CONFORMAL UNIFORMIZATION OF PLANAR PACKINGS BY
DISK PACKINGS

DIMITRIOS NTALAMPEKOS

ABSTRACT. A Sierpiriski packing in the 2-sphere is a countable collection of
disjoint, non-separating continua with diameters shrinking to zero. We show
that any Sierpinski packing by continua whose diameters are square-summable
can be uniformized by a disk packing with a packing-conformal map, a notion
that generalizes conformality in open sets. Being special cases of Sierpinski
packings, Sierpiriski carpets and some domains can be uniformized by disk
packings as well. As a corollary of the main result, the conformal loop ensemble
(CLE) carpets can be uniformized conformally by disk packings, answering a
question of Rohde—Werness.
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1. INTRODUCTION

One of the most intriguing open problems in complex analysis is Koebe’s conjec-
ture , predicting that every domain in the Riemann sphere is conformally
equivalent to a circle domain, i.e., a domain whose complementary components are
geometric disks or points. This conjecture was established for finitely connected
domains by Koebe himself and it took over 70 years until it was established
for countably connected domains by He—Schramm . This result was proved
with a different method by Schramm [Sch95] in a seminal work, where the notion
of transboundary modulus was introduced. More recently, Rajala gave an-
other proof of the result, providing a new perspective. Remarkably, in ,
Schramm establishes Koebe’s conjecture for all cofat domains, i.e., domains whose
complementary components satisfy a uniform geometric condition that we discuss
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below in Section 2.2 independently of connectivity. The general case of Koebe’s
conjecture seems to be far out of reach. Koebe’s conjecture and uniformization
problems for domains in metric surfaces other than the Riemann sphere has been
studied in [MW13,[RR21[Reh22|.

A topic very closely related to Koebe’s conjecture is the uniformization of Sier-
piniski carpets. A Sierpinski carpet is a continuum in the sphere that has empty
interior and is obtained by removing from the sphere countably many open Jordan
regions, called peripheral disks, with disjoint closures and diameters shrinking to
zero. The boundaries of the peripheral disks are the peripheral circles of the car-
pet. A fundamental result of Whyburn [Why58| states that all Sierpinski carpets
are homeomorphic to each other. Bonk [Bonl1] proved that if the peripheral disks
of a Sierpinski carpet are uniformly relatively separated, uniform quasidisks, then
the carpet can be mapped with a quasisymmetric map to a round carpet, i.e., a
carpet whose peripheral disks are geometric disks. Later, in [Nta20b| the author
developed a potential theory on Sierpinski carpets of area zero and proved that if
the peripheral disks of such a carpet are uniformly fat and uniformly quasiround,
then the carpet can be mapped in a natural way to a square carpet, defined in the
obvious manner, with a map that is carpet-conformal in the sense that it preserves
a type of modulus. We note that the geometric assumptions in [Nta20b| are weaker
than in [Bonll|. However, if one strengthens the assumptions to uniformly rel-
atively separated uniform quasidisks, then the carpet-conformal map of [Nta20b]
is upgraded to a quasisymmetry. Both mentioned works of Bonk and the author
depend crucially on the notion of transboundary modulus of Schramm [Sch95].

In this work we push the results of [Bonl1,Nta20b| to their limit and we remove
entirely the geometric assumptions at the cost of weakening the topological proper-
ties and the regularity of the uniformizing conformal map. Instead, we only impose
the square-summability of the diameters of the peripheral disks. Before stating the
results we give the required definitions.

Let {p;}ien be a collection of pairwise disjoint and non-separating continua in
the Riemann sphere C such that diam(p;) — 0 as i — co. The collection {p; }sen
is called a Sierpiriski packing and the set X = C \ Uien pi is its residual set. When
it does not lead to a confusion, we make no distinction between the terms packing
and residual set. The continua p;, i € N, are called the peripheral continua of X.
Note that if the peripheral continua of X are closed Jordan regions, then X is a
Sierpinski carpet, provided that it has empty interior. Thus, Sierpinski packings
can be regarded as a generalization of Sierpinski carpets.

The natural spaces that can be used to parametrize a Sierpinski packing are
round Sierpiriski packings, i.e., packings whose peripheral continua are (possibly
degenerate) closed disks. We now state our main theorem.

Theorem 1.1. Let Y = C \ UiGN q; be a Sierpiriski packing whose peripheral con-
tinua are closed Jordan regions or points with diameters in (*(N). Then there exist
(A) a collection of disjoint closed disks {p;}icn, where p; is degenerate if and
only if q; is degenerate, a round Sierpinski packing X = C \ Uien Pi
(B) a continuous, surjective, and monotone map H : C — C with the property
that H='(int(q;)) = int(p;) for each i € N, and
(C) a non-negative Borel function pg € LQ(@),
with the following properties.



CONFORMAL UNIFORMIZATION BY DISK PACKINGS 3

e (Transboundary upper gradient inequality) There exists a curve family T
in C with Moda T'g = 0 such that for all curves v: [a,b] — C outside Ty we
have

o(H(+(a)), H(~(b))) < / puds+ Y diam(g).

v ipiN]y|#0

e (Conformality) For each Borel set E C C we have
/ P dE < S(ENY).
H-1(E)

Moreover, if Y is cofat, then H may be taken to be a homeomorphism of the sphere.

Here o denotes the spherical distance and ¥ is the spherical measure. The
monotonicity of H means that the preimage of every point is a continuum and is
equivalent to the statement that H is the uniform limit of homeomorphisms; see Sec-
tion[2:3] The map H in the conclusion of the theorem is called a packing-conformal
map. Our definition of a packing-conformal map is motivated by the transboundary
modulus of Schramm and by the so-called analytic definition of quasiconformality
for maps between metric spaces [Will2]. Moreover, an analogous definition under
the terminology weakly quasiconformal map has been used recently by Romney
and the author [NR22b,[NR22a| in the solution of the problem of quasiconformal
uniformization of metric 2-spheres of finite area.

If U is an open subset of C contained in the packing Y, then the map H of
Theorem is a conformal map in H~1(U) in the usual sense. However, not
every conformal map between domains satisfies the transboundary upper gradient
inequality. Nevertheless, one can show that this is always the case for countably
connected domains.

Remark 1.2. We remark that although H~!(int(g;)) = int(p;) in Theorem
the continuum H~!(g;) might be larger than the disk p; when the packing Y is
not cofat. It is precisely this phenomenon that prevents us from proving Koebe’s
conjecture (e.g. for domains with countably many non-degenerate boundary com-
ponents having diameters in £?) with this method; the phenomenon is illustrated in
Lemma and in Example However, a non-trivial consequence of the topo-
logical and regularity conditions of Theorem is that the map H is degenerate
on the set H~1(g;) \ p;, in the sense that it maps each continuum E C H~*(¢;) \ p;
to a point; see Figure [l We prove this fact in Proposition [6.2]

In fact, Theorem is a consequence of a more general uniformization theorem
for Sierpinski packings Y without the topological assumption that the peripheral
continua are closed Jordan regions or points. To each Sierpinski packing Y we can
associate a topological sphere £(Y) by collapsing all peripheral continua to points,
in view of Moore’s decomposition theorem [Mo0025|.

Theorem 1.3. LetY = (E\UZEN q; be a Sierpinski packing such that the diameters
of the peripheral continua lie in ¢*(N). Then there exists a round Sierpiriski packing
X and a packing-conformal map from E(X) onto E(Y).

As we see, the uniformizing packing-conformal map exists only at the level of
the topological spheres £(X),£(Y), and in general does not induce a map between
the packings X,Y in the sphere C. For the definition of packing-conformal maps
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FIGURE 1. The set H 1(g;) might be larger than the disk p;. In
this figure it contains the shaded regions and bold “branches”,
which are subsets of X. However, the map H is constant in each
of them.

between the associated topological spheres see Section [2.6] The above theorem is
restated as Corollary [£.2] The statement is proved via an approximation argument.
We consider the finitely connected domains Y,, = @\U?Zl ¢; and we uniformize them
conformally by finitely connected circle domains X,, using Koebe’s theorem. Then
our task is to show that the conformal maps from X,, to Y,, converge in a uniform
sense to the desired limiting map from £(X) onto £(Y). This is where the ¢2(N)-
summability of the diameters of the peripheral continua becomes important. In
particular, we use this assumption to establish Lemma [3.1} which provides uniform
transboundary modulus bounds; these bounds are then used in order to prove
convergence. The £2(N)-summability condition is also used later in establishing the
regularity properties of the limiting mapping; see Lemma [£.15]

This proof strategy (of using Koebe’s theorem for finitely connected domains
and passing to the limit) is also followed by Schramm [Sch95| in showing that co-
fat domains can be uniformized by circle domains and in [Bonll] in uniformizing
Sierpinski carpets by round carpets. The recent developments in the field of analy-
sis on metric spaces and our much more thorough understanding of quasiconformal
maps between metric spaces allow us to identify the topological and regularity prop-
erties of the limiting map in our more fractal setting, where no uniform geometry
is imposed, as in the works of Schramm and Bonk.

We note that in unpublished work, Rohde and Werness [RW15| show that the
complementary disks of the circle domain X,, converge in the Hausdorff sense after
passing to a subsequence to a collection of pairwise disjoint disks. However, they
were not able to identify the limit of the conformal maps from X,, to Y,,.

Theorem [L.1]is proved by showing that the topological assumptions on Y allow
one to lift a packing-conformal map between £(X) and £(Y") as in Theorem [1.3| to
the map H in the sphere C that has the desired properties. We remark that the
regularity properties of packing-conformal maps are used crucially in establishing
continuity and injectivity properties of H. The lifting process is achieved through
Theorem [6.1] which provides a monotone map H. In the case that Y is cofat, the
homeomorphism H as in the last part of Theorem is provided by Theorem [7.1
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FIGURE 2. A CLE carpet (simulation by D.B. Wilson )

Thus, Theorem is a consequence of Corollary Theorem and Theorem
1

Another generalization is that we do not need to restrict to round Sierpinski
packings X in order to parametrize a given packing Y. Instead of using geometric
disks as the peripheral continua of X, one can use homothetic images of any count-
able collection of uniformly fat and non-separating continua, such as squares. See
Corollary for the precise statement.

As a corollary of the main theorem we give an answer to a question of Rohde—
Werness regarding the uniformization of the conformal loop ensemble (CLE)
carpet. CLE was introduced by Sheffield-Werner , as a random collection
of Jordan curves in the unit disk that combines conformal invariance and a natural
restriction property; see Figure [2l Each CLE gives rise to a Sierpinski carpet with
non-uniform geometry; hence the current carpet uniformization theory of
Nta20b] is not sufficient to treat them. However, Rohde-Werness proved
in unpublished work that, with probability 1, the diameters of the peripheral disks
of a CLE carpet are square-summable. Therefore, we obtain the following corollary
of the main theorem.

Corollary 1.4. IfY is a CLE carpet, almost surely there exists a round Sierpinski
packing X and a packing-conformal map that maps X onto Y.

It would be interesting to obtain some stronger statements for the uniformization
of CLE carpets. We pose several questions for further study.

Question 1.5. Under what conditions is the uniformizing round Sierpinski pack-
ing X and the packing-conformal map H of Theorem unique (up to Mobius
transformations)?

If one could at least show the uniqueness of X, then this would imply that CLE
gives rise to another stochastic process that generates round packings.

Question 1.6. Under what conditions is X a carpet whenever Y is a carpet?

Theorem [[I]already shows that a sufficient condition is the cofatness of Y. What
about CLE carpets?
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Question 1.7. Can one use the present techniques to prove Koebe’s conjecture for
domains whose complementary components have diameters in ¢2?

Another natural question is whether one can obtain alternative proofs of results
of [Bon11,|Nta20b] upon strengthening the geometric assumptions on the peripheral
continua.

Question 1.8. If the peripheral continua of a packing Y are uniformly relatively
separated, uniform quasidisks, is the map H of Theorem [I.I] quasisymmetric?

As discussed above, the specific map H arising from the proof of Theorem [I.1]is a
limit of conformal maps of finitely connected circle domains onto finitely connected
approximations of Y. The same procedure is followed by Bonk [Bonl1], who shows
that the limiting map is quasisymmetric under the geometric assumptions of Ques-
tion [L.8] Thus, the actual question is whether any map satisfying the conclusions
of Theorem [I.T} and not just the one that arises as a limit, is quasisymmetric.

Question 1.9. If the peripheral continua of a packing Y are uniformly fat and
uniformly quasiround, is the map H of Theorem carpet-conformal in the sense
of [Nta20b]?

Our main theorem relates to the recent work of Hakobyan-Li [HL21|, where the
quasisymmetric embedding problem for non-planar carpets is studied. The authors
study dyadic slit carpets, which are obtained as inverse limits of sequences of vertical
slit domains in the unit square, endowed with the inner length metrics. The centers
of the slits are located in centers of dyadic squares, whence the name dyadic slit
carpets, while the lengths depend on some parameters of the construction and can
differ from generation to generation. The slits give rise to the peripheral circles Cj,
1 € N, of the dyadic slit carpet Y that is generated by this construction. The main
theorem of [HL21|, Theorem 1.7, states that the carpet Y is quasisymmetric to a
carpet in C if and only if {diam(C;)};en lies in ¢2(N). This is precisely the main
assumption in Theorem

Summarizing, on one hand, in the current work we prove a uniformization result
for carpets already embedded in C with potentially “bad” geometry, and on the
other hand, [HL21] establishes a quasisymmetric embedding result for the specific
family of dyadic slit carpets that have “good” geometry; e.g., the peripheral circles
are always uniform quasicircles and each such carpet can be embedded in a linearly
locally connected metric 2-sphere in a natural way. It would be interesting if the
current techniques can be used to uniformize non-planar carpets under weaker
assumptions; e.g. non-dyadic slit carpets or more generally carpets embedded in
a 2-sphere of finite area whose peripheral circles have square-summable diameters.
The recent work of Romney and the author [NR22a] on the uniformization of 2-
spheres of finite area might be a valuable tool in this direction.

In the subsequent paper [Nta23c], we use the notion of packing-conformal maps
and the results of the present paper in order to study the problem of conformal rigid-
ity of circle domains, a problem that is closely related to the uniqueness in Koebe’s
conjecture. A circle domain is conformally rigid if every conformal map from that
domain onto another circle domain is the restriction of a Md&bius transformation.
Specifically, we prove that circle domains whose boundary is CNED (countably neg-
ligible for extremal distances), as introduced and studied in [Nta23b,Nta23a], are
conformally rigid. This result unifies and extends all previous works in the sub-
ject [HS93,HS94,NY20]. Moreover, it provides strong evidence for a conjecture of
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He-Schramm, asserting that a circle domain is rigid if and only if its boundary is
conformally removable.
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2. PRELIMINARIES

2.1. Notation and terminology. Let (X, d) be a metric space. The open ball of
radius r > 0, centered at a point z € X is denoted by By(x,); the corresponding
closed ball is Bg(z,r). We also denote by S(z,r) the circle {y € X : d(z,y) =
r}. The diameter of a set E is denoted by diamg(F). If the metric is implicitly
understood we will often drop the symbol d from the subscript. For the Euclidean
metric in the plane we will use the subscript e, when necessary. For example, we
write Be(z,7) and diam,(F). Finally, we denote by o the spherical metric and by
% the spherical measure on the Riemann sphere C = C U {oo}.

A continuous function v from a compact interval [a, b] into X is called a compact
curve. A continuous function ~ from (a,b) into X is called a non-compact curve.
In this case, if v extends continuously to a map 7¥: [a,b] — X then it is called an
open curve. The trace of a curve v: I — X is the set v(I) and is denoted by |y]. A
curve v: [a,b] — X is closed if y(a) = y(b).

For s > 0 the s-dimensional Hausdorff measure H*(FE) of a set FE in a metric
space X is defined by

HP(E) = lim H5(E) = sup Hi(E),

6—0 5>0

where

H;(E) =inf < ¢(s Zdlam ECUU diam(U;) < §

for a normalizing constant c(s) > 0 so that the n-dimensional Hausdorff measure
agrees with Lebesgue measure in R™. Note that ¢(1) = 1. We will use the notation
H;; for the Hausdorff measure H* if we wish to emphasize that the metric d is used.
We now state the co-area inequality for Lipschitz functions [EHa21, Theorem 2.1].

Proposition 2.1. Let L >0 and Y: C >R be an L- Lipschitz function. Then for
each Borel function p: C — [0, 00] we have

// pdHldt < —/pdE
wL(1)

The cardinality of a set E is denoted by #FE. For quantities A and B we write
A < B if there exists a constant ¢ > 0 such that A < ¢B. If the constant ¢
depends on another quantity H that we wish to emphasize, then we write instead
A < ¢(H)B or A <y B. Moreover, we use the notation A ~ B if A < B and
B < A. As previously, we write A ~p B to emphasize the dependence of the
implicit constants on the quantity H. All constants in the statements are assumed
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to be positive even if this is not stated explicitly and the same letter may be used
in different statements to denote a different constant.

Let E be a set in a metric space X. For r > 0 we denote by N,.(F) the open
r-neighborhood of E. The Hausdorff distance of two sets F,F C X, denoted
by dy(E, F), is defined as the infimum of all » > 0 such that F C N,.(F) and
F C N,(F). We say that a sequence of sets E,, C X, n € N, converges to a set
E in the Hausdorff distance if dg(E,, E) — 0 as n — oo. If the limiting set E is
closed, then it consists precisely of all limit points of sequences z,, € E,, n € N.

A continuum is a compact and connected set. An elementary property of Haus-
dorff convergence is that it preserves connectedness; namely, if a sequence of con-
tinua E,, n € N, converges to a compact set F, then E is also a continuum. See
[BBIO1}, Section 7.3.1] for more background.

Lemma 2.2. Let X,Y be compact metric spaces and 7: X — Y be a continuous
map.
(i) Let ECY (resp. E C X ) be a compact set and {Ep}nen be a sequence of
compact sets with the property that for each r > 0 there exists N € N such
that E, C N.(E) for alln > N. Then for each r > 0 there exists N € N
such that

7Y (E,) C Np(n HE)) (resp. m7(E,) C N.(n(E)) )
for allm > N.
(i) If {En}nen, {Fn}lnen are sequences of compact sets in'Y" converging in the

Hausdorff sense to compact sets E, F, respectively, then
dist(n~(E), 7~ }(F)) < lim inf dist(n =1 (E,), 77 (F,)).

Proof. The first part follows from compactness and continuity. For the second part,
note that

dist(m =1 (E), 7~ Y(F)) = lim dist(N,. (7~ *(E)), N, (=~} (F))).
T
By the first part, for each r > 0, we have
dist(N,. (77 (E)), N, (7~ 1(F))) < dist(n " (E,,), 7 (Fy,))
for all sufficiently large n € N. This completes the proof. (I

2.2. Fat sets. Let 7 > 0. A measurable set K C C is T-fat if for each z € K and
for each ball B, (z,7) that does not contain K we have (B, (z,r) N K) > 7r?. A
set is fat if it is 7-fat for some 7 > 0. Note that points are automatically r-fat for
every 7 > 0. A more modern terminology for fatness is Ahlfors 2-regularity, but
we prefer to use the original terminology that was used by Schramm [Sch95] and
Bonk [Bonl1].

Lemma 2.3. Let 7 > 0. If a connected set K C C is T-fat and T is a Mdbius
transformation, then T(K) is c(T)-fat.

Proof. Schramm [Sch95, Theorem 2.1] established the invariance of fatness under
Mbobius transformations. However, Schramm’s definition of fatness uses the Eu-
clidean metric rather than the spherical one, requiring that H2(B.(z,r) N K) > 712
for every z € K N C and ball B.(z,r) that does not contain K. Hence, it suf-
fices to show that fatness according to the spherical metric is equivalent to fatness
according to the Euclidean metric, quantitatively.
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Suppose that K is 7-fat according to the spherical metric and fix z € KNC and a
ball Be(x, ) that does not contain K. Consider the annuli A (z; (n—1)r/5,nr/5) =
Be(z,n7/5) \ Be(x, (n — 1)r/5), n € {2,...,5}. One of these annuli, say A, has
the property that diste(A4,0) > r/5. Since K is connected and not contained in
B.(z,r), which contains A, there exists a point y € K lying in the circle that
is equidistant from the boundary circles of A. The ball B.(y,r/10) is contained
in A C Be(z,r). For all points z € Be(y,r/10) we have |z| ~ r. Thus, for all
z,w € Be(y,7/10) we have o(z,w) =~ (1 +r?)~1|z — w|. This implies that

He(Be(w,r) N K) o He(Be(y,r/10)NK)  B(Bely,r/10)NK)
r? ~ o HA(Be(y,r/10)) T S(Be(y,r/10)) 77
since a Euclidean ball is also a spherical ball (of possibly different radius). There-

fore, we conclude the fatness of K according the Euclidean metric, quantitatively.
Conversely, suppose that K is fat according to the Euclidean metric and fix

x € K and a ball B,(z,r) that does not contain K. We apply an isometry P of C
so that P(x) = 0. The set P(K) is also fat according to the Euclidean metric by
Schramm’s result. We have

Y(By(z,r)NK) > X(By(z,7/4) N K) = X(B,(0,7/4) N P(K)).
Since B, (0,r/4) is contained in the unit disk in the plane, the identity map from
B,(0,7/4) into (C,| - |) is uniformly bi-Lipschitz and B, (0,r/4) corresponds to a
Euclidean ball B, (0, cr) for some constant ¢ ~ 1. Thus,
(B, (0,7/4) N P(K)) ~ H?(B.(0,cr) N P(K)) =2, 1%
This completes the proof. ([

Lemma 2.4. Let 7 > 0 and K,, C @, n € N, be a sequence of T-fat compact sets.
Then every compact limit of {Kp}nen in the Hausdorff sense is T-fat.

Proof. Let K C Chbea compact set that is the Hausdorff limit of a subsequence of
K,, n € N, which we denote by K, for the sake of simplicity. If K is a point, then
K is trivially 7-fat, so without loss of generality, we assume that diam(K) > 0.
Let z € K and B(z,r) be a ball that does not contain K. Our goal is to show
that X(B(z,7) N K) > 7r?. Let ¢ > 0 and U D K be an open set such that
S(B(z,r) N K) > X(B(z,r) NU) — e. For all sufficiently large n € N, we have
K,, C U by the Hausdorff convergence. Moreover, there exists a sequence z,, € K,
converging to x such that for each 6 > 0 we have B(x,,r —J) C B(x,r) for all
sufficiently large n € N. Since K ¢ B(x,r), we have K,, ¢ B(zp,r — 0) for all
sufficiently large n € N. Altogether, for all sufficiently large n € N we have

Y(B(x,r) N K) > %(B(z,r)NU) —& > S(B(xp,r —6) NK,) —e>7(r—0) —c.
We let § — 0, and then ¢ — 0 to obtain the desired conclusion. (I

The next statement can be found [MN22, Lemma 2.6 (iii)] in a slightly altered
form.

Lemma 2.5. Let 7 > 0 and {p; }ien be a collection of disjoint T-fat continua in C.
For each compact set E C C and a > 0 the set

{i:piNE#0 and diam(p;) > adiam(E)}

has at most ¢(1,a) elements.
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We also record an elementary consequence of fatness; see [NY20, Property (F2),
p. 154] for a proof.

Lemma 2.6. Let 7 >0 and K C C be a connected T-fat set. Then for each x € C
and r > 0 we have
H' ({s € (0,7): KN S(z,s) # 0})? < c(r)2(K N B(z,7)).

A metric measure space (X, d, u) is doubling if every ball in X has positive and
finite measure and there exists a constant L > 0 such that

w(B(z,2r)) < Lp(B(x,r))
for each x € X and r > 0. In this case, we say that X is L-doubling.
Lemma 2.7. Let (X,d, p) be an L-doubling metric measure space for some L > 0.
Letp>1,a>1, and {b;};cr be a collection of non-negative numbers. Suppose that
{D;}icr is a family of measurable sets and {B; = B(x;, ;) }icr is a family of balls
in X with the property that D; C B; and u(B;) < au(D;) for each i € I. Then

ZbiXBi Zb XD

iel i€l

c(L,p,a)

Lr(X) Lr(X)

Proof. Note that for p = 1 the proof of the inequality is straightforward. Suppose
that p > 1. For a non-negative measurable function ¢ on X consider the centered
maximal function M¢. For each i € I and x € D; C B; we have

1 1
—_ —_— LM .
w(Bi) ~/B,i 0= 1(Bi) /B(x,Qn-) 0= o)

Thus,
1
M > L™ u(Dy)—~
Now, let f = > ../ biX p, and ¢ be an arbitrary non-negative function with
léllLa(x)y = 1, where 1/p +1/q = 1. Then, by the Hardy-Littlewood maximal

inequality for doubling metric measure spaces [HKST15, Theorem 3.5.6, p. 92] we
have

/f¢> Zb/ ¢<cLaZb/ Md)—cLa/(ZbiXDi)MqS

6>L a7t [ o
B;

il il il
e(L,a) |y bixp, 1Ml Lacx) < e(L,p,a) || D biXp,
el Lr(X) iel LP(X)
The duality between LP and L? shows the desired inequality. O

2.3. Topological preliminaries. Let v: X — Y be a continuous map between
topological spaces. The map v is proper if the preimage of each compact set is
compact. The map v is monotone if the preimage of each point is a continuum.
Moreover, v is cell-like if the preimage of each point is a continuum that is con-
tractible in all of its open neighborhoods. In 2-manifolds without boundary cell-like
continua coincide with sets that have a simply connected neighborhood that they
do not separate. In the 2-sphere, this condition is simply equivalent to the condition
that the continuum is non-separating.
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If v is a continuous map from the 2-sphere onto itself, then it is monotone if and
only if it is cell-like if and only if it is the uniform limit of homeomorphisms; see
[YoudS8| and [NR22a, Theorem 6.3]. In analogy, for non-compact manifolds without
boundary, we have the Armentrout—Quinn—Siebenmann approximation theorem
[Dav86| Corollary 25.1A, p. 189]. We formulate the theorem according to [Sie72].

Theorem 2.8. A continuous, proper, and cell-like map v: X — Y between 2-
manifolds without boundary can be uniformly approximated by homeomorphisms in
the following strong sense. For each continuous function e: X — (0,00) and for
each metric d on Y compatible with the topology, there exists a homeomorphism
v: X =Y such that

d(v(z),v(x)) < e(x)
for each z € X.

Lemma 2.9. Letv: X =Y be as in Theorem|[2.8.

(i) The map v is surjective.
(ii) For each open set U C'Y the set v=1(U) is homeomorphic to U.
(iii) A compact set E CY is connected if and only if v~ 1(E) is connected.
(iv) A compact set E CY is cell-like if and only if v=1(E) is cell-like.
(v) Let U C Y be an open set such that v is injective on v=1(0U). Then
v=1oU) = ov~H(U).

Proof. For suppose that yg € Y \ v(X). The properness of v implies that there
exists a ball B(yg,r) that is disjoint from v(X). This contradicts the conclusion of
Theorem For let U C Y be an open set. The map v is a continuous, proper,
and cell-like map from v~1(U) onto U. Theorem implies that v is the uniform
limit of homeomorphisms from v~*(U) onto U. This proves The non-trivial
direction in follows from the fact that v|,-1(p) is a monotone map from the
compact set v+ (E) onto E; by [Why42, (2.2), Chap. VIII, p. 138], in this setting,
the preimage of a connected set is connected. For part if F is cell-like, then
there exists a simply connected neighborhood U D E such that U\ E is connected.
Then by v~Y(U) is a simply connected neighborhood of v»~!(E) that is not
separated by v~!(E); hence F is cell-like. Conversely, if v=!(E) is cell-like and U
is a neighborhood of E, then v~1(E) is contractible in v~1(U), so E is contractible
inU.

For by continuity we have dv~—1(U) C v~1(0U). Moreover, for each y € U
the set v=1(y) intersects v—1(U); indeed, if y,, € U and y,, — y, then by properness
there exists a sequence z,, € v~ 1(y,) C v~ }(U) converging to a point z € v~ 1(y).
The injectivity of v on ¥=1(8U) implies that if x € v=1(dU), then z = v~ (v(x)).
By the previous this point lies lies in »=1(U), and thus in dv=1(U). O

We will also use Moore’s theorem [Moo025|, which facilitates the study of planar
domains, Sierpinski packings, and Sierpiniski carpets. Let G be a partition of C into
disjoint continua. We call G a decomposition of C. We say that the decomposition
G is upper semicontinuous if for each g € G and each open set U C C containing
g, there exists an open set V C C containing g such that if ¢ € G and ¢’ NV # 0,
then ¢’ C U. Equivalently, if g, € G, n € N, is a sequence that converges in the
Hausdorff sense to a compact set A, then there exists g € G such that A C G. We
now state Moore’s theorem; see [Dav86}, Theorem 25.1] for a modern proof.
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Theorem 2.10. If G is an upper decomposition of(E into non-separating continua,
then C/G is homeomorphic to C.

2.4. Sierpinski packings. We recall some definitions from the introduction. Let
{pi}ien be a collection of pairwise disjoint, non-separating continua in C such that
diam(p;) — 0 as i — co. The collection {p; };en is called a Sierpiriski packing and
the set X = C \ Uien i is its residual set. When there is no confusion, we call X a
Sierpinski packing and the underlying collection {p; };en is implicitly understood.
The continua p;, ¢ € N, are called the peripheral continua of X. A Sierpinski
packing (resp. domain) is cofat if there exists 7 > 0 such that each of its peripheral
continua (resp. complementary components) is 7-fat.

Let X = @\U ;c1 Pi be a Sierpinski packing or a domain, where in the latter case
the collection {p; };cs is assumed to comprise the complementary components. We
consider the quotient space £(X) = @/{pi}iel, together with the natural projection
map mx: C — E(X). For aset A C C we denote 7x(A) by A. For a set E C C,
let Ig={ie€l:p;NE+#0}. We define E(X; E) = @/{pi}iel\1E§ that is, the sets
p; that intersect E are not collapsed to points.

If X is a Sierpinski packing or a domain, we note that the decomposition of C into
the singleton points of X and the continua p;, i € I, is always upper semicontinuous.
In the case that X is a Sierpiniski packing, the fact that diam(p;) — 0 as i — oo
implies that for each set £ C C the decomposition of C into the continua Di,
i € I'\ Ig, and the remaining singleton points is upper semicontinuous. Therefore,
a consequence of Moore’s theorem (Theorem is the following statement.

Theorem 2.11. Let X be a Sierpiniski packing or a domain. Then E(X) is home-
omorphic to C. Moreover, if X is a Sierpiriski packing and E C C, then E(X; E)
is homeomorphic to C.

A consequence of Lemma that we will often use is that the preimages of
continua under the projection maps mx and mx,r are continua.

2.5. Transboundary modulus. First, we give the definition of 2-modulus on the
sphere. Let I' be a family of curves in C. We say that a Borel function p: C — [0, 0o]
is admissible for the curve family I' if

/pdszl
.

for each locally rectifiable curve v € T'. We then define the 2-modulus, or else
conformal modulus, of I as

Mody I' = inf / p*dxs,
P
the infimum taken over all admissible functions p. The next lemma is simple con-

sequence of the co-area inequality; see [Nta20b, Lemma 2.4.3] for an argument.

Lemma 2.12. Let f: C—>Rbea Lipschitz function and Ty be a family of curves
in C with Moda 'y = 0. Then for a.e. t € R every simple curve v whose trace is
contained in f~1(t) lies outside Ty.

Next, we define transboundary modulus, as introduced by Schramm [Sch95].
Let X = C\ U;¢;pi be a domain. Let p: £(X) — [0, 00] be a Borel function and
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v: la,b] = £(X) be a curve. Then there exist countably many curves v;, j € J,

such that for each j € J we have |y;| C X and v = mx o o for some possibly
non-compact curve «; in the domain X. We define

/pds:z poTx ds,
v jeJ i

where this is understood to be infinite if one of the curves «; is not locally rectifiable.

Let I" be a family of curves in £(X). We say that a Borel function p: £(X) — [0, x]

is admissible for I if
[pase S o=
¥

ix|y|Np; #0
for each v € I'. The transboundary modulus of T' with respect to the domain X is
defined to be

Modx I = inf {/ (pomx)?dE + Zp(@F} ,
PoUx ieN
where the infimum is taken over all admissible functions p.
Let X,Y be domains in C and f: X =Y be a conformal map. Then f induces
a homeomorphism f: E(X) — E(Y) such that f: mx o fo 7T;(1 on )?; see |N'Y20,
Section 3] for a detailed discussion. It was observed by Schramm [Sch95| that
transboundary modulus is invariant under conformal maps.

Lemma 2.13. Let X,Y be domains in C and f: X = Y be a conformal map.
Then for each curve family T' in £(X) we have

~

Modx I' = Mody f(T).

We also introduce the set function f* = 71'{,1 o fo wx from the powerset of

C into itself. In particular, f* = f on subsets of X and if A is contained in a
boundary component of X, then f*(A) is the corresponding boundary component
of Y. Observe that if g = f~!, then

(2.1) gn(fn(A)) D A

for each set A C C with equality if A C X. The next lemma is an implication of
Carathéodory’s kernel convergence theorem for multiply connected domains [Gol69,
Theorem V.5.1, p. 228].

Lemma 2.14. Let Q C C be a domain and fn, n €N, be a sequence of conformal
maps in ) that converges locally uniformly in  to a conformal map f. Then for
each compact E C C and for each compact limit E* of { f(E)}nen in the Hausdorff
sense we have
F*(E) > E*.

Proof. Suppose first that F is a complementary component of 2. Since f,, converges
to f locally uniformly, f,,(2) converges in the Carathéodory topology to f(€) (with
respect to a point of f(€2)). This implies that each compact Hausdorff limit of
C \ fn(9) is contained in C \ f(£2). Thus, if E* is a compact limit of f(E), which
is a component of @\fn (€), then E* is contained in a component of C\ f(£2). One
can now see that this component has to be f*(E).
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For the general case, let ¥ be an arbitrary compact set in C. By the definition
of f*, the set f*(FE) is the union of f(2N F) with the complementary components
f*(B) of f(2), where B is a complementary component of 2 such that BN FE # ().
The set E* consists of f(2NE) and Hausdorff limits of complementary components
f*(B), where BN E # (). The previous case completes the proof. O

2.6. Packing-quasiconformal maps. For two Sierpinski packings or domains
X,Y, we introduce the notion of a packing-quasiconformal map between the as-
sociated topological spheres £(X),E(Y).

Definition 2.15. Let X = C \Ujerpi and Y = C \ Usez @ be Sierpiniski packings
or domains. Let h: £(X) — £(Y) be a continuous, surjective, and monotone map
such that h(p;) = ¢; for each i € I. We say that h is packing-quasiconformal if
there exists K > 1 and a non-negative Borel function pj, € L2(C) with the following
properties.

o (Transboundary upper gradient inequality) There exists a curve family Ty

in C with Mods Ty = 0 such that for all curves v: [a, b] — C outside Ty we
have

dist(myt o ho mx (y(a)), 7y o homx(y(b))) < / prds + Z diam(g;).

w:piN|y|#0

e (Quasiconformality) For each Borel set E C C we have
/ pidY < KX(ENY).
7% (A= (ry (E)))

In this case, we say that h is packing-K -quasiconformal. If K = 1, then h is called
packing-conformal.

A Borel function py, satisfying the transboundary upper gradient inequality as
above is called a transboundary weak upper gradient of h. If the transboundary
upper gradient inequality holds for all rectifiable curves in @, without the need to
exclude a family of conformal modulus zero, then we say that pj is a transboundary
upper gradient of h.

Remark 2.16. Note that we are not requiring that h=1(g;) = p;; in general h=1(g;)
could be much larger than p;. See Example for an instance. The quasiconfor-
mality condition implies that if £ = ¢;, then p, = 0 a.e. on w}l(h’l(in)), i € N.
Thus, pp, is supported in the set w}l(h_l(f/)). In fact, we can set p, equal to 0
everywhere on 5 (h=1(g;)), i € N, rather than almost everywhere. Indeed, line in-
tegrals are not affected by this change for Mods-a.e. curve [HKST15, Lemma 5.2.16,
p. 133]. Hence, by enlarging the exceptional curve family T'g, we may have that the
transboundary upper gradient inequality also holds for the modified function py,.

The following lemma is straightforward for finitely connected domains; it is also
true for countably connected domains but we will not need that generality.

Lemma 2.17. Let X,Y C C be finitely connected domains and f: X — Y be a
conformal map. Then the induced map f: E(X) — E(Y) is packing-conformal and
the derivative of f in the spherical metric is a transboundary upper gradient of f.
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Here, the derivative of f in the spherical metric at a point z € C can be given
by the following precise formula when z, f(2) € C.

DA = G

3. TRANSBOUNDARY MODULUS ESTIMATES

Let X = C \ U, pi be a Sierpiniski packing or a domain. Let E, FcC E(X) be
arbitrary sets and Q C 5( ) be an open set. We denote by T'(E, F; Q) the family of
open paths in () joining E and F. That i is, (E F Q) contains precmely the open
paths v: (a,b) — € such that ¥: [a,b] —  intersects both E and F; recall than an
open path extends continuously to the endpoints by definition. If Q = £(X), then
we simply write I'(E, ﬁ)

Recall that for E C C we denote Iy = {i € I : p; N E # 0} and £(X;E) =
(C/{pl}lel\IE Consider the natural projection mx.z: C — &£(X;E), which is
injective on X U E. Recall that if X is a Sierpinski packing, and in particular
diam(p;) — 0 as i — oo, then the space £(X; E) is homeomorphic to the sphere C

by Theorem [2.11}
The next lemma is one of the main technical ingredients of the proof of Theorem

i

Lemma 3.1 (Non-degeneracy lemma). Let X = ([A:\UieN p; be a Sierpiriski packing
such that the diameters of the peripheral continua lie in (*(N). Let E C E(X) be
a continuum such that E = W;(l(E) is non-degenerate and let d be a metric on

E(X; E) that induces the quotient topology. For each 6 >0 and N € NU {0} there
exists a constant C(X, E,d, 0, N) > 0 such that the following statement is true.

Let F c C \ E be a continuum such that diamy(rx.z(F)) > §. For a finite set

J C N consider the domain Y = C \ Uicypi- Then for each set Jo C J with
#Jo < N we have

MOdyF (WY(E)’WY(F\ U pz)vg(Y)\ U 7TY(]%)) > C(X7E7d7 6’ N)

i€Jo i€Jo

Surprisingly, this lemma gives uniform lower modulus bounds, although the pack-
ing X does not have uniform geometry. The reason is that we freeze a continuum F
and we consider curve families connecting relatively large continua F to E. If one
varies the continuum F as well, then it is impossible to obtain uniform modulus
bounds without some strong uniform geometric assumptions, as in [Bonll, Section
8].

Proof. Note that E # C, since E # £(X). The set E is a continuum by Lemma
The space Z = £(X; E) is homeomorphic to C. The projection m =
wx.g: C — Z is injective on the set E, thus, 7(F) is a non-degenerate continuum
in Z. We endow Z with a metric d inducing its topology, as in the statement of
the lemma. We also fix 6 > 0.

The set Z \ 7 (EUJ,;cnpi) is non-empty by Baire’s theorem. Fix a point o
in that set and a ball By(2eo,7) C Z \ 7(E), where r < §/4. Consider a homeo-
morphism ¢ from Z \ {zs} onto the plane C with the property that it maps the
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FiGURE 3. Left: Case la. Middle: Case 1b. Right: Case 2.

complement of the ball By(zs,r) into the unit ball B.(0,1). Let E' = p(7(E)),
which is a non-degenerate continuum in B,(0,1). By uniform continuity, there ex-
ists a constant cg > 0 such that if F C Z is a continuum with diamd(ﬁ) > ¢, then
@(F \ By(2os,7)) contains a continuum F’ C B,(0,1) with diam(F") > ¢o. We fix
such a continuum F’.

Now, for € > 0 consider a grid of squares of side length ¢ in the plane with sides
parallel to the coordinate axes such that the 1-skeleton avoids the countably many
points p; = ¢(7(p;)), i € N\ Ig. Let G be the intersection of the 1-skeleton with the
square [—2,2]2. Let B’ be the collection of simple paths that are contained in G and
connect all pairs of junction points (i.e., points where four edges meet) of G. Note
that B’ contains a bounded number of paths, depending only on . Also, if two
paths of B’ do not intersect, then their distance is at least €. For each path 8 € B,
consider a Jordan region U(/3) such that |5| C U(8) C N./2(|f]) and oU () avoids
Uiem s, Pi- In particular, observe that if |81|N[B2| = 0, then U(81) NU(B2) = 0.

Let N € NU {0}, as in the statement of the lemma. We claim that if the mesh
of the grid is sufficiently small, i.e., ¢ is sufficiently small, depending only on N,
E’, and ¢, but not on F’, then B’ contains N + 1 disjoint paths 3, ..., Snx+1 that
connect E' and F’ with the additional feature that OU(fB1),...,0U(Bn+1) also
connect E’ and F’. To see this, we consider separate cases.

Case 1. Suppose that the projection of E’ to the x-axis has positive diameter equal
to ¢ and the projection of F’ to the z-axis has diameter larger than ¢q/2. We set
M = min{cy, ¢p/2}.

Case 1a. Suppose that the overlap of the projections is larger than or equal to
M/2. Then by choosing ¢ < 271M (N + 3)~! we may find N + 1 disjoint vertical
paths in B’ intersecting both E’ and F’ so that their parallel translates by ¢ to
either side also have the same property. See Figure

Case 1b. Suppose that the overlap of the projections is smaller than M /2. Then
there exist subcontinua E” and F” of E' and F’, respectively, such that the pro-
jections of E” and F”' to the z-axis are disjoint and both have diameter M/2. If
we choose ¢ < 271M (N + 3)7!, then there exist N + 1 disjoint vertical paths in
B’ intersecting F” but not E” and N + 1 disjoint vertical paths intersecting E”
but not F” so that their parallel translates by € to either side also have the same
property. We truncate these paths appropriately outside B, (0, 1) and then connect
them with disjoint horizontal segments in B’ to obtain II-shaped paths; see Figure
The resulting collection of paths has the desired properties.
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Case 2. Suppose that the projection of E’ to the z-axis has diameter zero and
the projection of F’ to the z-axis has diameter larger than ¢g/2. Thus, E’ is a
vertical line segment that projects to a segment of diameter ¢; in the y-axis. Our
goal is to find appropriate subcontinua E” and F" of E’ and F’, respectively, whose
diameters are bounded below depending on ¢y and ¢; and whose projections to both
axes are disjoint. First, we consider a subcontinuum F” of F’ with diameter ¢(/8
whose projection to the z-axis is disjoint from the projection of E’. If the projection
of F" to the y-axis has diameter larger than or equal to min{c1/2,¢o/16}, then we
can argue as in Case 1, replacing the z-axis with the y-axis and finding a value of
¢ that depends on cg, c;, and N. Otherwise, we consider a subsegment E” of E’ of
length ¢1/4 so that the projections of E” and F” to both axes are disjoint. Then
by choosing a small enough e, we may find T'-shaped curves from the collection B’
that join E” and F” and have the desired properties; see Figure |3 The remaining
cases are symmetric to the ones we treated.

Note that (por)~! is injective on the square grid G and on the boundaries OU (),
B € B, since these sets avoid the set UieN\IE p;. We pull back the collection B’

and the regions U(f), 8 € B/, to C under the proper and cell-like map @ o 7: (E\
71 (2) — C. Using Lemma we obtain a collection B of simple curves and

Jordan regions U(f), 8 € B, in C with the following properties.

(i) For each 8 € B the Jordan region U(S) contains |g| and if f1, 52 € B are
disjoint curves, then U(8;) and U(fB2) are disjoint and intersect disjoint
collections of sets p;, i € N\ Ig.

(ii) Whenever F C C \ E is a continuum with F = mx.g(F) and diamg(F) >
d, there exist disjoint paths fi,...,06n+1 € B such that §; and 9U(5;)
intersect £ and F for each i € {1,...,N + 1}.

We let n = min{dist(|8|,0U(8)) : 8 € B}, which is positive since B is a finite
collection. R

Fix a continuum F C C\ E and paths §1,...,8n+1 € B as in IfJycJ
is a set with #Jy < N as in the statement of the lemma, then by |(i)] and the
pigeonhole principle there exists k € {1,...,N + 1} such that U(8x) does not
intersect (J;¢ 7,1, Pi- Note that F'NU(Bx) does not intersect |J;¢ 5, pi, but this is
not necessarily true for E, since it intersects p;, whenever i € I N Jy. Let (z) =
dist(z, | B4|), which is a 1-Lipschitz function on C. For a.e. ¢ € (0,7) the components
of ¢~1(t) are points, Jordan curves, or Jordan arcs; see [Nta20a, Theorem 1.5] for
a general statement in metric surfaces or [Bro72| for a planar version. Hence, for
a.e. t € (0,n), the set ¢»~1(¢) contains a Jordan curve separating |3x| from U (By).
We fix such a ¢t € (0,7). Since E and F \ {J;c; pi connect B and OU(Bx), we
conclude they intersect this Jordan curve. Thus, 1»~!(¢) contains an open curve
connecting E and F'\ ;¢ 5, pi and avoiding (J;c ;, pi- It follows that my (¢~ ())
contains a curve in I' =T (7y (E), 1y (F \ U;c s, 2i); EY) \ Uiy, 7v(pi)). Thus, if
p: E(Y) = [0,00] is admissible for T', then

/wl(t)mypomf aH Z ple) 21
T () Npi#D
icJ
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for a.e. t € (0,n). Integrating over ¢ € (0, 7), and using the fact that ¢ is 1-Lipschitz,
by the co-area inequality (Proposition we obtain

co< | pomy dS+ 3 p(f) diem(p)
Ny (18kDNY icJ

1/2 1/2
< (/Y(pow)zd2+2p(ﬁi)2> (E(@sziam(pi)Q) :

ieJ 1€EN

Infimizing over p gives

-1
Mody T' > C'5? (1 + Z diam(pi)2> .
ieN
This completes the proof. ([

The next lemma is established in [Bonll|. The relative distance of two non-
degenerate subsets E, F' of a metric space is defined as
dist(E, F)

A(E, F) = min{diam(E), diam(F)}"

Lemma 3.2 ([Bonll, Proposition 8.7]). For each 7 > 0 there exists a number
Ny > 0 and a function 1: (0,00) — (0,00) with lim;_,o, ¥ (t) = 0 such that the
following is true. Let X = C \ Uicrpi be a T-cofat finitely connected domain. Let
E,F C £(X) be disjoint sets and let E = w;(l(E), F= w}l(ﬁ). If A(E,F) > 12,
then there exists a set Io C I with #1y < Ny such that

Modx I (E,ﬁ;s(X) U ﬁ) < P(A(E, F)).
icly

The statement here is slightly different from [Bonll|, but the proof remains
unchanged. We point out the main differences. First, Bonk uses continua F, F,
while we use arbitrary sets. Note that upper modulus bounds are not affected by
this generalization; it is instead that lower modulus bounds require continua so
that the curve family that connects them is rich enough. Second, in [Bonll| the
continua F, F are chosen in X, but we choose sets E7ﬁ in £(X) and then take
their preimages in C. Third, we use path families in £(X) rather than in C. Each
path in £(X) corresponds to countably many possibly non-compact paths in the

domain X and thus the considerations in [Bonll], which use line integrals in @, are
applicable here as well.

4. UNIFORMIZATION OF SIERPINSKI PACKINGS

Our goal in this section is to prove the following theorem at the heart of the
paper.

Theorem 4.1. LetY = @\UieN q; be a Sierpiriski packing such that {diam(q;)}ien
lies in (?(N). Let T > 0 and (s, 0,1 € Y, and for eachn € N, let f,, be a conformal
map from the domain 'Y,y = C\ U_, ¢; onto a 7-cofat domain X, = C\ U;_, pin

such that fo(Co) = 0, fal(Go) = 0, [falC))] = 1, and fi(q;) = pin for each
i € {1,...,n}. Suppose, in addition, that for each i € N all Hausdorff limits of
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the sequence {p; n}n>i are non-separating. Then there exists a sequence {kp}nen
increasing to oo with the following properties.

(i) For each i € N, p; 1, converges as n — oo to a T-fat non-separating con-
tinuum p; in the Hausdorff sense.
(ii) The set X =C\ Uien Pi is a T-cofat Sierpiriski packing.
(iii) For each i € N, p; is non-degenerate if and only if q; is non-degenerate.
(iv) The sequence gi, = fk_nlz Xk, — Yk, gives rise to a sequence of set func-
tions hy, = Ty o gj o T from subsets of £(X) to subsets of E(Y) that
converges uniformly to a packing-conformal map h: £(X) — E(Y).

The proof of the theorem is given in Sections We now record two imme-
diate corollaries. Suppose that the maps f, are given by Koebe’s uniformization
theorem for finitely connected domains [Koe20|. In this case, the sets p; , are geo-
metric disks and points. Each of their Hausdorff limits is a geometric disk (allowing
the case of the entire sphere) or a point, so it is non-separating. Thus, we obtain
the following corollary.

Corollary 4.2. LetY = @\UieN q; be a Sierpiriski packing such that {diam(q;) }ien
lies in (*(N). Then there exists a round Sierpiriski packing X = C \ Usenpi and a
packing-conformal map h: E(X) — E(Y). Moreover, for each i € N, the disk p; is
non-degenerate if and only if q; is non-degenerate.

More generally, one can consider a collection {P;};en of non-degenerate, 7-fat,
and non-separating continua in the plane C, which is regarded as a subset of C.
According to the Brandt—Harrington uniformization theorem [Bra80,Har82] there
exists a conformal map f, from the finitely connected domain Y,, = C \UL, @
onto a domain X, = C \ U;;lpi,n, where p; ,, either is a point or is homothetic
to P;; that is, p;, is the image of P; under a transformation z — az + b, a > 0,
b € C. By postcomposing f, with a homothetic transformation, we may assume
that it satisfies the normalizations of Theorem By Lemma the sets p;
are c(7)-fat. Also, note that if p; ,, is homothetic to P;, then each non-degenerate
Hausdorff limit of p; ,, as n — oo is also homothetic to P;, provided that it is not
the entire sphere. Therefore, Theorem gives the following corollary.

Corollary 4.3. LetY = ((A:\UiEN q; be a Sierpiriski packing such that {diam(q;) }ien
lies in ¢2(N). For T > 0 consider a collection {P;}ien of non-degenerate, T-fat, and
non-separating continua in the plane C. Then there exists a Sierpinski packing X =
C \ Usen Pi, where p; is a point when g; is a point and p; is homothetic to P; when
q; is non-degenerate, and there exists a packing-conformal map h: E(X) = E(Y).

Example 4.4. We provide an example showing that in general we only expect to
have h=1(g;) D p;, i € N, for the map h of Theorem and we cannot guarantee
equality.

The following example is presented in |[Nta23c, Section 6]. There exists a count-
ably connected domain Y = C \ U;en @ whose complementary components {¢; }ien
have diameters in ¢?(N) and a conformal map F from Y onto a circle domain Z
such that ¢; is a singleton, F*(¢1) is a non-degenerate disk, and each component
qi, © > 2, is isolated.

LetY, = @\U?Zl ¢; and consider normalized conformal maps f,, from Y, onto a
finitely connected circle domain X,, = (/C\\Uzlzl Din as in the statement of Theorem
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[41] After passing to a subsequence, f, converges locally uniformly in the domain
Y to a conformal embedding f from Y into C. The fact that each component g;,
i > 2, is isolated implies that f*(g;) is a geometric disk p; that is a Hausdorff limit
of pin = f(qi); this can be justified by using Carathéodory’s kernel convergence
[Gol69, Theorem V.5.1]. However, we have no information about f*(g;). The
map F o f~! is a conformal map from f(Y) onto Z. Based on transboundary
modulus arguments (see e.g. [Sch95, Theorem 6.1]), and given that F*(q) is a non-
degenerate disk, one can show that f*(q1) is a non-degenerate continuum. Observe
that f(Y) = C\ (f*(q1) UU;Z, pi).

If we apply TheoremEl7 after passing to a subsequence, we obtain a round
Sierpiniski packing X = C\ J;cypi, where p; is a Hausdorff limit of p; ,,. Since
q1 is a singleton, we conclude that p; is a singleton. Also, by the last part of the
theorem, the sequence h,, = my o g} o 7r§1 (where g, = f;!) converges uniformly
to a packing-conformal map h: £(X) — E(Y).

The convergence of f,, implies that the sequence g, = f,~ of conformal maps
converges locally uniformly in f(Y) to g = f~! and ¢*(f*(q1)) = q.. One can
show that 7y o g* o my' = h. Using that, we have h(mx(f*(q1))) = 1. Note that
f*(¢1) 2 p1 by Lemma so mx(f*(q1)) 2 p1- It follows that h=1(q1) 2 p1.

-1

4.1. Existence of limiting Sierpinski packing. We now initiate the proof of
Theorem Recall that the conformal map f,: Y, — X, gives rise to a set

function f} = W;(i o J/‘; o7y, from the powerset of C into itself. Namely, f = f,

inY, and f}(A) = p; , whenever A C ¢;. By Lemma £ maps continua to

continua.

Lemma 4.5 (Non-degeneracy). Let E C E(Y) be a continuum such that E =
7y (E) is non-degenerate. Then

lim inf diam(f} (E)) > 0.

n—oo

Proof. Without loss of generality E # £(Y), since in that case we have f}(E) = C
for all n € N. The set F is a continuum and has the property that it contains all
peripheral continua of Y that intersect E. We set E/, = f*(F), which is a non-
degenerate continuum by the conformality of f,, and suppose that diam(E!) — 0
along a subsequence. We wish to derive a contradiction. After passing to a further
subsequence, we assume that E/ converges to a point xo € C in the Hausdorff sense.
Consider the great circle through the points 0 = f,,({p), fn(¢1), and co = f,,(¢o)-
The point x¢ does not lie on at least one of the arcs (of the great circle) from 0
to fn(C1), fu(C1) to oo, or oo to 0. Without loss of generality, after passing to
a subsequence, suppose that E/ stays away from the arc «, joining 0 to f,(¢1).
That is, there exists ¢ > 0 such that dist(E],|a,|) > ¢ for all n € N. Let F) =
w)_(i (7x, (lanl])), ie., the union of the arc |a,|, together with all the sets p; .,
je '{1, ...,n}, that intersect |ay,|. Note that F might be very close to E/,, although
they are disjoint, because they both contain the complementary components of X,
that they intersect.

The 7-cofatness of X, and Lemma [2.5]imply that there exists a constant Ny € N,
depending only on 7 and ¢, such that at most Ny of the sets p; ., i € {1,...,n},
with diameter larger than ¢/2 intersect the arc |a,|. Thus, there exists a set
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Jn C{1,...,n} with #J,, < Ny such that

dist(El,, F! \ U Din) > c/2
icdy

for each n € N. Since diam(F}, \ U;c; pin) > diam({0, f.(¢1)}), we have

A(E!,F)\ U Din) — 00
1E€Jp
as n — oo. Finally, we observe that the sets E;, and Fy, \ U;c; pin are invariant
under the set function m Xl o Tx, because they contain all complementary compo-
nents of X, that they intersect. By Lemmam there exists a constant N} € N that

depends only on 7 and a set J], C {1,...,n} with #J/, < N{ such that

Modyx, I' | mx, (Ep), mx, (F, \ | pim);€Xn)\ | 7x, (pim) | =0
i, ie !

as n — co. Note that by the monotonicity of modulus, if we set J/! = J,, U J/}, then
we also obtain

Modyx, T' [ mx, (Ep), mx, (F,\ | pin)i EXa)\ | 7x, (pim) | =0
ieJy ieJy
as n — o0o.

Consider the set F,, = (f;1)*(F.); that is, F,, is the union of f,!(|as| N X,,)
together with the sets ¢;, j € {1,...,n}, that intersect its closure. Note that in
the space £(Y; E) (endowed with any fixed metric that induces its topology) the
projection of F, has diameter uniformly bounded from below, since it connects
the projections of the points (o and (;, which do not lie on E. Also, note that
#J!! < Ny + N§. Thus, by Lemma [3.1 we have

icJy! ieJy

for all n € N. The conformal invariance of transboundary modulus (Lemma [2.13)
leads to a contradiction. g

Corollary 4.6. For each i € N, the following statements are true.

(1) If ¢; is non-degenerate, then the sequence of sets {pin}n>: does not degen-
erate to a point as n — oo.
(ii) The set q; is a point if and only if p; n is a point for all n > 1.

The second part of the lemma follows from the fact that f, is a conformal map.
After taking a diagonal sequence, assume that for each i € N the sequence p; ,,
converges in the Hausdorff sense as n — oo to a compact set p; that is connected,
does not separate the sphere by the assumption in Theorem and is 7-fat by
Lemma We have already established parts |(i)| and of Theorem

Next, we wish to show that the sets p;, ¢ € N, are pairwise disjoint. First we
establish a preliminary lemma.

Lemma 4.7 (No clustering). There exists N () > 0 such that for each = € C there
are at most N (1) non-degenerate sets p;, i € N, containing x.
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Proof. Let N € N and suppose that the sets p;,,...,p;, are non-degenerate and
contain z. Fix r > 0 be such that p; is not contained in B(x,r) for each | €
{1,...,N} and consider points z;, , € p;, » converging to x as n — co. For fixed
d € (0,7) note that the sets B(zy n,7 — ) Npiym, I € {1,..., N}, are pairwise
disjoint and are contained in B(z,r) for all sufficiently large n € N. Moreover, p;, »
is not contained in B(x;, n,r — 0) for all sufficiently large n € N. By the 7-fatness
of p;; ., for large n € N we have

N
Y(B(z,r)) > Z S(B(xin,7 — 0) Npiyn) > N7(r — 6)2.
=1

Letting § — 0, gives N < 77 '%(B(z,r))r=2 < Cr~ L O

Lemma 4.8 (No collisions). Let Fy, Fy C E(Y) be disjoint continua and let Fy =
my (F), Fy =y (Fy). Then

lim inf dist(f; (F1), f3(F2)) > 0.

Proof. We may assume that ﬁl and ﬁg are, in addition, non-separating continua,
after replacing them if necessary with larger continua that are disjoint and non-
separating. Suppose that dist(f}(F1), fi(F2)) — 0 along a subsequence. After
passing to a subsequence, we assume that f(F;) converges in the Hausdorff sense
to a continuum F*, i = 1,2, and Ff N Fy # 0. Note that the sets F;, i = 1,2,
contain all of the peripheral continua of Y that they intersect. We consider two
cases.

Case 1. The set g; is non-degenerate for only finitely many ¢ € N. Let J C N be
the set of those indices. The conformal map f,: Y, — X, extends conformally
to the isolated point g; whenever ¢ € {1,...,n} \ J. Since F; and F; are disjoint,
non-separating, and contain all peripheral continua that they intersect, the open
set ) = ((A:\ (F1UF, U, q:) is connected and the sets Fy, Fy are complementary
components of 2. The three-point normalization of f,, implies that, after passing
to a further subsequence, f, converges locally uniformly in C \(FLUFU;ey @)
to a map f that is either constant or conformal. By Lemmal[L.5] f is non-constant,
so it is conformal. Lemma [2.14] implies that f*(F;) D F; for i = 1,2. This leads to
a contradiction, since the sets f*(F1), f*(F») are disjoint, but the sets F}', Fy are
not.

Case 2. There are infinitely many non-degenerate sets ¢;, i € N. By Corollary
p; is non-degenerate if and only if ¢; has this property. Let x € FfNF5. By Lemma
there exists N(7) > 0 such that at most N(7) non-degenerate sets p;, i € N,
contain the point x. Thus, there exists ig € N such that E' = g;, is non-degenerate
and = ¢ p;,. The sets E, = f(F) converge to p;, so they have diameters uniformly
bounded away from 0 and they stay away from the point . Let a,, be a curve in C
joining f(F1) and f(F3) such that |a,| converges to = in the Hausdorff sense. Let
G, be the union of |a,| together with the sets p; ., j € {1,...,n}, that intersect
|an|. Note that the diameter of G!, might be large.

We now argue as in the proof of Lemma The cofatness of X,, and Lemma
imply that if J,, is the set of indices j such that p; , N|a,| # 0 and diam(p;,,) >
diam(|ay,|), then #J,, is uniformly bounded, depending only on 7. We conclude
that A(E},, Gy, \ Uje, Pin) — 00 as n — co. Lemma implies that there exists
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a set of natural numbers J/' O J, with uniformly bounded cardinality such that

Modx, T [ 7, (BL), mx, (G | pin)s €K\ U 7, (i) | =0
ieJ! ieJ!
as m — o0o.
On the other hand, we consider the sets E and G,, = (f,;1)*(G). We note
that the continuum G,, joins F} and Fb, so its projection to £(Y; F) has diameter
uniformly bounded below away from 0, in any given metric. By Lemma [3.1] we have

Mody, T | v, (E), 7y, (Gn \ | @:):E¥a)\ | mv.(@) | > C
ieJ i€Jy
for each n € N. This contradicts the conformal invariance of transboundary mod-
ulus. (]

Corollary 4.9. The sets p;, i € N, are pairwise disjoint. Moreover, the set X =
C\ U2, pi is a Sierpiriski packing.

Proof. The sets p;, i € N, are pairwise disjoint by Lemmal[f.8 As we have discussed,
each of the sets p;, i € N, is a non-separating continuum and is 7-fat. A trivial
consequence of Lemma is that diam(p;) — 0 as ¢ — oo. These facts imply that
X is a Sierpinski packing. O

Thus, we have established part of Theorem In the following sections we
prove the existence of the limiting map of part and its regularity.

4.2. Existence of limiting map. Fix metrics on the spaces £(X),E(Y) that in-
duce their topology. The particular metrics are not of importance. We set g,, = f,, !
and consider the sequence of set functions

h, = 1y og,’;ow)}l :7ry07r{,n1 0gnoTx, ow;(l, n €N
from subsets of £(X) to subsets of £(Y).

Lemma 4.10 (Equicontinuity). For each € > 0 there exists § > 0 and N € N
such that if E' is a set in £(X) with diam(E’) < ¢, then diam(h,(E")) < & for all
n> N.

Roughly speaking, this lemma says that if a set has small diameter in £(X),
then its image under g projects to a set that has small diameter in £(Y"). We note
that the diameter need not be small if we do not project to £(Y). As an analogy,
consider a conformal map f from a simply connected domain ) whose boundary is
not locally connected onto the unit disk X'. Then small sets near X need not be
mapped to small sets in ) under g = f~L.

~

Proof. By the local connectivity of £(X) ~ C, it suffices to show the statement for
continua £’ , rather than arbitrary sets. We argue by contradiction, assuming that
there exists g > 0 and a sequence of positive integers {k;, }nen with &, — oo such
that there exists a sequence of continua E!, C £(X) converging to a point # € £(X)
as n — oo, but diam(wy (E,)) > g¢ for all n € N, where F,, = gZ(W}l(E;L))
After passing to a subsequence, we assume that F, converges to a continuum
E c C, and by continuity my (E,) converges to a continuum 7y (E) in £(Y) with
diam(7y (E)) > «o.
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Consider distinct points ,2 € 7y (E) \ U;en Ty (¢:) and let y = 1 (9), 2 =
Ty (2) € ENY. Consider disjoint closed Jordan regions Uy, U, containing y, z in
their interior, whose boundaries lie in Y'; these regions can be obtained as preimages
under 7y of appropriate Jordan regions in £(Y). By Lemma the distance of the
images f; (Uy), fi (U.) is uniformly bounded away from zero. By the Hausdorff
convergence of E, to E, for all sufficiently large n € N the set E,, intersects both
U, and U,. Since y,z € Y, there exist points y,, 2, € £, NY converging to y, z,
20 = fi, (#n) lie in ﬂ)_(l(E';) and stay away
from each other as n — oo. Since the points 7x (y,) and wx(z],) converge to the
point Z, but the points y!/, and z/, stay away from each other, by Lemma we
must have & = wx (p;,) for some ig € N. We conclude that y/,, 2/, accumulate at p;,
as nm — 00.

Fix a closed Jordan region U containing y in its interior such that U is disjoint
from g;, and OU C Y; this is possible because y € Y. We have y,, € U for all
sufficiently large n € N. On the other hand, the sets f; (U) and f; (qi,) = Pig.k,
come arbitrarily close to each other. This contradicts Lemma (I

respectively. The points vy, = fx, (Yn), 2

The following statement is a version of the Arzela—Ascoli theorem for equicon-
tinuous families of set functions. The proof is a straightforward adaptation of the
classical argument and the experienced reader may safely skip it.

Lemma 4.11 (Compactness). Let X, be compact metric spaces and hy,: P(X) —
P(Y), n €N, be a sequence of set functions with the following properties:
(i) Surjectivity: for each n € N, f,(X) =Y.
(ii) Setwise monotonicity: for each n € N, if AB C X and A C B, then
fin(A) C fin(B).
(iii) Inverse image property: for eachn € N, if A C X and y € h,(A), then
there exists © € A such that y € h,(x).
(iv) Equicontinuity: for each € > 0 there exists 6 > 0 and N € N such that for
each set E C X with diam(E) < 6 we have diam(#,(F)) < e for allm > N.

Then there exists a subsequence { Ay, tnen Of {fin}nen that converges uniformly to
a continuous and surjective map h: X — Y in the following sense: for each & > 0
there exists N € N such that for each set E C X we have

dr (hy, (E), h(E)) < e
for allm > N.

Proof. Note that the space of compact subsets of a compact metric space is compact
in the Hausdorff metric [BBIO1, Theorem 7.3.8, p 253]. Consider a countable dense
set {z;}eny in X and a diagonal subsequence f, such that for each [ € N the
sequence of sets fi (x;), n € N, converges, and thus is a Cauchy sequence in the
Hausdorff metric. For simplicity, we denote fy, by hy,.

We fix € > 0. For each [ € N and ¢ > 0 there exists N(e,1) > 0 such that for all
n,m > N(e,l) we have

dH(ﬁ‘n(yl)a H/m(yl)) < 5/3

By equicontinuity, there exists § > 0 and N € N such that if £ C X is a set with
diam(FE) < 4, then diam(#,(FE)) < /3 for n > N. By the compactness of X', we
may find M € N such that every point x € X is within distance ¢ from the set
{z1,...,zp}. We define Ny = max{N,N(e,1),...,N(e, M)}.
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Let € X be arbitrary and consider [ € {1,..., M} such that d(x,z;) < §. Let
E = {z, 2}, so diam(A,(E)) < £/3 for all n > N. For n,m > Ny we now have

du (fn(2), b (2)) < dp (b (@), f(21)) + di (B (20), o (20)) + dp (fon (220), Fon ()
< diam(fin (E)) + £/3 + diam (i (E)) < e.

Here we used the monotonicity property of f,, which implies that f,(x) U f,(z;) C
fi,(E). Since the space of compact subsets of X’ is complete with the Hausdorff
metric, we conclude that f,(x) (as well as, its closure) converges in the Haus-
dorff sense to a compact subset of X. By the equicontinuity condition, we have
diam(#,(z)) — 0, so the limit has to be a point f(x).

Summarizing, we have shown that for each € > 0 there exists N € N such that
for each z € X we have dy(#,(z), A(z)) < € for all n > N. The equicontinuity of
f,, also implies that £ is continuous.

For the surjectivity, we use the surjectivity of £, and the inverse image property.
Note that for each y € Y = £, (X) there exists Z,, € X such that y € #,(Z,). By
the uniform convergence, we have dg(f,(Zy), A(Zy)) = 0 as n — oco. After passing
to a subsequence, we assume that z, — x € X. Thus, dg (f,(Z,), A(x)) — 0. Since
y € h,(T,), we have fAi(x) = y.

Finally, we prove the uniform convergence for images of sets as in the end of
the statement of the lemma. Let ¢ > 0 and N € N be such that for each z € X
we have dy(f,(z), A(z)) < € for all n > N. Let E C X be any set and fix
n > N. We will show that dy(h,(E), A(E)) < e. First, we show that #,(E) C
N:(h(E)). Let y € h,(FE), so by the inverse image property there exists Z,, € E
such that y € A,(Z,) C B(h(Z,),e) C N.(h(E)). Conversely, we will show that
A(E) C N.(hy(E)). Let y € A(E). By the surjectivity of #, there exists z € F
such that y = A(x) C N:(fn(z)) C N:(f,(E)); here we also used the setwise
monotonicity. 0

Lemma 4.12. The sequence of set functions h, = my o g} o 71';(1, n € N, satisfies

the assumptions of Lemma[.11 In particular, after passing to a subsequence, hy,
converges uniformly as n — oo to a continuous and surjective map h: E(X) —

£(Y).

Proof. Recall that h, = 7wy o 7r{,"1 ognomx, © 71')_(1. The surjectivity is immediate.
The equicontinuity follows from Lemma[£.10] In general, if ¢ is a function between
any sets, then the induced set functions ¢ and ¢~! have the monotonicity and
inverse image properties. Also, note that if ¢ and v are set functions that have
the monotonicity and inverse image properties, then ¢ o also does so. This shows
that h,, has these properties. O

Lemma 4.13 (Topological properties). The map h: £(X) — E(Y) is monotone
and h(p;) = q; for each i € N.

Proof. For the monotonicity we argue by contradiction. Let § € £(Y) and suppose
that h=1(y) is disconnected. Let Z,%Z be points lying on distinct components of
h=1(7) and let E’ be a continuum in £(X)\ h~1(7) that separates them. Consider
the continuum B’ = 71';(1(@’), which separates the sets = 73 (7) and z = 75 (2).

In £(Y) consider the continuum E = h(E'), which is disjoint from . By the
uniform convergence, the sets hn(E’ ) converge to E in the Hausdorff sense, SO

~

there exists a closed Jordan region U, disjoint from ¥, containing hn(E’) for all
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sufficiently large n € N. Since h,,(Z) and h,,(Z) converge to ¥, there exists a closed
Jordan region ‘A/, disjoint from U , containing these sequences for all large n € N.

Let U,V be the preimages of U , V under Ty, respectively. So, U,V are disjoint
continua in C. Using , we have

Fa0) D fr(my (ha(E) = fr(my (v (95(E))) D fr(gn(E')) 2 E'

and similarly f(V) contains z, z for all large n € N. Since E’ separates z, z and
15(V) joins them, we conclude that f5(U)Nf*(V) # 0 for all large n € N. However,
by Lemma[d.8] f;(U) and f;(V) have distance uniformly bounded below away from
0 as n — oo. This is a contradiction. Therefore h=1(7) is connected.

Next we show that h(p;) = @ for each i € N. Recall that p;,, — p; as n —
oo. This implies that the sequence of sets E, = mx(pin) converges to the point
mx (p;) = pi- By uniform convergence, h(p;) is precisely the limit of h,(E,). Note
that 73" (E,) contains p;,. Thus, gi(r% (E,)) contains ¢; and h,(E,) contains
¢; for all sufficiently large n € N. It follows that the limit of h,,(E, ), which is the
point h(p;), is precisely equal to ;. |

This completes the proof of the existence and of the topological properties of
the limiting map h: £(X) — £(Y). In the next section we establish the analytic
properties of h as required in the definition of a packing-conformal map, completing
the proof of Theorem

4.3. Regularity of limiting map. For each conformal map g,: X,, — Y, con-
sider the derivative (with respect to the spherical metrics) |Dg,|, which satisfies
the following relations by Lemma [2.17] First, we have the transboundary upper
gradient inequality:

@y dit(g0@@). 000 < [Dglds Y din(g)
K ipi,nN|y|7#0
for all rectifiable paths v: [a,b] — C. Second, for all Borel sets E C Y;, we have
(4.2) / |Dg,|? d¥ = %(E).
gn ' (E)
We extend |Dg,| to C by setting it to be zero in Ui pin. We first establish a

preliminary result.
Lemma 4.14. Let {)\;}ien be a non-negative sequence in £2(N). Then
lim sup A < A
msup -}, A< D, N
i:pi,n N |y|#0 i:pi N[y [#0
for all compact curves v in C outside a curve family Ty with Mods 'y = 0.

The proof relies on the fact that for each n € N the sets p; ,, i € {1,...,n}, are
pairwise disjoint and 7-fat, and they converge in the Hausdorff sense as n — oo to
the sets p;, ¢ € N, which are also pairwise disjoint and 7-fat.

Proof. Suppose that v is a compact path so |y| is compact. For each i € N,
if p; N |y| = 0, then p; has a positive distance from |y| by compactness. Thus,
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pinN|y| = 0 for all sufficiently large n € N. It follows that for each M € N we have

(4.3) lim sup Z A < Z Ai-

PO e{1,... M} :pin|y|#£0
Pi,nN|v]#0

We will show that there exists a curve family 'y with Mods I'g = 0 such that if v
is path outside I'g, then

4.4 i - =0.

( ) IVI,I'rlzgoo Z )\Z 0

i>M
Pi,n N0

Combined with , this gives the desired conclusion.

Let J be the set of indices ¢ € N such that diam(p;) > 0. By Corollary if
i € J then p;, is non-degenerate for all n > ¢, and if ¢ ¢ J then p;,, is a point
for all n > i. For each n € N and ¢ € {1,...,n} N J consider points x;, € pin
and x; € p; such that x;,, — z; as n — co. We let B, ,, = B(x;,, diam(p; »)) and
B; = B(z;,diam(p;)). Note that X(2B; ) < ¢(7)X(pin) and 2(2B;) < c(1)2(p;)
by the 7-fatness, and observe that for each ¢ € J the characteristic functions X,p.
converge as n — oo pointwise a.e. to X,p,. We define the functions ’

i
P(z) = ; szBi (z),

_ )\iX{l ..... n}(z) )\i '
VYin(x) = WX2B,'W(-T) - mxwi (z)|, i€ J, neN,
bn(x) = Zwi,n(m), n e N.
ict

Using Lemma [2.7] and the fact that the sets p;, i € J, are pairwise disjoint and
T-fat, we obtain

22 "y
[ s()/de@)X DN

and similarly, for each n, M € N we have
2

(4.5) [l 2 v <y

i>Mied i>M
Note that for each ¢ € J the sequence of functions {1; ,, }nen is uniformly bounded
and converges to 0 pointwise a.e. The dominated convergence theorem implies that
for each fixed M € N, the sequence {Y, 1/ ;e s Vin}nen converges to 0 in L*(C).
This fact, combined with (L.5) gives that {¢, }nen converges to 0 in L2(C).

By Fuglede’s lemma [HKST15, p. 131], there exists a curve family T'; with
Mody I'y = 0 such that for all curves v outside I'y we have

lim ¢nds = 0.

n— oo
5

Moreover, since ¢ € L? ((E), there exists a curve family I'y with Mods I's = 0 such
that f,y ¢ ds < oo for each v ¢ T's. Finally, there exists a family I's with Mods T's = 0
that contains all non-constant curves intersecting the countable collection of points
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pi, it ¢ J,and p; ., i ¢ J, n > i; see [Vairl], §7.9, p. 23]. We define I'y = I'1 UT'y UT's,
which satisfies Mody Ty = 0, and fix a curve v ¢ T'g. Note that if v is a constant
curve, then the claim holds trivially, since the sum contains at most one term
and A\; — 0 as ¢ — oco. Thus, we assume that v is non-constant.

Since 7 ¢ T'y, for each & > 0 there exists Ny € N such that

(4.6) / Z 2.} ) ’”} v A

diam(p; ) 2Bin (z) -
for all n > Np. By Lemma [2.5 there exists a number N; € N, depending only
on 7, such that for each n € N there exists a set I, C N with #I, < N; that
contains precisely the indices ¢ € N with the property that p;, N|y| # 0 and
diam(2B; ,,) > diam(]~y|). Hence, diam(|y|) > diam(2B; ) for each i € {1,...,n}N
J\ I, with p; , N|y| # 0. By the properties of the set I,,, if p; , N |y| # 0 and
ie{l,...,ntNJ\I,, then

A\ < / /\7
* =/, diam(p;, n) X2Bin
Thus, for each M € N and n > Ny, using , we have

< s
A / Z diam(pi,n) XQBNL ds

7dlam(pz)X23 ds < e

i>M, zeJ\I Vi>M, i€ J\I,
Pi, nm"ﬂ#(D Pi, nm"ﬂ?éw
<e-+
/ E diam(p XZB
Yi>Mied

Since v ¢ T'y, we have fv ¢ ds < oo; thus, by the dominated convergence theorem,
for all sufficiently large M € N the latter line integral term in the above inequalities
is less than . Therefore, for all sufficiently large M € N and for n > Ny we have

Z A < 2e.

i>M, i€ J\I,
Pi,nN|y[#0

Since \; — 0 as i — oo, we also have
Z )\ZgNlmax{/\Zz>M}<s
i>M, i€l,
for all sufficiently large M € N. Altogether,

o<

i>Mi€J
Pi,nN|Y|#£D

for all sufficiently large M € N and n > Ny. Finally, since v ¢ I's, we have ¢ € J
whenever p; ,, N |y| # 0. This implies that we may remove the restriction ¢ € J in
the summation range of the latter sum. This completes the proof of (4.4)). O

Lemma 4.15 (Upper gradient). The sequence {|Dgp|}nen has a subsequence that
converges weakly in L?(C) to a function py with the property that

dist(my! o ho mx (y(a)), 7yt o homx (v(b))) < /ph ds+ Y diam(g)

i:piN]y|#0
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for all curves ~: [a,b] — C outside a curve family Ty with Modo 'y = 0.

Proof. Recall that h, =7y o g} o 7T;(1, so for each set A C C we have
(4.7) Ty o hy omx(A) D gi(A).

Let 7: [a,b] — C be an arbitrary rectifiable path. If we set a = mx(v(a)) and
B = wx(v(b)), the transboundary upper gradient inequality of g,, as stated in

(4.1), and (4.7) imply that

(4.8) dist (3! 0 b (), 7wyt 0 hy(B)) < / |Dgnlds+ > diam(q)).
v i:ps Ny |#0
Our goal is to show that we can take limits in this expression and derive the claimed
upper gradient inequality of A for all curves « outside an exceptional family I'y with
M0d2 Fo =0.
First, we treat the line integral terms. By (4.2)), the sequence |Dgy,| is uniformly

~ ~

bounded in L?(C). Consider a weak limit p, € L?(C) of |Dgyl, given by the
Banach—Alaoglu theorem [HKST15, Theorem 2.4.1]. By Mazur’s lemma [HKST15|

p. 19], there exist convex combinations of | Dg,| that converge strongly in L2(C) to
pr- Specifically, these convex combinations have the form

M,
Pn = Z )\i,n|Dgi|

1=n

for some M, >nand 0 < \;,, < 1,7 € {n,...,M,}, where Zf\i’; Ain = 1. By
Fuglede’s lemma [HKST15, p. 131], there exists a curve family I'y with Mod, Ty =0
such that for all curves v outside I'y we have

(4.9) lim [ p,ds= / pr ds.
2l ¥

n—oo

Next, we treat the left-hand side of (4.8)). Observe that as n — oo, the sets
hyn(a) and h,,(B) converge to the points k() and h(B) respectively; recall Lemma

By Lemma this implies that

dist(my o h(a), 7y o h(B)) < liminf dist(my" 0 hy (@), 1yt 0 hy(B)).
n—oo

Note that if we set d,, = dist(my" o hy(a), 7" o hy(B)) and consider the convex

combinations
MW,
dn = E )\i,ndi
i=n

then we obtain immediately
(4.10) dist(my" o A(c),my " 0 h(B)) < liminf d,.

Finally, we treat the summation term in (4.8]). We apply Lemma to conclude
that there exists a curve family I's with Mods I's = 0 such that for all compact
curves -y outside I's we have

lim sup Z diam(g;) < Z diam(g;).

Vpi,nm"ﬂ?é@ Vp'im"ﬂ#@
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We set

My,
Sp = Z diam(g;) and s, = Z)‘imsi

©:pi n Ny |#0
and observe that
(4.11) limsups, < > diam(g,).
n— o0 .
impiN|y|#£0

We now define I'y = I'y UT'y and let 7y ¢ I'y be a compact curve. Taking convex
combinations in (4.8)), we obtain

Jn < /pnds+§n.
v
By (4.9), (4.10), and (4.11), we can take limits to obtain

dist(my o h(a), 3! o h(B)) < /ph ds + Z diam(g;).

v i:piN|y|#0

This completes the proof. ([

Lemma 4.16 (Conformality). For all Borel sets E C'Y we have

/ prde < X(E).
3 (h=1(ry (E)))

Proof. Let E C'Y be a Borel set. Since my is injective on Y, by the Lusin—Souslin
theorem [Kec95, Theorem 15.1, p. 89] 7y (E) is also a Borel set. By continuity,
5 (R Y7y (E))) is a Borel set. Let K be a compact subset of 73 (b~ (my (E))).
Since 7y is injective on E, we have w3 (h(rx (K))) C E. We will show that

/K p2dS < S(my (h(mx (K))) < S(EB).

Since K is an arbitrary compact subset of 73! (h~!(my(E))), the proof will be
completed by the inner regularity of 3.

Let K = mx(K). By Lemma for each § > 0, there exists an open
neighborhood V of h(K) such that the open set 7r;1(‘7) contains ng(h(l?)) and
is contained the open dé-neighborhood of ﬂ;l(h(f( )). In particular, by the com-

pactness of ﬂ;l(h(f()), for each ¢ > 0 we may find such an open set V with the
additional property that

(4.12) Sy (V) < Sy (h(K))) + .

Since h,(K) converges in the Hausdorff sense to h(K), we have h,(K) C V
for all sufficiently large n € N. This implies that ¢ (75 (K)) C 7y (V) for all
sufficiently large n € N. This inclusion, the conformality of g,,, and (4.12)), give

[ pgfas=[ pgpiz< [ ipgPas
K KNX e (K)NX

n X n

= 2(ga(my (K) N X)) < By (V) < D(my ! (W(K))) +



CONFORMAL UNIFORMIZATION BY DISK PACKINGS 31

for all sufficiently large n € N. Since |Dg,| converges weakly to p, in LQ((E), we
see that |Dg,|xk also converges weakly to p,x k. Thus,

/ P} dY < liminf/ |Dg,|? dY < S(ryt(M(K))) +¢.
K n—oo K
Finally, we let ¢ — 0. (]

Lemma 4.17. The function py, is supported in the set wy' (h=!(my (Y))).

Proof. Tt suffices to show that p, = 0 on 73" (h~!(my(g;))) for each i € N. The
argument is similar to the one used in the previous lemma. Let K be a non-empty
compact subset of 7' (b (my (¢;))). It suffices to show that p, = 0 a.e. on K. We

set K = 7x (K) and note that h(K) is the singleton 7y (g;). By Lemma for each
§ > 0, there exists an open neighborhood V' of h(l?) such that the open set w;l(‘/})
contains W;l(h(f?)) and is contained the open §-neighborhood of ﬂ;l(h(f()) = gq;.
Therefore, for each € > 0, we may find such an open set V with the additional
property that

S(ry (V) \ @) < e.

As in the proof of Lemma g (my! (K)) W;l(‘A/) for all sufficiently large
n € N, and particularly, g (7" (K) \ pin) C 73 (V) \ ¢;. We now obtain

/ |Dg,|? d% = / |Dg,|? d¥ < / ~ |Dg,,|* d%
K (K\pi,n)NXn (mx " (E)\pi,n)NXn
= 2(gn (7% (K) \ pin) N Xn)) < E(my (V) \ i) <e.

Taking limits and using the weak convergence of |Dg,|xk to prxk, we obtain

/piéa-
K

We let ¢ =+ 0, so pp, =0 a.e. on K. (]

A consequence of Lemma[4.16]and Lemma[£.17]is the following statement, which
concludes the proof that h is packing-conformal and the proof of Theorem [4.1]

Corollary 4.18. For all Borel sets E C C we have

/ prdy <S(ENY).
w3t (A (ry (E)))

5. TOPOLOGY OF PLANAR MAPS

Our goal in this section is to study continuous, proper, and cell-like maps between
simply connected domains in the sphere. In view of the approximation theorem,
Theorem these maps behave like homeomorphisms. Specifically, we wish to
understand when these maps have an extension to the boundaries and to the whole
sphere satisfying certain properties. This section can be read independently of the
other sections. The results are used in the proof of Theorem in the next section.
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5.1. Conditions for continuous extension. Let f: 0 — D be a map between
domains in C. For a point zg € 9N we define the cluster set Clu(f, z) to be the set
of accumulation points of {f(z,)}nen over all sequences {z, }nen in € converging
to zp. Recall from Section that a continuous map between open subsets of the
sphere is cell-like if the preimage of each point is a non-separating continuum.

Lemma 5.1. Let Q, D C C be simply connected regions such that 0D is a Peano
continuum and let f: Q — D be a continuous, proper, and cell-like map.

(i) For each zy € 02 and € > 0 there exists 6 > 0 such that if v is a closed
curve in B(zg,0) \ {20} that is not null-homotopic, then

diam(f(|v| N Q) > diam(Clu(f, z9)) — .

(ii) The map f extends to a continuous map on Q if and only if for each zy € O

and zo € C\ {20} there exists a sequence of curves v, in C\ {20, 200} that
are not null-homotopic and converge to zg such that

le diam(f(|vn| NY)) = 0.

In this case f(Q) = D and f~1(0D) = 99.

Proof. This first part of the lemma is established in [NY20], as Lemma 3.10, under
the assumption that f is a homeomorphism and the complements of €2, D are points
or closed Jordan regions; see the first two paragraphs in [NY20, p. 152]. The proof
applies with few changes to this more general setting so we omit it, but we make
instead a few remarks. One can reduce the statement to homeomorphisms via
the approximation theorem, Theorem In particular, one can replace f by a
homeomorphism without altering the cluster sets and so that diam(f(|y| N Q)) is
altered very slightly. The assumption that ) is a Jordan region or a point is not
used in [NY20]. Finally, for D all we need is that it has the property that any two
points that are close to each other can be connected with a path in D that is small
in diameter; this is true since 9D is a Peano continuum [Why42, Theorem (4.2),
p. 112].

We prove part If there is a continuous extension then the conclusion holds
trivially for any sequence of curves =, as in the statement. Conversely, suppose
that for each zp there exists a sequence of curves 7, as in the statement. By
we see that Clu(f,zo) contains only one point. Thus, f extends continuously to
Q. The surjectivity of f: © — D from Lemma implies the surjectivity of
the extension onto D. The properness of f implies that Clu(f,z9) C D for each
29 € 0Q. Hence f~1(0D) = 9. O

5.2. Implications of continuous extension. We state the main result of the
section.

Theorem 5.2. Let Q C C be a simply connected region and Y, D C C be Jordan
regions such that Q C Y. Assume that f: Q — D is a continuous, proper, and
cell-like map that extends to a continuous map from Q onto D with the property
that for each component V of Y \ €, flovvay is constant. Then there exists a

unique extension of f to a continuous and cell-like map ]?: Y — D. The map f 18
constant in each continuum E CY \Q and can be further extended to a continuous
and cell-like map f: C — C such that f~1(C\ D) =C\Y.
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The proof will be completed in several steps. We establish some preliminary
statements.

Lemma 5.3. Let U C C be an open set with OU = 90U and let P C U be a Jordan
region. Then for each component V of U\ P the set OV \ OP is a non-empty dense
subset of OV NOU.

The assumption OU = 90U holds automatically if U is a connected component of
C\ Q for some open set 2.

Proof. Using the Schoenflies theorem, we may assume that P is a circle. Suppose
that V' \OP = 0, so 9V C OP. The set OV is a non-empty closed subset of dP. Let
x € OV and consider a ball B(z,r) that does not contain P. Then JP separates the
ball B(z,r) into two connected open sets, one contained in P, and one outside P.
The latter set does not intersect 9V and contains points of V', since € dV. By the
connectedness of V', we have B(z,r)\ P C V. This implies that B(x,r)NdP C dV,
so JV is open in the relative topology of BP We conclude that oV = 0P. The
Jordan curve theorem implies that V = C \ P. Thus, C = VUP C U, which
contradicts the assumption that U C C. Therefore, 9V \ 8P # .

We show that 9V \ P C OV N AU. If not, there exists x € OV \ 9P Cc 9V c U
with o € U. Since x ¢ P, there exists a ball B(z,7) C U \ P. This implies that
V U B(z,r) is a connected open subset of U \ P, which contradicts the assumption
that V is a connected component of U \ P.

It remains to show that each point of 9V NOUNOP can be approximated by points
of OV \OP. For the sake of contradiction, suppose that there exists x € OVNOUNOP
and an open ball B(z,r) that does not intersect 9V \ 9P and does not contain 9P
(upon choosing a small enough r > 0). Thus, B(x,r) N0V C 9P. Consider the arc
o = B(x,r) N OP. The arc a separates the ball B(x,r) into precisely two regions:
one region contained in P and hence not intersecting V, and one region outside P
that does not intersect V. The latter region contains points of V' near x, since
x € JV. By the connectedness of V, this region is contained in V. Therefore,
a C V. We conclude that B(z,r) is contained in P UV C U. This contradicts
that x € OU = 9U. O

Lemma 5.4. Let E C C be a compact set, D C C be a Jordan region, and
g: E = D be a continuous, surjective, and cell-like map. Then E # @, FE is a
non-separating continuum, and g(OE) = 0D. Moreover, there exists an extension
of g to a continuous and cell-like map §: C — C such that g—l(@ \D) = C \ E.

Proof. We consider a decomposition of C into the non-separating continua g=!(z),
z € D, and the remaining singleton points. This decomposition is upper semicon—
tinuous, as follows from the continuity of g. By Moore’s theorem (Theorem ,
(C/ ~ is a topological 2-sphere. Consider the projection 7: C— (C/ ~. We deﬁne
the map G = gon~! on 7(F) by mapping each point w(g~(z)) to z, where z € D.
Trivially, this map is injective. Using Lemma and the continuity of g one can
show that G is continuous from 7(E) onto D. Therefore, G is a homeomorphism,
which implies that 7(FE) is a closed Jordan region, whose interior we denote by W
moreover, G(OW) = dD. The region @\E projects under m homeomorphically onto
the complement of W. In particular, C \E # 0 and n(0F) = w(a((@ \E)) =0W.
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oUy

FIGURE 4. The region U is the unbounded component of C \ €.

The map fis constant on each component U # Uy of C \ Q. Here
the set A, is the closure of the shaded regions.

This implies that g(OF) = G(n(0F)) = 0D. Finally, consider an arbitrary exten-
sion of G to a homeomorphism of the sphere C/ ~. Then § = G o 7 gives the
desired extension of g. O

In the next lemmas the standing assumptions are that  C Cisa simply con-
nected region, D C C is a Jordan region, and f: 0 — D is a continuous, proper,
and cell-like map that has an extension to a continuous map from Q onto D, which
we also denote by f.

Lemma 5.5. There exists a unique component Uy of C\ Q such that f(0Uy) =
0D. Moreover, there exists an extension of f to a continuous and cell-like map

f: C \ Uy — D such that ﬂﬁ is constant for each component U # Uy of@\ﬁ.
See Figure [4] for an illustration of the conclusions of the lemma.

Proof. By postcomposing f with a homeomorphism of C via the Schoenflies theo-
rem, we assume that D is the unit disk. For each z € D the set f~1(z) is a subset
of 90 by Lemma Moreover, we have

) = () f~U(B(z,r) N D)
r>0

by the continuity of f. Since f is cell-like and the set B(z,7) N D is connected, by
Lemmathe same is true for f~1(B(z,7)ND), and thus for f~1(B(z,7) N D).
We conclude that f~!(z) is a connected subset of 9.

For each z € D, the set A, = f~!(z) is a non-separating continuum in €2, since
f is cell-like and f~1(0D) = 99Q. For z € dD the set f~1(z) is a connected subset
of 9. If f~1(z) does not separate the sphere, then we set A, = f~1(2). If f71(2)
separates the sphere, then C\ f~!(z) contains at least two components. Precisely
one of the components of C\ f~!(z) contains the connected set . We define A,
to be the complement of that component; see Figure[d Then A, is non-separating
by its definition and has the property that

(5.1) 0#0A, C f1(z) C 9N

The set int(A,) is disjoint from €, so
(5.2) A, MO0 =84, No0 C f1(2).
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We claim that A,NA,, = () for eachw # 2z, z,w € D. If z € D, then A, = f~1(2) C
Q and the claim is trivial. Suppose that z,w € dD. By (5.2, we have

A, NnfHw)y=A.nfHw)ynoQ c f(z) N fHw) = 0.
Thus, the connected set A, is contained in a component of C\ f~(w). The def-

inition of A, implies that A, ¢ A, or A, N A, = 0. If A, C A, then then by
reversing the roles of z and w one obtains A, C A,, so A, = A,,. This contradicts

()

Consider the set A = |J,.p Az, which contains Q. We observe that this set is
closed in C. Indeed, if x,, is a sequence in A, , where z, € D are distinct points,
then there exists 2/, € dA,, C Q such that o(z,,z},) — 0. Thus, z/,, and hence z,,
as well, must accumulate at points of Q C A. Another observation is that

(5.3) dA C 0.

Indeed, if x € A C A, then 2 € OA, for some z € D. If z € D, then A, C Q C
int(A), so we must have z € 9D. In this case, A, C 9Q by (5.1, as desired.

We extend f to A = UzeD A, by defining f( )=z for x € A,. Observe that if
x € A, then for each point 2’ € A, C f~1(z) we have f(:r) =z = f(2). We claim
that the extension is continuous. If not, there exists ¢ > 0 and a sequence z,, — =,
such that o(f(z,), f(x)) > ¢ for each n € N. Note that the point z cannot lie in
the interior of A, for any z € D, since fis continuous there. Thus, we necessarily
have z € A, for some z € D. By (5.1)), = € Q, so f(z) = f(z). Assume that
xn € A, , n € N. For each n € N we connect z,, to z with a small path in C and
we see that there exists a point #/, € dA,, C f~1(z,) such that f(z,) = f(z,) and
2!, — x. This contradicts the continuity of f on Q. Therefore, fis continuous. By
construction, f’l(z) = A, is a non-separating continuum for each z € D; thus fis
also cell-like.

By Lemma C\ A#0, Ais a non-separating continuum, and f(9.A) = dD
We define Uy = C\ A, so f(@Uo) = 0D. The connected set Uy is contained in a
component of C \ Q. By (5.3) we have oUy = 0.A C 09, which implies that Uy is
a component of C \ Q. Let U be a component of C \ © that is different from U.
Then U C A, so UN A, # 0 for some z € D; in fact, z € 9D, since U N Q = (.
Note that U is a connected set that is disjoint from f~1(z). By the definition of
A, we have U C A,. In particular, fis constant on U. g

Lemma 5.6. Let Y C C be a Jordan region such that Q C Y. Assume that for
each component V of Y \ Q the restriction flov\oy is constant. Then there exists
a unique extension of f to a continuous and cell-like map f Y — D. The map
f|Y\Q attains countably many values and f~ YD) =q.

Proof. Consider the region Uy and the extension f: C \ Uy — D as provided by
Lemma Let Y D Q as in the statement. The connected region @\7 is contained
in a component of C \ Q. If C \ 'Y is contained in a component U # Uy of C \ Q,
then ﬂﬁ is constant; moreover, Uy C Y and Uj is a component of Y \ Q. By
assumption, f|sy,\oy is constant. Since dUy NJY C dUy N U, f is also constant
on 90Uy N JY. This contradicts the surjectivity of f|goy, onto D from Lemma
Therefore C\ Y C Uy and 9Y C Up.
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Q

FIGURE 5. A portion of 02 and 0Y'.

Next, we extend fto Y \ Q as follows. If V is a component of Y\ Q, then either
V' is a component of C \ © that is disjoint from Uy, or V is a component of Y N Uj.
If V is disjoint from Uy, then fhas already been defined in V' and is constant with
value equal to f(OV) C f(9Q) C dD. Suppose that V is a component of Y N Uy.
By Lemma (applied to Uy and P = C\ Y), the set OV \ 8Y is a non-empty
dense subset of 9V N dUy. By assumption, f|sy\sy is constant, so by continuity
flavnau, is constant. We define

flv = Flovnou,-

Since f(0Ug) C 0D, we see that f(V') is a point of 9D.

First, we ensure that this gives a well-defined map. Let Vi, V5 be distinct com-
ponents of Y N Uy such that V; NV, # (0. If Vi N V5 contains a point = € Uy, then
that point would have to lie on 9Y; however, 9Y has exactly two “sides” near =z,
one contained in the region Y, and one contained in precisely one of V7, V5. This
is a contradiction. Therefore, 719 Vi C OUy. Since f is constant on dV; N 9U,
i = 1,2, we conclude that f|r = flg, as desired.

Next, we note that

vy=au (J V,
Vcy\Q

where the union is over all components V of Y \ Q. Hence, the above definition
provides an extension of f to all of Y. Indeed, if z € Y \ Q, then x lies in a
component V of Y \ Q. If x € 9Y \ Q, then x € Y N Uy, so z lies in the boundary
of a component V of Y\ Q, because 9Y is “two-sided” near z.

Since there are countably many components V of Y \ Q, we observe that f
attains countably many values in Y \ ©Q, as required in the conclusion of Lemma
Moreover, by the definition of the extension, we have f~1(D) = Q.

Now, we show that fis continuous. Since fvis already continuous in the com-
plement of Uy by Lemma it suffices to show that if x,, is a sequence in Y N Uy
converging to some point x, then f(xn) converges to f(x) For the sake of contra-
diction, suppose that there exists € > 0 such that U(f(xn), f(x)) > e forall n € N.
If x € Uy, then z,x,, € V for all sufficiently large n € N, for some component V of
Y NUy; thus, f(:z:) = f(xn) for all large n € N and we obtain a contradiction. Sup-
pose z € OUy. We have z,, € V,, for a sequence of components V,, of Y N Uy. If V,,
is a specific component V for infinitely many n € N, then z € V, so f(xn) = f(:v)
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for infinitely many n € N, a contradiction. Thus, we may assume that the compo-
nents V,,, n € N, are distinct. One may find points y,, € dV,, with o(y,,z,) — 0
and f(yn) = f(mn) By [Pom92, Prop. 2.13] for each V,, there exists an open arc
a, = 0V, NUj that is a component of 9Y N Uy, so that 9V, is the union of «,, and
9V, N OUy; see Figure [f] Moreover, for distinct sets V;, the arcs a, are disjoint,
since 9Y is “two-sided”. The local connectivity of 9Y implies that diam(a,,) — 0
as n — oo. If y, € 9V, N AUy, we set z, =y, and if y,, € a,, we set z, to be an
endpoint of «,, (Figure [5)). Therefore, one may find points z, € 9V, N AU, such
that f(yn) = j”v(zn) = f(z,) and o(yn, 2,) — 0. Since z, — x, the continuity of f
on Uy C Q implies that f(z,) — f(z). This contradiction completes the proof of
the continuity of f

Next, we show that for each z € D, the set ]?*1 (z) is a non-separating continuum.
If z € D, then f~1(2) = f~1(2) C , so f~!(2) is a non-separating continuum by
the cell-likeness of f. Next, suppose that z € dD. By Lemma ﬂ@\Uo is cell-like,
so the set E = f~1(z)N (((A:\ Up) is a non-separating continuum. By the definition of
fon Y, f_l(z) is the union of E with the closures of components V' of Y NU, such
that ﬂV = 2. By the previous, for each such component we have OV N Uy # ), so
V N E # (. This shows that f~!(z) is connected.

In order to show that f~!(z) is non-separating, we observe that C\ f~1(z) is
the union of Q\ f~1(z) with C \'Y and with the sets V where V is a component of
Y\ Q with VN f~1(z) = 0. Let W be the component of C\ f~!(z) that contains
the connected set €2 and note that )\ f~1(z) is connected, so it is contained in W.
The sets V' as above are either components of C \ © or components of Y N Uy. In
the first case we have 9V C 8 so VN (Q\ f~1(z)) # 0, while in the second case,
AV Naly # 0, so VN (Q\ f1(2)) # 0. Therefore, in both cases, V C W. Since
flou, is surjective onto D, there exists a point z € dUy \ f~1(z) C 2\ f~1(z2). If
x € 9Y, then this shows that @\7 lies in W. If x € OV for some V as above, then
V C W by the previous and OV contains an arc of JY. Thus, C \'Y c W. This
completes the proof that W = C \ f~1(2), and thus f~1(2) is non-separating.

Now, we show the uniqueness statement. Suppose that fvl is another extension
of f to a continuous and cell-like map from Y onto D. We first observe that
ffl(D) = (; indeed, if ffl(z) intersects the complement of €2 for some z € D, then
]71_1(2) is a continuum that intersects both € and its complement, so it intersects
99Q. However, f,(89) = f(Q) = D, a contradiction.

Let V be a component of Y\ Q, such that ﬂV = z for some z € D. Our goal is
to show that f; = z on V. Suppose that f; '(w) NV # 0 for some w € D; then we
necessarily have w € 9D by the previous paragraph. The continuum E = ffl(w)
intersects OUy, since f~.1|8UO = flov,: OUy — OD is surjective. This implies that
OVNE 0.

If VN Uy = 0, then V is a component of C \ Q, so OV C 9. Hence, w =
ﬁ\ava = flovne = ﬂV = z. Now, suppose that V C Uy, so V is a component of
Y NUy. We claim that E N9V NoU, # (). Suppose that E NV N OU; = 0. Note
that ENV is a closed subset of E. We will show that ENV is open in the relative
topology of E. It suffices to show that each x € EN AV has an open neighborhood
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in the topology of E that is contained in £ NV. By assumption, we have
xre ENOV =ENoJV N (0Y Udly) = ENIJV N Y.

Since Y is “two-sided” and E C Y, all points of E near x are contained in V,
as desired. Since E NV is clopen in F, the connectedness of E implies now that
ENV =FE. Thus,

ENoVvNnoUy=ENVNoUy=EnNoU, #0,

a contradiction. Therefore, ENAVNAU, # 0, which implies that w = ﬁ |ErovnoU, =
flavnou, = fl37 = 2. Hence, we conclude that w = z in all cases, as desired. O

Proof of Theorem 5.4 [5-3 Consider the unique extenblon of f to a continuous and cell-
like map f Y — D as provided by Lemma |5.6f By Lemma [5.4] the map f can be
extended to a continuous and cell-like map of the sphere such that f (C \ D) =

C \'Y, as required in the theorem. Moreover, f(@Y) = 0D. By Lemma f takes
countably many values in Y \ Q. If 9Y NQ = (), then Y C Y\ Q, so f is constant
on the connected set Y. This contradicts the fact that f(aY) = 0D. Therefore,
Y N o # .

Let F be a continuum in Y\  as in the statement of the theorem. Consider the
component A of C \ E that contains the connected set C \'Y. Since Y N9Q #
and A is open, we see that ) is also contained in A. Let E’ be the complement of
A. Then E' © E and E' is a non-separating continuum disjoint from © and C \Y.
We claim that fvis constant on E’. We argue by contradiction, assuming that f(E’ )
is a non-degenerate continuum. By Lemma FUD) = Q, so f(E') is an arc
of D. Then there exist distinct points z1,22 € D such that }Ll(zi) NE # 0,
i € {1,2}. Since f(OY) = dD, we see that f~1(z;) N Y # 0 for i € {1,2}.

We collapse topologically the non-separating continua K = (A:\Y and E’ to points
(e.g. via Moore’s theorem) and consider a continuous projection map A: C — Csuch
that )\(K) =wy, AM(E') = - wy for some points wy # wy, and A is a homeomorphism
from C\ (K U E’) onto C \ {wy,ws}. The continua G; = A(f~1(z)), i € {1,2},
meet at the points wy and wsy, but otherwise they are disjoint. For i € {1,2} there
exists a continuum G C G; that is irreducible between the points wy and ws;

that is, there is no proper subcontinuum of G that contains both w; and ws. See
[Wil70, Theorem 28.4] for the existence.

A result of Moore [M0028, Theorems 1 and 2] implies that C \ (G} U G}) is the
union of precisely two domains and the boundary of each is G{ UGY. Let Z be the
component of @\ (G} UGY) that is disjoint from A(Q2) and thus from A(Q). Since f
attains countably many values in Y \ 2, we conclude that f o A7 is constant in Z.
However, the boundary values of fo A~1|z are non-constant, a contradiction. [J

6. CONTINUOUS EXTENSION

In this section we provide sufficient conditions so that a packing-quasiconformal
map between the topological spheres associated to two Sierpinski packings as in
Definition [2.15] can be lifted to a map between the actual packings.

Theorem 6.1. Let X = C \Uienpi and Y = C \ Uien @ be Sierpiriski packings
such that the peripheral continua of X are uniformly fat closed Jordan regions or
points and the peripheral continua of Y are closed Jordan regions or points with
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diameters lying in (2(N). Let h: £(X) — E(Y) be a packing-K -quasiconformal
map for some K > 1. Then there exists a continuous, surjective, and monotone
map H: C — C such that 7y o H = howx and H~Y(int(q;)) = int(p;) for each
i € N. Moreover, there exists a non-negative Borel function py € LQ(@) with the
following properties.
o There exists a curve family 'y in C with Mods Ty = 0 such that for all
curves v: a,b] — C outside Ty we have

o(HO@).HOO) < [ puds+ Y. dinm(q)

itp;N]y|#0

e For cach Borel set E C C we have
/ﬁ P dE < KY(ENY).
H-Y(E)

Moreover, we show that any map H as in the theorem has a further topological
property.
Proposition 6.2. Let H be a map satisfying the conclusions of Theorem[6.1l Then
for each i € N and for each continuum E C H™(q;) \ p; the map H|g is constant.

Remark 6.3. The assumptions of Theorem can be relaxed, allowing the possi-
bility that finitely many peripheral continua of X are not fat. See Remark
below for more details.

The proofs of both statements are given in Section We first establish several
preliminary statements.

6.1. Preliminaries.

Lemma 6.4. Let 7 >0 and X = C \ Ujenpi be a T-cofat Sierpiriski packing. Let
p: C — [0,00] be a Borel function in L2(C) and {); }ien be a non-negative sequence
in (2(N). For each z,y € C and 0 < ro < diam(C) we have

essinf / pds + / pds + Z A + Z Ai
r&(ro/2,ro) S(z,r) S(y,r) :piNS(z,7)#£0 i:p; NS (y,r)#0
1/2

< | [ PSS SN C RS SRt
B(=,ro)uB(y,ro) i:piNB (x,70) 70 i:piN B (y,70)#0

It is straightforward to obtain the conclusion of the lemma if A; = 0 by in-
tegrating over r € (ro/2,79) and using the co-area inequality of Proposition
For the general statement one uses the cofatness of X as well, in order to treat
the summation terms. The proof of the lemma follows from the argument used in
[Nta20b| Lemma 2.4.7 (a)] and we omit it.

Lemma 6.5. Let I'g be a path family in C with Mods Ty = 0 and let x,y € C.
Define T'y to be the family of paths v such that the set {r > 0 : there exists a simple
path v, € Ty whose trace is contained in |y|US(z,7)US(y,r)} has positive Lebesque
outer measure. Then ModoT'y = 0. In particular, for Mods-a.e. path v and for
a.e. v > 0, every simple path ~y, whose trace is contained in |y| U S(x,r) U S(y,r)
lies outside T'g.
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Proof. Since Mod, Ty = 0, there exists a non-negative Borel function p € L2(C)
such that fvpds = oo for each v € Ty (see [HKST15, Lemma 5.2.8, p. 129]). Let
v € I';. Then for a set of r > 0 of positive Lebesgue outer measure there exists a
simple path v, € Ty whose trace is contained in |y| U S(x,r) U S(y,r). Thus,

oo=/pd5§/pds—|—/ pds+/ pds.
Yr ¥ S(z,r) S(y.r)

By the co-area inequality of Proposition[2.1] the latter two line integrals are finite for
a.e. 7 > 0. Thus, we conclude that fv pds = co. This implies that Mody 'y = 0. O

Remark 6.6. We will use the following standard fact about modulus. If Mod, 'y =
0, then the family of paths that have a subpath in I'g also has modulus zero
[V&i71, Theorem 6.4, p. 17]. Thus, we may apply the transboundary upper gradient
inequality of packing-quasiconformal maps (see Definition not only for paths
outside a family of modulus zero, but also for all subpaths of such paths, upon
enlarging the exceptional curve family T'y.

6.2. Continuous extension to each peripheral continuum. Let X,Y be as
in Theorem [6.1] and h: £(X) — £(Y) be a packing-quasiconformal map as in Defi-
nition 2.5} The proof of Theorem .1 will be completed in several steps. Consider
the map g = homx: C — E(Y), which is continuous and cell-like; indeed, the
preimage of each point under A is a non-separating continuum and the preimage of
each non-separating continuum under 7x is a non-separating continuum by Lemma

Recall that

EY)=my(C)=my(Y)U U Ty (i)
ieN
Let X = g '(my(Y)) and note that X C X since g(p;) = h(rx(p;)) = 7y ()
for each i € N, by the definition of a packing-quasiconformal map. If we set
pi = g Yy (q;)), we see that X = C \ UienPi- Note that p; is non-separating,
since g is cell-like.

Lemma 6.7. The map H = W;log: X > Yis continuous, surjective, and cell-like.

Proof. Note that g(X) = 7Ty( ) and that each point of 7y (Y) has a unique preim-
age under my, so H = m,," o g gives a well-defined map from X onto Y. The
continuity of the maps 7ry, g, together with the injectivity of my on Y, imply that
H is continuous on X. Finally, the fact that g is cell-like implies immediately that
H is cell-like. (]

We fix ¢ € N and consider the space £(Y;¢;). Recall that for a set E C C the
space E(Y; E) is defined by collapsing to points all peripheral continua of Y that do
not intersect E. The space £(Y;¢;) is a topologlcal 2-sphere by Moore’s theorem
(Theorem [2 - The projection 7y, : :C — E(Y;q;) maps each g;, j # i, to a
point and is injective otherwise.

Lemma 6.8. For each i € N the open set ; = C \ pi is simply connected and
D; = E(Y;¢:)\7y.q, (qi) is a Jordan region or the complement of a point. Moreover,
the map

1 .
Gi = Ty,q, 0Ty ©g: Q — Dy,
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defined alternatively by g; = my.q, © H on X and 9i(Dj) = Ty .q,(q;) for j # i, is
continuous, proper, and cell-like.

Proof. For simplicity, we set p = p;, D = Ds, ¢ = ¢;, and m; = Ty,q,. Since p is a
non-separating continuum, the domain 2 = C \ p is simply connected. Next, since
m; is injective on ¢, we see that m;(q) is a closed Jordan region or a point in £(Y; q).
Thus, D = £(Y;q) \ mi(q) is a Jordan region or the complement of a point.
Observe that Ty, (my ' (g9())) is a point of D for each = € 2. We show that the
map g; = T; © 7rY1 o g is continuous on 2. Let z € Q and let x,, € 2 be a sequence
converging to z. Then g(x,) converges to g(z). By Lemma [2.2] n. Ty (g(zn))
is contained in arbltrarlly small neighborhoods of 7y, (g(a:)) as n — oo. By the
continuity of ;, m; (73" (g(2,))) converges to the point (5" (g(x))), as desired.
If a sequence z,, € Q accumulates at 92 C p, then g(z ) accumulates at the
point 7wy (g;) by continuity. By Lemma w;l(g( n)) accumulates at g;, so
gi(x,) accumulates at m;(¢;) D OD. Thus, g; is proper. Finally, g; is cell-like,
directly from its definition and from the cell-likeness of H from Lemma O

In the proofs of the remaining statements of Section we adopt the same
notational conventions as in the first paragraph of the proof of Lemma

Lemma 6& For eafchi € N the map g;: Q; — D; has an extension to a continuous
map from €; onto D;.

Proof. We will show that for each a € 92 = Jp there exists a sequence of closed
curves C,, surrounding a and shrinking to a so that diam(H(C,NX)) — 0. Suppose
that this is the case. The continuity of m; = 7y 4, then implies that diam(m;(H(C,,N
X))) — 0 so the relation g; = m; o H from Lemma [6.8] yields

diam(g;(C,, N X)) — 0.
The set g;(Cp, N X) is dense in g;(C, N ), s0
diam(g;(C, N Q)) = 0

Lemma now implies that g; extends to a continuous map from Q onto D,
as desired.

Now we show the original claim. Suppose first that a € 9p\ p or that p is a point
and a = p. Fix 19 > 0 so that (B(a,79)\{a})Np = 0. Let C,. = S(a,r), r > 0. For
r € (0,7¢) the circle C,. does not intersect p = p;. We now apply the transboundary
upper gradient inequality of h, Wthh holds along the circle C). for a.e.r € (rg / 2,79);
this is a consequence of Lemma [2.12| By the relation H = 7rY ohomx on X we
have

diam(H (C, N X)) < / pnds + Z diam(qg;).
Cr J:piNCr#D
J#i
We apply Lemma with ¢ = y = a, \; = diam(g;) for j # ¢ and A\; = 0, so we
have
1/2

essinf diam(H(C, N X)) <, / p7 dY + Z diam(g;)?
r€(ro/2,r0) B(a,ro) j:p;NB(a,ro)#0
J#i
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FI1GURE 6. Illustration of the proof of Lemma

Note that as 79 — 0 the right-hand side tends to 0, since a ¢ Uj#- p;. Thus, we

can find a sequence r,, — 0 such that diam(H(C,, N X)) — 0 as claimed.

Next, suppose that p is a closed Jordan region and that a € 9p N p, so a € Op.
Let ro > 0 such that B(a,ro) does not contain p. Consider a circle centered at a
of radius r < 1¢. Since Jdp is a Jordan curve, there exists a unique arc « of the
circle whose endpoints lie in dp that separates (in C \ int(p)) the point a from any
point outside B(a,r). We let C,. be the Jordan curve formed by the circular arc
a, together with a simple arc inside the interior of p that connects the endpoints of
a. Then C, is a Jordan curve that surrounds the point a. If the non-circular part
of C, is chosen appropriately, then we may have that C, shrinks to the point a as
r — 0. Now, the transboundary upper gradient inequality, applied to the circular
part of C,., gives

diam(H(C, N X)) < / pnds + Z diam(g;)

Cr J:p;NCr7#D
J#i
for a.e. r € (ro/2,70). We apply Lemma [6.4] as above with \; = diam(q;) for j # i
and \; = 0 and the conclusion follows. [l

Remark 6.10. The cofatness of X is needed only for the application of Lemma [6.4}
In fact, it suffices to apply the lemma to the cofat Sierpinski packing generated by
continua p;, j # 4, lying in a neighborhood of p;. In particular, the fatness of p; is
not needed.

Lemma 6.11. For each i € N and for each component V' of int(p; \ p;) the map g;
is constant on the set OV \ Op;.

See the shaded regions in Figure for a depiction of the components of int(p; \p;).

Proof. Note that if x € 9p, then the circle S(x,r) intersects C \ p, and thus X,
for all sufficiently small r > 0. Indeed, since p is non-separating and = € Jp, if
S(z,7) C p, then the complementary component of S(z,r) that does not contain x
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has to be contained in p. However, if this occurs for a sequence of r — 0, then we
see that p = @, a contradiction.

Let V be a component of int(p \ p) and observe that OV \ dp C dp. We fix
xz,y € OV \ 9p and € > 0. Let ro > 0 such that S(z,r) and S(y,r) are disjoint
from each other, intersect both V' and X , and are disjoint from p for all r < ry. In
Lemmawe set p = pn, \; = diam(g;) for j # i, and A\; = 0. If 7 is sufficiently
small, then there exists a set S C (ro/2,79) that has positive Lebesgue measure
such that for all r € S we have

(6.1) / pnds + Z diam(q;) + Z diam(q;) < e.
S(z,r)US(y,r)

J:piNS(z,r)#0 J:p;NS(y,r)#0
J#£i J#i

This uses the fact that z,y € 9p, so =,y ¢ Uj# p; (see also the proof of Lemma

Consider the curve family I'g that has 2-modulus zero as in the transboundary
upper gradient inequality of h. Also, consider a curve family I'y with ModyT'; =0
as in Lemma Then we may find (e.g. by invoking Lemma a curve v ¢
[y UT; contained in the connected open set V' and joining the circles S(z,7¢/2)
and S(y,70/2), so that for a.e. r € (r9/2,r9), every simple path -, whose trace is
contained in |y| U S(z,r) U S(y,r) lies outside T'y. In particular, we may find such
a path 7, with » € S such that 4, connects a point 2’ € S(z,r) N X to a point
y €Sy, r)N X; see Figure@

By the transboundary upper gradient inequality, we have

o(HE)HE) < [ prdst Y dim(yy).

T J:pi 0|y #0

Since pp, = 0 in V' (see Remark , by (6.1)) we have o(H(2'), H(y')) < e. If we
let ro — 0 and then € — 0, we see that there exist sequences z,,y, € X converging
to x,y, respectively, such that o(H (x,), H(y,)) — 0. Therefore

d(gi(2), 9:(y)) = Tim d(gi(xn), 9i(yn))
= lim d(m(H(z,)). 7, (H(2,))) = 0.
This shows that g;(x) = g;(y) as desired. O

Corollary 6.12. For each i € N the map g;: ; — D; has a unique extension to
a continuous and cell-like map from C \ int(p;) onto E(Y;¢;) \ my.q, (int(g;)). The
extension is constant on each continuum E C p; \ p; and can be further extended
to a continuous and cell-like map g;: C — E(Y;qi) such that g; *(my.q, (int(g))) =
int(p;).

Proof. If ¢ is a point then the extension is trivial, so assume that ¢ is a closed
Jordan region. By Lemma g; extends to a continuous map from Q onto D. By
Lemma [6.11} for each component V' of

int(p\ p) = int(p) \ p = (C\ p) \ ©

the map gilsv\ap is constant. We now apply Theorem (with Y = C \ p) to
obtain the desired conclusions. O
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6.3. Patching continuous extensions.

Corollary 6.13. The map H: X — Y extends to a continuous, surjective, and
monotone map H: C — C such that Ty o H = homx and H='(int(g;)) = int(p;)
for each i € N. The extension is constant on each continuum E C p; \ p;, i € N.

Proof. We apply Corollary so we obtain appropriate extensions of g; for each
1 € N. For each ¢ € N, we extend H to p; by setting H = ﬂ;_lqi o g;; note that

W;;lqi is injective on g;(p;) = Ty, (¢:)- We observe that the relation 7y, o H = g;

(which is already valid on X by the definition of g;) holds on all of C.

This extension is surjective onto C. Moreover, the preimage of each point is a
continuum; this follows from the facts that the maps H|g: X - Y and Gilg, s pi —
q; are cell-like. If E C p; \ p; is a continuum, then g;|g is constant. Thus, H is
constant on F, as claimed. The relation my o H = homx, which holds on X extends
automatically to @, since H(p;) = ¢; for each i € N.

We finally argue that H is continuous. Suppose first that = € X. Ifz, € Cis
a sequence converging to x, then ny (H(z,)) = h(rx(x,)) converges to h(mx(x))
by continuity. By Lemma the point H(z,) € my' (my (H(x,))) is contained
in arbitrarily small neighborhoods of 7' (h(7x(x))) = H(x) as n — oo. Next,
suppose that z € p; for some 7 € N and consider a sequence z,, € C converging to
x. The sequence 7y.q, (H(z,)) = gi(x,) converges by continuity to g;(x). Using
again Lemrnan7 we see that H(x,,) is contained in arbitrarily small neighborhoods
ofﬂyq(g,( x)) = H(x) as n — o0. O

Proof of Theorem[6.1l Consider the extension of H as in Corollary It remains
to show that H satisfies the transboundary upper gradient inequality, as stated in
Theorem[6.1] Suppose that h, pp,, and Iy are as in Definition [2.15] and let pg = pp,.
By enlarging the curve family I'g, we may assume that it still has conformal modulus
zero and all subcurves of every curve v ¢ T'y also satisfy the transboundary upper
gradient inequality (see Remark . We fix a curve v: [a,b] — C outside T.

If v(a) and ~(b) lie in p; for some i € N, then H(v(a)), H(v(b)) € g, so
o(H(y(a)), H(v(b))) < diam(qg;). In this case there is nothing to show.

Suppose that y(a) and (b) do not lie on the same peripheral continuum. Then
there exists an open subpath v1 = v|(a, 4,): (a1,b1) — C of ~ that does not in-
tersect the peripheral continua that possibly contain ~y(a) or v(b), and the points
v(a1),v(b1) lie on the boundaries of the peripheral continua that possibly contain
v(a),~y(b), respectively. It suffices to show the desired inequality for the open path
~1, in view of the previous case where the endpoints lie in the same peripheral
continuum.

There exists a further subpath vo = 7(a,,) of 71 such that y((a1, az]) (resp.
v([b2,b1))) is contained in some set p;, i € N, and 7(az) (resp. v(b2)) can be
approximated by points in |ya| N H~}(Y). Note that these conditions could be
vacuously true and we could have 5 = ;. By Corollary H is constant on
v((a1,az2]) and on (b2, by)). Therefore, it suffices to show the desired inequality for
the open path 72, which has the property that its endpoints can be approximated
by points of || N H=1(Y).

We may find parameters az > as and by < by so that v(a3),v(bs) € H=1(Y) and
v(as),v(bs) are arbitrarily close to vy(az),v(b2), respectively. Since my is injective
on Y, we have H = w;l ohomx on H~*(Y). The transboundary upper gradient
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inequality of h now gives

o(H @), HOG) < [ pudst Y dim(a)
ks piNlyz|#0
By letting y(a3) — v(az) and v(b3) — v(b2), using the continuity of H we obtain
the same inequality for o(H (y(az2)), H(y(b2))). O

Proof of Proposition[6.4 We fix i € N and we use the same notational conventions
as in the proof of Lemma By Lemma there exists a continuous, proper,
and cell-like map g¢; from € onto D such that

gizmow;log:mow{,lohowx.

The relation my o H = h o mx implies that on the set X we have H = 71;1 ohomx
and that H(p;) = ¢; for each j € N. Thus, g; = m; o H on all of Q.

Note that the continuous, surjective, and monotone map H: C — C is also
cell-like (see the comments in Section . This fact and Lemma imply
that the map m; o H is continuous and cell-like from C onto & (Y;q). This shows
that g; extends to a continuous and cell-like map from C onto & (Y;q). Since
H~'(int(g)) = int(p), we have g; ' (m;(int(q))) = int(p). Hence g; is continuous and
cell-like from C \ int(p) onto E(Y;¢) \ m;(int(g)). By Corollary this extension
is unique and has the property that it is constant on each continuum EF C p\ p.
The desired property of H follows. ([

7. HOMEOMORPHIC EXTENSION

Theorem 7.1. Let X,Y be Sierpiriski packings and h: £(X) — E(Y) be a packing-
K -quasiconformal map for some K > 1 as in the statement of Theorem[6.1. IfY
is cofat, then the map H of Theorem is a homeomorphism from X onto Y. In
particular, it can be extended to a homeomorphism of C.

Proof. Assume that H maps X homeomorphically onto Y. From Theorem we
have H~!(int(g;)) = int(p;), which implies that H(dp;) = dg;. For each i € N we
replace H|,, with a homeomorphism onto ¢; to obtain a global homeomorphism of
C; it is important here that diam(p;) — 0 and diam(g;) — 0 as i — oo.

We now show that for each point wg € Y the set H *(wp) C X is a singleton.
Suppose that there exists wy € Y such that £ = H'(w) is a non-degenerate

continuum. Based on the following claim, which we prove afterwards, we complete
the proof of Theorem See Figure [7] for an illustration.

Claim 7.2. There exists § > 0, 79 > 0, and a point zy € E such that for all
t €[6/2,6) and for all 7 € (0,7¢) the circle S(z0,t) has an open arc f;: (a,b) — C
such that B;(a) € E, B;(b) € 0H*(B(wo,r)), and B¢((a,b)) C H~1(B(wq,7)) \ E.
Moreover, if wg € g; for some j € N, then 3;((a,b)) Np; = 0.

For fixed r > 0, let I(r) = {i € N: ¢; N S(wp,r) # 0}. If i € I(r), we define
Mgi) = HY({s € (0,7) : ¢ N S(wp,s) # 0}) and otherwise we define \(q;) =
diam(g;). By the fatness of ¢;, ¢ € N, and Lemma we have

(7.1) Mgi)? < C%(gi N B(wo, 7))
whenever ¢; N B(wg, ) # 0.
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FIGURE 7. Left: the circle S(zo,t) and the arc j; (red). Right:
the path H o f; (red) and the subpath H o~; (green) that connects
wp to a point on ¢;, N S(wo,r1).

Suppose that HoS; does not intersect any ¢;, ¢ € I(r). That is, if ¢;N|HoB¢| # 0,
then ¢; C B(wp,r). By Lemma the transboundary upper gradient inequality
holds for a.e. t € [§/2, 6], so we have

rg/ pds+ Z diam(ql-)z/ pds + Z Aqi)-
¢ i:piN|Be |#0 Be i:pi N Be|#0

If H o f3; intersects some ¢;, ¢ € I(r), we consider an open subpath ~; of 3; such
that H o~ does not intersect any ¢;, ¢ € I(r), and connects wq to a point of g;, for
some io € I(r) that lies on a circle S(wo,71); see Figure |7l By the transboundary
upper gradient inequality, for a.e. t € [§/2, 0] we have

r §/ pds + Z diam(q;) :/ pds + Z Aqi)-
"t i:pi Nyt | £0 T 2:pi O]y | #0
Since the continuum g;, intersects both circles S(wg, 1) and S(wo, ), we have

r—ri SH ({s € (0,7) : g N S(wo,5) # 0}) = Ma).

Altogether, we have

ré/ﬁtpd8+ > M)

i:piN|Be|#D
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Since f; is contained in S(zg,t) N (H~Y(B(wo,r)) \ E), for a.e. t € [§/2,5] and
for all » < rg we have

(7.2) pdH'+ > Na).

1:piNS(z0,t)#0
q;:NB(wo,r)#0

We integrate over t € [§/2,d] and then apply the co-area (Proposition and
Cauchy—Schwarz inequalities to obtain

6/2)r < C /H pdS+ 3 Ag)diam(p;)

—1(B(wo,m))\E i:q;NB(wo,r)

r < /
S(z0,t)N(H = (B(wo,m))\E)

1/2

<c|f Past Y @)
H=1(B(wo,r))\E i:qiNB(wo,r)#0

1/2

S(H Y Bluo, )\ B)+ Y diam(p)?
i:q;NB(wo,r)#0
=:C- A(r) - B(r).

Suppose that wo ¢ ;e As r — 0, the term B(r) converges to 0, since
H~Y(B(wo,r)) converges to E and {i : ¢; N B(wg,r) # 0} shrinks to the empty
set. If wy € p; for some j € N, then by the last part of Claim B¢ does not
intersect p;, so we may exclude the index j from the sum in . In this case, if we
perform the same calculations as above based on the modified version of 7 we
will obtain a term B(r) such that the summation term does not include the index
j. Therefore, {i : ¢ # j, ¢; N B(wg,r) # 0} shrinks again to the empty set. This
shows that B(r) — 0 as r — 0 also in this case.

We now discuss the first term, A(r). By quasiconformality (see the last inequality
in Theorem [6.1]) we have

/ p2 S S S(B(wo, ) S 1.
H=1(B(wo,r))\E
Moreover, (7.1]) implies that
> M) <C > %(¢: N B(wo, 7)) S 7.
i:q; N B(wo,r)#£0 i:q; N B(wo,r)#0
Therefore, A(r) <7, so
or SrB(r).
This is true for all r < ry so we obtain a contradiction as r — 0. [

Proof of Claim[7.3 We consider two cases:

(a) F is not contained in p; for any i € N.

(b) E C Op; for some j € N.
We will treat now the first case. Note that E = H~!(wp) can intersect at most
one set p;, i € N, which occurs only if wy € d¢;. If OE C p;, then OF is an arc
of dp;, so C \ OF has one or two components. Each of them lies in the interior or
exterior of E. Hence, either ' = JE C Op;, which is a contradiction to Case @, or



48 DIMITRIOS NTALAMPEKOS

E=C \ int(p;), which is again a contradiction as E N p; = () for j # i. Therefore,
OF is not contained in p; for any i € N, so 0E N X # (.

Consider a point zp € EN X and note that the circle S(z, t) intersects E for all
sufficiently small ¢ > 0. Recall that H is monotone, so it is also cell-like (see Section
2.3). Therefore, E = H~!(wp) is a non-separating continuum. This implies that
the circle S(zo,t) intersects C \ E for all sufficiently small ¢ > 0 (see the argument
in the proof of Lemma [6.11)). We fix § > 0 such that for all ¢ € [§/2,4] the circle
S(zo,1) intersects both E and C \ E. Moreover, if wy € g;, the fact that zp € X
allows us to choose an even smaller § > 0 so that S(zg,t) does not intersect p; for
all t € [6/2,0].

For 7 > 0 consider the ball B(wp,r) and the preimage H ~!(B(wp,r)), which
contains the set E in its interior. If ry > 0 is sufficiently small, then for r < rg
the set H~1(B(wp,r)) does not contain any of the circles S(zo,t), t € [§/2,6];
indeed, otherwise, by a limiting argument we see that there would exist t € [§/2, d]
such that S(z,t) C E, a contradiction. We fix ¢ € [§/2,6] and r < rg. Then,
the circle S(zo,t) intersects both E and dH ~!(B(wq,r)). We consider an open
arc By: (a,b) — C of S(z0,t) such that By(a) € E, Bi(b) € OH ' (B(wp,r)), and
Be((a,b)) € HY(B(wo,7)) \ E. See Figure [7l This completes the proof of Claim
in Case @

Suppose that E C dp; as in Case@ Let zp € Op; and fix §p > 0 such that E is
not contained in B(zg, dp). Consider a Jordan arcn: (0,1) — C such that n(0) = zo,
n(1) € E\ B(zo,00), and 1((0,1)) Np; = 0. Let § < dy. For each t € [§/2,0] there
exists a unique open arc oy, C S(z0,t) with endpoints on dp; but otherwise disjoint
from p; such that 7(sg) € oy for some so € (0,1) and 7((0, s9)) N S(z0,t) = 0; in
other words, oy is the “first” arc of S(zo,t) \ p; that n meets.

We claim that if ¢ is sufficiently small, then for ¢ € [§/2, d] at least one endpoint
of a; lies in E. Consider the arc A; of dp; containing 2y and having the same
endpoints as «¢. By the local connectivity of Op;, as t — 0 the diameter of A,
tends to 0. Hence, FE cannot be contained in A; for small ¢ > 0. The connectedness
of E implies that one of the endpoints of A;, and thus of a4, is contained in E for
all sufficiently small ¢t > 0, as desired.

Next, we show that if rg > 0 is sufficiently small, then «; is not contained in
H=Y(B(wp,r)) for all < ry and for all ¢t € [§/2,5]. To see this, note that there
exists an arc 7([s1, s2]), disjoint from p;, intersected by o, for each ¢t € [§/2,4].
Since H~'(B(wg,r)) converges to H '(wy) = E as r — 0, there exists 79 > 0
such that H~1(B(wp, 7)) is disjoint from n([sy, s2]). Therefore, a; intersects the
complement of H~1(B(wy, 7)), for all 7 < rg, as claimed.

Finally, we consider an open subarc f;: (a,b) — C of oy such that Bi(a) € E,
Bi(b) € OH Y (B(wo, 1)), and B;((a,b)) C H 1 (B(wg,r)) \ E. This completes the
proof in Case O
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