢ to
coincide with v otherwise. It follows that £(¢) < £(7).

Consider a point z = J(t) for some t € (t1,t2). Then x € 0W; for some
J € Z. Since each component of W; is a Jordan region, we can find a curve n
from x to Y\ |v;| contained in W} except for its endpoints. Observe that the
curve 7 separates X \ X. Now ~(t1) and ~(t2) are in different components
of Ey \ {z}. Consequently, v~!(W;) must contain a component (¢3,%4) such
that (t3) and (t4) are in different components of OW; \ [n[. Then (|, 4,
joins the same endpoints and has image contained in |y;|. It follows that
z € [¢]. Thus [5| C |¢]|, and we have £(7) < £(() < £(7).

It remains to show that the inclusion map X — X is a e-isometry. Since
X is convex, it follows that the inclusion map is an isometric embedding.
Finally, each point in X is within distance € of a point in X. This completes
the proof. O

5.2. Proof of Theorem Let (X,d) be a length surface. Choose a
sequence (£5,)22; of positive reals satisfying €, — 0 as n — oc.
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We apply Lemma to find a surface X,, C X that is homeomorphic to
X and has polygonal boundary such that the inclusion map is a €,-isometry.
Moreover, )?n is convex as a subset of X, so that the restriction of d to )?n
is still a length metric.

Since the space )?n has polygonal boundary, we can apply Theorem
and Proposition with the parameter ¢, to obtain a decomposition T,
of X, into convex triangular disks with mesh(7~}b) < &n. We consider the
edge graph En =& (731) as having the induced length metric dp. As given
by Proposition Ehe inclusion map id: gn — )?n is a gp-isometry. More
precisely, d(z,y) < dn(z,y) < d(z,y) + e for all z,y € &,.

For each triangular disk T € 7,, with metric d, consider the polyhedral
surface S and the corresponding homeomorphism ¢r: S — T given by The-
orem Observe that ¢r|gs is length-preserving as a map from 95 into
gn, with either the metric d or the metric d,. Thus we may define a length
surface X,, by gluing each disk S into gn along the map ¢7. Denote the
metric on X,, by d,. We obtain a homeomorphism &,,: X,, — )?n by gluing
the maps ¢7. Let &, = @gl(gn). For each z € &,, put 7 = ®,(z) € &,.

Since élvn is a length metric on €~n and d, is a length metric on X,, it is
immediate that d,(z,y) < dn(Z,7) for all z,y € E,. On the other hand, let
x,y € &, and consider an arbitrary path v in X,, from x to y. For each disk
S, consider each component (a,b) of the set y~1(int(S)). We deduce from
Theorem that £q, (Y[(a,p) = ds(v(a),7(b)) = d(Pn(v(a)), Pn(7(b))),
where dg denotes the length metric on S. This implies that ¢4, (v) > d(z,9).
Since 7 is arbitrary, we have d(z,y) < d,(z,y) for all x,y € &,. In summary,
we have

(5.1) d(7,7) < dn(2,y) < dn(7,7) < d(Z,7) + €n

for all x,y, € &,.

Define the map f,,: X,, — X as the composition of ®,,: X,, — )N(n and
the inclusion map of X, in X. We claim that f,, is (2L + 3)&,)-isometric,
where L is the constant in Theorem First note that f,(X,) is ep-

dense in X, since ®,, is surjective and the inclusion map from X,, to X is
a ep-isometry. Next, let x,y € X,. Then, by Theorem and the

fact that mesh(’ﬁb) < &p, there exist a/,y" € &, such that d,(a/,x) < Ley,,
dn(ylay) < Ley, d(fn(ajl)afn(x)) < &n, and d(fn(y/)afn(y)) < &p. These

properties and (j5.1f) imply that

d(fa(2), fu(y)) < d(fa(2)), fu(y')) + 20
<dn(2',y) + 2en < dp(z,y) + (2L + 2)e,.
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In the other direction, we have
dp(z,y) < dp(2',y") + 2Le,
< d(fa(a"), fa(y')) + (2L + ey,
< d(fa(®), fu(y)) + (2L + 3)ey.

This concludes the proof that f, is ((2L + 3)e,, )-isometric.

Next, we verify the property regarding the Hausdorff 2-measure. Let
A C X be a compact set and fix 6 > 0. Let n be sufficiently large so that
diam(7") < ¢ for every triangular disk 7" € 7,,. Then T' C Ns(A) whenever
TNA# (). The set f,'(A) (which could be empty) is covered by the
sets f,1(T) for which TN A # (). Moreover, by Theorem we have
H2(f7H(T)) < LH2(T) for each T € T,,. Since the boundary of each triangle
T has Hausdorff 2-measure zero, we have

H2(f, (A)) < LH?(Ns(4)).
Hence, letting n — oo and then § — 0 gives

limsup H2(f; 1 (A)) < LH2(A),

as desired. O

5.3. The case where X is homeomorphic to C. To prepare for the proof
of Theorem [1.3] we refine the work in this section for the case where X is
homeomorphic to C. Note that X has no boundary as a manifold. Choose
a decreasing sequence (g5,)22; of positive real numbers such that &, — 0 as
n — 0.

First, we describe the existence of a sequence of nested triangulations of
X. By Theorem and Proposition there exists a triangulation 77 of
X such that the inclusion from the edge graph £(71) to X is a e1-isometry.
Now, to each triangular disk T' € 71 we apply Theorem to obtain a
triangulation of 7" with mesh less than e2/8. Note that the union of these
triangulations gives a triangulation of X also with mesh less than £2/8. By
Proposition [5.2] we may refine this triangulation to obtain a triangulation
T2 of X such that the inclusion from &(73) to X is a eg9-isometry. By
construction, 73 is a refinement of 7;. We proceed in the same way to obtain
triangulations 7T, such that 7,1 is a refinement of 7, and the inclusion from
E(Tyn) to X is a g,-isometry for each n € N.

Moreover, according to the last part of Proposition[5.2] for each connected
union D of triangular disks 7' € 7T, the inclusion map from &(T,41|D) to
D, endowed with the length metric induced by X, is a ,41-isometry. Note
that for each k € N, if D is a connected union of triangular disks of 7Ty, then
D is also a connected union of triangular disks of 7, for n > k. Thus, the
inclusion map from £(7,|D) to D is a e,-isometry for every n > k + 1.

Since X is homeomorphic to C, for each & € N there exists a closed
topological disk Dy, that is the union of triangular disks of 7 and such that
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Dy, C Diyq and X = Ure, Dyj,. We consider Dy, as being equipped with
the length metric induced by d, denoted by d. For each k,n € N such
that n > k, let 7, denote the subset of 7, consisting of triangular disks
contained in Dy. By the above, for n > k+ 1 the inclusion map from &(7;")
to Dy, considered with the metric dy, is a &,-isometry.

Consider the polyhedral surfaces X,, and the maps f,: X,, — X as con-
structed in Section [5.2] corresponding to the triangulations 7,. Since X
has no boundary, the maps f,, as constructed are homeomorphisms (rather
than topological embeddings). For each k,n € N satisfying n > k, let
D7 = f,'(Dg). The metric on X,, induces a length metric on D}, which
we denote by df. Because the triangulations are nested, the space D} is a
polyhedral surface for all n > k.

We claim that the conclusions of Theorem [[.1] are also valid for each fixed
k € N and for the sequence fn: (D7, d}) — (D, di), n > k.

Lemma 5.4. For each k € N, the sequence of homeomorphisms
fn: (DR, di) = (Dy,di), n >k,
is approzimately isometric. Moreover, for each compact set A C Dy, we have

lim sup H(f, ' (A)) < KH?(A).
n—oo

Here the Hausdorff 2-measures refer to the metrics of dj; and dj, respec-
tively, but one can use instead the measures with respect to the metrics of
X, and X.

We now justify the lemma. For each n >k, let Sp = {f,,;}(T) : T € T;"}.
Then ;' covers Di}gl and consists of those triangular disks used to construct
X, that are contained in . From here, we follow the same argument as in
the second part of Section with £(S}}) and £(T;") taking the roles of &,

and &, in Section respectively, to conclude that fnlDT; isa ((2L+3)ep)-

isometry from Dig to Dy, for n > k + 1. The details are omitted.

Finally, since the Hausdorff 2-measures on D;, with respect to d and dj,
coincide, and similarly for D?, we see directly from the argument in Section
that the conclusion regarding the Hausdorff 2-measure is also satisfied.

6. UNIFORMIZATION OF SURFACES

In this section, we prove our main result on the uniformization problem,
Theorem as well as Corollary [I.6] and Corollary In Section we
prove the compact case of Theorem i.e., where X is homeomorphic to C
or D, along with Corollary In Section we use a standard argument to
derive the Bonk—Kleiner theorem (Corollary from Theorem Finally,
in Section [6.3] we complete the proof of Theorem [1.3]in the non-compact
case where X is homeomorphic to C.
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We start with some definitions that are used throughout this section.
Recall that a continuous map v: X — Y between topological spaces is
monotone if the preimage of every point under v is connected.

Let X,Y be metric spaces of locally finite Hausdorff 2-measure. A map-
ping h: X — Y is quasiconformal (according to the geometric definition)
if A is a homeomorphism and there exists K > 1 such that for all curve
families I in X we have

K 'modT < modh(I') < K modT.

In this case, we say that h is K-quasiconformal. A mapping h: X — Y
is weakly quasiconformal if h is continuous, surjective, and monotone and
there exists K > 1 such that for every curve family I" in X we have

modI" < K mod h(T").

In this case, we say that h is weakly K-quasiconformal. Recall that if
h: X — Y is continuous and T" is a curve family in X, then h(T") denotes
the curve family {ho~:~vy €T}.

6.1. Compact metric surfaces. Here, we give the proof of Theorem [I.3]
in the case where X is homeomorphic to C or 2 = ID. This theorem follows
readily from the following auxiliary result.

Theorem 6.1. Let Q = C or Q = D. Suppose that X is a length sur-
face homeomorphic to Q with H*(X) < oo and {X,}°%, is a sequence of
polyhedral Riemann surfaces homeomorphic to Q0 converging in the Gromouv—
Hausdorff sense to X. Let f,: X, — X be an approximately isometric
sequence such that there exists K > 1 with
lim sup H(f,, ' (A)) < KH?(A)
n—oo
for all compact sets A C X. If hp: Q@ — X,, n € N, is a normalized
sequence of conformal parametrizations, then f, o h, has a subsequence that

converges uniformly to a weakly K-quasiconformal map h: Q — X with
h € NY2(Q, X).

Here we say that a sequence h,,: X, — Y, of homeomorphisms between
compact metric spaces is normalized if there exists a value § > 0 and a se-
quence of triples ay,, by, ¢, € X, with mutual distances bounded from below
by ¢ such that the mutual distances between the points hy, (ay ), by (b)), hn(cn)
are also bounded from below by §, where d is independent of n € N.

In fact, Theorem implies that the conclusion that h € N'2(Q, X) is
redundant and follows from the weak quasiconformality. Moreover, one may
obtain the conclusions of Theorem |6.1] (with a different constant) under the
more general assumptions that X, are length spaces, rather than polyhedral
surfaces, and the mappings h,, are K’-quasiconformal for some uniform K’ >
1, rather than conformal. However, we do not need this generality for the
proof of Theorem
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Assuming Theorem [6.1], we prove Theorem [1.3]in the compact case.

Proof of Theorem[1.3 for compact X. Let Q = Cor Q=D. Suppose that
X is homeomorphic to © with #2(X) < oo. By Theorem there exists
a sequence X, of polyhedral surfaces homeomorphic to §2 that converges in
the Gromov—Hausdorff sense to X. Moreover, there exists an approximately
isometric sequence f,: X, — X of topological embeddings such that for
some K > 1 we have
limsup H2(f, 1(A)) < KH?(A)
n—oo

for all compact sets A C X. We endow each X,, with the natural complex
structure, as in Section By the uniformization theorem for polyhedral
surfaces (Theorem , there exists a sequence of conformal parametriza-
tions h,: Q@ — X,. In order to apply Theorem it only remains to
normalize the sequence hyp,.

Suppose that 2 = C. Since X,, converges in the Gromov—Hausdorff sense
to X, there exists a sequence of triples al,, b, ¢, € X, with mutual dis-
tances uniformly bounded away from 0. By precomposing h,, with a Mobius
transformation of (E, we may assume that the preimages of these points
under h,, also have the same property. If Q = D, then, by Lemma
diam(0X,,) is uniformly bounded below away from 0. Hence, we may find

points a),, bl ¢, € 90X, with mutual distances uniformly bounded below.

We now precompose h,, with a Md&bius transformation of D, so that the
preimages of a},, b, ¢/, are the points 1,4, —1 € 9D. O

Next, we derive Corollary [L.6] from Theorem [I.3]and the following lemma.

Lemma 6.2. Let X and Y be compact 2-manifolds with boundary that are
homeomorphic and h: X — Y be a continuous, surjective, and monotone
mapping. Then intY C h(int X), 0Y = h(0X), and hlgx: 0X — 0Y is
monotone.

Proof. This result follows from a theorem of Youngs [53, p. 92], which asserts
that A is the uniform limit of homeomorphisms from X onto Y. In particular,
this theorem implies that Y = h(0X). The monotonicity of hlgx: 0X —
dY is immediate from the monotonicity of h. Since h is surjective, we
conclude that int Y C h(int X). O

Proof of Corollary[1.6. Consider the weakly quasiconformal map h: D —
X given by Theorem which lies in N'2(D, X). From Lemma we
conclude that hlgp: 0D — 0X is a monotone parametrization of 0.X. O

We now start the proof of Theorem [6.1] The proof is split into two parts:
the proof of uniform convergence and the proof of quasiconformality.

InAwhat follows, we assume, as in the statement of Theorem that
= C or 2 =D. Moreover, X is a length surface homeomorphic to  with
H2(X) < oo and {X,,}°°, is a sequence of polyhedral surfaces homeomor-
phic to €2 converging in the Gromov—Hausdorff sense to X. Let f,: X,, = X
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be a sequence of €,-isometries, where ¢, — 0 as n — oo, such that there
exists K > 1 with

limsup H2(f, 1 (A)) < KH?(A)

n—oo

for all compact sets A C X.

6.1.1. Equicontinuity and existence of the limiting mapping. We prove here
that if h,,: Q — X, is a normalized sequence of conformal homeomorphisms,
then the sequence f, o h,: 2 — X is uniformly equicontinuous. Recall
that a mapping between Riemann surfaces is conformal if it is complex
differentiable in local coordinates; see Section By Lemma hn
is also 1-quasiconformal (according to the geometric definition). The proof
of the equicontinuity relies on the fact that that limsup,, ., H?(X,) <
KH?(X), which allows us to apply Lemma

Lemma 6.3 (Equicontinuity). The sequence fp o hy,: Q — X, n € N, is
uniformly equicontinuous.

Proof. We claim that for each € > 0 there exists § > 0 and N € N such that
if E'is a continuum in Q with diam(E) < ¢, then diam(f,(h,(F))) < € for
all n > N. Since f, is an g,-isometry with ¢, — 0, it suffices instead to
show that diam(h,(E)) < € for all n > N.

We argue by contradiction. Suppose that there exists €9 > 0 such that
for every n € N there exists a continuum E,, C Q with diam(E,,) < 1/n, but
diam(hy, (Ey)) > eo for a subsequence hy,, of h,. To simplify the notation,
we write h,, instead of hy,, .

Since the sequence h,, is normalized, there exist points a,, by, ¢, € 2 with
mutual distances bounded away from 0, such that their images under h,
also have mutual distances bounded away from O.

Since diam(E,,) — 0, by passing to a subsequence we may assume that E,
converges to a point in the Hausdorff sense. Then for each n € N there exists
a curve in ) between a pair of the points a,, b,, ¢, that does not intersect
E,, and whose distance to E,, is bounded below away from 0, uniformly in n.
Indeed F,, can be very close to only one of the points a,, b,, ¢,, so the other
two can be joined by a curve that is away from F,; this can be justified
formally using the linear local connectivity of 2, as defined in Section [6.2
We define F;, to be the trace of that curve. We note that

mod I (E,, Fy,; ) — oo,
since the relative distance between E,, and F},, defined by

min{diam(E,,), diam(F},)}’

A(E,, F,) =

tends to infinity. In fact, since E,, converges to a point and dist(E,, F},) is
bounded away from 0, for all sufficiently large n € N one can find an annulus
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separating F, and F), with inner radius r,, where 7, — 0, and fixed outer
radius R > 0 so that

mod I'* (E,,, Fj,; Q) > clog(R/ry),

where ¢ > 0 is a uniform constant. See [2I} Section 7.9] for similar estimates.
Consider the continua h,(E,), hn(F,) C X,. By Lemma the
mappings h, are l-quasiconformal, so we have

mod I'* (hy, (Ey), hn(Fp); Xp) — 00.

Note that there exists n > 0 such that diam(h,(F,)) > n for all n € N,
since hy(F),) joins a pair of the points h(ay),h(b,),h(c,). Moreover, by
assumption, diam(h,(E,)) > €o. Now, Lemma with 6 = min{n, o}
implies that

lim sup mod I (hy (Ey), hn(Fr); Xn) < 00.

n—oo

This is a contradiction. O

Next, we prove the convergence of the sequence f, o hy,, n € N.

Lemma 6.4 (Convergence). The sequence fp o hy: Q — X, n € N, has a
subsequence that converges uniformly to a continuous, surjective, and mono-
tone mapping h: Q — X.

For the conclusion regarding monotonicity, we will use the fact that each
space X, is a length space, which allows us to apply Proposition

Proof. The proof of uniform convergence to a continuous map follows from
the Arzela—Ascoli theorem, applied to the uniformly equicontinuous se-
quence f, o hy: © — X. The surjectivity follows from the fact that the
set fn(hn(R) = fn(X,) is ep-dense in X, ie., dx(fn(Xn),z) < &, for all
x € X. Thus, the uniform convergence implies that h(Q) = X.

It remains to show that the mapping h is monotone. Suppose that for
some = € X the set h~1(x) is a disconnected compact subset of 2. Consider
points a, b lying in distinct components of h~!(x). Then, by planar topology,
there exists a simple curve v in Q \ h~!(z) separating the points a and b;
see [48] Corollary 3.11, p. 35]. Since each h,, is a homeomorphism, h,, o v
separates the points h,(a) and h,(b). The convergence of f, o h, to h
implies that fy,(hn(a)) and f(hy(b)) converge to x, which we consider as
a constant path. By Proposition there exists a sequence of paths
T [0,1] = X, such that 7,,(0) = hy(a), Yn(1) = hn(b), and fy,07, converges
uniformly to the constant path x. Since h,, oy separates hy(a) and hy(b)
and ~y, joins the two points, we conclude that the two paths intersect. By
the uniform convergence of f, ohy, o7y to hov and of f, oy, to x, we conclude
that h o~y intersects x, a contradiction. (|
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6.1.2. Regularity of the limiting parametrization. If h,: 2 — X,, is a nor-
malized sequence of conformal parametrizations, then by Lemma the
sequence f, o h, has a subsequence that converges uniformly to a continu-
ous, surjective, and monotone mapping h: 2 — X. By passing to a subse-
quence, we assume that f, oh, converges to h. We now complete the proof of
Theorem by proving that the limiting map A is weakly quasiconformal.

Recall that f,: X,, — X is an &,-isometry, where &, — 0, with the
property that for every compact set A C X we have

(6.1) limsup H2(f,, 1(A)) < KH?*(A)

for some uniform constant K > 0. By Lemma [2.8] each mapping h,, has an
upper gradient |Dhy,| with the property that

/ |Dhyp|? dH? = H? (h,(E))
E

for each Borel set £ C 2. We first prove that the upper gradients |Dh,,|
converge to a weak upper gradient of h.

Lemma 6.5 (Upper gradient). The sequence of upper gradients |Dh,| of
hn, n € N, has a subsequence that converges weakly in L*(Q) to a function
gn that is a weak upper gradient of h.

The argument is classical for mappings between fixed spaces. See, for
example, [24, Theorem 7.3.9, p. 194]. Since here we also have the additional
complication of Gromov—-Hausdorff convergence of spaces, we include the
proof.

Proof. For each n € N and for all locally rectifiable paths  in €2 connecting
points a, b we have

(6.2) dx, (hn(a), hn(b)) < / |Dh,| ds.
Y

Moreover, || Dhy||3, @ = H2(X,,) and the latter is uniformly bounded from

above by . By the Banach—Alaoglu theorem (see [24, Theorem 2.4.1]),
there exists a function g5, € L?(2) such that a subsequence of |Dh,,| con-
verges weakly in L2(€2) to g,. We choose a Borel representative of g,. We
claim that gp is a weak upper gradient of h, which is the uniform limit of

fn o hy.
Note that since each f, is an g,-isometry with ¢, — 0, we have

nh_{go an (hn(a)7 hn(b)) = 7}1_%20 dX(fn(hn(a))a fn(hn(b))) = dX(h(a)v h(b))

for every a, b € Q. Also, by Mazur’s lemma [24] p. 19], there exists a sequence
of convex combinations

M, My,
gn =D Al Dhil; 3 din =1, 0 Ain <1, i€ {noo, My}, neN,
=n =n
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that converge strongly to gs in L?(2). By Fuglede’s lemma [24, p. 131],
there exists a curve family I'g in 2 with mod 'y = 0 such that

lim /]gn—gh|ds:O
g

n—o0

for all 4 ¢ T'y. Taking the corresponding convex combinations in (6.2)) and
passing to the limit, shows that gj is a weak upper gradient of h. ([

Thus, by passing to a subsequence, we may assume that |Dh,,| converges
weakly in L?(Q) to g,.

Lemma 6.6 (Quasiconformality). For each Borel set E C X we have
/ gi dH? < KH*(E).
h=1(E)

Proof. Let E C X be a Borel set and A C h™'(E) be a compact set. By the
inner regularity of Hausdorff 2-measure in 2, it suffices to show that

/ o2 M2 < KH2(h(A)) < KH2(E).

A

Since h(A) is compact and H? is finite on X, for each € > 0 there exists an
open set U D h(A) such that

(6.3) H2(U) < HA(h(A)) + .

By the uniform convergence of f, o hy, to h, we conclude that f,(h,(A))
converges in the Hausdorff sense to h(A) as n — oo, so f(hn(A)) C U and
thus h,(A) C f,71(U) for all sufficiently large n € N. Combining this with

Lemma we have
[ D8 ane = w20, (4) < 21,1 O)
A

for all sufficiently large n € N. Passing to the limit and using (6.1)) and
(6.3)), we obtain

limsup/ |Dh,|?dH? < KH*(U) < KH?*(h(A)) + Ke.
A

n—oo

Next, we let ¢ — 0. Finally, since |Dh,,| converges weakly in L?() to g,
we see that |Dhy|xa also converges weakly to gpxa, which implies that

/ gr dH? < liminf/ |Dhy|? dH?.
A n—oo A
This completes the proof. [l

Lemma 6.7. We have h € NY2(Q, X). Moreover, for every curve family T
in Q we have
mod I’ < K mod h(T").

Proof. By Lemma gn is a weak upper gradient of h. The conclusions
now follow from Lemma and Lemma (|
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With this lemma, the proof of Theorem [6.1] is complete.

6.2. Quasisymmetric uniformization. In this section, we give an alter-
native proof of the Bonk—Kleiner theorem, stated as Corollary We first
recall the necessary definitions. Let (X,dx) and (Y, dy) be metric spaces.
A homeomorphism f: X — Y is quasisymmetric if there exists a homeo-
morphism 7: [0,00) — [0, 00) such that

dy (f(x), f(y)) dx(z,y)
dy (f@), £(2)) = <dx<a:,z>>

for all distinct points x,y, z € X. Next, a metric space X is Ahlfors 2-regular
if there exists a constant C' > 1 such that for all 0 < r < diam(X) we have

C~'r? <H*(B(x,r)) < Cr?.

Moreover, we say that X is linearly locally connected (abbreviated LLC') if
there exists A > 1 such that for any ball B(a,r) C X the following conditions
hold:

LLC(1): If z,y € B(a,r), then there exists a continuum E C B(a, \r)
containing x and y.

LLC(2): If z,y € X \ B(a,r), then there exists a continuum E C X \
B(a,r/)\) containing x and y.

In this case, we say that X is A-LLC.

Let X be a metric 2-sphere that is Ahlfors 2-regular and LLC. By a
result of Semmes [45, Theorem B.6], X is quasiconvex, quantitatively. That
is, there exists a constant ¢ > 1 depending only on the Ahlfors regularity
and linear local connectivity constants such that for any two points z,y € X
there exists a curve v connecting them with

() < cd(,y).

Alternatively, one can obtain the quasiconvexity from a result of Wildrick
[51, Corollary 4.8]. This implies that we can replace the metric on X with
a bi-Lipschitz equivalent length metric that is Ahlfors 2-regular and LLC,
quantitatively. Therefore, in order to prove Corollary we may assume
in addition that X is a length space.

By Theorem there exists a weakly quasiconformal mapping h: C —
X. Under the Ahlfors 2-regularity condition, such a mapping h is necessarily
a homeomorphism, as follows from Theorem[7.4|below. Finally, the following
general result implies that h is quasisymmetric, thus completing the proof

of Corollary

Theorem 6.8. Let X be a metric 2-sphere that is Ahlfors 2-reqular and
LLC. Suppose that g: C — X is homeomorphism such that

modI" < K mod g(T")

for some K > 1 and for all curve families I in C. Then g s quasisymmetric.
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See [34, Theorem 2.5] or [42, Proof of Corollary 1.7] for a proof.

6.3. Non-compact metric surfaces. Suppose that X is a non-compact
length space homeomorphic to C that has locally finite Hausdorff 2-measure.
In this subsection, we show that there exists a weakly K-quasiconformal
map h: Q — X, where Q =D or 2 = C. This proves Theorem in the
non-compact case.

Consider an approximately isometric sequence f,,: X,, — X of topological
embeddings as in Theorem By the discussion in Section fn can be
chosen so that the following additional conditions hold. There exists an
exhaustion of X by an increasing sequence of closed topological disks Dy,

k € N, such that for all n > k, DI = f,}(Dy) is a polyhedral closed
topological disk and fn|ng: Diz — Dy, is a homeomorphism. Moreover, Dy,

is a length space with metric

d; (I‘, y) = igf gdx (’7),

where the infimum is taken over all paths v C D}, connecting = and y and
the length of v is computed with the metric of X. Note that dx < di and
that dj, is locally isometric to dx in Dy, = int(Dy). Similarly, D} is a length
space with metric d}! defined analogously. Finally, as stated in Lemma
the conclusions of Theorem are true for the restriction of f, to D.

We split the proof of the existence of a weakly K-quasiconformal para-
metrization of X into several parts.

Step 1: Normalizations in X, and X. We fix distinct points p,q € D;. Since
fn: X5, — X is an approximately isometric sequence, there exist points
Pnsqn € DY, n € N, such that f,(p,) — p and f,(¢,) — ¢. Here, D} =
int(DY). Since fn|DTL: D7 — Dy is a homeomorphism, we have f,,(9D}) =
0D, and

liminf distq, (pn,0D7) > distx(p,0D1) > 0.
n—00 n

In particular, the distance from p,, to D7 is uniformly bounded away from
0. Since D} C D}, k € N, n > k, it follows that for each k£ € N, the distance
from p, to 0D} is bounded away from 0, uniformly in n > k. The same
conclusions hold for the point ¢,. Finally, the distance from p, to g, is
uniformly bounded away from 0. All these conclusions hold for the metric
dx, and thus also the metric d}', which is larger than dx,, .

Step 2: Uniformization by disks and normalizations in the plane. By The-
orem for each k£ € N and for n > k there exists a conformal map from
D onto Dig By precomposing with a Mobius transformation, we obtain a
conformal map h from a disk B(0,7}) C C with 7} > 1 onto D} such that
hi(0) = pn and h (1) = qp.
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We claim that for each fixed k& € N the sequence {r}},>x is bounded
above. Let E be the unit interval [0, 1] inside B(0,7}}) and F,, = 0B(0,7}).
Consider the continua A} (E) and h}(F,) = 0D}, and recall from Lemma
that the sequence f,|mm: (D7, d) — (Dg,dy), n > k, is approximately
isometric. From Lemma 0D} has diameter uniformly bounded below
away from O for n > k. Since pp,q, € h(E), that set also has diame-
ter uniformly bounded away from 0. From Lemma [2.4] we conclude that
mod I'*(h}(E), hit(F,); D}) is uniformly bounded above in n > k. Since hf
is conformal, it follows that mod I'*(E, F,,; B(0,7})) is uniformly bounded
above. On the other hand, I'*(E, F,,; B(0,77)) contains the circles dB(0,7)
forall 1 <r <7, so

1 R
D log (r;) < mod T™(E, Fy,; B(0,7%))-
T

The boundedness of 7} follows.

For fixed k € N, consider the sequence g,(z) = hi(ri’z), n > k, from D
onto Dig We show that this sequence is normalized in the sense Theorem
using the metric d}} in the target. Note that the points 0, 1/r7, and
—1 of D have mutual distances uniformly bounded away from 0 as n — oo.
Moreover, we have ¢,(0) = pn, gn(1/r}) = @n, and g,(—1) € 0D}, and by
Step 1 the mutual distances of these points are also bounded away from 0.
Thus, the sequence g, is normalized, as claimed.

Step 3: Weakly quasiconformal parametrizations. By Theorem for each
k € N, there exists a subsequence of f,, 0g,, n > k, that converges uniformly
on D to a weakly K-quasiconformal map onto Dy. Since r} is bounded above
and below in n > k, we conclude that there exists a subsequential limit r
of ri! such that the sequence f, o h}! has a subsequence that converges to
a weakly K-quasiconformal map hy: B(0,7;) — Dg. We remark that the
modulus of curve families in Dy, is computed with respect to the metric dj,
here. Note that hy(B(0,7x)) D Dy by Lemma By passing to a diagonal
subsequence, we assume that r;' converges to r; and f;, o hy converges to hy,

for each k£ € N.

Step 4: Normal families argument. Now we fix n > 1 > k. In B(0,7}), we
have

faohi o (h)™ o hif = fuohy.

Note that the conformal embedding (h?") "t ohl: B(0,r?) — B(0,r) fixes 0
and 1, and that the balls B(0,r}") are uniformly bounded in n. By Montel’s
theorem [35, Theorem 10.7, p. 160], as n — oo these maps subconverge lo-
cally uniformly to a conformal homeomorphism ¢y ;: B(0,71) — €, where
Qky C B(0,7;). Moreover, since Di! C Dy, we have €; C Q1 for
all I > k+ 1. By passing to a diagonal subsequence, we may assume that
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(h")~! o hi converges to ¢y for each [ > k and

hiowpg = hy

in B(0,ry) for all I > k.

Next, note that for fixed ¥ € N and for [ > k the conformal maps
or1: B(0,7r,) = Qj, form a normal family since they fix the points 0 and 1;
see [10, Exercise 12.29 (v), p. 441]. Thus they converge along a subsequence
to a conformal homeomorphism ¢y : B(0,7) — Q, where Q C C is a sim-
ply connected domain. Hence, h; = hy o gol;ll converges along a subsequence

of | — oo locally uniformly on € to the map h = hy o gplzlz O — Dy. Note
that the limiting map A is independent of k, since it was obtained as a limit
of hy. Moreover, h(€) = hi(B(0,r;)) D Dg, and h: Qi — h(€y) is weakly
K-quasiconformal, where the modulus in h(£2;) C Dy, is computed with the
metric dy,.

By considering a diagonal sequence, we may obtain a map h that maps
Q onto h(Qy) with Dy C h(Q) C Dy for each k € N and is weakly K-
quasiconformal on Qj, (using the metric di in the image). Additionally, we
have Qj, C Qp41. This is true by Carathéodory’s kernel convergence theorem
[41), Chapter I, Theorem 1.8], since j; converges to € as [ — oco.

Step 5: The limiting parametrization. Since Q C 41, the set Q =
Ure; Q% is a simply connected domain in C. The map h is a continuous
map from Q onto X = (Jro; Di. Since h|g, is monotone and Qj C Q41 it
follows that h is monotone on 2.

Finally, we argue that h is weakly quasiconformal on €. By the mono-
tonicity of modulus, it suffices to show that if I' is a curve family contained
in a compact subset of 2, then modI" < K mod h(I"). By continuity, h(I")
is contained in a compact subset of X, so there exists £ € N such that
h(I') C Dy. Recall that h|q, is weakly K-quasiconformal, so we obtain the
desired inequality but with the modulus of A(T") computed in the metric dj,
rather than in dx. However, dj is locally isometric to dx in Dy, so the
modulus of A(T") is the same in both metrics.

As the final step, by precomposing h with a conformal map, we may
obtain that @ =D or Q = C. O

7. FURTHER PROPERTIES OF WEAKLY QUASICONFORMAL MAPPINGS

In this section we establish further properties of weakly quasiconformal
mappings h: X — Y, where X and Y are metric surfaces with locally
finite Hausdorff 2-measure. Recall that h is weakly quasiconformal if it
is continuous, surjective, monotone, and there exists K > 1 such that for all
curve families I in X we have

modI" < K mod h(T").
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The main result in this section concerns the equivalence of different defi-
nitions of weak quasiconformality. In general, if X and Y are metric surfaces
with locally finite Hausdorff 2-measure and h € Nﬁ)’f (X,Y), then there exists
a minimal weak upper gradient of h that we denote by gp,; see [24, Theorem

6.3.20, p. 162].

Theorem 7.1 (Definitions of quasiconformality). Let X,Y be metric sur-
faces with locally finite Hausdorff 2-measure and let h € NIE’E(X,Y) be a
continuous and monotone mapping. The following are equivalent.

(i) For every Borel set E C'Y we have
/ g2 dH? < KH*(E).
h=1(E)

(ii) The set function v(E) = H?*(h(E)) is an outer regular, locally fi-
nite Borel measure on X. Moreover, if J, is the Radon—Nikodym
derivative of v with respect to H?, then for H?-a.e. x € X we have

gn(x)? < KJy(z).

Combining this theorem with the result of Williams stated in Theorem
we obtain Theorem that is, h is weakly K-quasiconformal if and
only if it satisfies

The more intricate implication is fromto because h is not assumed
to be a homeomorphism. One needs to make sense of the Jacobian of A first.
We note that it is not immediate that E +— H2(h(E)) is a measure on €,
since h is not a homeomorphism. Instead, we use the weak quasiconformality
of h to derive this.

Remark 7.2. We note that if one uses the Borel measure (see [15, Theorem
2.10.10, p. 176])

P(E) = /Y #(h~(y) N B) dH2(y) > H2(h(E))

in place of v, where #(A) denotes the cardinality of the set A, then the
equivalence between |(1)| and is immediate provided that this measure is
o-finite (so that one can define its Radon-Nikodym derivative). The latter
is guaranteed if h is a homeomorphism, but it is not true in general under
merely continuity and monotonicity. Our proof below in fact shows that
v = v for weakly quasiconformal mappings, since #(h~!(y)) = 1 for H?-a.e.
y € Y; see Lemma[7.8]

Remark 7.3. The discussion in this section and the equivalence of defini-
tions of weak quasiconformality can be generalized immediately to metric
n-manifolds, n > 3, provided that an n-dimensional version of Lemma [7.7]
holds. We are not aware of any such result in the literature, so we consider
only the case of 2-manifolds.

The techniques used in the proof of Theorem allow us to derive the
following topological consequence.
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Theorem 7.4. Let X,Y be metric surfaces without boundary and with lo-
cally finite Hausdorff 2-measure and let h: X — Y be a weakly quasiconfor-
mal mapping. If the modulus of the family of non-constant curves passing
through y is zero for every y € Y, then h is a homeomorphism. Moreover,
a sufficient condition for this property is that

2
lim infM < 00

r—0 r2

for everyy € Y.
This result follows immediately from Lemma [7.8] below.

7.1. Proof of Theorem In what follows, we assume that X and Y are
metric surfaces with locally finite Hausdorff 2-measure. We freely use the
property that the Hausdorff 2-measure is an outer regular Borel measure
[15, Section 2.10, p. 171]. Moreover, recall that topological surfaces are
second countable and separable and admit a compact exhaustion. Thus,
the Hausdorff 2-measure is o-finite if it is locally finite. Let B(Y") be the set
of points y € Y such that
2

lim H(By.r) (B(Zy,r)) = 0.

r—0 T
Lemma 7.5. The set B(Y') is Borel measurable and has Hausdorff 2-measure
zero.

Proof. The fact that B(Y) has measure zero follows from [15, 2.10.19 (5),
p. 181], which implies that there exists a uniform constant C' > 0 such that

H2(B(y,
lim sup M <C
r—0 r
forae. yev.
We prove the measurability statement. For fixed r > 0 the function
y — H?(B(y,r)) is lower semi-continuous, thus Borel measurable. Indeed,
by Fatou’s lemma, whenever y,, — y, we have

H*(B(y,r)) = / XB(yr) AH> < lim inf / XB(yn,r) AH>.

Moreover, by the monotone convergence theorem we see that for fixed y € Y
the function r — H2(B(y,r)) is left-continuous. We conclude that the
function f(y,r) = r2H(B(y,r)), y € Y, r > 0, is Borel measurable in
y and left-continuous in r. It now follows that the set B(Y) = {y € Y :
lim, ¢ f(y,r) = oo} is Borel measurable by writing

BY)=(\UJ [ fweY:flyr) >k

k=1n=1re(0,1/n)NQ

This completes the proof. O
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We denote by C(Y) the set of points of y € Y such that the modulus of
the family of non-constant curves passing through y is positive.

Lemma 7.6. We have C(Y) C B(Y).

Proof. We show that for each y € Y \ B(Y), the modulus of the family of
non-constant curves passing through y is zero. For each 6 > 0, let I'5 denote
the family of curves passing through y with diameter bounded below by §.
By the subadditivity of modulus, it suffices to show the conclusion for the
family I's for all § > 0.

Since y € Y \ B(Y), there exists k > 0 such that H?(B(y,r)) < kr? for
a sequence of arbitrarily small > 0. We also fix N € N. Let Ry < §/2 be
a radius such that H?(B(y, R1)) < kR?, and let 7 := Ry /2. In the annulus
Ay = A(y;r, Ry) ={z €Y :r <d(z,y) < R}, weset p=N"1(Ry —
r1)~1. Now, consider Ry < 7y so small that H?(B(y, R2)) < kR3, define
ry = Ra/2, and set p = N~1(Ry — r3)~! in the annulus Ay = A(y; o, Ra).
We repeat this procedure N times, until we obtain a last annulus Ay =
A(y;rn, Rn). We set p = 0 outside the union of these annuli.

Note that p is an admissible function for I's. Indeed, any curve v € I's
connects y to 0B(y, Ry), since diam(|y|) > § > 2R;. Thus, 7 intersects all
annuli A;, ¢ € {1,..., N}, with

/XAidSZ R, —r;.
vy

for each ¢ € {1,..., N}. This implies admissibility. We now have

N N 2
%2(A ) R; 4k
2 _
modF(;g/p dH N2 E  S— N2 g R2/4 N
This converges to 0 as N — oo, completing the proof. O

Lemma 7.7. Suppose that E,F C X are disjoint, non-trivial continua.
Then the modulus of the family of curves connecting E and F' is positive.

This result requires that X is a metric surface and thus has locally Eu-
clidean topology. It can be proved by a slight modification of [42], Proposition
3.5]. The idea is to consider a fixed curve =y joining F and F and define the
function u: X — R by u(z) = d(|y|, ). Then there exists T" > 0 such that
for almost every ¢ € (0,T) the level set u~!(t) contains a rectifiable curve
joining F and F'. The family of such curves has positive modulus.

Lemma 7.8. Suppose that h: X — Y is a continuous, non-constant, and
monotone mapping such that

mod I’ < K mod h(T")

for each curve family T in X. Then h is injective in X \ h=1(C(Y)). In
particular, h is injective in X \ h=1(B(Y)).
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This lemma proves Theorem [7.4] Indeed, the assumption of the theorem
implies that C(Y) = 0 or B(Y) = (. It follows from Lemma that h
is injective on X. By the invariance of domain theorem, h is a topological
embedding.

Proof. Tt suffices to show that h=1(y) is a singleton for each y € h(X)\C(Y).
Suppose that h~!(y) contains more than one point. By the monotonicity
of h, h=1(y) is a closed connected subset of X. By assumption, h is non-
constant, so X \ h~!(y) is a non-empty open set. Since X is a metric
surface, there exists a non-trivial continnum E C X \ h=1(y). Since X is
locally compact, h~!(y) contains a non-trivial continuum F. Let T' be the
family of curves connecting E and F. Then modI' > 0 by Lemma [7.7}
By assumption, we have mod A(I") > 0. Note that each curve of h(T) is a
non-constant curve joining y to h(E), and that h(E) does not contain y. By
the definition of C'(Y'), we have mod h(I') = 0, a contradiction. Thus, h is
injective in X \ A~1(C(Y)). By Lemma ﬁ we conclude that h is injective
on X \ h=Y{(B(Y)). O

Corollary 7.9. Suppose that h is as in Lemma[7.8. If E C X is a Borel set,
then h(E)\B(Y) is a Borel set. Moreover, the set function v(E) = H2(h(E))
is an outer reqular, locally finite, Borel measure on X.

Proof. By Lemma B(Y) is a Borel subset of Y. Since h is continuous,
h=Y(B(Y)) is a Borel subset of X. By Lemma h is injective on X \
h=Y(B(Y)). By the Lusin-Souslin theorem [27, Theorem 15.1, p. 89] it
follows that if E is a Borel subset of X \ h~}(B(Y)), then h(E) is a Borel
subset of Y. Now, if E is any Borel subset of X, then

h(E)\ B(Y) = h(E\h™'(B(Y))) = (EN (X \ h™ (B(Y)))),

which implies that h(F) \ B(Y) is a Borel set.

Since H? is a Borel measure on Y, it is immediate that the set function
v(E) = H23(h(E)), restricted to X \ h~1(B(Y)), where h is injective, is a
Borel measure. Since H2(B(Y)) = 0, it follows that v extends to a Borel
measure on X.

Since h is continuous and the Hausdorff 2-measure of Y is locally finite,
it follows that v(E) < co whenever E is compact. For the outer regularity,
recall that H? is outer regular on Y. Thus, for any set £ C X, there exists an
open set U in Y containing h(E) such that #2(U) approximates H2(h(E)).
The set h=(U) is open by continuity and contains E. Moreover v(h~1(U)) =
H2(h(h~1(U))) < H%(U), so the v-measure of h~!(U) approximates the v-
measure of F, as desired. O

Proof of Theorem[7.1, We assume that h: X — Y is a non-constant map-
ping, otherwise the implications are trivial.

Suppose first that is true. Lemma implies that for each curve family
I' in X we have modI' < K mod h(T"). By Corollary v==H?ohis an
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outer regular, locally finite, Borel measure on X. Now, by the Lebesgue—
Radon—-Nikodym decomposition theorem [I7, Theorem 3.8, p. 91], we can
write v = JydH? + vs, where Jj, € LllOC (X) and vg is a measure singular with
respect to H2.

By we have
g dH?* < KH*(E)
h=H(E)
for each Borel set £ C Y. Since B(Y) has measure zero by Lemma we
have g;, = 0 a.e. on h"(B(Y)). Let E C X be an arbitrary Borel set. By
Corollary h(E)\ B(Y) is a Borel set. Thus,

/ g dH? = / gr dH? < / gh dH?
2 B\h-1(B(Y) B (R(B)\B(Y)

< KH*(h(E)\ B(Y)) = KH*(h(E)).
It follows that
/ gr dH? < K/ Jn dH? + Kvg(E).
E E

The singularity of v, with respect to H? implies that g}% < KJp ae. in X
with respect to H?, as desired.
Conversely, if g,% < K Jy, then for every Borel set £ C Y we have

/ G dH? < K / Jp, dH?
h=1(E) h—1(E)

< Kv(h"Y(E)) = KH*(h(h Y (E))) < KH*(E).

This proves O

8. EXAMPLES

In this section, we present concisely several known examples illustrating
some of the possible behavior of weakly quasiconformal maps. We then give
a detailed example in Section [8.4] showing that in the non-compact case of
Theorem [1.3]there is no clear distinction between the situations where Q = C
and ) = . This example verifies Proposition [1.5|in the introduction.

8.1. Example: Failure of the Lusin (N) property. Let (X, u), (Y,v)
be measure spaces. A mapping f: X — Y satisfies the Lusin (N) prop-
erty if p(E) = 0 implies v(f(F)) = 0 for every measurable set £ C X.
Every metric surface becomes a measure space by giving it the Hausdorff
2-measure. Rajala [42, Section 17] proves that there exists a quasiconformal
homeomorphism h from a planar domain  onto a length surface X C R3
with H?(X) < oo such that h maps a Cantor set of 2-measure zero in 2
onto a Cantor set of positive Hausdorff 2-measure in X. Thus, we cannot
guarantee that the weakly quasiconformal mapping h of Theorem has
the Lusin (N) property, even if it is quasiconformal.
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8.2. Example: Collapsing a ball to point. Let B be a closed ball in C
and consider the metric space X obtained from C by identifying points in B,
equipped with the quotient metric. Then X is a length space homeomorphic
to C with locally finite Hausdorff 2-measure, and the natural projection
P: C — X is weakly 1-quasiconformal. However, X is not quasiconformally
equivalent to any planar subset because there exists a point of X, namely
the point P(B), such that the modulus of the family non-constant curves
passing through that point is positive. On the other hand, in the Euclidean
plane, the modulus of non-constant curves passing through a given point is
always zero.

This space serves as an example where the Lusin (N~!) property fails.
That is, a set of positive 2-measure in C is mapped by P to a set of 2-
measure zero in X. Of course, P is not a homeomorphism. A less trivial
example is given in [38]. By inspecting the construction there, it can be
shown that there exists a length surface X C R?® (with metric induced
by the Euclidean metric) with locally finite Hausdorff 2-measure such that
there exists a weakly quasiconformal homeomorphism A: C — X with the
property that a set of positive 2-measure of C is mapped to a set of 2-
measure zero in X. In fact, h is the restriction of a global quasiconformal
homeomorphism of R3.

8.3. Example: Traveling for free in a Cantor set. Let 2 C C be a
domain and C be a totally disconnected, relatively closed subset of 2. We
consider the density xg\c on €2, which gives rise to a pseudometric on (2.
Namely,

d(z,y) = inf / Xa\c ds
Ty
where the infimum is taken over all rectifiable curves in €2 joining x and y.

Proposition 8.1. The function d: Q x Q — [0,00) is a metric with the
following properties.

(i) (Q,d) is a length space with locally finite Hausdor(f 2-measure.

(ii) The identity map id: (Q,|-|) — (Q2,d) is a homeomorphism that
18 locally 1-Lipschitz and weakly 1-quasiconformal on ), and locally
isometric on Q\ C.

(iii) Let v: [a,b] — Q be a curve, denote by [a;,b;], i € I, the closures
of the components of v~ (Q\ C) and set i = Y|, p,, ¢ € 1. If
£4(v) < oo, then

) = - ta) = 3 100 = [ xercds
iel iel v
and H(|y| N C) = 0. Conversely, if H'(|y| N C) =0, then

Ca(y) = la(wi) =D Ly (m).

i€l i€l
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If C has positive area, then by following the argument of [42] Example
2.1], it can be shown that (€, d) is not quasiconformally equivalent to any
planar domain. We do not provide the details of the general case here, but
in Example we give a specific example (€2, d) with the same property.
The general question of when constructions of this type yield a surface qua-
siconformally equivalent to a planar domain has been investigated in [26].

Proof. We first show that d is a metric that is topologically equivalent to
the Euclidean metric. Let x,y € . We trivially have d(z,y) < |z — y|
if the line segment between z and y is contained in 2. On the other
hand, if = and y are distinct points, and = ¢ C or y ¢ C, then d(z,y) >
max{dist|.|(z,C),dist||(y,C)} > 0. If z,y € C, then there exists a topo-
logical annulus A C Q\ C separating x from y [48, Corollary 3.11, p. 35].
Hence d(z,y) is bounded below by the distance of the boundary components
of the annulus A. Thus, d(z,y) > 0. If {z,}ren is a sequence in Q with
d(xp,z) — 0 for some x € 2, then for any given annulus A C 2\ C and
all sufficiently large n € N, z,, cannot be separated from = by A. In fact,
by the result referenced above, we can consider arbitrarily small such annuli
surrounding x. We conclude that x,, converges to x in the Euclidean metric.
This completes the proof of the topological equivalence of d with the Eu-
clidean metric. To summarize, (2, d) is a metric space such that the identity
map id: (Q,]-]) — (2,d) is a locally 1-Lipschitz homeomorphism. This also
implies that (£2,d) has locally finite Hausdorff 2-measure. Moreover, d is by
definition locally isometric on © \ C to the Euclidean metric.

Next, we show that the identity map id: (Q,|-|) — (,d) is weakly 1-
quasiconformal. The function g = xq\¢ is trivially an upper gradient of id
and for any Borel set £ C 2 we have

| o @i = wiB\ C) < (B < 2 (D).

since id is locally 1-Lipschitz. We now employ Lemma which implies
that id is weakly 1-quasiconformal.

It remains to ShOW which also implies that d is a length metric. First,
suppose that « is rectifiable with respect to the Euclidean metric. Then

la(y) > Zfd(%) = ZEH(%) = /XQ\C ds.
Y

el el

For the reverse inequality, let a = tg < t; < --- < t,, = b be a partition of
[a, b], and note that by the definition of d we have

Zwmnmwzz/
j=1 j=1"7

This shows the first part of

Xa\c ds = /XQ\C ds.
| o

ltt; 1.t
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Next, we recall the area formula

— / #(y N (z)) dH(x),
Q

where #(A) denotes the cardinality of the set A. See [15, Theorem 2.10.13,
p. 177] for a proof. In general, we have

| #67 @) arlia)
—Z/Q (b)) drla) + [ #07 @) dla)

el

= La(v) / #(v () dHg().
icl
If £,(v) < oo, then the left-hand side is finite and equal to ) ;- £4(7:) by the
previous, so [ #(y~(x)) dHj(z) = 0, which is equivalent to H'(]y|NC) =
0. Conversely, if H1(]y] N C) = 0, then by the area formula we obtain that
Ca(y) = D icr ba(vi) = 2 icr 4 (7i)- 0

8.4. Example: No distinction between the plane and the disk. We
show that there exists a length surface X homeomorphic to C with locally fi-
nite Hausdorff 2-measure such that there exist two weakly 1-quasiconformal
maps, one from D onto X and one from C onto X. This proves Proposi-
tion See Example 6.2 in [12] for a similar construction in the context of
Plateau’s problem for metric spaces.

In fact, such a space X cannot be quasiconformally mapped to a planar
domain. Indeed, suppose there were a quasiconformal map from X onto a
planar domain 2. By postcomposing with a conformal map, we may assume
that @ = D or 2 = C. Since there exist weakly quasiconformal maps
from D onto X and from C onto X, we obtain a weakly quasiconformal
map f from D onto C or from C onto D. In fact, Theorem [7.4] implies
that f is a homeomorphism. It is well-known that a weakly quasiconformal
homeomorphism between planar domains is quasiconformal. Specifically, by
definition, a quasiconformal homeomorphism between Euclidean domains is
a priori required to satisfy only one modulus inequality; see [30), Section 3].
Thus, we obtain a contradiction by Liouville’s theorem for quasiconformal
mappings [47, Theorem 17.4].

Next, we describe the construction of the space X, which relies on the
next lemma.

Lemma 8.2. There exists a totally disconnected, closed set C C C that is
contained in the the union of countably many rectifiable curves, a domain
V C D one of whose boundary components is 0D, and a conformal map g
from V onto the domain U = C\ C such that g(z) — oo as z — ID.

For the proof we recall the general fact that a homeomorphism f: U — V
between domains U, V C C extends to a bijection f* between the boundary
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components of U and the boundary components of V. Namely, if B is a
boundary component of U, then f*(B) is precisely the boundary component
B* of V with the property that f(z,) accumulates at B* whenever {z, },en
is a sequence in U accumulating at B. Moreover, f~! extends analogously
to a bijection (f~1)* between the boundary components of V' and U and
has the property (f~1)* = (f*)~!. See [39, Proposition 3.1] for a proof of
these standard facts.

Proof. Let Cy C R be a linear Cantor set that is not removable for confor-
mal maps. Such sets have been studied by Ahlfors and Beurling [I]. By
definition, there exists a non-Mobius conformal homeomorphism fy from
Uy = C\ Cp onto a domain Vp in C.

If all boundary components of Vj are points, then in fact fo extends to a
homeomorphism from C onto C that is conformal on C\ Cy. Since Cy has
finite length, it follows that Cj is removable for continuous analytic functions
[5, Theorem 2] and thus fy extends conformally to C; alternatively one can
argue using the fact that Cj is removable for conformal homeomorphisms
[47, Theorem 35.1]. Hence fy is a Mobius transformation, a contradiction.

Therefore, there exists a boundary component of V that is a non-de-
generate continuum E. We consider a conformal map v from the simply
connected domain C\ E onto the unit disk D. We set V = (V). Note that
0D is a boundary component of V' that corresponds to F.

Next, consider a Mdobius transformation ¢ of C that maps the boundary
point (f§)~Y(E) of Uy to oo. Thus, ¢ maps a point of Cyp = AU to oo and
©(Cp) is contained in a great circle through co. We set U = ¢(Uj) and note
that the set C = QUNC is totally disconnected and is contained in two locally
rectifiable curves passing through oo, and thus in the union of countably
many rectifiable curves in the plane. Then the map g = o f; o=V U
has the desired properties. O

Consider the set C, the domains U = C\ C, V C D, and the map

g:V = U as in Lemma [8.2] By Example there exists a length space
(C,d) arising from the density xy such that (C,d) has locally finite Haus-
dorff 2-measure and the identity map id: (C,|-|) — (C,d) is a weakly 1-
quasiconformal homeomorphism. The fact that OU is contained in countably
many rectifiable paths (in the Euclidean metric), together with Proposition
(i)} imply that H}(0U) = 0.
Since all boundary components of U are points and ¢* is a bijection be-
tween the boundary components of V' and U, it follows that g extends con-
tinuously to a map from D onto C. We denote the extension by g. Moreover,
g is a monotone map. Indeed, the preimage of each point of C under g is
either a point or connected component of 9V ND.

We claim that g: (D,|-|) — (C,d) is a weakly l-quasiconformal map.
Suppose that this is the case and define X to be the space (C,d). Then the
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maps
id: (C,|-]) > X and g:(D,|-|) =X

are both weakly 1-quasiconformal. This concludes the construction.
Now we prove the claim that g is weakly 1-quasiconformal. This follows

from Lemma upon verifying that |¢'|xy is an upper gradient of g
and for any Borel set £ C C we have

(8.1) /1( Pyt < H3)
g Y E

First, we verify . Since g~1(0U) = OV N D, it suffices to verify the
inequality for Borel sets F C U. Since the Hausdorff 2-measure agrees there
with the Lebesgue measure, the desired inequality follows from the confor-
mality of g on V' and the fact that d is locally isometric to the Euclidean
metric in U.

Next, we prove that |¢'|xy is an upper gradient of g. It is crucial here
that #}(0U) = 0. It suffices to prove that for every path ~: [a,b] — D that
is rectifiable with respect to the Euclidean metric we have

d(g(v(a)), g(v(b))) < / 19/ Iy ds.
Y

Let [a;, bi], i € I, be the closures of the components of v~1(V) and consider
the subpaths v; = v[jq,4,], € I, of 7. Since HL(OU) = 0, by Proposition

we have
d(g(v(a)), g(v(b))) < Lalgoy) =Y L (g o)

i€l
Z/ \g’Idesé/lg’leds-
Yi Y

i€l

I
T
S
&

I

This completes the proof. O
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