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Abstract. A Sierpiński packing in the 2-sphere is a countable collection of

disjoint, non-separating continua with diameters shrinking to zero. We show
that any Sierpiński packing by continua whose diameters are square-summable

can be uniformized by a disk packing with a packing-conformal map, a notion

that generalizes conformality in open sets. Being special cases of Sierpiński
packings, Sierpiński carpets and some domains can be uniformized by disk

packings as well. As a corollary of the main result, the conformal loop ensemble

(CLE) carpets can be uniformized conformally by disk packings, answering a
question of Rohde–Werness.
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1. Introduction

One of the most intriguing open problems in complex analysis is Koebe’s conjec-
ture [Koe08], predicting that every domain in the Riemann sphere is conformally
equivalent to a circle domain, i.e., a domain whose complementary components are
geometric disks or points. This conjecture was established for finitely connected
domains by Koebe himself [Koe20] and it took over 70 years until it was established
for countably connected domains by He–Schramm [HS93]. This result was proved
with a different method by Schramm [Sch95] in a seminal work, where the notion
of transboundary modulus was introduced. More recently, Rajala [Raj21] gave an-
other proof of the result, providing a new perspective. Remarkably, in [Sch95],
Schramm establishes Koebe’s conjecture for all cofat domains, i.e., domains whose
complementary components satisfy a uniform geometric condition that we discuss
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below in Section 2.2, independently of connectivity. The general case of Koebe’s
conjecture seems to be far out of reach. Koebe’s conjecture and uniformization
problems for domains in metric surfaces other than the Riemann sphere has been
studied in [MW13,RR21,Reh22].

A topic very closely related to Koebe’s conjecture is the uniformization of Sier-
piński carpets. A Sierpiński carpet is a continuum in the sphere that has empty
interior and is obtained by removing from the sphere countably many open Jordan
regions, called peripheral disks, with disjoint closures and diameters shrinking to
zero. The boundaries of the peripheral disks are the peripheral circles of the car-
pet. A fundamental result of Whyburn [Why58] states that all Sierpiński carpets
are homeomorphic to each other. Bonk [Bon11] proved that if the peripheral disks
of a Sierpiński carpet are uniformly relatively separated, uniform quasidisks, then
the carpet can be mapped with a quasisymmetric map to a round carpet, i.e., a
carpet whose peripheral disks are geometric disks. Later, in [Nta20b] the author
developed a potential theory on Sierpiński carpets of area zero and proved that if
the peripheral disks of such a carpet are uniformly fat and uniformly quasiround,
then the carpet can be mapped in a natural way to a square carpet, defined in the
obvious manner, with a map that is carpet-conformal in the sense that it preserves
a type of modulus. We note that the geometric assumptions in [Nta20b] are weaker
than in [Bon11]. However, if one strengthens the assumptions to uniformly rel-
atively separated uniform quasidisks, then the carpet-conformal map of [Nta20b]
is upgraded to a quasisymmetry. Both mentioned works of Bonk and the author
depend crucially on the notion of transboundary modulus of Schramm [Sch95].

In this work we push the results of [Bon11,Nta20b] to their limit and we remove
entirely the geometric assumptions at the cost of weakening the topological proper-
ties and the regularity of the uniformizing conformal map. Instead, we only impose
the square-summability of the diameters of the peripheral disks. Before stating the
results we give the required definitions.

Let {pi}i∈N be a collection of pairwise disjoint and non-separating continua in

the Riemann sphere ˆ︁C such that diam(pi) → 0 as i → ∞. The collection {pi}i∈N
is called a Sierpiński packing and the set X = ˆ︁C \

⋃︁
i∈N pi is its residual set. When

it does not lead to a confusion, we make no distinction between the terms packing
and residual set. The continua pi, i ∈ N, are called the peripheral continua of X.
Note that if the peripheral continua of X are closed Jordan regions, then X is a
Sierpiński carpet, provided that it has empty interior. Thus, Sierpiński packings
can be regarded as a generalization of Sierpiński carpets.

The natural spaces that can be used to parametrize a Sierpiński packing are
round Sierpiński packings, i.e., packings whose peripheral continua are (possibly
degenerate) closed disks. We now state our main theorem.

Theorem 1.1. Let Y = ˆ︁C \
⋃︁
i∈N qi be a Sierpiński packing whose peripheral con-

tinua are closed Jordan regions or points with diameters in ℓ2(N). Then there exist

(A) a collection of disjoint closed disks {pi}i∈N, where pi is degenerate if and

only if qi is degenerate, a round Sierpiński packing X = ˆ︁C \
⋃︁
i∈N pi,

(B) a continuous, surjective, and monotone map H : ˆ︁C → ˆ︁C with the property
that H−1(int(qi)) = int(pi) for each i ∈ N, and

(C) a non-negative Borel function ρH ∈ L2(ˆ︁C),
with the following properties.
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• (Transboundary upper gradient inequality) There exists a curve family Γ0

in ˆ︁C with Mod2 Γ0 = 0 such that for all curves γ : [a, b] → ˆ︁C outside Γ0 we
have

σ(H(γ(a)), H(γ(b))) ≤
∫︂
γ

ρH ds+
∑︂

i:pi∩|γ|≠∅

diam(qi).

• (Conformality) For each Borel set E ⊂ ˆ︁C we have∫︂
H−1(E)

ρ2H dΣ ≤ Σ(E ∩ Y ).

Moreover, if Y is cofat, then H may be taken to be a homeomorphism of the sphere.

Here σ denotes the spherical distance and Σ is the spherical measure. The
monotonicity of H means that the preimage of every point is a continuum and is
equivalent to the statement thatH is the uniform limit of homeomorphisms; see Sec-
tion 2.3. The map H in the conclusion of the theorem is called a packing-conformal
map. Our definition of a packing-conformal map is motivated by the transboundary
modulus of Schramm and by the so-called analytic definition of quasiconformality
for maps between metric spaces [Wil12]. Moreover, an analogous definition under
the terminology weakly quasiconformal map has been used recently by Romney
and the author [NR22b,NR22a] in the solution of the problem of quasiconformal
uniformization of metric 2-spheres of finite area.

If U is an open subset of ˆ︁C contained in the packing Y , then the map H of
Theorem 1.1 is a conformal map in H−1(U) in the usual sense. However, not
every conformal map between domains satisfies the transboundary upper gradient
inequality. Nevertheless, one can show that this is always the case for countably
connected domains.

Remark 1.2. We remark that although H−1(int(qi)) = int(pi) in Theorem 1.1 (B),
the continuum H−1(qi) might be larger than the disk pi when the packing Y is
not cofat. It is precisely this phenomenon that prevents us from proving Koebe’s
conjecture (e.g. for domains with countably many non-degenerate boundary com-
ponents having diameters in ℓ2) with this method; the phenomenon is illustrated in
Lemma 2.14 and in Example 4.4. However, a non-trivial consequence of the topo-
logical and regularity conditions of Theorem 1.1 is that the map H is degenerate
on the set H−1(qi) \ pi, in the sense that it maps each continuum E ⊂ H−1(qi) \ pi
to a point; see Figure 1. We prove this fact in Proposition 6.2.

In fact, Theorem 1.1 is a consequence of a more general uniformization theorem
for Sierpiński packings Y without the topological assumption that the peripheral
continua are closed Jordan regions or points. To each Sierpiński packing Y we can
associate a topological sphere E(Y ) by collapsing all peripheral continua to points,
in view of Moore’s decomposition theorem [Moo25].

Theorem 1.3. Let Y = ˆ︁C\
⋃︁
i∈N qi be a Sierpiński packing such that the diameters

of the peripheral continua lie in ℓ2(N). Then there exists a round Sierpiński packing
X and a packing-conformal map from E(X) onto E(Y ).

As we see, the uniformizing packing-conformal map exists only at the level of
the topological spheres E(X), E(Y ), and in general does not induce a map between

the packings X,Y in the sphere ˆ︁C. For the definition of packing-conformal maps
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pi

Figure 1. The set H−1(qi) might be larger than the disk pi. In
this figure it contains the shaded regions and bold “branches”,
which are subsets of X. However, the map H is constant in each
of them.

between the associated topological spheres see Section 2.6. The above theorem is
restated as Corollary 4.2. The statement is proved via an approximation argument.

We consider the finitely connected domains Yn = ˆ︁C\⋃︁ni=1 qi and we uniformize them
conformally by finitely connected circle domains Xn using Koebe’s theorem. Then
our task is to show that the conformal maps from Xn to Yn converge in a uniform
sense to the desired limiting map from E(X) onto E(Y ). This is where the ℓ2(N)-
summability of the diameters of the peripheral continua becomes important. In
particular, we use this assumption to establish Lemma 3.1, which provides uniform
transboundary modulus bounds; these bounds are then used in order to prove
convergence. The ℓ2(N)-summability condition is also used later in establishing the
regularity properties of the limiting mapping; see Lemma 4.15.

This proof strategy (of using Koebe’s theorem for finitely connected domains
and passing to the limit) is also followed by Schramm [Sch95] in showing that co-
fat domains can be uniformized by circle domains and in [Bon11] in uniformizing
Sierpiński carpets by round carpets. The recent developments in the field of analy-
sis on metric spaces and our much more thorough understanding of quasiconformal
maps between metric spaces allow us to identify the topological and regularity prop-
erties of the limiting map in our more fractal setting, where no uniform geometry
is imposed, as in the works of Schramm and Bonk.

We note that in unpublished work, Rohde and Werness [RW15] show that the
complementary disks of the circle domain Xn converge in the Hausdorff sense after
passing to a subsequence to a collection of pairwise disjoint disks. However, they
were not able to identify the limit of the conformal maps from Xn to Yn.

Theorem 1.1 is proved by showing that the topological assumptions on Y allow
one to lift a packing-conformal map between E(X) and E(Y ) as in Theorem 1.3 to

the map H in the sphere ˆ︁C that has the desired properties. We remark that the
regularity properties of packing-conformal maps are used crucially in establishing
continuity and injectivity properties of H. The lifting process is achieved through
Theorem 6.1, which provides a monotone map H. In the case that Y is cofat, the
homeomorphism H as in the last part of Theorem 1.1 is provided by Theorem 7.1.
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Figure 2. A CLE carpet (simulation by D.B. Wilson [Wil]).

Thus, Theorem 1.1 is a consequence of Corollary 4.2, Theorem 6.1, and Theorem
7.1.

Another generalization is that we do not need to restrict to round Sierpiński
packings X in order to parametrize a given packing Y . Instead of using geometric
disks as the peripheral continua of X, one can use homothetic images of any count-
able collection of uniformly fat and non-separating continua, such as squares. See
Corollary 4.3 for the precise statement.

As a corollary of the main theorem we give an answer to a question of Rohde–
Werness [RW15] regarding the uniformization of the conformal loop ensemble (CLE)
carpet. CLE was introduced by Sheffield–Werner [SW12], as a random collection
of Jordan curves in the unit disk that combines conformal invariance and a natural
restriction property; see Figure 2. Each CLE gives rise to a Sierpiński carpet with
non-uniform geometry; hence the current carpet uniformization theory of [Bon11,
Nta20b] is not sufficient to treat them. However, Rohde–Werness [RW15] proved
in unpublished work that, with probability 1, the diameters of the peripheral disks
of a CLE carpet are square-summable. Therefore, we obtain the following corollary
of the main theorem.

Corollary 1.4. If Y is a CLE carpet, almost surely there exists a round Sierpiński
packing X and a packing-conformal map that maps X onto Y .

It would be interesting to obtain some stronger statements for the uniformization
of CLE carpets. We pose several questions for further study.

Question 1.5. Under what conditions is the uniformizing round Sierpiński pack-
ing X and the packing-conformal map H of Theorem 1.1 unique (up to Möbius
transformations)?

If one could at least show the uniqueness of X, then this would imply that CLE
gives rise to another stochastic process that generates round packings.

Question 1.6. Under what conditions is X a carpet whenever Y is a carpet?

Theorem 1.1 already shows that a sufficient condition is the cofatness of Y . What
about CLE carpets?
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Question 1.7. Can one use the present techniques to prove Koebe’s conjecture for
domains whose complementary components have diameters in ℓ2?

Another natural question is whether one can obtain alternative proofs of results
of [Bon11,Nta20b] upon strengthening the geometric assumptions on the peripheral
continua.

Question 1.8. If the peripheral continua of a packing Y are uniformly relatively
separated, uniform quasidisks, is the map H of Theorem 1.1 quasisymmetric?

As discussed above, the specific map H arising from the proof of Theorem 1.1 is a
limit of conformal maps of finitely connected circle domains onto finitely connected
approximations of Y . The same procedure is followed by Bonk [Bon11], who shows
that the limiting map is quasisymmetric under the geometric assumptions of Ques-
tion 1.8. Thus, the actual question is whether any map satisfying the conclusions
of Theorem 1.1, and not just the one that arises as a limit, is quasisymmetric.

Question 1.9. If the peripheral continua of a packing Y are uniformly fat and
uniformly quasiround, is the map H of Theorem 1.1 carpet-conformal in the sense
of [Nta20b]?

Our main theorem relates to the recent work of Hakobyan–Li [HL21], where the
quasisymmetric embedding problem for non-planar carpets is studied. The authors
study dyadic slit carpets, which are obtained as inverse limits of sequences of vertical
slit domains in the unit square, endowed with the inner length metrics. The centers
of the slits are located in centers of dyadic squares, whence the name dyadic slit
carpets, while the lengths depend on some parameters of the construction and can
differ from generation to generation. The slits give rise to the peripheral circles Ci,
i ∈ N, of the dyadic slit carpet Y that is generated by this construction. The main
theorem of [HL21], Theorem 1.7, states that the carpet Y is quasisymmetric to a

carpet in ˆ︁C if and only if {diam(Ci)}i∈N lies in ℓ2(N). This is precisely the main
assumption in Theorem 1.1.

Summarizing, on one hand, in the current work we prove a uniformization result

for carpets already embedded in ˆ︁C with potentially “bad” geometry, and on the
other hand, [HL21] establishes a quasisymmetric embedding result for the specific
family of dyadic slit carpets that have “good” geometry; e.g., the peripheral circles
are always uniform quasicircles and each such carpet can be embedded in a linearly
locally connected metric 2-sphere in a natural way. It would be interesting if the
current techniques can be used to uniformize non-planar carpets under weaker
assumptions; e.g. non-dyadic slit carpets or more generally carpets embedded in
a 2-sphere of finite area whose peripheral circles have square-summable diameters.
The recent work of Romney and the author [NR22a] on the uniformization of 2-
spheres of finite area might be a valuable tool in this direction.

In the subsequent paper [Nta23c], we use the notion of packing-conformal maps
and the results of the present paper in order to study the problem of conformal rigid-
ity of circle domains, a problem that is closely related to the uniqueness in Koebe’s
conjecture. A circle domain is conformally rigid if every conformal map from that
domain onto another circle domain is the restriction of a Möbius transformation.
Specifically, we prove that circle domains whose boundary is CNED (countably neg-
ligible for extremal distances), as introduced and studied in [Nta23b,Nta23a], are
conformally rigid. This result unifies and extends all previous works in the sub-
ject [HS93,HS94,NY20]. Moreover, it provides strong evidence for a conjecture of
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He–Schramm, asserting that a circle domain is rigid if and only if its boundary is
conformally removable.

Acknowledgments. I would like to thank Dennis Sullivan for many thought-
provoking and motivating conversations on the subject of planar uniformization
and Koebe’s conjecture. I first learned of the problem of the uniformization of CLE
from Huy Tran whom I also thank for various discussions. Finally, I am grateful to
the anonymous referees for carefully reading the manuscript and providing valuable
comments and corrections.

2. Preliminaries

2.1. Notation and terminology. Let (X, d) be a metric space. The open ball of
radius r > 0, centered at a point x ∈ X is denoted by Bd(x, r); the corresponding
closed ball is Bd(x, r). We also denote by S(x, r) the circle {y ∈ X : d(x, y) =
r}. The diameter of a set E is denoted by diamd(E). If the metric is implicitly
understood we will often drop the symbol d from the subscript. For the Euclidean
metric in the plane we will use the subscript e, when necessary. For example, we
write Be(x, r) and diame(E). Finally, we denote by σ the spherical metric and by

Σ the spherical measure on the Riemann sphere ˆ︁C = C ∪ {∞}.
A continuous function γ from a compact interval [a, b] into X is called a compact

curve. A continuous function γ from (a, b) into X is called a non-compact curve.
In this case, if γ extends continuously to a map γ : [a, b] → X then it is called an
open curve. The trace of a curve γ : I → X is the set γ(I) and is denoted by |γ|. A
curve γ : [a, b] → X is closed if γ(a) = γ(b).

For s ≥ 0 the s-dimensional Hausdorff measure Hs(E) of a set E in a metric
space X is defined by

Hs(E) = lim
δ→0

Hs
δ(E) = sup

δ>0
Hs
δ(E),

where

Hs
δ(E) = inf

⎧⎨⎩c(s)
∞∑︂
j=1

diam(Uj)
s : E ⊂

⋃︂
j

Uj , diam(Uj) < δ

⎫⎬⎭
for a normalizing constant c(s) > 0 so that the n-dimensional Hausdorff measure
agrees with Lebesgue measure in Rn. Note that c(1) = 1. We will use the notation
Hs
d for the Hausdorff measure Hs if we wish to emphasize that the metric d is used.

We now state the co-area inequality for Lipschitz functions [EHa21, Theorem 2.1].

Proposition 2.1. Let L > 0 and ψ : ˆ︁C → R be an L-Lipschitz function. Then for

each Borel function ρ : ˆ︁C → [0,∞] we have∫︂
R

∫︂
ψ−1(t)

ρ dH1dt ≤ 4L

π

∫︂
ˆ︁C ρ dΣ.

The cardinality of a set E is denoted by #E. For quantities A and B we write
A ≲ B if there exists a constant c > 0 such that A ≤ cB. If the constant c
depends on another quantity H that we wish to emphasize, then we write instead
A ≤ c(H)B or A ≲H B. Moreover, we use the notation A ≃ B if A ≲ B and
B ≲ A. As previously, we write A ≃H B to emphasize the dependence of the
implicit constants on the quantity H. All constants in the statements are assumed
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to be positive even if this is not stated explicitly and the same letter may be used
in different statements to denote a different constant.

Let E be a set in a metric space X. For r > 0 we denote by Nr(E) the open
r-neighborhood of E. The Hausdorff distance of two sets E,F ⊂ X, denoted
by dH(E,F ), is defined as the infimum of all r > 0 such that E ⊂ Nr(F ) and
F ⊂ Nr(E). We say that a sequence of sets En ⊂ X, n ∈ N, converges to a set
E in the Hausdorff distance if dH(En, E) → 0 as n → ∞. If the limiting set E is
closed, then it consists precisely of all limit points of sequences xn ∈ En, n ∈ N.

A continuum is a compact and connected set. An elementary property of Haus-
dorff convergence is that it preserves connectedness; namely, if a sequence of con-
tinua En, n ∈ N, converges to a compact set E, then E is also a continuum. See
[BBI01, Section 7.3.1] for more background.

Lemma 2.2. Let X,Y be compact metric spaces and π : X → Y be a continuous
map.

(i) Let E ⊂ Y (resp. E ⊂ X) be a compact set and {En}n∈N be a sequence of
compact sets with the property that for each r > 0 there exists N ∈ N such
that En ⊂ Nr(E) for all n > N . Then for each r > 0 there exists N ∈ N
such that

π−1(En) ⊂ Nr(π
−1(E)) ( resp. π(En) ⊂ Nr(π(E)) )

for all n > N .
(ii) If {En}n∈N, {Fn}n∈N are sequences of compact sets in Y converging in the

Hausdorff sense to compact sets E,F , respectively, then

dist(π−1(E), π−1(F )) ≤ lim inf
n→∞

dist(π−1(En), π
−1(Fn)).

Proof. The first part follows from compactness and continuity. For the second part,
note that

dist(π−1(E), π−1(F )) = lim
r→0

dist(Nr(π
−1(E)), Nr(π

−1(F ))).

By the first part, for each r > 0, we have

dist(Nr(π
−1(E)), Nr(π

−1(F ))) ≤ dist(π−1(En), π
−1(Fn))

for all sufficiently large n ∈ N. This completes the proof. □

2.2. Fat sets. Let τ > 0. A measurable set K ⊂ ˆ︁C is τ -fat if for each x ∈ K and
for each ball Bσ(x, r) that does not contain K we have Σ(Bσ(x, r) ∩K) ≥ τr2. A
set is fat if it is τ -fat for some τ > 0. Note that points are automatically τ -fat for
every τ > 0. A more modern terminology for fatness is Ahlfors 2-regularity, but
we prefer to use the original terminology that was used by Schramm [Sch95] and
Bonk [Bon11].

Lemma 2.3. Let τ > 0. If a connected set K ⊂ ˆ︁C is τ -fat and T is a Möbius
transformation, then T (K) is c(τ)-fat.

Proof. Schramm [Sch95, Theorem 2.1] established the invariance of fatness under
Möbius transformations. However, Schramm’s definition of fatness uses the Eu-
clidean metric rather than the spherical one, requiring that H2

e(Be(x, r)∩K) ≥ τr2

for every x ∈ K ∩ C and ball Be(x, r) that does not contain K. Hence, it suf-
fices to show that fatness according to the spherical metric is equivalent to fatness
according to the Euclidean metric, quantitatively.
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Suppose that K is τ -fat according to the spherical metric and fix x ∈ K∩C and a
ball Be(x, r) that does not containK. Consider the annuli Ae(x; (n−1)r/5, nr/5) =
Be(x, nr/5) \ Be(x, (n − 1)r/5), n ∈ {2, . . . , 5}. One of these annuli, say A, has
the property that diste(A, 0) ≥ r/5. Since K is connected and not contained in
Be(x, r), which contains A, there exists a point y ∈ K lying in the circle that
is equidistant from the boundary circles of A. The ball Be(y, r/10) is contained
in A ⊂ Be(x, r). For all points z ∈ Be(y, r/10) we have |z| ≃ r. Thus, for all
z, w ∈ Be(y, r/10) we have σ(z, w) ≃ (1 + r2)−1|z − w|. This implies that

H2
e(Be(x, r) ∩K)

r2
≳

H2
e(Be(y, r/10) ∩K)

H2
e(Be(y, r/10))

≃ Σ(Be(y, r/10) ∩K)

Σ(Be(y, r/10))
≃τ 1,

since a Euclidean ball is also a spherical ball (of possibly different radius). There-
fore, we conclude the fatness of K according the Euclidean metric, quantitatively.

Conversely, suppose that K is fat according to the Euclidean metric and fix

x ∈ K and a ball Bσ(x, r) that does not contain K. We apply an isometry P of ˆ︁C
so that P (x) = 0. The set P (K) is also fat according to the Euclidean metric by
Schramm’s result. We have

Σ(Bσ(x, r) ∩K) ≥ Σ(Bσ(x, r/4) ∩K) = Σ(Bσ(0, r/4) ∩ P (K)).

Since Bσ(0, r/4) is contained in the unit disk in the plane, the identity map from
Bσ(0, r/4) into (C, | · |) is uniformly bi-Lipschitz and Bσ(0, r/4) corresponds to a
Euclidean ball Be(0, cr) for some constant c ≃ 1. Thus,

Σ(Bσ(0, r/4) ∩ P (K)) ≃ H2
e(Be(0, cr) ∩ P (K)) ≳τ r

2.

This completes the proof. □

Lemma 2.4. Let τ > 0 and Kn ⊂ ˆ︁C, n ∈ N, be a sequence of τ -fat compact sets.
Then every compact limit of {Kn}n∈N in the Hausdorff sense is τ -fat.

Proof. Let K ⊂ ˆ︁C be a compact set that is the Hausdorff limit of a subsequence of
Kn, n ∈ N, which we denote by Kn for the sake of simplicity. If K is a point, then
K is trivially τ -fat, so without loss of generality, we assume that diam(K) > 0.
Let x ∈ K and B(x, r) be a ball that does not contain K. Our goal is to show
that Σ(B(x, r) ∩ K) ≥ τr2. Let ε > 0 and U ⊃ K be an open set such that
Σ(B(x, r) ∩ K) ≥ Σ(B(x, r) ∩ U) − ε. For all sufficiently large n ∈ N, we have
Kn ⊂ U by the Hausdorff convergence. Moreover, there exists a sequence xn ∈ Kn

converging to x such that for each δ > 0 we have B(xn, r − δ) ⊂ B(x, r) for all
sufficiently large n ∈ N. Since K ̸⊂ B(x, r), we have Kn ̸⊂ B(xn, r − δ) for all
sufficiently large n ∈ N. Altogether, for all sufficiently large n ∈ N we have

Σ(B(x, r) ∩K) ≥ Σ(B(x, r) ∩ U)− ε ≥ Σ(B(xn, r − δ) ∩Kn)− ε ≥ τ(r − δ)2 − ε.

We let δ → 0, and then ε→ 0 to obtain the desired conclusion. □

The next statement can be found [MN22, Lemma 2.6 (iii)] in a slightly altered
form.

Lemma 2.5. Let τ > 0 and {pi}i∈N be a collection of disjoint τ -fat continua in ˆ︁C.
For each compact set E ⊂ ˆ︁C and a > 0 the set

{i : pi ∩ E ̸= ∅ and diam(pi) ≥ a diam(E)}
has at most c(τ, a) elements.
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We also record an elementary consequence of fatness; see [NY20, Property (F2),
p. 154] for a proof.

Lemma 2.6. Let τ > 0 and K ⊂ ˆ︁C be a connected τ -fat set. Then for each x ∈ ˆ︁C
and r > 0 we have

H1({s ∈ (0, r) : K ∩ S(x, s) ̸= ∅})2 ≤ c(τ)Σ(K ∩B(x, r)).

A metric measure space (X, d, µ) is doubling if every ball in X has positive and
finite measure and there exists a constant L > 0 such that

µ(B(x, 2r)) ≤ Lµ(B(x, r))

for each x ∈ X and r > 0. In this case, we say that X is L-doubling.

Lemma 2.7. Let (X, d, µ) be an L-doubling metric measure space for some L > 0.
Let p ≥ 1, a ≥ 1, and {bi}i∈I be a collection of non-negative numbers. Suppose that
{Di}i∈I is a family of measurable sets and {Bi = B(xi, ri)}i∈I is a family of balls
in X with the property that Di ⊂ Bi and µ(Bi) ≤ aµ(Di) for each i ∈ I. Then⃦⃦⃦⃦

⃦∑︂
i∈I

biχBi

⃦⃦⃦⃦
⃦
Lp(X)

≤ c(L, p, a)

⃦⃦⃦⃦
⃦∑︂
i∈I

biχDi

⃦⃦⃦⃦
⃦
Lp(X)

Proof. Note that for p = 1 the proof of the inequality is straightforward. Suppose
that p > 1. For a non-negative measurable function ϕ on X consider the centered
maximal function Mϕ. For each i ∈ I and x ∈ Di ⊂ Bi we have

1

µ(Bi)

∫︂
Bi

ϕ ≤ 1

µ(Bi)

∫︂
B(x,2ri)

ϕ ≤ LMϕ(x).

Thus, ∫︂
Di

Mϕ ≥ L−1µ(Di)
1

µ(Bi)

∫︂
Bi

ϕ ≥ L−1a−1

∫︂
Bi

ϕ.

Now, let f =
∑︁
i∈I biχBi

and ϕ be an arbitrary non-negative function with
∥ϕ∥Lq(X) = 1, where 1/p + 1/q = 1. Then, by the Hardy–Littlewood maximal
inequality for doubling metric measure spaces [HKST15, Theorem 3.5.6, p. 92] we
have∫︂

fϕ =
∑︂
i∈I

bi

∫︂
Bi

ϕ ≤ c(L, a)
∑︂
i∈I

bi

∫︂
Di

Mϕ = c(L, a)

∫︂ (︄∑︂
i∈I

biχDi

)︄
Mϕ

≤ c(L, a)

⃦⃦⃦⃦
⃦∑︂
i∈I

biχDi

⃦⃦⃦⃦
⃦
Lp(X)

∥Mϕ∥Lq(X) ≤ c(L, p, a)

⃦⃦⃦⃦
⃦∑︂
i∈I

biχDi

⃦⃦⃦⃦
⃦
Lp(X)

.

The duality between Lp and Lq shows the desired inequality. □

2.3. Topological preliminaries. Let ν : X → Y be a continuous map between
topological spaces. The map ν is proper if the preimage of each compact set is
compact. The map ν is monotone if the preimage of each point is a continuum.
Moreover, ν is cell-like if the preimage of each point is a continuum that is con-
tractible in all of its open neighborhoods. In 2-manifolds without boundary cell-like
continua coincide with sets that have a simply connected neighborhood that they
do not separate. In the 2-sphere, this condition is simply equivalent to the condition
that the continuum is non-separating.
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If ν is a continuous map from the 2-sphere onto itself, then it is monotone if and
only if it is cell-like if and only if it is the uniform limit of homeomorphisms; see
[You48] and [NR22a, Theorem 6.3]. In analogy, for non-compact manifolds without
boundary, we have the Armentrout–Quinn–Siebenmann approximation theorem
[Dav86, Corollary 25.1A, p. 189]. We formulate the theorem according to [Sie72].

Theorem 2.8. A continuous, proper, and cell-like map ν : X → Y between 2-
manifolds without boundary can be uniformly approximated by homeomorphisms in
the following strong sense. For each continuous function ϵ : X → (0,∞) and for
each metric d on Y compatible with the topology, there exists a homeomorphism˜︁ν : X → Y such that

d(ν(x), ˜︁ν(x)) < ϵ(x)

for each x ∈ X.

Lemma 2.9. Let ν : X → Y be as in Theorem 2.8.

(i) The map ν is surjective.
(ii) For each open set U ⊂ Y the set ν−1(U) is homeomorphic to U .
(iii) A compact set E ⊂ Y is connected if and only if ν−1(E) is connected.
(iv) A compact set E ⊂ Y is cell-like if and only if ν−1(E) is cell-like.
(v) Let U ⊂ Y be an open set such that ν is injective on ν−1(∂U). Then

ν−1(∂U) = ∂ν−1(U).

Proof. For (i), suppose that y0 ∈ Y \ ν(X). The properness of ν implies that there
exists a ball B(y0, r) that is disjoint from ν(X). This contradicts the conclusion of
Theorem 2.8. For (ii), let U ⊂ Y be an open set. The map ν is a continuous, proper,
and cell-like map from ν−1(U) onto U . Theorem 2.8 implies that ν is the uniform
limit of homeomorphisms from ν−1(U) onto U . This proves (ii). The non-trivial
direction in (iii) follows from the fact that ν|ν−1(E) is a monotone map from the

compact set ν−1(E) onto E; by [Why42, (2.2), Chap. VIII, p. 138], in this setting,
the preimage of a connected set is connected. For part (iv), if E is cell-like, then
there exists a simply connected neighborhood U ⊃ E such that U \E is connected.
Then by (ii) ν−1(U) is a simply connected neighborhood of ν−1(E) that is not
separated by ν−1(E); hence E is cell-like. Conversely, if ν−1(E) is cell-like and U
is a neighborhood of E, then ν−1(E) is contractible in ν−1(U), so E is contractible
in U .

For (v), by continuity we have ∂ν−1(U) ⊂ ν−1(∂U). Moreover, for each y ∈ U

the set ν−1(y) intersects ν−1(U); indeed, if yn ∈ U and yn → y, then by properness
there exists a sequence xn ∈ ν−1(yn) ⊂ ν−1(U) converging to a point x ∈ ν−1(y).
The injectivity of ν on ν−1(∂U) implies that if x ∈ ν−1(∂U), then x = ν−1(ν(x)).

By the previous this point lies lies in ν−1(U), and thus in ∂ν−1(U). □

We will also use Moore’s theorem [Moo25], which facilitates the study of planar

domains, Sierpiński packings, and Sierpiński carpets. Let G be a partition of ˆ︁C into

disjoint continua. We call G a decomposition of ˆ︁C. We say that the decomposition

G is upper semicontinuous if for each g ∈ G and each open set U ⊂ ˆ︁C containing

g, there exists an open set V ⊂ ˆ︁C containing g such that if g′ ∈ G and g′ ∩ V ̸= ∅,
then g′ ⊂ U . Equivalently, if gn ∈ G, n ∈ N, is a sequence that converges in the
Hausdorff sense to a compact set A, then there exists g ∈ G such that A ⊂ G. We
now state Moore’s theorem; see [Dav86, Theorem 25.1] for a modern proof.
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Theorem 2.10. If G is an upper decomposition of ˆ︁C into non-separating continua,

then ˆ︁C/G is homeomorphic to ˆ︁C.
2.4. Sierpiński packings. We recall some definitions from the introduction. Let

{pi}i∈N be a collection of pairwise disjoint, non-separating continua in ˆ︁C such that
diam(pi) → 0 as i → ∞. The collection {pi}i∈N is called a Sierpiński packing and

the set X = ˆ︁C \
⋃︁
i∈N pi is its residual set. When there is no confusion, we call X a

Sierpiński packing and the underlying collection {pi}i∈N is implicitly understood.
The continua pi, i ∈ N, are called the peripheral continua of X. A Sierpiński
packing (resp. domain) is cofat if there exists τ > 0 such that each of its peripheral
continua (resp. complementary components) is τ -fat.

Let X = ˆ︁C\
⋃︁
i∈I pi be a Sierpiński packing or a domain, where in the latter case

the collection {pi}i∈I is assumed to comprise the complementary components. We

consider the quotient space E(X) = ˆ︁C/{pi}i∈I , together with the natural projection

map πX : ˆ︁C → E(X). For a set A ⊂ ˆ︁C we denote πX(A) by ˆ︁A. For a set E ⊂ ˆ︁C,
let IE = {i ∈ I : pi ∩ E ̸= ∅}. We define E(X;E) = ˆ︁C/{pi}i∈I\IE ; that is, the sets
pi that intersect E are not collapsed to points.

IfX is a Sierpiński packing or a domain, we note that the decomposition of ˆ︁C into
the singleton points ofX and the continua pi, i ∈ I, is always upper semicontinuous.
In the case that X is a Sierpiński packing, the fact that diam(pi) → 0 as i → ∞
implies that for each set E ⊂ ˆ︁C the decomposition of ˆ︁C into the continua pi,
i ∈ I \ IE , and the remaining singleton points is upper semicontinuous. Therefore,
a consequence of Moore’s theorem (Theorem 2.10) is the following statement.

Theorem 2.11. Let X be a Sierpiński packing or a domain. Then E(X) is home-

omorphic to ˆ︁C. Moreover, if X is a Sierpiński packing and E ⊂ ˆ︁C, then E(X;E)

is homeomorphic to ˆ︁C.
A consequence of Lemma 2.9 that we will often use is that the preimages of

continua under the projection maps πX and πX;E are continua.

2.5. Transboundary modulus. First, we give the definition of 2-modulus on the

sphere. Let Γ be a family of curves in ˆ︁C. We say that a Borel function ρ : ˆ︁C → [0,∞]
is admissible for the curve family Γ if∫︂

γ

ρ ds ≥ 1

for each locally rectifiable curve γ ∈ Γ. We then define the 2-modulus, or else
conformal modulus, of Γ as

Mod2 Γ = inf
ρ

∫︂
ρ2 dΣ,

the infimum taken over all admissible functions ρ. The next lemma is simple con-
sequence of the co-area inequality; see [Nta20b, Lemma 2.4.3] for an argument.

Lemma 2.12. Let f : ˆ︁C → R be a Lipschitz function and Γ0 be a family of curves

in ˆ︁C with Mod2 Γ0 = 0. Then for a.e. t ∈ R every simple curve γ whose trace is
contained in f−1(t) lies outside Γ0.

Next, we define transboundary modulus, as introduced by Schramm [Sch95].

Let X = ˆ︁C \
⋃︁
i∈I pi be a domain. Let ρ : E(X) → [0,∞] be a Borel function and
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γ : [a, b] → E(X) be a curve. Then there exist countably many curves γj , j ∈ J ,

such that for each j ∈ J we have |γj | ⊂ ˆ︁X and γj = πX ◦ αj for some possibly
non-compact curve αj in the domain X. We define∫︂

γ

ρ ds =
∑︂
j∈J

∫︂
αj

ρ ◦ πX ds,

where this is understood to be infinite if one of the curves αj is not locally rectifiable.
Let Γ be a family of curves in E(X). We say that a Borel function ρ : E(X) → [0,∞]
is admissible for Γ if ∫︂

γ

ρ ds+
∑︂

i:|γ|∩ˆ︁pi ̸=∅

ρ(ˆ︁pi) ≥ 1

for each γ ∈ Γ. The transboundary modulus of Γ with respect to the domain X is
defined to be

ModX Γ = inf
ρ

{︄∫︂
X

(ρ ◦ πX)2 dΣ+
∑︂
i∈N

ρ(ˆ︁pi)2}︄ ,
where the infimum is taken over all admissible functions ρ.

Let X,Y be domains in ˆ︁C and f : X → Y be a conformal map. Then f induces

a homeomorphism ˆ︁f : E(X) → E(Y ) such that ˆ︁f = πX ◦ f ◦ π−1
X on ˆ︁X; see [NY20,

Section 3] for a detailed discussion. It was observed by Schramm [Sch95] that
transboundary modulus is invariant under conformal maps.

Lemma 2.13. Let X,Y be domains in ˆ︁C and f : X → Y be a conformal map.
Then for each curve family Γ in E(X) we have

ModX Γ = ModY ˆ︁f(Γ).
We also introduce the set function f∗ = π−1

Y ◦ ˆ︁f ◦ πX from the powerset ofˆ︁C into itself. In particular, f∗ = f on subsets of X and if A is contained in a
boundary component of X, then f∗(A) is the corresponding boundary component
of Y . Observe that if g = f−1, then

g∗n(f
∗
n(A)) ⊃ A(2.1)

for each set A ⊂ ˆ︁C with equality if A ⊂ X. The next lemma is an implication of
Carathéodory’s kernel convergence theorem for multiply connected domains [Gol69,
Theorem V.5.1, p. 228].

Lemma 2.14. Let Ω ⊂ ˆ︁C be a domain and fn, n ∈ N, be a sequence of conformal
maps in Ω that converges locally uniformly in Ω to a conformal map f . Then for

each compact E ⊂ ˆ︁C and for each compact limit E∗ of {f∗n(E)}n∈N in the Hausdorff
sense we have

f∗(E) ⊃ E∗.

Proof. Suppose first that E is a complementary component of Ω. Since fn converges
to f locally uniformly, fn(Ω) converges in the Carathéodory topology to f(Ω) (with
respect to a point of f(Ω)). This implies that each compact Hausdorff limit ofˆ︁C \ fn(Ω) is contained in ˆ︁C \ f(Ω). Thus, if E∗ is a compact limit of f∗n(E), which

is a component of ˆ︁C\fn(Ω), then E∗ is contained in a component of ˆ︁C\f(Ω). One
can now see that this component has to be f∗(E).
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For the general case, let E be an arbitrary compact set in ˆ︁C. By the definition
of f∗, the set f∗(E) is the union of f(Ω∩E) with the complementary components
f∗(B) of f(Ω), where B is a complementary component of Ω such that B ∩E ̸= ∅.
The set E∗ consists of f(Ω∩E) and Hausdorff limits of complementary components
f∗(B), where B ∩ E ̸= ∅. The previous case completes the proof. □

2.6. Packing-quasiconformal maps. For two Sierpiński packings or domains
X,Y , we introduce the notion of a packing-quasiconformal map between the as-
sociated topological spheres E(X), E(Y ).

Definition 2.15. Let X = ˆ︁C \
⋃︁
i∈I pi and Y = ˆ︁C \

⋃︁
i∈I qi be Sierpiński packings

or domains. Let h : E(X) → E(Y ) be a continuous, surjective, and monotone map
such that h(ˆ︁pi) = ˆ︁qi for each i ∈ I. We say that h is packing-quasiconformal if

there exists K ≥ 1 and a non-negative Borel function ρh ∈ L2(ˆ︁C) with the following
properties.

• (Transboundary upper gradient inequality) There exists a curve family Γ0

in ˆ︁C with Mod2 Γ0 = 0 such that for all curves γ : [a, b] → ˆ︁C outside Γ0 we
have

dist(π−1
Y ◦ h ◦ πX(γ(a)), π−1

Y ◦ h ◦ πX(γ(b))) ≤
∫︂
γ

ρh ds+
∑︂

i:pi∩|γ|≠∅

diam(qi).

• (Quasiconformality) For each Borel set E ⊂ ˆ︁C we have∫︂
π−1
X (h−1(πY (E)))

ρ2h dΣ ≤ KΣ(E ∩ Y ).

In this case, we say that h is packing-K-quasiconformal. If K = 1, then h is called
packing-conformal.

A Borel function ρh satisfying the transboundary upper gradient inequality as
above is called a transboundary weak upper gradient of h. If the transboundary

upper gradient inequality holds for all rectifiable curves in ˆ︁C, without the need to
exclude a family of conformal modulus zero, then we say that ρh is a transboundary
upper gradient of h.

Remark 2.16. Note that we are not requiring that h−1(ˆ︁qi) = ˆ︁pi; in general h−1(ˆ︁qi)
could be much larger than ˆ︁pi. See Example 4.4 for an instance. The quasiconfor-
mality condition implies that if E = qi, then ρh = 0 a.e. on π−1

X (h−1(ˆ︁qi)), i ∈ N.
Thus, ρh is supported in the set π−1

X (h−1(ˆ︁Y )). In fact, we can set ρh equal to 0

everywhere on π−1
X (h−1(ˆ︁qi)), i ∈ N, rather than almost everywhere. Indeed, line in-

tegrals are not affected by this change for Mod2-a.e. curve [HKST15, Lemma 5.2.16,
p. 133]. Hence, by enlarging the exceptional curve family Γ0, we may have that the
transboundary upper gradient inequality also holds for the modified function ρh.

The following lemma is straightforward for finitely connected domains; it is also
true for countably connected domains but we will not need that generality.

Lemma 2.17. Let X,Y ⊂ ˆ︁C be finitely connected domains and f : X → Y be a

conformal map. Then the induced map ˆ︁f : E(X) → E(Y ) is packing-conformal and

the derivative of f in the spherical metric is a transboundary upper gradient of ˆ︁f .
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Here, the derivative of f in the spherical metric at a point z ∈ ˆ︁C can be given
by the following precise formula when z, f(z) ∈ C.

|Df |(z) = 1 + |z|2

1 + |f(z)|2
|f ′(z)|.

3. Transboundary modulus estimates

Let X = ˆ︁C \
⋃︁
i∈I pi be a Sierpiński packing or a domain. Let ˆ︁E, ˆ︁F ⊂ E(X) be

arbitrary sets and Ω ⊂ E(X) be an open set. We denote by Γ( ˆ︁E, ˆ︁F ; Ω) the family of

open paths in Ω joining ˆ︁E and ˆ︁F . That is, Γ( ˆ︁E, ˆ︁F ; Ω) contains precisely the open

paths γ : (a, b) → Ω such that γ : [a, b] → Ω intersects both ˆ︁E and ˆ︁F ; recall than an
open path extends continuously to the endpoints by definition. If Ω = E(X), then

we simply write Γ( ˆ︁E, ˆ︁F ).
Recall that for E ⊂ ˆ︁C we denote IE = {i ∈ I : pi ∩ E ̸= ∅} and E(X;E) =ˆ︁C/{pi}i∈I\IE . Consider the natural projection πX;E : ˆ︁C → E(X;E), which is

injective on X ∪ E. Recall that if X is a Sierpiński packing, and in particular

diam(pi) → 0 as i→ ∞, then the space E(X;E) is homeomorphic to the sphere ˆ︁C
by Theorem 2.11.

The next lemma is one of the main technical ingredients of the proof of Theorem
1.1.

Lemma 3.1 (Non-degeneracy lemma). Let X = ˆ︁C\
⋃︁
i∈N pi be a Sierpiński packing

such that the diameters of the peripheral continua lie in ℓ2(N). Let ˆ︁E ⊊ E(X) be

a continuum such that E = π−1
X ( ˆ︁E) is non-degenerate and let d be a metric on

E(X;E) that induces the quotient topology. For each δ > 0 and N ∈ N ∪ {0} there
exists a constant C(X,E, d, δ,N) > 0 such that the following statement is true.

Let F ⊂ ˆ︁C \ E be a continuum such that diamd(πX;E(F )) ≥ δ. For a finite set

J ⊂ N consider the domain Y = ˆ︁C \
⋃︁
i∈J pi. Then for each set J0 ⊂ J with

#J0 ≤ N we have

ModY Γ

(︄
πY (E), πY (F \

⋃︂
i∈J0

pi); E(Y ) \
⋃︂
i∈J0

πY (pi)

)︄
≥ C(X,E, d, δ,N).

Surprisingly, this lemma gives uniform lower modulus bounds, although the pack-
ing X does not have uniform geometry. The reason is that we freeze a continuum E
and we consider curve families connecting relatively large continua F to E. If one
varies the continuum E as well, then it is impossible to obtain uniform modulus
bounds without some strong uniform geometric assumptions, as in [Bon11, Section
8].

Proof. Note that E ̸= ˆ︁C, since ˆ︁E ̸= E(X). The set E is a continuum by Lemma

2.9 (iii). The space Z = E(X;E) is homeomorphic to ˆ︁C. The projection π =

πX;E : ˆ︁C → Z is injective on the set E, thus, π(E) is a non-degenerate continuum
in Z. We endow Z with a metric d inducing its topology, as in the statement of
the lemma. We also fix δ > 0.

The set Z \ π
(︁
E ∪

⋃︁
i∈N pi

)︁
is non-empty by Baire’s theorem. Fix a point x∞

in that set and a ball Bd(x∞, r) ⊂ Z \ π(E), where r < δ/4. Consider a homeo-
morphism φ from Z \ {x∞} onto the plane C with the property that it maps the
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E′

F ′
E′′

F ′′

E′′

F ′′

Figure 3. Left: Case 1a. Middle: Case 1b. Right: Case 2.

complement of the ball Bd(x∞, r) into the unit ball Be(0, 1). Let E′ = φ(π(E)),
which is a non-degenerate continuum in Be(0, 1). By uniform continuity, there ex-

ists a constant c0 > 0 such that if ˆ︁F ⊂ Z is a continuum with diamd( ˆ︁F ) ≥ δ, then

φ( ˆ︁F \Bd(x∞, r)) contains a continuum F ′ ⊂ Be(0, 1) with diame(F
′) ≥ c0. We fix

such a continuum F ′.
Now, for ε > 0 consider a grid of squares of side length ε in the plane with sides

parallel to the coordinate axes such that the 1-skeleton avoids the countably many
points p′i = φ(π(pi)), i ∈ N\IE . Let G be the intersection of the 1-skeleton with the
square [−2, 2]2. Let B′ be the collection of simple paths that are contained in G and
connect all pairs of junction points (i.e., points where four edges meet) of G. Note
that B′ contains a bounded number of paths, depending only on ε. Also, if two
paths of B′ do not intersect, then their distance is at least ε. For each path β ∈ B′,
consider a Jordan region U(β) such that |β| ⊂ U(β) ⊂ Nε/2(|β|) and ∂U(β) avoids⋃︁
i∈N\IE p

′
i. In particular, observe that if |β1| ∩ |β2| = ∅, then U(β1) ∩ U(β2) = ∅.

Let N ∈ N ∪ {0}, as in the statement of the lemma. We claim that if the mesh
of the grid is sufficiently small, i.e., ε is sufficiently small, depending only on N ,
E′, and c0, but not on F

′, then B′ contains N +1 disjoint paths β1, . . . , βN+1 that
connect E′ and F ′ with the additional feature that ∂U(β1), . . . , ∂U(βN+1) also
connect E′ and F ′. To see this, we consider separate cases.

Case 1. Suppose that the projection of E′ to the x-axis has positive diameter equal
to c1 and the projection of F ′ to the x-axis has diameter larger than c0/2. We set
M = min{c1, c0/2}.
Case 1a. Suppose that the overlap of the projections is larger than or equal to
M/2. Then by choosing ε < 2−1M(N + 3)−1 we may find N + 1 disjoint vertical
paths in B′ intersecting both E′ and F ′ so that their parallel translates by ε to
either side also have the same property. See Figure 3.

Case 1b. Suppose that the overlap of the projections is smaller than M/2. Then
there exist subcontinua E′′ and F ′′ of E′ and F ′, respectively, such that the pro-
jections of E′′ and F ′′ to the x-axis are disjoint and both have diameter M/2. If
we choose ε < 2−1M(N + 3)−1, then there exist N + 1 disjoint vertical paths in
B′ intersecting F ′′ but not E′′ and N + 1 disjoint vertical paths intersecting E′′

but not F ′′ so that their parallel translates by ε to either side also have the same
property. We truncate these paths appropriately outside Be(0, 1) and then connect
them with disjoint horizontal segments in B′ to obtain Π-shaped paths; see Figure
3. The resulting collection of paths has the desired properties.
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Case 2. Suppose that the projection of E′ to the x-axis has diameter zero and
the projection of F ′ to the x-axis has diameter larger than c0/2. Thus, E′ is a
vertical line segment that projects to a segment of diameter c1 in the y-axis. Our
goal is to find appropriate subcontinua E′′ and F ′′ of E′ and F ′, respectively, whose
diameters are bounded below depending on c0 and c1 and whose projections to both
axes are disjoint. First, we consider a subcontinuum F ′′ of F ′ with diameter c0/8
whose projection to the x-axis is disjoint from the projection of E′. If the projection
of F ′′ to the y-axis has diameter larger than or equal to min{c1/2, c0/16}, then we
can argue as in Case 1, replacing the x-axis with the y-axis and finding a value of
ε that depends on c0, c1, and N . Otherwise, we consider a subsegment E′′ of E′ of
length c1/4 so that the projections of E′′ and F ′′ to both axes are disjoint. Then
by choosing a small enough ε, we may find Γ-shaped curves from the collection B′

that join E′′ and F ′′ and have the desired properties; see Figure 3. The remaining
cases are symmetric to the ones we treated.

Note that (φ◦π)−1 is injective on the square grid G and on the boundaries ∂U(β),
β ∈ B′, since these sets avoid the set

⋃︁
i∈N\IE p

′
i. We pull back the collection B′

and the regions U(β), β ∈ B′, to ˆ︁C under the proper and cell-like map φ ◦ π : ˆ︁C \
π−1(x∞) → C. Using Lemma 2.9 (v) we obtain a collection B of simple curves and

Jordan regions U(β), β ∈ B, in ˆ︁C with the following properties.

(i) For each β ∈ B the Jordan region U(β) contains |β| and if β1, β2 ∈ B are
disjoint curves, then U(β1) and U(β2) are disjoint and intersect disjoint
collections of sets pi, i ∈ N \ IE .

(ii) Whenever F ⊂ ˆ︁C \ E is a continuum with ˆ︁F = πX;E(F ) and diamd( ˆ︁F ) ≥
δ, there exist disjoint paths β1, . . . , βN+1 ∈ B such that βi and ∂U(βi)
intersect E and F for each i ∈ {1, . . . , N + 1}.

We let η = min{dist(|β|, ∂U(β)) : β ∈ B}, which is positive since B is a finite
collection.

Fix a continuum F ⊂ ˆ︁C \ E and paths β1, . . . , βN+1 ∈ B as in (ii). If J0 ⊂ J
is a set with #J0 ≤ N as in the statement of the lemma, then by (i) and the
pigeonhole principle there exists k ∈ {1, . . . , N + 1} such that U(βk) does not
intersect

⋃︁
i∈J0\IE pi. Note that F ∩ U(βk) does not intersect

⋃︁
i∈J0 pi, but this is

not necessarily true for E, since it intersects pi, whenever i ∈ IE ∩ J0. Let ψ(x) =
dist(x, |βk|), which is a 1-Lipschitz function on ˆ︁C. For a.e. t ∈ (0, η) the components
of ψ−1(t) are points, Jordan curves, or Jordan arcs; see [Nta20a, Theorem 1.5] for
a general statement in metric surfaces or [Bro72] for a planar version. Hence, for
a.e. t ∈ (0, η), the set ψ−1(t) contains a Jordan curve separating |βk| from ∂U(βk).
We fix such a t ∈ (0, η). Since E and F \

⋃︁
i∈J0 pi connect βk and ∂U(βk), we

conclude they intersect this Jordan curve. Thus, ψ−1(t) contains an open curve
connecting E and F \

⋃︁
i∈J0 pi and avoiding

⋃︁
i∈J0 pi. It follows that πY (ψ

−1(t))

contains a curve in Γ = Γ
(︁
πY (E), πY (F \

⋃︁
i∈J0 pi); E(Y ) \

⋃︁
i∈J0 πY (pi)

)︁
. Thus, if

ρ : E(Y ) → [0,∞] is admissible for Γ, then

∫︂
ψ−1(t)∩Y

ρ ◦ πY dH1 +
∑︂

i:ψ−1(t)∩pi ̸=∅
i∈J

ρ(ˆ︁pi) ≥ 1
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for a.e. t ∈ (0, η). Integrating over t ∈ (0, η), and using the fact that ψ is 1-Lipschitz,
by the co-area inequality (Proposition 2.1) we obtain

Cη ≤
∫︂
Nη(|βk|)∩Y

ρ ◦ πY dΣ+
∑︂
i∈J

ρ(ˆ︁pi) diam(pi)

≤

(︄∫︂
Y

(ρ ◦ πY )2 dΣ+
∑︂
i∈J

ρ(ˆ︁pi)2)︄1/2(︄
Σ(ˆ︁C) +∑︂

i∈N
diam(pi)

2

)︄1/2

.

Infimizing over ρ gives

ModY Γ ≥ C ′η2

(︄
1 +

∑︂
i∈N

diam(pi)
2

)︄−1

.

This completes the proof. □

The next lemma is established in [Bon11]. The relative distance of two non-
degenerate subsets E,F of a metric space is defined as

∆(E,F ) =
dist(E,F )

min{diam(E),diam(F )}
.

Lemma 3.2 ([Bon11, Proposition 8.7]). For each τ > 0 there exists a number
N0 > 0 and a function ψ : (0,∞) → (0,∞) with limt→∞ ψ(t) = 0 such that the

following is true. Let X = ˆ︁C \
⋃︁
i∈I pi be a τ -cofat finitely connected domain. Letˆ︁E, ˆ︁F ⊂ E(X) be disjoint sets and let E = π−1

X ( ˆ︁E), F = π−1
X ( ˆ︁F ). If ∆(E,F ) ≥ 12,

then there exists a set I0 ⊂ I with #I0 ≤ N0 such that

ModX Γ

(︄ ˆ︁E, ˆ︁F ; E(X) \
⋃︂
i∈I0

ˆ︁pi)︄ ≤ ψ(∆(E,F )).

The statement here is slightly different from [Bon11], but the proof remains
unchanged. We point out the main differences. First, Bonk uses continua E,F ,
while we use arbitrary sets. Note that upper modulus bounds are not affected by
this generalization; it is instead that lower modulus bounds require continua so
that the curve family that connects them is rich enough. Second, in [Bon11] the

continua E,F are chosen in X, but we choose sets ˆ︁E, ˆ︁F in E(X) and then take

their preimages in ˆ︁C. Third, we use path families in E(X) rather than in ˆ︁C. Each
path in E(X) corresponds to countably many possibly non-compact paths in the

domain X and thus the considerations in [Bon11], which use line integrals in ˆ︁C, are
applicable here as well.

4. Uniformization of Sierpiński packings

Our goal in this section is to prove the following theorem at the heart of the
paper.

Theorem 4.1. Let Y = ˆ︁C\
⋃︁
i∈N qi be a Sierpiński packing such that {diam(qi)}i∈N

lies in ℓ2(N). Let τ > 0 and ζ∞, ζ0, ζ1 ∈ Y , and for each n ∈ N, let fn be a conformal

map from the domain Yn = ˆ︁C \
⋃︁n
i=1 qi onto a τ -cofat domain Xn = ˆ︁C \

⋃︁n
i=1 pi,n

such that fn(ζ∞) = ∞, fn(ζ0) = 0, |fn(ζ1)| = 1, and f∗n(qi) = pi,n for each
i ∈ {1, . . . , n}. Suppose, in addition, that for each i ∈ N all Hausdorff limits of
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the sequence {pi,n}n≥i are non-separating. Then there exists a sequence {kn}n∈N
increasing to ∞ with the following properties.

(i) For each i ∈ N, pi,kn converges as n → ∞ to a τ -fat non-separating con-
tinuum pi in the Hausdorff sense.

(ii) The set X = ˆ︁C \
⋃︁
i∈N pi is a τ -cofat Sierpiński packing.

(iii) For each i ∈ N, pi is non-degenerate if and only if qi is non-degenerate.
(iv) The sequence gkn = f−1

kn
: Xkn → Ykn gives rise to a sequence of set func-

tions hn = πY ◦ g∗kn ◦ π−1
X from subsets of E(X) to subsets of E(Y ) that

converges uniformly to a packing-conformal map h : E(X) → E(Y ).

The proof of the theorem is given in Sections 4.1–4.3. We now record two imme-
diate corollaries. Suppose that the maps fn are given by Koebe’s uniformization
theorem for finitely connected domains [Koe20]. In this case, the sets pi,n are geo-
metric disks and points. Each of their Hausdorff limits is a geometric disk (allowing
the case of the entire sphere) or a point, so it is non-separating. Thus, we obtain
the following corollary.

Corollary 4.2. Let Y = ˆ︁C\
⋃︁
i∈N qi be a Sierpiński packing such that {diam(qi)}i∈N

lies in ℓ2(N). Then there exists a round Sierpiński packing X = ˆ︁C \
⋃︁
i∈N pi and a

packing-conformal map h : E(X) → E(Y ). Moreover, for each i ∈ N, the disk pi is
non-degenerate if and only if qi is non-degenerate.

More generally, one can consider a collection {Pi}i∈N of non-degenerate, τ -fat,

and non-separating continua in the plane C, which is regarded as a subset of ˆ︁C.
According to the Brandt–Harrington uniformization theorem [Bra80,Har82] there

exists a conformal map fn from the finitely connected domain Yn = ˆ︁C \
⋃︁n
i=1 qi

onto a domain Xn = ˆ︁C \
⋃︁n
i=1 pi,n, where pi,n either is a point or is homothetic

to Pi; that is, pi,n is the image of Pi under a transformation z ↦→ az + b, a > 0,
b ∈ C. By postcomposing fn with a homothetic transformation, we may assume
that it satisfies the normalizations of Theorem 4.1. By Lemma 2.3, the sets pi,n
are c(τ)-fat. Also, note that if pi,n is homothetic to Pi, then each non-degenerate
Hausdorff limit of pi,n as n → ∞ is also homothetic to Pi, provided that it is not
the entire sphere. Therefore, Theorem 4.1 gives the following corollary.

Corollary 4.3. Let Y = ˆ︁C\
⋃︁
i∈N qi be a Sierpiński packing such that {diam(qi)}i∈N

lies in ℓ2(N). For τ > 0 consider a collection {Pi}i∈N of non-degenerate, τ -fat, and
non-separating continua in the plane C. Then there exists a Sierpiński packing X =ˆ︁C \

⋃︁
i∈N pi, where pi is a point when qi is a point and pi is homothetic to Pi when

qi is non-degenerate, and there exists a packing-conformal map h : E(X) → E(Y ).

Example 4.4. We provide an example showing that in general we only expect to
have h−1(ˆ︁qi) ⊃ ˆ︁pi, i ∈ N, for the map h of Theorem 4.1 and we cannot guarantee
equality.

The following example is presented in [Nta23c, Section 6]. There exists a count-

ably connected domain Y = ˆ︁C \
⋃︁
i∈N qi whose complementary components {qi}i∈N

have diameters in ℓ2(N) and a conformal map F from Y onto a circle domain Z
such that q1 is a singleton, F ∗(q1) is a non-degenerate disk, and each component
qi, i ≥ 2, is isolated.

Let Yn = ˆ︁C\
⋃︁n
i=1 qi and consider normalized conformal maps fn from Yn onto a

finitely connected circle domain Xn = ˆ︁C\
⋃︁n
i=1 pi,n as in the statement of Theorem
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4.1. After passing to a subsequence, fn converges locally uniformly in the domain

Y to a conformal embedding f from Y into ˆ︁C. The fact that each component qi,
i ≥ 2, is isolated implies that f∗(qi) is a geometric disk pi that is a Hausdorff limit
of pi,n = f∗n(qi); this can be justified by using Carathéodory’s kernel convergence
[Gol69, Theorem V.5.1]. However, we have no information about f∗(q1). The
map F ◦ f−1 is a conformal map from f(Y ) onto Z. Based on transboundary
modulus arguments (see e.g. [Sch95, Theorem 6.1]), and given that F ∗(q1) is a non-
degenerate disk, one can show that f∗(q1) is a non-degenerate continuum. Observe

that f(Y ) = ˆ︁C \ (f∗(q1) ∪
⋃︁∞
i=2 pi).

If we apply Theorem 4.1, after passing to a subsequence, we obtain a round

Sierpiński packing X = ˆ︁C \
⋃︁
i∈N pi, where p1 is a Hausdorff limit of p1,n. Since

q1 is a singleton, we conclude that p1 is a singleton. Also, by the last part of the
theorem, the sequence hn = πY ◦ g∗n ◦ π−1

X (where gn = f−1
n ) converges uniformly

to a packing-conformal map h : E(X) → E(Y ).
The convergence of fn implies that the sequence gn = f−1

n of conformal maps
converges locally uniformly in f(Y ) to g = f−1 and g∗(f∗(q1)) = q1. One can
show that πY ◦ g∗ ◦ π−1

X = h. Using that, we have h(πX(f∗(q1))) = ˆ︁q1. Note that
f∗(q1) ⊋ p1 by Lemma 2.14, so πX(f∗(q1)) ⊋ ˆ︁p1. It follows that h−1(ˆ︁q1) ⊋ ˆ︁p1.
4.1. Existence of limiting Sierpiński packing. We now initiate the proof of
Theorem 4.1. Recall that the conformal map fn : Yn → Xn gives rise to a set

function f∗n = π−1
Xn

◦ ˆ︁fn ◦ πYn
from the powerset of ˆ︁C into itself. Namely, f∗n = fn

in Yn and f∗n(A) = pi,n whenever A ⊂ qi. By Lemma 2.9 (iii), f∗n maps continua to
continua.

Lemma 4.5 (Non-degeneracy). Let ˆ︁E ⊂ E(Y ) be a continuum such that E =

π−1
Y ( ˆ︁E) is non-degenerate. Then

lim inf
n→∞

diam(f∗n(E)) > 0.

Proof. Without loss of generality ˆ︁E ̸= E(Y ), since in that case we have f∗n(E) = ˆ︁C
for all n ∈ N. The set E is a continuum and has the property that it contains all
peripheral continua of Y that intersect E. We set E′

n = f∗n(E), which is a non-
degenerate continuum by the conformality of fn, and suppose that diam(E′

n) → 0
along a subsequence. We wish to derive a contradiction. After passing to a further

subsequence, we assume that E′
n converges to a point x0 ∈ ˆ︁C in the Hausdorff sense.

Consider the great circle through the points 0 = fn(ζ0), fn(ζ1), and ∞ = fn(ζ∞).
The point x0 does not lie on at least one of the arcs (of the great circle) from 0
to fn(ζ1), fn(ζ1) to ∞, or ∞ to 0. Without loss of generality, after passing to
a subsequence, suppose that E′

n stays away from the arc αn joining 0 to fn(ζ1).
That is, there exists c > 0 such that dist(E′

n, |αn|) ≥ c for all n ∈ N. Let F ′
n =

π−1
Xn

(πXn
(|αn|)), i.e., the union of the arc |αn|, together with all the sets pj,n,

j ∈ {1, . . . , n}, that intersect |αn|. Note that F ′
n might be very close to E′

n, although
they are disjoint, because they both contain the complementary components of Xn

that they intersect.
The τ -cofatness of Xn and Lemma 2.5 imply that there exists a constant N0 ∈ N,

depending only on τ and c, such that at most N0 of the sets pi,n, i ∈ {1, . . . , n},
with diameter larger than c/2 intersect the arc |αn|. Thus, there exists a set
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Jn ⊂ {1, . . . , n} with #Jn ≤ N0 such that

dist(E′
n, F

′
n \

⋃︂
i∈Jn

pi,n) ≥ c/2

for each n ∈ N. Since diam(F ′
n \
⋃︁
i∈Jn pi,n) ≥ diam({0, fn(ζ1)}), we have

∆(E′
n, F

′
n \

⋃︂
i∈Jn

pi,n) → ∞

as n → ∞. Finally, we observe that the sets E′
n and F ′

n \
⋃︁
i∈Jn pi,n are invariant

under the set function π−1
Xn

◦ πXn
because they contain all complementary compo-

nents of Xn that they intersect. By Lemma 3.2 there exists a constant N ′
0 ∈ N that

depends only on τ and a set J ′
n ⊂ {1, . . . , n} with #J ′

n ≤ N ′
0 such that

ModXn Γ

⎛⎝πXn(E
′
n), πXn(F

′
n \

⋃︂
i∈Jn

pi,n); E(Xn) \
⋃︂
i∈J′

n

πXn(pi,n)

⎞⎠→ 0

as n→ ∞. Note that by the monotonicity of modulus, if we set J ′′
n = Jn∪J ′

n, then
we also obtain

ModXn Γ

⎛⎝πXn(E
′
n), πXn(F

′
n \

⋃︂
i∈J′′

n

pi,n); E(Xn) \
⋃︂
i∈J′′

n

πXn(pi,n)

⎞⎠→ 0

as n→ ∞.
Consider the set Fn = (f−1

n )∗(F ′
n); that is, Fn is the union of f−1

n (|αn| ∩ Xn)
together with the sets qj , j ∈ {1, . . . , n}, that intersect its closure. Note that in
the space E(Y ;E) (endowed with any fixed metric that induces its topology) the
projection of Fn has diameter uniformly bounded from below, since it connects
the projections of the points ζ0 and ζ1, which do not lie on E. Also, note that
#J ′′

n ≤ N0 +N ′
0. Thus, by Lemma 3.1, we have

ModYn
Γ

⎛⎝πYn
(E), πYn

(Fn \
⋃︂
i∈J′′

n

qi); E(Yn) \
⋃︂
i∈J′′

n

πYn
(qi)

⎞⎠ ≥ C

for all n ∈ N. The conformal invariance of transboundary modulus (Lemma 2.13)
leads to a contradiction. □

Corollary 4.6. For each i ∈ N, the following statements are true.

(i) If qi is non-degenerate, then the sequence of sets {pi,n}n≥i does not degen-
erate to a point as n→ ∞.

(ii) The set qi is a point if and only if pi,n is a point for all n ≥ i.

The second part of the lemma follows from the fact that fn is a conformal map.
After taking a diagonal sequence, assume that for each i ∈ N the sequence pi,n
converges in the Hausdorff sense as n → ∞ to a compact set pi that is connected,
does not separate the sphere by the assumption in Theorem 4.1, and is τ -fat by
Lemma 2.4. We have already established parts (i) and (iii) of Theorem 4.1.

Next, we wish to show that the sets pi, i ∈ N, are pairwise disjoint. First we
establish a preliminary lemma.

Lemma 4.7 (No clustering). There exists N(τ) > 0 such that for each x ∈ ˆ︁C there
are at most N(τ) non-degenerate sets pi, i ∈ N, containing x.
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Proof. Let N ∈ N and suppose that the sets pi1 , . . . , piN are non-degenerate and
contain x. Fix r > 0 be such that pil is not contained in B(x, r) for each l ∈
{1, . . . , N} and consider points xil,n ∈ pil,n converging to x as n → ∞. For fixed
δ ∈ (0, r) note that the sets B(xil,n, r − δ) ∩ pil,n, l ∈ {1, . . . , N}, are pairwise
disjoint and are contained in B(x, r) for all sufficiently large n ∈ N. Moreover, pil,n
is not contained in B(xil,n, r − δ) for all sufficiently large n ∈ N. By the τ -fatness
of pil,n, for large n ∈ N we have

Σ(B(x, r)) ≥
N∑︂
l=1

Σ(B(xil,n, r − δ) ∩ pil,n) ≥ Nτ(r − δ)2.

Letting δ → 0, gives N ≤ τ−1Σ(B(x, r))r−2 ≤ Cτ−1. □

Lemma 4.8 (No collisions). Let ˆ︁F1, ˆ︁F2 ⊂ E(Y ) be disjoint continua and let F1 =

π−1
Y ( ˆ︁F1), F2 = π−1

Y ( ˆ︁F2). Then

lim inf
n→∞

dist(f∗n(F1), f
∗
n(F2)) > 0.

Proof. We may assume that ˆ︁F1 and ˆ︁F2 are, in addition, non-separating continua,
after replacing them if necessary with larger continua that are disjoint and non-
separating. Suppose that dist(f∗n(F1), f

∗
n(F2)) → 0 along a subsequence. After

passing to a subsequence, we assume that f∗n(Fi) converges in the Hausdorff sense
to a continuum F ∗

i , i = 1, 2, and F ∗
1 ∩ F ∗

2 ̸= ∅. Note that the sets Fi, i = 1, 2,
contain all of the peripheral continua of Y that they intersect. We consider two
cases.

Case 1. The set qi is non-degenerate for only finitely many i ∈ N. Let J ⊂ N be
the set of those indices. The conformal map fn : Yn → Xn extends conformally
to the isolated point qi whenever i ∈ {1, . . . , n} \ J . Since F1 and F2 are disjoint,
non-separating, and contain all peripheral continua that they intersect, the open

set Ω = ˆ︁C \ (F1 ∪F2 ∪
⋃︁
i∈J qi) is connected and the sets F1, F2 are complementary

components of Ω. The three-point normalization of fn implies that, after passing

to a further subsequence, fn converges locally uniformly in ˆ︁C \ (F1 ∪ F2 ∪
⋃︁
i∈J qi)

to a map f that is either constant or conformal. By Lemma 4.5, f is non-constant,
so it is conformal. Lemma 2.14 implies that f∗(Fi) ⊃ F ∗

i for i = 1, 2. This leads to
a contradiction, since the sets f∗(F1), f

∗(F2) are disjoint, but the sets F ∗
1 , F

∗
2 are

not.

Case 2. There are infinitely many non-degenerate sets qi, i ∈ N. By Corollary 4.6,
pi is non-degenerate if and only if qi has this property. Let x ∈ F ∗

1 ∩F ∗
2 . By Lemma

4.7, there exists N(τ) > 0 such that at most N(τ) non-degenerate sets pi, i ∈ N,
contain the point x. Thus, there exists i0 ∈ N such that E = qi0 is non-degenerate
and x /∈ pi0 . The sets E

′
n = f∗n(E) converge to pi0 so they have diameters uniformly

bounded away from 0 and they stay away from the point x. Let αn be a curve in ˆ︁C
joining f∗n(F1) and f

∗
n(F2) such that |αn| converges to x in the Hausdorff sense. Let

G′
n be the union of |αn| together with the sets pj,n, j ∈ {1, . . . , n}, that intersect

|αn|. Note that the diameter of G′
n might be large.

We now argue as in the proof of Lemma 4.5. The cofatness of Xn and Lemma
2.5 imply that if Jn is the set of indices j such that pj,n∩|αn| ≠ ∅ and diam(pj,n) ≥
diam(|αn|), then #Jn is uniformly bounded, depending only on τ . We conclude
that ∆(E′

n, G
′
n \
⋃︁
i∈Jn pi,n) → ∞ as n → ∞. Lemma 3.2 implies that there exists
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a set of natural numbers J ′′
n ⊃ Jn with uniformly bounded cardinality such that

ModXn
Γ

⎛⎝πXn
(E′

n), πXn
(G′

n \
⋃︂
i∈J′′

n

pi,n); E(Xn) \
⋃︂
i∈J′′

n

πXn
(pi,n)

⎞⎠→ 0

as n→ ∞.
On the other hand, we consider the sets E and Gn = (f−1

n )∗(G′
n). We note

that the continuum Gn joins F1 and F2, so its projection to E(Y ;E) has diameter
uniformly bounded below away from 0, in any given metric. By Lemma 3.1 we have

ModYn
Γ

⎛⎝πYn
(E), πYn

(Gn \
⋃︂
i∈J′′

n

qi); E(Yn) \
⋃︂
i∈J′′

n

πYn
(qi)

⎞⎠ ≥ C

for each n ∈ N. This contradicts the conformal invariance of transboundary mod-
ulus. □

Corollary 4.9. The sets pi, i ∈ N, are pairwise disjoint. Moreover, the set X =ˆ︁C \
⋃︁∞
i=1 pi is a Sierpiński packing.

Proof. The sets pi, i ∈ N, are pairwise disjoint by Lemma 4.8. As we have discussed,
each of the sets pi, i ∈ N, is a non-separating continuum and is τ -fat. A trivial
consequence of Lemma 2.5 is that diam(pi) → 0 as i→ ∞. These facts imply that
X is a Sierpiński packing. □

Thus, we have established part (ii) of Theorem 4.1. In the following sections we
prove the existence of the limiting map of part (iv) and its regularity.

4.2. Existence of limiting map. Fix metrics on the spaces E(X), E(Y ) that in-
duce their topology. The particular metrics are not of importance. We set gn = f−1

n

and consider the sequence of set functions

hn = πY ◦ g∗n ◦ π−1
X = πY ◦ π−1

Yn
◦ ˆ︁gn ◦ πXn

◦ π−1
X , n ∈ N

from subsets of E(X) to subsets of E(Y ).

Lemma 4.10 (Equicontinuity). For each ε > 0 there exists δ > 0 and N ∈ N
such that if ˆ︁E′ is a set in E(X) with diam( ˆ︁E′) < δ, then diam(hn( ˆ︁E′)) < ε for all
n > N .

Roughly speaking, this lemma says that if a set has small diameter in E(X),
then its image under g∗n projects to a set that has small diameter in E(Y ). We note
that the diameter need not be small if we do not project to E(Y ). As an analogy,
consider a conformal map f from a simply connected domain Y whose boundary is
not locally connected onto the unit disk X . Then small sets near ∂X need not be
mapped to small sets in Y under g = f−1.

Proof. By the local connectivity of E(X) ≃ ˆ︁C, it suffices to show the statement for

continua ˆ︁E′, rather than arbitrary sets. We argue by contradiction, assuming that
there exists ε0 > 0 and a sequence of positive integers {kn}n∈N with kn → ∞ such

that there exists a sequence of continua ˆ︁E′
n ⊂ E(X) converging to a point ˆ︁x ∈ E(X)

as n → ∞, but diam(πY (En)) ≥ ε0 for all n ∈ N, where En = g∗kn(π
−1
X ( ˆ︁E′

n)).
After passing to a subsequence, we assume that En converges to a continuum

E ⊂ ˆ︁C, and by continuity πY (En) converges to a continuum πY (E) in E(Y ) with
diam(πY (E)) ≥ ε0.
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Consider distinct points ˆ︁y, ˆ︁z ∈ πY (E) \
⋃︁
i∈N πY (qi) and let y = π−1

Y (ˆ︁y), z =

π−1
Y (z) ∈ E ∩ Y . Consider disjoint closed Jordan regions Uy, Uz containing y, z in

their interior, whose boundaries lie in Y ; these regions can be obtained as preimages
under πY of appropriate Jordan regions in E(Y ). By Lemma 4.8, the distance of the
images f∗kn(Uy), f

∗
kn
(Uz) is uniformly bounded away from zero. By the Hausdorff

convergence of En to E, for all sufficiently large n ∈ N the set En intersects both
Uy and Uz. Since y, z ∈ Y , there exist points yn, zn ∈ En ∩ Y converging to y, z,

respectively. The points y′n = fkn(yn), z
′
n = fkn(zn) lie in π−1

X ( ˆ︁E′
n) and stay away

from each other as n → ∞. Since the points πX(y′n) and πX(z′n) converge to the
point ˆ︁x, but the points y′n and z′n stay away from each other, by Lemma 2.2 we
must have ˆ︁x = πX(pi0) for some i0 ∈ N. We conclude that y′n, z

′
n accumulate at pi0

as n→ ∞.
Fix a closed Jordan region U containing y in its interior such that U is disjoint

from qi0 and ∂U ⊂ Y ; this is possible because y ∈ Y . We have yn ∈ U for all
sufficiently large n ∈ N. On the other hand, the sets f∗kn(U) and f∗kn(qi0) = pi0,kn
come arbitrarily close to each other. This contradicts Lemma 4.8. □

The following statement is a version of the Arzelà–Ascoli theorem for equicon-
tinuous families of set functions. The proof is a straightforward adaptation of the
classical argument and the experienced reader may safely skip it.

Lemma 4.11 (Compactness). Let X ,Y be compact metric spaces and hn : P(X ) →
P(Y), n ∈ N, be a sequence of set functions with the following properties:

(i) Surjectivity: for each n ∈ N, hn(X ) = Y.
(ii) Setwise monotonicity: for each n ∈ N, if A,B ⊂ X and A ⊂ B, then

hn(A) ⊂ hn(B).
(iii) Inverse image property: for each n ∈ N, if A ⊂ X and y ∈ hn(A), then

there exists x ∈ A such that y ∈ hn(x).
(iv) Equicontinuity: for each ε > 0 there exists δ > 0 and N ∈ N such that for

each set E ⊂ X with diam(E) < δ we have diam(hn(E)) < ε for all n > N .

Then there exists a subsequence {hkn}n∈N of {hn}n∈N that converges uniformly to
a continuous and surjective map h : X → Y in the following sense: for each ε > 0
there exists N ∈ N such that for each set E ⊂ X we have

dH(hkn(E), h(E)) < ε

for all n > N .

Proof. Note that the space of compact subsets of a compact metric space is compact
in the Hausdorff metric [BBI01, Theorem 7.3.8, p 253]. Consider a countable dense
set {xl}l∈N in X and a diagonal subsequence hkn such that for each l ∈ N the
sequence of sets hkn(xl), n ∈ N, converges, and thus is a Cauchy sequence in the
Hausdorff metric. For simplicity, we denote hkn by hn.

We fix ε > 0. For each l ∈ N and ε > 0 there exists N(ε, l) > 0 such that for all
n,m > N(ε, l) we have

dH(hn(yl), hm(yl)) < ε/3.

By equicontinuity, there exists δ > 0 and N ∈ N such that if E ⊂ X is a set with
diam(E) < δ, then diam(hn(E)) < ε/3 for n > N . By the compactness of X , we
may find M ∈ N such that every point x ∈ X is within distance δ from the set
{x1, . . . , xM}. We define N0 = max{N,N(ε, 1), . . . , N(ε,M)}.
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Let x ∈ X be arbitrary and consider l ∈ {1, . . . ,M} such that d(x, xl) < δ. Let
E = {x, xl}, so diam(hn(E)) < ε/3 for all n > N . For n,m > N0 we now have

dH(hn(x), hm(x)) ≤ dH(hn(x), hn(xl)) + dH(hn(xl), hm(xl)) + dH(hm(xl), hm(x))

≤ diam(hn(E)) + ε/3 + diam(hm(E)) < ε.

Here we used the monotonicity property of hn, which implies that hn(x)∪ hn(xl) ⊂
hn(E). Since the space of compact subsets of X is complete with the Hausdorff
metric, we conclude that hn(x) (as well as, its closure) converges in the Haus-
dorff sense to a compact subset of X . By the equicontinuity condition, we have
diam(hn(x)) → 0, so the limit has to be a point h(x).

Summarizing, we have shown that for each ε > 0 there exists N ∈ N such that
for each x ∈ X we have dH(hn(x), h(x)) < ε for all n > N . The equicontinuity of
hn also implies that h is continuous.

For the surjectivity, we use the surjectivity of hn and the inverse image property.
Note that for each y ∈ Y = hn(X ) there exists ˜︁xn ∈ X such that y ∈ hn(˜︁xn). By
the uniform convergence, we have dH(hn(˜︁xn), h(˜︁xn)) → 0 as n→ ∞. After passing
to a subsequence, we assume that ˜︁xn → x ∈ X . Thus, dH(hn(˜︁xn), h(x)) → 0. Since
y ∈ hn(˜︁xn), we have h(x) = y.

Finally, we prove the uniform convergence for images of sets as in the end of
the statement of the lemma. Let ε > 0 and N ∈ N be such that for each x ∈ X
we have dH(hn(x), h(x)) < ε for all n > N . Let E ⊂ X be any set and fix
n > N . We will show that dH(hn(E), h(E)) < ε. First, we show that hn(E) ⊂
Nε(h(E)). Let y ∈ hn(E), so by the inverse image property there exists ˜︁xn ∈ E
such that y ∈ hn(˜︁xn) ⊂ B(h(˜︁xn), ε) ⊂ Nε(h(E)). Conversely, we will show that
h(E) ⊂ Nε(hn(E)). Let y ∈ h(E). By the surjectivity of h , there exists x ∈ E
such that y = h(x) ⊂ Nε(hn(x)) ⊂ Nε(hn(E)); here we also used the setwise
monotonicity. □

Lemma 4.12. The sequence of set functions hn = πY ◦ g∗n ◦ π−1
X , n ∈ N, satisfies

the assumptions of Lemma 4.11. In particular, after passing to a subsequence, hn
converges uniformly as n → ∞ to a continuous and surjective map h : E(X) →
E(Y ).

Proof. Recall that hn = πY ◦ π−1
Yn

◦ ˆ︁gn ◦ πXn
◦ π−1

X . The surjectivity is immediate.
The equicontinuity follows from Lemma 4.10. In general, if ϕ is a function between
any sets, then the induced set functions ϕ and ϕ−1 have the monotonicity and
inverse image properties. Also, note that if ϕ and ψ are set functions that have
the monotonicity and inverse image properties, then ϕ ◦ψ also does so. This shows
that hn has these properties. □

Lemma 4.13 (Topological properties). The map h : E(X) → E(Y ) is monotone
and h(ˆ︁pi) = ˆ︁qi for each i ∈ N.

Proof. For the monotonicity we argue by contradiction. Let ˆ︁y ∈ E(Y ) and suppose
that h−1(ˆ︁y) is disconnected. Let ˆ︁x, ˆ︁z be points lying on distinct components of

h−1(ˆ︁y) and let ˆ︁E′ be a continuum in E(X) \ h−1(ˆ︁y) that separates them. Consider

the continuum E′ = π−1
X ( ˆ︁E′), which separates the sets x = π−1

X (ˆ︁x) and z = π−1
X (ˆ︁z).

In E(Y ) consider the continuum ˆ︁E = h( ˆ︁E′), which is disjoint from ˆ︁y. By the

uniform convergence, the sets hn( ˆ︁E′) converge to ˆ︁E in the Hausdorff sense, so

there exists a closed Jordan region ˆ︁U , disjoint from ˆ︁y, containing hn( ˆ︁E′) for all
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sufficiently large n ∈ N. Since hn(ˆ︁x) and hn(ˆ︁z) converge to ˆ︁y, there exists a closed

Jordan region ˆ︁V , disjoint from ˆ︁U , containing these sequences for all large n ∈ N.
Let U, V be the preimages of ˆ︁U, ˆ︁V under πY , respectively. So, U, V are disjoint

continua in ˆ︁C. Using (2.1), we have

f∗n(U) ⊃ f∗n(π
−1
Y (hn( ˆ︁E′))) = f∗n(π

−1
Y (πY (g

∗
n(E

′)))) ⊃ f∗n(g
∗
n(E

′)) ⊃ E′

and similarly f∗n(V ) contains x, z for all large n ∈ N. Since E′ separates x, z and
f∗n(V ) joins them, we conclude that f∗n(U)∩f∗n(V ) ̸= ∅ for all large n ∈ N. However,
by Lemma 4.8, f∗n(U) and f∗n(V ) have distance uniformly bounded below away from
0 as n→ ∞. This is a contradiction. Therefore h−1(ˆ︁y) is connected.

Next we show that h(ˆ︁pi) = ˆ︁qi for each i ∈ N. Recall that pi,n → pi as n →
∞. This implies that the sequence of sets En = πX(pi,n) converges to the point
πX(pi) = ˆ︁pi. By uniform convergence, h(ˆ︁pi) is precisely the limit of hn(En). Note
that π−1

X (En) contains pi,n. Thus, g∗n(π
−1
X (En)) contains qi and hn(En) containsˆ︁qi for all sufficiently large n ∈ N. It follows that the limit of hn(En), which is the

point h(ˆ︁pi), is precisely equal to ˆ︁qi. □

This completes the proof of the existence and of the topological properties of
the limiting map h : E(X) → E(Y ). In the next section we establish the analytic
properties of h as required in the definition of a packing-conformal map, completing
the proof of Theorem 4.1.

4.3. Regularity of limiting map. For each conformal map gn : Xn → Yn con-
sider the derivative (with respect to the spherical metrics) |Dgn|, which satisfies
the following relations by Lemma 2.17. First, we have the transboundary upper
gradient inequality:

dist(g∗n(γ(a)), g
∗
n(γ(b))) ≤

∫︂
γ

|Dgn| ds+
∑︂

i:pi,n∩|γ|≠∅

diam(qi)(4.1)

for all rectifiable paths γ : [a, b] → ˆ︁C. Second, for all Borel sets E ⊂ Yn we have∫︂
g−1
n (E)

|Dgn|2 dΣ = Σ(E).(4.2)

We extend |Dgn| to ˆ︁C by setting it to be zero in
⋃︁n
i=1 pi,n. We first establish a

preliminary result.

Lemma 4.14. Let {λi}i∈N be a non-negative sequence in ℓ2(N). Then

lim sup
n→∞

∑︂
i:pi,n∩|γ|≠∅

λi ≤
∑︂

i:pi∩|γ|≠∅

λi.

for all compact curves γ in ˆ︁C outside a curve family Γ0 with Mod2 Γ0 = 0.

The proof relies on the fact that for each n ∈ N the sets pi,n, i ∈ {1, . . . , n}, are
pairwise disjoint and τ -fat, and they converge in the Hausdorff sense as n→ ∞ to
the sets pi, i ∈ N, which are also pairwise disjoint and τ -fat.

Proof. Suppose that γ is a compact path so |γ| is compact. For each i ∈ N,
if pi ∩ |γ| = ∅, then pi has a positive distance from |γ| by compactness. Thus,



CONFORMAL UNIFORMIZATION BY DISK PACKINGS 27

pi,n∩|γ| = ∅ for all sufficiently large n ∈ N. It follows that for each M ∈ N we have

lim sup
n→∞

∑︂
i∈{1,...,M}
pi,n∩|γ|≠∅

λi ≤
∑︂

i:pi∩|γ|≠∅

λi.(4.3)

We will show that there exists a curve family Γ0 with Mod2 Γ0 = 0 such that if γ
is path outside Γ0, then

lim
M,n→∞

∑︂
i>M

pi,n∩|γ|≠∅

λi = 0.(4.4)

Combined with (4.3), this gives the desired conclusion.
Let J be the set of indices i ∈ N such that diam(pi) > 0. By Corollary 4.6, if

i ∈ J then pi,n is non-degenerate for all n ≥ i, and if i /∈ J then pi,n is a point
for all n ≥ i. For each n ∈ N and i ∈ {1, . . . , n} ∩ J consider points xi,n ∈ pi,n
and xi ∈ pi such that xi,n → xi as n → ∞. We let Bi,n = B(xi,n,diam(pi,n)) and
Bi = B(xi,diam(pi)). Note that Σ(2Bi,n) ≤ c(τ)Σ(pi,n) and Σ(2Bi) ≤ c(τ)Σ(pi)
by the τ -fatness, and observe that for each i ∈ J the characteristic functions χ2Bi,n

converge as n→ ∞ pointwise a.e. to χ2Bi
. We define the functions

ϕ(x) =
∑︂
i∈J

λi
diam(pi)

χ2Bi
(x),

ψi,n(x) =

⃓⃓⃓⃓
⃓λiχ{1,...,n}(i)

diam(pi,n)
χ2Bi,n

(x)− λi
diam(pi)

χ2Bi
(x)

⃓⃓⃓⃓
⃓ , i ∈ J, n ∈ N,

ϕn(x) =
∑︂
i∈J

ψi,n(x), n ∈ N.

Using Lemma 2.7 and the fact that the sets pi, i ∈ J , are pairwise disjoint and
τ -fat, we obtain ∫︂

ϕ2 ≤ c(τ)

∫︂ ∑︂
i∈J

λ2i
diam(pi)2

χpi ≤ c′(τ)

∞∑︂
i=1

λ2i

and similarly, for each n,M ∈ N we have∫︂ ⎛⎝ ∑︂
i>M,i∈J

ψi,n(x)

⎞⎠2

≤ c(τ)
∑︂
i>M

λ2i .(4.5)

Note that for each i ∈ J the sequence of functions {ψi,n}n∈N is uniformly bounded
and converges to 0 pointwise a.e. The dominated convergence theorem implies that

for each fixed M ∈ N, the sequence {
∑︁
i≤M,i∈J ψi,n}n∈N converges to 0 in L2(ˆ︁C).

This fact, combined with (4.5) gives that {ϕn}n∈N converges to 0 in L2(ˆ︁C).
By Fuglede’s lemma [HKST15, p. 131], there exists a curve family Γ1 with

Mod2 Γ1 = 0 such that for all curves γ outside Γ1 we have

lim
n→∞

∫︂
γ

ϕn ds = 0.

Moreover, since ϕ ∈ L2(ˆ︁C), there exists a curve family Γ2 with Mod2 Γ2 = 0 such
that

∫︁
γ
ϕds <∞ for each γ /∈ Γ2. Finally, there exists a family Γ3 with Mod2 Γ3 = 0

that contains all non-constant curves intersecting the countable collection of points
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pi, i /∈ J , and pi,n, i /∈ J , n ≥ i; see [Väi71, §7.9, p. 23]. We define Γ0 = Γ1∪Γ2∪Γ3,
which satisfies Mod2 Γ0 = 0, and fix a curve γ /∈ Γ0. Note that if γ is a constant
curve, then the claim (4.4) holds trivially, since the sum contains at most one term
and λi → 0 as i→ ∞. Thus, we assume that γ is non-constant.

Since γ /∈ Γ1, for each ε > 0 there exists N0 ∈ N such that∫︂
γ

∑︂
i∈J

⃓⃓⃓⃓
⃓λiχ{1,...,n}(i)

diam(pi,n)
χ2Bi,n

(x)− λi
diam(pi)

χ2Bi

⃓⃓⃓⃓
⃓ ds < ε(4.6)

for all n > N0. By Lemma 2.5, there exists a number N1 ∈ N, depending only
on τ , such that for each n ∈ N there exists a set In ⊂ N with #In ≤ N1 that
contains precisely the indices i ∈ N with the property that pi,n ∩ |γ| ≠ ∅ and
diam(2Bi,n) ≥ diam(|γ|). Hence, diam(|γ|) > diam(2Bi,n) for each i ∈ {1, . . . , n}∩
J \ In with pi,n ∩ |γ| ≠ ∅. By the properties of the set In, if pi,n ∩ |γ| ≠ ∅ and
i ∈ {1, . . . , n} ∩ J \ In, then

λi ≤
∫︂
γ

λi
diam(pi,n)

χ2Bi,n
ds.

Thus, for each M ∈ N and n > N0, using (4.6), we have∑︂
i>M, i∈J\In
pi,n∩|γ|̸=∅

λi ≤
∫︂
γ

∑︂
i>M, i∈J\In
pi,n∩|γ|̸=∅

λiχ{1,...,n}(i)

diam(pi,n)
χ2Bi,n

ds

< ε+

∫︂
γ

∑︂
i>M,i∈J

λi
diam(pi)

χ2Bi
ds.

Since γ /∈ Γ2, we have
∫︁
γ
ϕds < ∞; thus, by the dominated convergence theorem,

for all sufficiently largeM ∈ N the latter line integral term in the above inequalities
is less than ε. Therefore, for all sufficiently large M ∈ N and for n > N0 we have∑︂

i>M, i∈J\In
pi,n∩|γ|≠∅

λi < 2ε.

Since λi → 0 as i→ ∞, we also have∑︂
i>M, i∈In

λi ≤ N1 ·max{λi : i > M} < ε

for all sufficiently large M ∈ N. Altogether,∑︂
i>M,i∈J
pi,n∩|γ|̸=∅

λi < 3ε

for all sufficiently large M ∈ N and n > N0. Finally, since γ /∈ Γ3, we have i ∈ J
whenever pi,n ∩ |γ| ̸= ∅. This implies that we may remove the restriction i ∈ J in
the summation range of the latter sum. This completes the proof of (4.4). □

Lemma 4.15 (Upper gradient). The sequence {|Dgn|}n∈N has a subsequence that

converges weakly in L2(ˆ︁C) to a function ρh with the property that

dist(π−1
Y ◦ h ◦ πX(γ(a)), π−1

Y ◦ h ◦ πX(γ(b))) ≤
∫︂
γ

ρh ds+
∑︂

i:pi∩|γ|≠∅

diam(qi)
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for all curves γ : [a, b] → ˆ︁C outside a curve family Γ0 with Mod2 Γ0 = 0.

Proof. Recall that hn = πY ◦ g∗n ◦ π−1
X , so for each set A ⊂ ˆ︁C we have

π−1
Y ◦ hn ◦ πX(A) ⊃ g∗n(A).(4.7)

Let γ : [a, b] → ˆ︁C be an arbitrary rectifiable path. If we set α = πX(γ(a)) and
β = πX(γ(b)), the transboundary upper gradient inequality of gn, as stated in
(4.1), and (4.7) imply that

dist(π−1
Y ◦ hn(α), π−1

Y ◦ hn(β)) ≤
∫︂
γ

|Dgn| ds+
∑︂

i:pi,n∩|γ|≠∅

diam(qi).(4.8)

Our goal is to show that we can take limits in this expression and derive the claimed
upper gradient inequality of h for all curves γ outside an exceptional family Γ0 with
Mod2 Γ0 = 0.

First, we treat the line integral terms. By (4.2), the sequence |Dgn| is uniformly

bounded in L2(ˆ︁C). Consider a weak limit ρh ∈ L2(ˆ︁C) of |Dgn|, given by the
Banach–Alaoglu theorem [HKST15, Theorem 2.4.1]. By Mazur’s lemma [HKST15,

p. 19], there exist convex combinations of |Dgn| that converge strongly in L2(ˆ︁C) to
ρh. Specifically, these convex combinations have the form

ρn =

Mn∑︂
i=n

λi,n|Dgi|

for some Mn > n and 0 ≤ λi,n ≤ 1, i ∈ {n, . . . ,Mn}, where
∑︁Mn

i=n λi,n = 1. By
Fuglede’s lemma [HKST15, p. 131], there exists a curve family Γ1 with Mod2 Γ1 = 0
such that for all curves γ outside Γ1 we have

lim
n→∞

∫︂
γ

ρn ds =

∫︂
γ

ρh ds.(4.9)

Next, we treat the left-hand side of (4.8). Observe that as n → ∞, the sets
hn(α) and hn(β) converge to the points h(α) and h(β) respectively; recall Lemma
4.12. By Lemma 2.2 (ii), this implies that

dist(π−1
Y ◦ h(α), π−1

Y ◦ h(β)) ≤ lim inf
n→∞

dist(π−1
Y ◦ hn(α), π−1

Y ◦ hn(β)).

Note that if we set dn = dist(π−1
Y ◦ hn(α), π−1

Y ◦ hn(β)) and consider the convex
combinations ˜︁dn =

Mn∑︂
i=n

λi,ndi

then we obtain immediately

dist(π−1
Y ◦ h(α), π−1

Y ◦ h(β)) ≤ lim inf
n→∞

˜︁dn.(4.10)

Finally, we treat the summation term in (4.8). We apply Lemma 4.14 to conclude
that there exists a curve family Γ2 with Mod2 Γ2 = 0 such that for all compact
curves γ outside Γ2 we have

lim sup
n→∞

∑︂
i:pi,n∩|γ|≠∅

diam(qi) ≤
∑︂

i:pi∩|γ|≠∅

diam(qi).
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We set

sn =
∑︂

i:pi,n∩|γ|≠∅

diam(qi) and ˜︁sn =

Mn∑︂
i=n

λi,nsi

and observe that

lim sup
n→∞

˜︁sn ≤
∑︂

i:pi∩|γ|≠∅

diam(qi).(4.11)

We now define Γ0 = Γ1 ∪ Γ2 and let γ /∈ Γ0 be a compact curve. Taking convex
combinations in (4.8), we obtain

˜︁dn ≤
∫︂
γ

ρn ds+ ˜︁sn.
By (4.9), (4.10), and (4.11), we can take limits to obtain

dist(π−1
Y ◦ h(α), π−1

Y ◦ h(β)) ≤
∫︂
γ

ρh ds+
∑︂

i:pi∩|γ|≠∅

diam(qi).

This completes the proof. □

Lemma 4.16 (Conformality). For all Borel sets E ⊂ Y we have∫︂
π−1
X (h−1(πY (E)))

ρ2h dΣ ≤ Σ(E).

Proof. Let E ⊂ Y be a Borel set. Since πY is injective on Y , by the Lusin–Souslin
theorem [Kec95, Theorem 15.1, p. 89] πY (E) is also a Borel set. By continuity,
π−1
X (h−1(πY (E))) is a Borel set. Let K be a compact subset of π−1

X (h−1(πY (E))).

Since πY is injective on E, we have π−1
Y (h(πX(K))) ⊂ E. We will show that∫︂

K

ρ2h dΣ ≤ Σ(π−1
Y (h(πX(K)))) ≤ Σ(E).

Since K is an arbitrary compact subset of π−1
X (h−1(πY (E))), the proof will be

completed by the inner regularity of Σ.

Let ˆ︁K = πX(K). By Lemma 2.2 (i), for each δ > 0, there exists an open

neighborhood ˆ︁V of h( ˆ︁K) such that the open set π−1
Y (ˆ︁V ) contains π−1

Y (h( ˆ︁K)) and

is contained the open δ-neighborhood of π−1
Y (h( ˆ︁K)). In particular, by the com-

pactness of π−1
Y (h( ˆ︁K)), for each ε > 0 we may find such an open set ˆ︁V with the

additional property that

Σ(π−1
Y (ˆ︁V )) ≤ Σ(π−1

Y (h( ˆ︁K))) + ε.(4.12)

Since hn( ˆ︁K) converges in the Hausdorff sense to h( ˆ︁K), we have hn( ˆ︁K) ⊂ ˆ︁V
for all sufficiently large n ∈ N. This implies that g∗n(π

−1
X ( ˆ︁K)) ⊂ π−1

Y (ˆ︁V ) for all
sufficiently large n ∈ N. This inclusion, the conformality of gn, and (4.12), give∫︂

K

|Dgn|2 dΣ =

∫︂
K∩Xn

|Dgn|2 dΣ ≤
∫︂
π−1
X ( ˆ︁K)∩Xn

|Dgn|2 dΣ

= Σ(gn(π
−1
X ( ˆ︁K) ∩Xn)) ≤ Σ(π−1

Y (ˆ︁V )) ≤ Σ(π−1
Y (h( ˆ︁K))) + ε
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for all sufficiently large n ∈ N. Since |Dgn| converges weakly to ρh in L2(ˆ︁C), we
see that |Dgn|χK also converges weakly to ρhχK . Thus,∫︂

K

ρ2h dΣ ≤ lim inf
n→∞

∫︂
K

|Dgn|2 dΣ ≤ Σ(π−1
Y (h( ˆ︁K))) + ε.

Finally, we let ε→ 0. □

Lemma 4.17. The function ρh is supported in the set π−1
X (h−1(πY (Y ))).

Proof. It suffices to show that ρh = 0 on π−1
X (h−1(πY (qi))) for each i ∈ N. The

argument is similar to the one used in the previous lemma. Let K be a non-empty
compact subset of π−1

X (h−1(πY (qi))). It suffices to show that ρh = 0 a.e. on K. We

set ˆ︁K = πX(K) and note that h( ˆ︁K) is the singleton πY (qi). By Lemma 2.2, for each

δ > 0, there exists an open neighborhood ˆ︁V of h( ˆ︁K) such that the open set π−1
Y (ˆ︁V )

contains π−1
Y (h( ˆ︁K)) and is contained the open δ-neighborhood of π−1

Y (h( ˆ︁K)) = qi.

Therefore, for each ε > 0, we may find such an open set ˆ︁V with the additional
property that

Σ(π−1
Y (ˆ︁V ) \ qi) < ε.

As in the proof of Lemma 4.16, g∗n(π
−1
X ( ˆ︁K)) ⊂ π−1

Y (ˆ︁V ) for all sufficiently large

n ∈ N, and particularly, g∗n(π
−1
X ( ˆ︁K) \ pi,n) ⊂ π−1

Y (ˆ︁V ) \ qi. We now obtain∫︂
K

|Dgn|2 dΣ =

∫︂
(K\pi,n)∩Xn

|Dgn|2 dΣ ≤
∫︂
(π−1

X ( ˆ︁K)\pi,n)∩Xn

|Dgn|2 dΣ

= Σ(gn((π
−1
X ( ˆ︁K) \ pi,n) ∩Xn)) ≤ Σ(π−1

Y (ˆ︁V ) \ qi) < ε.

Taking limits and using the weak convergence of |Dgn|χK to ρhχK , we obtain∫︂
K

ρ2h ≤ ε.

We let ε→ 0, so ρh = 0 a.e. on K. □

A consequence of Lemma 4.16 and Lemma 4.17 is the following statement, which
concludes the proof that h is packing-conformal and the proof of Theorem 4.1.

Corollary 4.18. For all Borel sets E ⊂ ˆ︁C we have∫︂
π−1
X (h−1(πY (E)))

ρ2h dΣ ≤ Σ(E ∩ Y ).

5. Topology of planar maps

Our goal in this section is to study continuous, proper, and cell-like maps between
simply connected domains in the sphere. In view of the approximation theorem,
Theorem 2.8, these maps behave like homeomorphisms. Specifically, we wish to
understand when these maps have an extension to the boundaries and to the whole
sphere satisfying certain properties. This section can be read independently of the
other sections. The results are used in the proof of Theorem 6.1 in the next section.
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5.1. Conditions for continuous extension. Let f : Ω → D be a map between

domains in ˆ︁C. For a point z0 ∈ ∂Ω we define the cluster set Clu(f, z0) to be the set
of accumulation points of {f(zn)}n∈N over all sequences {zn}n∈N in Ω converging
to z0. Recall from Section 2.3 that a continuous map between open subsets of the
sphere is cell-like if the preimage of each point is a non-separating continuum.

Lemma 5.1. Let Ω, D ⊂ ˆ︁C be simply connected regions such that ∂D is a Peano
continuum and let f : Ω → D be a continuous, proper, and cell-like map.

(i) For each z0 ∈ ∂Ω and ε > 0 there exists δ > 0 such that if γ is a closed
curve in B(z0, δ) \ {z0} that is not null-homotopic, then

diam(f(|γ| ∩ Ω)) ≥ diam(Clu(f, z0))− ε.

(ii) The map f extends to a continuous map on Ω if and only if for each z0 ∈ ∂Ω

and z∞ ∈ ˆ︁C \ {z0} there exists a sequence of curves γn in ˆ︁C \ {z0, z∞} that
are not null-homotopic and converge to z0 such that

lim
n→∞

diam(f(|γn| ∩ Ω)) = 0.

In this case f(Ω) = D and f−1(∂D) = ∂Ω.

Proof. This first part of the lemma is established in [NY20], as Lemma 3.10, under
the assumption that f is a homeomorphism and the complements of Ω, D are points
or closed Jordan regions; see the first two paragraphs in [NY20, p. 152]. The proof
applies with few changes to this more general setting so we omit it, but we make
instead a few remarks. One can reduce the statement to homeomorphisms via
the approximation theorem, Theorem 2.8. In particular, one can replace f by a
homeomorphism without altering the cluster sets and so that diam(f(|γ| ∩ Ω)) is
altered very slightly. The assumption that Ω is a Jordan region or a point is not
used in [NY20]. Finally, for D all we need is that it has the property that any two
points that are close to each other can be connected with a path in D that is small
in diameter; this is true since ∂D is a Peano continuum [Why42, Theorem (4.2),
p. 112].

We prove part (ii). If there is a continuous extension then the conclusion holds
trivially for any sequence of curves γn as in the statement. Conversely, suppose
that for each z0 there exists a sequence of curves γn as in the statement. By (i)
we see that Clu(f, z0) contains only one point. Thus, f extends continuously to
Ω. The surjectivity of f : Ω → D from Lemma 2.9 (i) implies the surjectivity of
the extension onto D. The properness of f implies that Clu(f, z0) ⊂ ∂D for each
z0 ∈ ∂Ω. Hence f−1(∂D) = ∂Ω. □

5.2. Implications of continuous extension. We state the main result of the
section.

Theorem 5.2. Let Ω ⊂ ˆ︁C be a simply connected region and Y,D ⊂ ˆ︁C be Jordan
regions such that Ω ⊂ Y . Assume that f : Ω → D is a continuous, proper, and
cell-like map that extends to a continuous map from Ω onto D with the property
that for each component V of Y \ Ω, f |∂V \∂Y is constant. Then there exists a

unique extension of f to a continuous and cell-like map ˜︁f : Y → D. The map ˜︁f is
constant in each continuum E ⊂ Y \Ω and can be further extended to a continuous

and cell-like map ˜︁f : ˆ︁C → ˆ︁C such that ˜︁f−1(ˆ︁C \D) = ˆ︁C \ Y .
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The proof will be completed in several steps. We establish some preliminary
statements.

Lemma 5.3. Let U ⊊ ˆ︁C be an open set with ∂U = ∂U and let P ⊂ U be a Jordan
region. Then for each component V of U \P the set ∂V \ ∂P is a non-empty dense
subset of ∂V ∩ ∂U .

The assumption ∂U = ∂U holds automatically if U is a connected component ofˆ︁C \ Ω for some open set Ω.

Proof. Using the Schoenflies theorem, we may assume that ∂P is a circle. Suppose
that ∂V \∂P = ∅, so ∂V ⊂ ∂P . The set ∂V is a non-empty closed subset of ∂P . Let
x ∈ ∂V and consider a ball B(x, r) that does not contain P . Then ∂P separates the
ball B(x, r) into two connected open sets, one contained in P , and one outside P .
The latter set does not intersect ∂V and contains points of V , since x ∈ ∂V . By the
connectedness of V , we have B(x, r)\P ⊂ V . This implies that B(x, r)∩∂P ⊂ ∂V ,
so ∂V is open in the relative topology of ∂P . We conclude that ∂V = ∂P . The

Jordan curve theorem implies that V = ˆ︁C \ P . Thus, ˆ︁C = V ∪ P ⊂ U , which

contradicts the assumption that U ⊊ ˆ︁C. Therefore, ∂V \ ∂P ̸= ∅.
We show that ∂V \ ∂P ⊂ ∂V ∩ ∂U . If not, there exists x ∈ ∂V \ ∂P ⊂ ∂V ⊂ U

with x ∈ U . Since x /∈ P , there exists a ball B(x, r) ⊂ U \ P . This implies that
V ∪B(x, r) is a connected open subset of U \ P , which contradicts the assumption
that V is a connected component of U \ P .

It remains to show that each point of ∂V ∩∂U∩∂P can be approximated by points
of ∂V \∂P . For the sake of contradiction, suppose that there exists x ∈ ∂V ∩∂U∩∂P
and an open ball B(x, r) that does not intersect ∂V \ ∂P and does not contain ∂P
(upon choosing a small enough r > 0). Thus, B(x, r)∩ ∂V ⊂ ∂P . Consider the arc
α = B(x, r) ∩ ∂P . The arc α separates the ball B(x, r) into precisely two regions:
one region contained in P and hence not intersecting V , and one region outside P
that does not intersect ∂V . The latter region contains points of V near x, since
x ∈ ∂V . By the connectedness of V , this region is contained in V . Therefore,
α ⊂ ∂V . We conclude that B(x, r) is contained in P ∪ V ⊂ U . This contradicts
that x ∈ ∂U = ∂U . □

Lemma 5.4. Let E ⊂ ˆ︁C be a compact set, D ⊂ ˆ︁C be a Jordan region, and

g : E → D be a continuous, surjective, and cell-like map. Then E ̸= ˆ︁C, E is a
non-separating continuum, and g(∂E) = ∂D. Moreover, there exists an extension

of g to a continuous and cell-like map ˜︁g : ˆ︁C → ˆ︁C such that ˜︁g−1(ˆ︁C \D) = ˆ︁C \ E.

Proof. We consider a decomposition of ˆ︁C into the non-separating continua g−1(z),
z ∈ D, and the remaining singleton points. This decomposition is upper semicon-
tinuous, as follows from the continuity of g. By Moore’s theorem (Theorem 2.10),ˆ︁C/ ∼ is a topological 2-sphere. Consider the projection π : ˆ︁C → ˆ︁C/ ∼. We define
the map G = g ◦π−1 on π(E) by mapping each point π(g−1(z)) to z, where z ∈ D.
Trivially, this map is injective. Using Lemma 2.2 and the continuity of g one can
show that G is continuous from π(E) onto D. Therefore, G is a homeomorphism,
which implies that π(E) is a closed Jordan region, whose interior we denote by W ;

moreover, G(∂W ) = ∂D. The region ˆ︁C\E projects under π homeomorphically onto

the complement of W . In particular, ˆ︁C \ E ̸= ∅ and π(∂E) = π(∂(ˆ︁C \ E)) = ∂W .
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∂U0
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Figure 4. The region U0 is the unbounded component of ˆ︁C \ Ω.
The map ˜︁f is constant on each component U ̸= U0 of ˆ︁C \Ω. Here
the set Az is the closure of the shaded regions.

This implies that g(∂E) = G(π(∂E)) = ∂D. Finally, consider an arbitrary exten-

sion of G to a homeomorphism of the sphere ˆ︁C/ ∼. Then ˜︁g = G ◦ π gives the
desired extension of g. □

In the next lemmas the standing assumptions are that Ω ⊂ ˆ︁C is a simply con-

nected region, D ⊂ ˆ︁C is a Jordan region, and f : Ω → D is a continuous, proper,
and cell-like map that has an extension to a continuous map from Ω onto D, which
we also denote by f .

Lemma 5.5. There exists a unique component U0 of ˆ︁C \ Ω such that f(∂U0) =
∂D. Moreover, there exists an extension of f to a continuous and cell-like map˜︁f : ˆ︁C \ U0 → D such that ˜︁f |U is constant for each component U ̸= U0 of ˆ︁C \ Ω.

See Figure 4 for an illustration of the conclusions of the lemma.

Proof. By postcomposing f with a homeomorphism of ˆ︁C via the Schoenflies theo-
rem, we assume that D is the unit disk. For each z ∈ ∂D the set f−1(z) is a subset
of ∂Ω by Lemma 5.1 (ii). Moreover, we have

f−1(z) =
⋂︂
r>0

f−1(B(z, r) ∩D)

by the continuity of f . Since f is cell-like and the set B(z, r) ∩D is connected, by

Lemma 2.9 (ii) the same is true for f−1(B(z, r)∩D), and thus for f−1(B(z, r) ∩D).
We conclude that f−1(z) is a connected subset of ∂Ω.

For each z ∈ D, the set Az = f−1(z) is a non-separating continuum in Ω, since
f is cell-like and f−1(∂D) = ∂Ω. For z ∈ ∂D the set f−1(z) is a connected subset
of ∂Ω. If f−1(z) does not separate the sphere, then we set Az = f−1(z). If f−1(z)

separates the sphere, then ˆ︁C \ f−1(z) contains at least two components. Precisely

one of the components of ˆ︁C \ f−1(z) contains the connected set Ω. We define Az
to be the complement of that component; see Figure 4. Then Az is non-separating
by its definition and has the property that

∅ ≠ ∂Az ⊂ f−1(z) ⊂ ∂Ω.(5.1)

The set int(Az) is disjoint from Ω, so

Az ∩ ∂Ω = ∂Az ∩ ∂Ω ⊂ f−1(z).(5.2)



CONFORMAL UNIFORMIZATION BY DISK PACKINGS 35

We claim that Az∩Aw = ∅ for each w ̸= z, z, w ∈ D. If z ∈ D, then Az = f−1(z) ⊂
Ω and the claim is trivial. Suppose that z, w ∈ ∂D. By (5.2), we have

Az ∩ f−1(w) = Az ∩ f−1(w) ∩ ∂Ω ⊂ f−1(z) ∩ f−1(w) = ∅.

Thus, the connected set Az is contained in a component of ˆ︁C \ f−1(w). The def-
inition of Aw implies that Az ⊂ Aw or Az ∩ Aw = ∅. If Az ⊂ Aw, then then by
reversing the roles of z and w one obtains Aw ⊂ Az, so Az = Aw. This contradicts
(5.1).

Consider the set A =
⋃︁
z∈D Az, which contains Ω. We observe that this set is

closed in ˆ︁C. Indeed, if xn is a sequence in Azn , where zn ∈ D are distinct points,
then there exists x′n ∈ ∂Azn ⊂ Ω such that σ(xn, x

′
n) → 0. Thus, x′n, and hence xn

as well, must accumulate at points of Ω ⊂ A. Another observation is that

∂A ⊂ ∂Ω.(5.3)

Indeed, if x ∈ ∂A ⊂ A, then x ∈ ∂Az for some z ∈ D. If z ∈ D, then Az ⊂ Ω ⊂
int(A), so we must have z ∈ ∂D. In this case, ∂Az ⊂ ∂Ω by (5.1), as desired.

We extend f to A =
⋃︁
z∈D Az by defining ˜︁f(x) = z for x ∈ Az. Observe that if

x ∈ Az, then for each point x′ ∈ ∂Az ⊂ f−1(z) we have ˜︁f(x) = z = f(x′). We claim
that the extension is continuous. If not, there exists ε > 0 and a sequence xn → x,

such that σ( ˜︁f(xn), ˜︁f(x)) ≥ ε for each n ∈ N. Note that the point x cannot lie in

the interior of Az for any z ∈ D, since ˜︁f is continuous there. Thus, we necessarily

have x ∈ ∂Az for some z ∈ D. By (5.1), x ∈ Ω, so ˜︁f(x) = f(x). Assume that

xn ∈ Azn , n ∈ N. For each n ∈ N we connect xn to x with a small path in ˆ︁C and

we see that there exists a point x′n ∈ ∂Azn ⊂ f−1(zn) such that ˜︁f(xn) = f(x′n) and

x′n → x. This contradicts the continuity of f on Ω. Therefore, ˜︁f is continuous. By

construction, ˜︁f−1(z) = Az is a non-separating continuum for each z ∈ D; thus ˜︁f is
also cell-like.

By Lemma 5.4, ˆ︁C \ A ≠ ∅, A is a non-separating continuum, and ˜︁f(∂A) = ∂D.

We define U0 = ˆ︁C \ A, so ˜︁f(∂U0) = ∂D. The connected set U0 is contained in a

component of ˆ︁C \ Ω. By (5.3) we have ∂U0 = ∂A ⊂ ∂Ω, which implies that U0 is

a component of ˆ︁C \ Ω. Let U be a component of ˆ︁C \ Ω that is different from U0.
Then U ⊂ A, so U ∩ Az ̸= ∅ for some z ∈ D; in fact, z ∈ ∂D, since U ∩ Ω = ∅.
Note that U is a connected set that is disjoint from f−1(z). By the definition of

Az we have U ⊂ Az. In particular, ˜︁f is constant on U . □

Lemma 5.6. Let Y ⊂ ˆ︁C be a Jordan region such that Ω ⊂ Y . Assume that for
each component V of Y \ Ω the restriction f |∂V \∂Y is constant. Then there exists

a unique extension of f to a continuous and cell-like map ˜︁f : Y → D. The map˜︁f |Y \Ω attains countably many values and ˜︁f−1(D) = Ω.

Proof. Consider the region U0 and the extension ˜︁f : ˆ︁C \ U0 → D as provided by

Lemma 5.5. Let Y ⊃ Ω as in the statement. The connected region ˆ︁C\Y is contained

in a component of ˆ︁C \ Ω. If ˆ︁C \ Y is contained in a component U ̸= U0 of ˆ︁C \ Ω,
then ˜︁f |U is constant; moreover, U0 ⊂ Y and U0 is a component of Y \ Ω. By

assumption, f |∂U0\∂Y is constant. Since ∂U0 ∩ ∂Y ⊂ ∂U0 ∩ U , f is also constant
on ∂U0 ∩ ∂Y . This contradicts the surjectivity of f |∂U0

onto ∂D from Lemma 5.5.

Therefore ˆ︁C \ Y ⊂ U0 and ∂Y ⊂ U0.
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Figure 5. A portion of ∂Ω and ∂Y .

Next, we extend ˜︁f to Y \Ω as follows. If V is a component of Y \Ω, then either

V is a component of ˆ︁C \Ω that is disjoint from U0, or V is a component of Y ∩U0.

If V is disjoint from U0, then ˜︁f has already been defined in V and is constant with
value equal to f(∂V ) ⊂ f(∂Ω) ⊂ ∂D. Suppose that V is a component of Y ∩ U0.

By Lemma 5.3 (applied to U0 and P = ˆ︁C \ Y ), the set ∂V \ ∂Y is a non-empty
dense subset of ∂V ∩ ∂U0. By assumption, f |∂V \∂Y is constant, so by continuity
f |∂V ∩∂U0 is constant. We define ˜︁f |V = f |∂V ∩∂U0

.

Since f(∂U0) ⊂ ∂D, we see that ˜︁f(V ) is a point of ∂D.
First, we ensure that this gives a well-defined map. Let V1, V2 be distinct com-

ponents of Y ∩ U0 such that V1 ∩ V2 ̸= ∅. If V1 ∩ V2 contains a point x ∈ U0, then
that point would have to lie on ∂Y ; however, ∂Y has exactly two “sides” near x,
one contained in the region Y , and one contained in precisely one of V1, V2. This
is a contradiction. Therefore, V1 ∩ V2 ⊂ ∂U0. Since f is constant on ∂Vi ∩ ∂U0,

i = 1, 2, we conclude that ˜︁f |V1
= ˜︁f |V2

, as desired.
Next, we note that

Y = Ω ∪
⋃︂

V⊂Y \Ω

V ,

where the union is over all components V of Y \ Ω. Hence, the above definition

provides an extension of ˜︁f to all of Y . Indeed, if x ∈ Y \ Ω, then x lies in a
component V of Y \Ω. If x ∈ ∂Y \Ω, then x ∈ ∂Y ∩U0, so x lies in the boundary
of a component V of Y \ Ω, because ∂Y is “two-sided” near x.

Since there are countably many components V of Y \ Ω, we observe that ˜︁f
attains countably many values in Y \ Ω, as required in the conclusion of Lemma

5.6. Moreover, by the definition of the extension, we have ˜︁f−1(D) = Ω.

Now, we show that ˜︁f is continuous. Since ˜︁f is already continuous in the com-
plement of U0 by Lemma 5.5, it suffices to show that if xn is a sequence in Y ∩ U0

converging to some point x, then ˜︁f(xn) converges to ˜︁f(x). For the sake of contra-

diction, suppose that there exists ε > 0 such that σ( ˜︁f(xn), f(x)) ≥ ε for all n ∈ N.
If x ∈ U0, then x, xn ∈ V for all sufficiently large n ∈ N, for some component V of

Y ∩U0; thus, ˜︁f(x) = ˜︁f(xn) for all large n ∈ N and we obtain a contradiction. Sup-
pose x ∈ ∂U0. We have xn ∈ Vn for a sequence of components Vn of Y ∩ U0. If Vn
is a specific component V for infinitely many n ∈ N, then x ∈ V , so ˜︁f(xn) = ˜︁f(x)
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for infinitely many n ∈ N, a contradiction. Thus, we may assume that the compo-
nents Vn, n ∈ N, are distinct. One may find points yn ∈ ∂Vn with σ(yn, xn) → 0

and ˜︁f(yn) = ˜︁f(xn). By [Pom92, Prop. 2.13] for each Vn there exists an open arc
αn = ∂Vn ∩U0 that is a component of ∂Y ∩U0, so that ∂Vn is the union of αn and
∂Vn ∩ ∂U0; see Figure 5. Moreover, for distinct sets Vn the arcs αn are disjoint,
since ∂Y is “two-sided”. The local connectivity of ∂Y implies that diam(αn) → 0
as n → ∞. If yn ∈ ∂Vn ∩ ∂U0, we set zn = yn and if yn ∈ αn, we set zn to be an
endpoint of αn (Figure 5). Therefore, one may find points zn ∈ ∂Vn ∩ ∂U0 such

that ˜︁f(yn) = ˜︁f(zn) = f(zn) and σ(yn, zn) → 0. Since zn → x, the continuity of f
on ∂U0 ⊂ Ω implies that f(zn) → f(x). This contradiction completes the proof of

the continuity of ˜︁f .
Next, we show that for each z ∈ D, the set ˜︁f−1(z) is a non-separating continuum.

If z ∈ D, then ˜︁f−1(z) = f−1(z) ⊂ Ω, so f−1(z) is a non-separating continuum by

the cell-likeness of f . Next, suppose that z ∈ ∂D. By Lemma 5.5, ˜︁f |ˆ︁C\U0
is cell-like,

so the set E = ˜︁f−1(z)∩(ˆ︁C\U0) is a non-separating continuum. By the definition of˜︁f on Y , ˜︁f−1(z) is the union of E with the closures of components V of Y ∩U0 such

that ˜︁f |V ≡ z. By the previous, for each such component we have ∂V ∩ ∂U0 ̸= ∅, so
V ∩ E ̸= ∅. This shows that ˜︁f−1(z) is connected.

In order to show that ˜︁f−1(z) is non-separating, we observe that ˆ︁C \ ˜︁f−1(z) is

the union of Ω \ ˜︁f−1(z) with ˆ︁C \ Y and with the sets V where V is a component of

Y \ Ω with V ∩ ˜︁f−1(z) = ∅. Let W be the component of ˆ︁C \ ˜︁f−1(z) that contains

the connected set Ω and note that Ω \ ˜︁f−1(z) is connected, so it is contained in W .

The sets V as above are either components of ˆ︁C \ Ω or components of Y ∩ U0. In

the first case we have ∂V ⊂ ∂Ω so V ∩ (Ω \ ˜︁f−1(z)) ̸= ∅, while in the second case,

∂V ∩ ∂U0 ̸= ∅, so V ∩ (Ω \ ˜︁f−1(z)) ̸= ∅. Therefore, in both cases, V ⊂ W . Since˜︁f |∂U0
is surjective onto ∂D, there exists a point x ∈ ∂U0 \ ˜︁f−1(z) ⊂ Ω \ ˜︁f−1(z). If

x ∈ ∂Y , then this shows that ˆ︁C \Y lies in W . If x ∈ ∂V for some V as above, then

V ⊂ W by the previous and ∂V contains an arc of ∂Y . Thus, ˆ︁C \ Y ⊂ W . This

completes the proof that W = ˆ︁C \ ˜︁f−1(z), and thus ˜︁f−1(z) is non-separating.

Now, we show the uniqueness statement. Suppose that ˜︁f1 is another extension
of f to a continuous and cell-like map from Y onto D. We first observe that˜︁f−1
1 (D) = Ω; indeed, if ˜︁f−1

1 (z) intersects the complement of Ω for some z ∈ D, then˜︁f−1
1 (z) is a continuum that intersects both Ω and its complement, so it intersects

∂Ω. However, ˜︁f1(∂Ω) = f(∂Ω) = ∂D, a contradiction.

Let V be a component of Y \Ω, such that ˜︁f |V ≡ z for some z ∈ ∂D. Our goal is

to show that ˜︁f1 ≡ z on V . Suppose that ˜︁f−1
1 (w) ∩ V ̸= ∅ for some w ∈ D; then we

necessarily have w ∈ ∂D by the previous paragraph. The continuum E = ˜︁f−1
1 (w)

intersects ∂U0, since ˜︁f1|∂U0
= f |∂U0

: ∂U0 → ∂D is surjective. This implies that
∂V ∩ E ̸= ∅.

If V ∩ U0 = ∅, then V is a component of ˆ︁C \ Ω, so ∂V ⊂ ∂Ω. Hence, w =˜︁f1|∂V ∩E = f |∂V ∩E = ˜︁f |V = z. Now, suppose that V ⊂ U0, so V is a component of
Y ∩ U0. We claim that E ∩ ∂V ∩ ∂U0 ̸= ∅. Suppose that E ∩ ∂V ∩ ∂U0 = ∅. Note
that E ∩ V is a closed subset of E. We will show that E ∩ V is open in the relative
topology of E. It suffices to show that each x ∈ E ∩ ∂V has an open neighborhood



38 DIMITRIOS NTALAMPEKOS

in the topology of E that is contained in E ∩ V . By assumption, we have

x ∈ E ∩ ∂V = E ∩ ∂V ∩ (∂Y ∪ ∂U0) = E ∩ ∂V ∩ ∂Y.
Since Y is “two-sided” and E ⊂ Y , all points of E near x are contained in V ,
as desired. Since E ∩ V is clopen in E, the connectedness of E implies now that
E ∩ V = E. Thus,

E ∩ ∂V ∩ ∂U0 = E ∩ V ∩ ∂U0 = E ∩ ∂U0 ̸= ∅,

a contradiction. Therefore, E∩∂V ∩∂U0 ̸= ∅, which implies that w = ˜︁f1|E∩∂V ∩∂U0 =

f |∂V ∩∂U0 = ˜︁f |V = z. Hence, we conclude that w = z in all cases, as desired. □

Proof of Theorem 5.2. Consider the unique extension of f to a continuous and cell-

like map ˜︁f : Y → D as provided by Lemma 5.6. By Lemma 5.4 the map ˜︁f can be

extended to a continuous and cell-like map of the sphere such that ˜︁f−1(ˆ︁C \D) =ˆ︁C\Y , as required in the theorem. Moreover, ˜︁f(∂Y ) = ∂D. By Lemma 5.6, ˜︁f takes

countably many values in Y \Ω. If ∂Y ∩∂Ω = ∅, then ∂Y ⊂ Y \Ω, so ˜︁f is constant

on the connected set ∂Y . This contradicts the fact that ˜︁f(∂Y ) = ∂D. Therefore,
∂Y ∩ ∂Ω ̸= ∅.

Let E be a continuum in Y \Ω as in the statement of the theorem. Consider the

component A of ˆ︁C \ E that contains the connected set ˆ︁C \ Y . Since ∂Y ∩ ∂Ω ̸= ∅
and A is open, we see that Ω is also contained in A. Let E′ be the complement of

A. Then E′ ⊃ E and E′ is a non-separating continuum disjoint from Ω and ˆ︁C \ Y .

We claim that ˜︁f is constant on E′. We argue by contradiction, assuming that ˜︁f(E′)

is a non-degenerate continuum. By Lemma 5.6, ˜︁f−1(D) = Ω, so f(E′) is an arc

of ∂D. Then there exist distinct points z1, z2 ∈ ∂D such that ˜︁f−1(zi) ∩ E′ ̸= ∅,
i ∈ {1, 2}. Since ˜︁f(∂Y ) = ∂D, we see that ˜︁f−1(zi) ∩ ∂Y ̸= ∅ for i ∈ {1, 2}.

We collapse topologically the non-separating continuaK = ˆ︁C\Y and E′ to points

(e.g. via Moore’s theorem) and consider a continuous projection map λ : ˆ︁C → ˆ︁C such
that λ(K) = w1, λ(E

′) = w2 for some points w1 ̸= w2, and λ is a homeomorphism

from ˆ︁C \ (K ∪ E′) onto ˆ︁C \ {w1, w2}. The continua Gi = λ( ˜︁f−1(zi)), i ∈ {1, 2},
meet at the points w1 and w2, but otherwise they are disjoint. For i ∈ {1, 2} there
exists a continuum G′

i ⊂ Gi that is irreducible between the points w1 and w2;
that is, there is no proper subcontinuum of G′

i that contains both w1 and w2. See
[Wil70, Theorem 28.4] for the existence.

A result of Moore [Moo28, Theorems 1 and 2] implies that ˆ︁C \ (G′
1 ∪G′

2) is the
union of precisely two domains and the boundary of each is G′

1 ∪G′
2. Let Z be the

component of ˆ︁C \ (G′
1 ∪G′

2) that is disjoint from λ(Ω) and thus from λ(Ω). Since ˜︁f
attains countably many values in Y \Ω, we conclude that ˜︁f ◦ λ−1 is constant in Z.

However, the boundary values of ˜︁f ◦ λ−1|Z are non-constant, a contradiction. □

6. Continuous extension

In this section we provide sufficient conditions so that a packing-quasiconformal
map between the topological spheres associated to two Sierpiński packings as in
Definition 2.15 can be lifted to a map between the actual packings.

Theorem 6.1. Let X = ˆ︁C \
⋃︁
i∈N pi and Y = ˆ︁C \

⋃︁
i∈N qi be Sierpiński packings

such that the peripheral continua of X are uniformly fat closed Jordan regions or
points and the peripheral continua of Y are closed Jordan regions or points with
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diameters lying in ℓ2(N). Let h : E(X) → E(Y ) be a packing-K-quasiconformal
map for some K ≥ 1. Then there exists a continuous, surjective, and monotone

map H : ˆ︁C → ˆ︁C such that πY ◦ H = h ◦ πX and H−1(int(qi)) = int(pi) for each

i ∈ N. Moreover, there exists a non-negative Borel function ρH ∈ L2(ˆ︁C) with the
following properties.

• There exists a curve family Γ0 in ˆ︁C with Mod2 Γ0 = 0 such that for all

curves γ : [a, b] → ˆ︁C outside Γ0 we have

σ(H(γ(a)), H(γ(b))) ≤
∫︂
γ

ρH ds+
∑︂

i:pi∩|γ|≠∅

diam(qi).

• For each Borel set E ⊂ ˆ︁C we have∫︂
H−1(E)

ρ2H dΣ ≤ KΣ(E ∩ Y ).

Moreover, we show that any map H as in the theorem has a further topological
property.

Proposition 6.2. Let H be a map satisfying the conclusions of Theorem 6.1. Then
for each i ∈ N and for each continuum E ⊂ H−1(qi) \ pi the map H|E is constant.

Remark 6.3. The assumptions of Theorem 6.1 can be relaxed, allowing the possi-
bility that finitely many peripheral continua of X are not fat. See Remark 6.10
below for more details.

The proofs of both statements are given in Section 6.3. We first establish several
preliminary statements.

6.1. Preliminaries.

Lemma 6.4. Let τ > 0 and X = ˆ︁C \
⋃︁
i∈N pi be a τ -cofat Sierpiński packing. Let

ρ : ˆ︁C → [0,∞] be a Borel function in L2(ˆ︁C) and {λi}i∈N be a non-negative sequence

in ℓ2(N). For each x, y ∈ ˆ︁C and 0 < r0 < diam(ˆ︁C) we have

ess inf
r∈(r0/2,r0)

⎛⎝∫︂
S(x,r)

ρ ds+

∫︂
S(y,r)

ρ ds+
∑︂

i:pi∩S(x,r)̸=∅

λi +
∑︂

i:pi∩S(y,r) ̸=∅

λi

⎞⎠
≤ c(τ)

⎛⎝∫︂
B(x,r0)∪B(y,r0)

ρ2 dΣ+
∑︂

i:pi∩B(x,r0 )̸=∅

λ2i +
∑︂

i:pi∩B(y,r0 )̸=∅

λ2i

⎞⎠1/2

.

It is straightforward to obtain the conclusion of the lemma if λi ≡ 0 by in-
tegrating over r ∈ (r0/2, r0) and using the co-area inequality of Proposition 2.1.
For the general statement one uses the cofatness of X as well, in order to treat
the summation terms. The proof of the lemma follows from the argument used in
[Nta20b, Lemma 2.4.7 (a)] and we omit it.

Lemma 6.5. Let Γ0 be a path family in ˆ︁C with Mod2 Γ0 = 0 and let x, y ∈ ˆ︁C.
Define Γ1 to be the family of paths γ such that the set {r > 0 : there exists a simple
path γr ∈ Γ0 whose trace is contained in |γ|∪S(x, r)∪S(y, r)} has positive Lebesgue
outer measure. Then Mod2 Γ1 = 0. In particular, for Mod2-a.e. path γ and for
a.e. r > 0, every simple path γr whose trace is contained in |γ| ∪ S(x, r) ∪ S(y, r)
lies outside Γ0.
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Proof. Since Mod2 Γ0 = 0, there exists a non-negative Borel function ρ ∈ L2(ˆ︁C)
such that

∫︁
γ
ρ ds = ∞ for each γ ∈ Γ0 (see [HKST15, Lemma 5.2.8, p. 129]). Let

γ ∈ Γ1. Then for a set of r > 0 of positive Lebesgue outer measure there exists a
simple path γr ∈ Γ0 whose trace is contained in |γ| ∪ S(x, r) ∪ S(y, r). Thus,

∞ =

∫︂
γr

ρ ds ≤
∫︂
γ

ρ ds+

∫︂
S(x,r)

ρ ds+

∫︂
S(y,r)

ρ ds.

By the co-area inequality of Proposition 2.1, the latter two line integrals are finite for
a.e. r > 0. Thus, we conclude that

∫︁
γ
ρ ds = ∞. This implies that Mod2 Γ1 = 0. □

Remark 6.6. We will use the following standard fact about modulus. If Mod2 Γ0 =
0, then the family of paths that have a subpath in Γ0 also has modulus zero
[Väi71, Theorem 6.4, p. 17]. Thus, we may apply the transboundary upper gradient
inequality of packing-quasiconformal maps (see Definition 2.15) not only for paths
outside a family of modulus zero, but also for all subpaths of such paths, upon
enlarging the exceptional curve family Γ0.

6.2. Continuous extension to each peripheral continuum. Let X,Y be as
in Theorem 6.1 and h : E(X) → E(Y ) be a packing-quasiconformal map as in Defi-
nition 2.15. The proof of Theorem 6.1 will be completed in several steps. Consider

the map g = h ◦ πX : ˆ︁C → E(Y ), which is continuous and cell-like; indeed, the
preimage of each point under h is a non-separating continuum and the preimage of
each non-separating continuum under πX is a non-separating continuum by Lemma
2.9 (iv). Recall that

E(Y ) = πY (ˆ︁C) = πY (Y ) ∪
⋃︂
i∈N

πY (qi).

Let ˜︁X = g−1(πY (Y )) and note that ˜︁X ⊂ X since g(pi) = h(πX(pi)) = πY (qi)
for each i ∈ N, by the definition of a packing-quasiconformal map. If we set˜︁pi = g−1(πY (qi)), we see that ˜︁X = ˆ︁C \

⋃︁
i∈N ˜︁pi. Note that ˜︁pi is non-separating,

since g is cell-like.

Lemma 6.7. The map H = π−1
Y ◦g : ˜︁X → Y is continuous, surjective, and cell-like.

Proof. Note that g( ˜︁X) = πY (Y ) and that each point of πY (Y ) has a unique preim-

age under πY , so H = π−1
Y ◦ g gives a well-defined map from ˜︁X onto Y . The

continuity of the maps πY , g, together with the injectivity of πY on Y , imply that

H is continuous on ˜︁X. Finally, the fact that g is cell-like implies immediately that
H is cell-like. □

We fix i ∈ N and consider the space E(Y ; qi). Recall that for a set E ⊂ ˆ︁C the
space E(Y ;E) is defined by collapsing to points all peripheral continua of Y that do
not intersect E. The space E(Y ; qi) is a topological 2-sphere by Moore’s theorem

(Theorem 2.11). The projection πY ;qi :
ˆ︁C → E(Y ; qi) maps each qj , j ̸= i, to a

point and is injective otherwise.

Lemma 6.8. For each i ∈ N the open set Ωi = ˆ︁C \ ˜︁pi is simply connected and
Di = E(Y ; qi)\πY ;qi(qi) is a Jordan region or the complement of a point. Moreover,
the map

gi = πY ;qi ◦ π−1
Y ◦ g : Ωi → Di,
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defined alternatively by gi = πY ;qi ◦ H on ˜︁X and gi(˜︁pj) = πY ;qi(qj) for j ̸= i, is
continuous, proper, and cell-like.

Proof. For simplicity, we set p = pi, ˜︁p = ˜︁pi, q = qi, and πi = πY ;qi . Since ˜︁p is a

non-separating continuum, the domain Ω = ˆ︁C \ ˜︁p is simply connected. Next, since
πi is injective on q, we see that πi(q) is a closed Jordan region or a point in E(Y ; q).
Thus, D = E(Y ; q) \ πi(q) is a Jordan region or the complement of a point.

Observe that πY ;qi(π
−1
Y (g(x))) is a point of D for each x ∈ Ω. We show that the

map gi = πi ◦ π−1
Y ◦ g is continuous on Ω. Let x ∈ Ω and let xn ∈ Ω be a sequence

converging to x. Then g(xn) converges to g(x). By Lemma 2.2 (i), π−1
Y (g(xn))

is contained in arbitrarily small neighborhoods of π−1
Y (g(x)) as n → ∞. By the

continuity of πi, πi(π
−1
Y (g(xn))) converges to the point πi(π

−1
Y (g(x))), as desired.

If a sequence xn ∈ Ω accumulates at ∂Ω ⊂ ˜︁p, then g(xn) accumulates at the
point πY (qi) by continuity. By Lemma 2.2 (i), π−1

Y (g(xn)) accumulates at qi, so
gi(xn) accumulates at πi(qi) ⊃ ∂D. Thus, gi is proper. Finally, gi is cell-like,
directly from its definition and from the cell-likeness of H from Lemma 6.7. □

In the proofs of the remaining statements of Section 6.2, we adopt the same
notational conventions as in the first paragraph of the proof of Lemma 6.8.

Lemma 6.9. For each i ∈ N the map gi : Ωi → Di has an extension to a continuous
map from Ωi onto Di.

Proof. We will show that for each a ∈ ∂Ω = ∂˜︁p there exists a sequence of closed

curves Cn surrounding a and shrinking to a so that diam(H(Cn∩ ˜︁X)) → 0. Suppose
that this is the case. The continuity of πi = πY ;qi then implies that diam(πi(H(Cn∩˜︁X))) → 0 so the relation gi = πi ◦H from Lemma 6.8 yields

diam(gi(Cn ∩ ˜︁X)) → 0.

The set gi(Cn ∩ ˜︁X) is dense in gi(Cn ∩ Ω), so

diam(gi(Cn ∩ Ω)) → 0.

Lemma 5.1 (ii) now implies that gi extends to a continuous map from Ω onto D,
as desired.

Now we show the original claim. Suppose first that a ∈ ∂˜︁p\p or that p is a point
and a = p. Fix r0 > 0 so that (B(a, r0) \ {a})∩ p = ∅. Let Cr = S(a, r), r > 0. For
r ∈ (0, r0) the circle Cr does not intersect p = pi. We now apply the transboundary
upper gradient inequality of h, which holds along the circle Cr for a.e. r ∈ (r0/2, r0);

this is a consequence of Lemma 2.12. By the relation H = π−1
Y ◦ h ◦ πX on ˜︁X, we

have

diam(H(Cr ∩ ˜︁X)) ≤
∫︂
Cr

ρh ds+
∑︂

j:pj∩Cr ̸=∅
j ̸=i

diam(qj).

We apply Lemma 6.4 with x = y = a, λj = diam(qj) for j ̸= i and λi = 0, so we
have

ess inf
r∈(r0/2,r0)

diam(H(Cr ∩ ˜︁X)) ≲τ

⎛⎜⎜⎝∫︂
B(a,r0)

ρ2h dΣ+
∑︂

j:pj∩B(a,r0) ̸=∅
j ̸=i

diam(qj)
2

⎞⎟⎟⎠
1/2

.
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Figure 6. Illustration of the proof of Lemma 6.11.

Note that as r0 → 0 the right-hand side tends to 0, since a /∈
⋃︁
j ̸=i pj . Thus, we

can find a sequence rn → 0 such that diam(H(Crn ∩ ˜︁X)) → 0 as claimed.
Next, suppose that p is a closed Jordan region and that a ∈ ∂˜︁p ∩ p, so a ∈ ∂p.

Let r0 > 0 such that B(a, r0) does not contain p. Consider a circle centered at a
of radius r < r0. Since ∂p is a Jordan curve, there exists a unique arc α of the

circle whose endpoints lie in ∂p that separates (in ˆ︁C \ int(p)) the point a from any
point outside B(a, r0). We let Cr be the Jordan curve formed by the circular arc
α, together with a simple arc inside the interior of p that connects the endpoints of
α. Then Cr is a Jordan curve that surrounds the point a. If the non-circular part
of Cr is chosen appropriately, then we may have that Cr shrinks to the point a as
r → 0. Now, the transboundary upper gradient inequality, applied to the circular
part of Cr, gives

diam(H(Cr ∩ ˜︁X)) ≤
∫︂
Cr

ρh ds+
∑︂

j:pj∩Cr ̸=∅
j ̸=i

diam(qj)

for a.e. r ∈ (r0/2, r0). We apply Lemma 6.4 as above with λj = diam(qj) for j ̸= i
and λi = 0 and the conclusion follows. □

Remark 6.10. The cofatness of X is needed only for the application of Lemma 6.4.
In fact, it suffices to apply the lemma to the cofat Sierpiński packing generated by
continua pj , j ̸= i, lying in a neighborhood of pi. In particular, the fatness of pi is
not needed.

Lemma 6.11. For each i ∈ N and for each component V of int(˜︁pi \ pi) the map gi
is constant on the set ∂V \ ∂pi.

See the shaded regions in Figure 1 for a depiction of the components of int(˜︁pi\pi).
Proof. Note that if x ∈ ∂˜︁p, then the circle S(x, r) intersects ˆ︁C \ ˜︁p, and thus ˜︁X,
for all sufficiently small r > 0. Indeed, since ˜︁p is non-separating and x ∈ ∂˜︁p, if
S(x, r) ⊂ ˜︁p, then the complementary component of S(x, r) that does not contain x
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has to be contained in ˜︁p. However, if this occurs for a sequence of r → 0, then we

see that ˜︁p = ˆ︁C, a contradiction.
Let V be a component of int(˜︁p \ p) and observe that ∂V \ ∂p ⊂ ∂˜︁p. We fix

x, y ∈ ∂V \ ∂p and ε > 0. Let r0 > 0 such that S(x, r) and S(y, r) are disjoint

from each other, intersect both V and ˜︁X, and are disjoint from p for all r < r0. In
Lemma 6.4 we set ρ = ρh, λj = diam(qj) for j ̸= i, and λi = 0. If r0 is sufficiently
small, then there exists a set S ⊂ (r0/2, r0) that has positive Lebesgue measure
such that for all r ∈ S we have∫︂

S(x,r)∪S(y,r)
ρh ds+

∑︂
j:pj∩S(x,r)̸=∅

j ̸=i

diam(qj) +
∑︂

j:pj∩S(y,r) ̸=∅
j ̸=i

diam(qj) < ε.(6.1)

This uses the fact that x, y ∈ ∂˜︁p, so x, y /∈
⋃︁
j ̸=i pj (see also the proof of Lemma

6.9).
Consider the curve family Γ0 that has 2-modulus zero as in the transboundary

upper gradient inequality of h. Also, consider a curve family Γ1 with Mod2 Γ1 = 0
as in Lemma 6.5. Then we may find (e.g. by invoking Lemma 2.12) a curve γ /∈
Γ0 ∪ Γ1 contained in the connected open set V and joining the circles S(x, r0/2)
and S(y, r0/2), so that for a.e. r ∈ (r0/2, r0), every simple path γr whose trace is
contained in |γ| ∪ S(x, r) ∪ S(y, r) lies outside Γ0. In particular, we may find such

a path γr with r ∈ S such that γr connects a point x′ ∈ S(x, r) ∩ ˜︁X to a point

y′ ∈ S(y, r) ∩ ˜︁X; see Figure 6.
By the transboundary upper gradient inequality, we have

σ(H(x′), H(y′)) ≤
∫︂
γr

ρh ds+
∑︂

j:pj∩|γr|≠∅

diam(qj).

Since ρh = 0 in V (see Remark 2.16), by (6.1) we have σ(H(x′), H(y′)) < ε. If we

let r0 → 0 and then ε→ 0, we see that there exist sequences xn, yn ∈ ˜︁X converging
to x, y, respectively, such that σ(H(xn), H(yn)) → 0. Therefore

d(gi(x), gi(y)) = lim
n→∞

d(gi(xn), gi(yn))

= lim
n→∞

d(πi(H(xn)), πi(H(xn))) = 0.

This shows that gi(x) = gi(y) as desired. □

Corollary 6.12. For each i ∈ N the map gi : Ωi → Di has a unique extension to

a continuous and cell-like map from ˆ︁C \ int(pi) onto E(Y ; qi) \ πY ;qi(int(qi)). The
extension is constant on each continuum E ⊂ ˜︁pi \ pi and can be further extended

to a continuous and cell-like map gi : ˆ︁C → E(Y ; qi) such that g−1
i (πY ;qi(int(qi))) =

int(pi).

Proof. If q is a point then the extension is trivial, so assume that q is a closed
Jordan region. By Lemma 6.9, gi extends to a continuous map from Ω onto D. By
Lemma 6.11, for each component V of

int(˜︁p \ p) = int(˜︁p) \ p = (ˆ︁C \ p) \ Ω

the map gi|∂V \∂p is constant. We now apply Theorem 5.2 (with Y = ˆ︁C \ p) to
obtain the desired conclusions. □
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6.3. Patching continuous extensions.

Corollary 6.13. The map H : ˜︁X → Y extends to a continuous, surjective, and

monotone map H : ˆ︁C → ˆ︁C such that πY ◦H = h ◦ πX and H−1(int(qi)) = int(pi)
for each i ∈ N. The extension is constant on each continuum E ⊂ ˜︁pi \ pi, i ∈ N.

Proof. We apply Corollary 6.12 so we obtain appropriate extensions of gi for each
i ∈ N. For each i ∈ N, we extend H to ˜︁pi by setting H = π−1

Y ;qi
◦ gi; note that

π−1
Y ;qi

is injective on gi(˜︁pi) = πY ;qi(qi). We observe that the relation πY ;qi ◦H = gi

(which is already valid on ˜︁X by the definition of gi) holds on all of ˆ︁C.
This extension is surjective onto ˆ︁C. Moreover, the preimage of each point is a

continuum; this follows from the facts that the maps H| ˜︁X : ˜︁X → Y and gi|˜︁pi : ˜︁pi →
qi are cell-like. If E ⊂ ˜︁pi \ pi is a continuum, then gi|E is constant. Thus, H is

constant on E, as claimed. The relation πY ◦H = h◦πX , which holds on ˜︁X extends

automatically to ˆ︁C, since H(˜︁pi) = qi for each i ∈ N.
We finally argue that H is continuous. Suppose first that x ∈ ˜︁X. If xn ∈ ˆ︁C is

a sequence converging to x, then πY (H(xn)) = h(πX(xn)) converges to h(πX(x))
by continuity. By Lemma 2.2, the point H(xn) ∈ π−1

Y (πY (H(xn))) is contained

in arbitrarily small neighborhoods of π−1
Y (h(πX(x))) = H(x) as n → ∞. Next,

suppose that x ∈ ˜︁pi for some i ∈ N and consider a sequence xn ∈ ˆ︁C converging to
x. The sequence πY ;qi(H(xn)) = gi(xn) converges by continuity to gi(x). Using
again Lemma 2.2, we see that H(xn) is contained in arbitrarily small neighborhoods
of π−1

Y ;qi
(gi(x)) = H(x) as n→ ∞. □

Proof of Theorem 6.1. Consider the extension of H as in Corollary 6.13. It remains
to show that H satisfies the transboundary upper gradient inequality, as stated in
Theorem 6.1. Suppose that h, ρh, and Γ0 are as in Definition 2.15 and let ρH = ρh.
By enlarging the curve family Γ0, we may assume that it still has conformal modulus
zero and all subcurves of every curve γ /∈ Γ0 also satisfy the transboundary upper

gradient inequality (see Remark 6.6). We fix a curve γ : [a, b] → ˆ︁C outside Γ0.
If γ(a) and γ(b) lie in pi for some i ∈ N, then H(γ(a)), H(γ(b)) ∈ qi, so

σ(H(γ(a)), H(γ(b))) ≤ diam(qi). In this case there is nothing to show.
Suppose that γ(a) and γ(b) do not lie on the same peripheral continuum. Then

there exists an open subpath γ1 = γ|(a1,b1) : (a1, b1) → ˆ︁C of γ that does not in-
tersect the peripheral continua that possibly contain γ(a) or γ(b), and the points
γ(a1), γ(b1) lie on the boundaries of the peripheral continua that possibly contain
γ(a), γ(b), respectively. It suffices to show the desired inequality for the open path
γ1, in view of the previous case where the endpoints lie in the same peripheral
continuum.

There exists a further subpath γ2 = γ|(a2,b2) of γ1 such that γ((a1, a2]) (resp.
γ([b2, b1))) is contained in some set ˜︁pi, i ∈ N, and γ(a2) (resp. γ(b2)) can be
approximated by points in |γ2| ∩ H−1(Y ). Note that these conditions could be
vacuously true and we could have γ2 = γ1. By Corollary 6.13, H is constant on
γ((a1, a2]) and on γ([b2, b1)). Therefore, it suffices to show the desired inequality for
the open path γ2, which has the property that its endpoints can be approximated
by points of |γ2| ∩H−1(Y ).

We may find parameters a3 > a2 and b3 < b2 so that γ(a3), γ(b3) ∈ H−1(Y ) and
γ(a3), γ(b3) are arbitrarily close to γ(a2), γ(b2), respectively. Since πY is injective
on Y , we have H = π−1

Y ◦ h ◦ πX on H−1(Y ). The transboundary upper gradient
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inequality of h now gives

σ(H(γ(a3)), H(γ(b3))) ≤
∫︂
γ2

ρH ds+
∑︂

i:pi∩|γ2|≠∅

diam(qi).

By letting γ(a3) → γ(a2) and γ(b3) → γ(b2), using the continuity of H we obtain
the same inequality for σ(H(γ(a2)), H(γ(b2))). □

Proof of Proposition 6.2. We fix i ∈ N and we use the same notational conventions
as in the proof of Lemma 6.8. By Lemma 6.8, there exists a continuous, proper,
and cell-like map gi from Ω onto D such that

gi = πi ◦ π−1
Y ◦ g = πi ◦ π−1

Y ◦ h ◦ πX .

The relation πY ◦H = h ◦ πX implies that on the set ˜︁X we have H = π−1
Y ◦ h ◦ πX

and that H(˜︁pj) = qj for each j ∈ N. Thus, gi = πi ◦H on all of Ω.

Note that the continuous, surjective, and monotone map H : ˆ︁C → ˆ︁C is also
cell-like (see the comments in Section 2.3). This fact and Lemma 2.9 (iv) imply

that the map πi ◦ H is continuous and cell-like from ˆ︁C onto E(Y ; q). This shows

that gi extends to a continuous and cell-like map from ˆ︁C onto E(Y ; q). Since
H−1(int(q)) = int(p), we have g−1

i (πi(int(q))) = int(p). Hence gi is continuous and

cell-like from ˆ︁C \ int(p) onto E(Y ; q) \ πi(int(q)). By Corollary 6.12, this extension
is unique and has the property that it is constant on each continuum E ⊂ ˜︁p \ p.
The desired property of H follows. □

7. Homeomorphic extension

Theorem 7.1. Let X,Y be Sierpiński packings and h : E(X) → E(Y ) be a packing-
K-quasiconformal map for some K ≥ 1 as in the statement of Theorem 6.1. If Y
is cofat, then the map H of Theorem 6.1 is a homeomorphism from X onto Y . In

particular, it can be extended to a homeomorphism of ˆ︁C.
Proof. Assume that H maps X homeomorphically onto Y . From Theorem 6.1 we
have H−1(int(qi)) = int(pi), which implies that H(∂pi) = ∂qi. For each i ∈ N we
replace H|pi with a homeomorphism onto qi to obtain a global homeomorphism ofˆ︁C; it is important here that diam(pi) → 0 and diam(qi) → 0 as i→ ∞.

We now show that for each point w0 ∈ Y the set H−1(w0) ⊂ X is a singleton.
Suppose that there exists w0 ∈ Y such that E = H−1(w0) is a non-degenerate
continuum. Based on the following claim, which we prove afterwards, we complete
the proof of Theorem 7.1. See Figure 7 for an illustration.

Claim 7.2. There exists δ > 0, r0 > 0, and a point z0 ∈ E such that for all

t ∈ [δ/2, δ] and for all r ∈ (0, r0) the circle S(z0, t) has an open arc βt : (a, b) → ˆ︁C
such that βt(a) ∈ E, βt(b) ∈ ∂H−1(B(w0, r)), and βt((a, b)) ⊂ H−1(B(w0, r)) \ E.
Moreover, if w0 ∈ qj for some j ∈ N, then βt((a, b)) ∩ pj = ∅.

For fixed r > 0, let I(r) = {i ∈ N : qi ∩ S(w0, r) ̸= ∅}. If i ∈ I(r), we define
λ(qi) = H1({s ∈ (0, r) : qi ∩ S(w0, s) ̸= ∅}) and otherwise we define λ(qi) =
diam(qi). By the fatness of qi, i ∈ N, and Lemma 2.6, we have

λ(qi)
2 ≤ CΣ(qi ∩B(w0, r))(7.1)

whenever qi ∩B(w0, r) ̸= ∅.
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E

H−1(B(w0, r))

z0
S(z0, t)

βt

qi0

S(w0, r)

S(w0, r1)

w0
H ◦ γt

Figure 7. Left: the circle S(z0, t) and the arc βt (red). Right:
the path H ◦βt (red) and the subpath H ◦γt (green) that connects
w0 to a point on qi0 ∩ S(w0, r1).

Suppose that H◦βt does not intersect any qi, i ∈ I(r). That is, if qi∩|H◦βt| ≠ ∅,
then qi ⊂ B(w0, r). By Lemma 2.12, the transboundary upper gradient inequality
holds for a.e. t ∈ [δ/2, δ], so we have

r ≤
∫︂
βt

ρ ds+
∑︂

i:pi∩|βt|≠∅

diam(qi) =

∫︂
βt

ρ ds+
∑︂

i:pi∩|βt|≠∅

λ(qi).

If H ◦ βt intersects some qi, i ∈ I(r), we consider an open subpath γt of βt such
that H ◦ γt does not intersect any qi, i ∈ I(r), and connects w0 to a point of qi0 for
some i0 ∈ I(r) that lies on a circle S(w0, r1); see Figure 7. By the transboundary
upper gradient inequality, for a.e. t ∈ [δ/2, δ] we have

r1 ≤
∫︂
γt

ρ ds+
∑︂

i:pi∩|γt|≠∅

diam(qi) =

∫︂
γt

ρ ds+
∑︂

i:pi∩|γt|≠∅

λ(qi).

Since the continuum qi0 intersects both circles S(w0, r1) and S(w0, r), we have

r − r1 ≤ H1({s ∈ (0, r) : qi0 ∩ S(w0, s) ̸= ∅}) = λ(qi).

Altogether, we have

r ≤
∫︂
βt

ρ ds+
∑︂

i:pi∩|βt|≠∅

λ(qi).
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Since βt is contained in S(z0, t) ∩ (H−1(B(w0, r)) \ E), for a.e. t ∈ [δ/2, δ] and
for all r < r0 we have

r ≤
∫︂
S(z0,t)∩(H−1(B(w0,r))\E)

ρ dH1 +
∑︂

i:pi∩S(z0,t) ̸=∅
qi∩B(w0,r)̸=∅

λ(qi).(7.2)

We integrate over t ∈ [δ/2, δ] and then apply the co-area (Proposition 2.1) and
Cauchy–Schwarz inequalities to obtain

(δ/2)r ≤ C

∫︂
H−1(B(w0,r))\E

ρ dΣ+
∑︂

i:qi∩B(w0,r)

λ(qi) diam(pi)

≤ C

⎛⎝∫︂
H−1(B(w0,r))\E

ρ2 dΣ+
∑︂

i:qi∩B(w0,r)̸=∅

λ(qi)
2

⎞⎠1/2

·

⎛⎝Σ(H−1(B(w0, r)) \ E) +
∑︂

i:qi∩B(w0,r)̸=∅

diam(pi)
2

⎞⎠1/2

=: C ·A(r) ·B(r).

Suppose that w0 /∈
⋃︁
i∈N qi. As r → 0, the term B(r) converges to 0, since

H−1(B(w0, r)) converges to E and {i : qi ∩ B(w0, r) ̸= ∅} shrinks to the empty
set. If w0 ∈ pj for some j ∈ N, then by the last part of Claim 7.2, βt does not
intersect pj , so we may exclude the index j from the sum in (7.2). In this case, if we
perform the same calculations as above based on the modified version of (7.2), we
will obtain a term B(r) such that the summation term does not include the index
j. Therefore, {i : i ̸= j, qi ∩ B(w0, r) ̸= ∅} shrinks again to the empty set. This
shows that B(r) → 0 as r → 0 also in this case.

We now discuss the first term, A(r). By quasiconformality (see the last inequality
in Theorem 6.1) we have∫︂

H−1(B(w0,r))\E
ρ2 dΣ ≲ Σ(B(w0, r)) ≲ r2.

Moreover, (7.1) implies that∑︂
i:qi∩B(w0,r)̸=∅

λ(qi)
2 ≤ C

∑︂
i:qi∩B(w0,r)̸=∅

Σ(qi ∩B(w0, r)) ≲ r2.

Therefore, A(r) ≲ r, so

δr ≲ rB(r).

This is true for all r < r0 so we obtain a contradiction as r → 0. □

Proof of Claim 7.2. We consider two cases:

(a) E is not contained in pi for any i ∈ N.
(b) E ⊂ ∂pj for some j ∈ N.

We will treat now the first case. Note that E = H−1(w0) can intersect at most
one set pi, i ∈ N, which occurs only if w0 ∈ ∂qi. If ∂E ⊂ pi, then ∂E is an arc

of ∂pi, so ˆ︁C \ ∂E has one or two components. Each of them lies in the interior or
exterior of E. Hence, either E = ∂E ⊂ ∂pi, which is a contradiction to Case (a), or
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E = ˆ︁C \ int(pi), which is again a contradiction as E ∩ pj = ∅ for j ̸= i. Therefore,
∂E is not contained in pi for any i ∈ N, so ∂E ∩X ̸= ∅.

Consider a point z0 ∈ ∂E∩X and note that the circle S(z0, t) intersects E for all
sufficiently small t > 0. Recall that H is monotone, so it is also cell-like (see Section
2.3). Therefore, E = H−1(w0) is a non-separating continuum. This implies that

the circle S(z0, t) intersects ˆ︁C \ E for all sufficiently small t > 0 (see the argument
in the proof of Lemma 6.11). We fix δ > 0 such that for all t ∈ [δ/2, δ] the circle

S(z0, t) intersects both E and ˆ︁C \ E. Moreover, if w0 ∈ qj , the fact that z0 ∈ X
allows us to choose an even smaller δ > 0 so that S(z0, t) does not intersect pj for
all t ∈ [δ/2, δ].

For r > 0 consider the ball B(w0, r) and the preimage H−1(B(w0, r)), which
contains the set E in its interior. If r0 > 0 is sufficiently small, then for r < r0
the set H−1(B(w0, r)) does not contain any of the circles S(z0, t), t ∈ [δ/2, δ];
indeed, otherwise, by a limiting argument we see that there would exist t ∈ [δ/2, δ]
such that S(z0, t) ⊂ E, a contradiction. We fix t ∈ [δ/2, δ] and r < r0. Then,
the circle S(z0, t) intersects both E and ∂H−1(B(w0, r)). We consider an open

arc βt : (a, b) → ˆ︁C of S(z0, t) such that βt(a) ∈ E, βt(b) ∈ ∂H−1(B(w0, r)), and
βt((a, b)) ⊂ H−1(B(w0, r)) \ E. See Figure 7. This completes the proof of Claim
7.2 in Case (a).

Suppose that E ⊂ ∂pj as in Case (b). Let z0 ∈ ∂pj and fix δ0 > 0 such that E is

not contained in B(z0, δ0). Consider a Jordan arc η : (0, 1) → ˆ︁C such that η(0) = z0,
η(1) ∈ E \ B(z0, δ0), and η((0, 1)) ∩ pj = ∅. Let δ < δ0. For each t ∈ [δ/2, δ] there
exists a unique open arc αt ⊂ S(z0, t) with endpoints on ∂pj but otherwise disjoint
from pj such that η(s0) ∈ αt for some s0 ∈ (0, 1) and η((0, s0)) ∩ S(z0, t) = ∅; in
other words, αt is the “first” arc of S(z0, t) \ pj that η meets.

We claim that if δ is sufficiently small, then for t ∈ [δ/2, δ] at least one endpoint
of αt lies in E. Consider the arc At of ∂pj containing z0 and having the same
endpoints as αt. By the local connectivity of ∂pj , as t → 0 the diameter of At
tends to 0. Hence, E cannot be contained in At for small t > 0. The connectedness
of E implies that one of the endpoints of At, and thus of αt, is contained in E for
all sufficiently small t > 0, as desired.

Next, we show that if r0 > 0 is sufficiently small, then αt is not contained in
H−1(B(w0, r)) for all r < r0 and for all t ∈ [δ/2, δ]. To see this, note that there
exists an arc η([s1, s2]), disjoint from pj , intersected by αt for each t ∈ [δ/2, δ].
Since H−1(B(w0, r)) converges to H−1(w0) = E as r → 0, there exists r0 > 0
such that H−1(B(w0, r0)) is disjoint from η([s1, s2]). Therefore, αt intersects the
complement of H−1(B(w0, r)), for all r < r0, as claimed.

Finally, we consider an open subarc βt : (a, b) → ˆ︁C of αt such that βt(a) ∈ E,
βt(b) ∈ ∂H−1(B(w0, r)), and βt((a, b)) ⊂ H−1(B(w0, r)) \ E. This completes the
proof in Case (b). □
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