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ABSTRACT
With the availability of advanced packaging technology and its
attractive features, the chiplet-based architecture has gained trac-
tion among chip designers. The large design space and the lack
of system and package-level co-design methods make it difficult
for the designers to create the optimum design choices. In this
research, considering the colossal design space of advanced pack-
aging technologies, resource allocation, and chiplet placement, we
design an optimizer that looks for the design choices that maxi-
mize the Power, Performance, and Area (PPA) and minimize the
cost of the chiplet-based AI accelerator. Inspired by the Bayesian
approach for black-box function optimization, our optimizer guides
the search space toward global maxima instead of randomly travers-
ing through the search space. We analytically synthesize a dataset
from the search space and train an ML model to predict the tar-
get value of our defined cost function at the optimizer-suggested
points. The optimizer locates the optimum design choices from the
specified search space (≥1M data points) with minimal iterations
(≤ 200 iterations) and trivial run time.

CCS CONCEPTS
• Computer systems organization → Multichip architectures;
Heterogeneous integration; Interconnection architectures; Deep
Learning Hardware.
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1 INTRODUCTION
In the era of memory and compute-hungry Big Data and Artifi-
cial Intelligence (AI), the stagnation of Moore’s law and Dennerd’s
scaling, and die size reaching the reticle limit has triggered the
chip design industry to transition from the monolithic IC to hetero-
geneous chiplet-based architecture. With the advent of advanced
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packaging technologies and interconnects, the chiplet-based het-
erogeneous integration has opened up a new dimension of chip
design, “More-than-Moore" [2]. In chiplet-based system, multiple
chiplets (i.e., SoCs) of diverse functionalities (e.g., logic dies, memo-
ries, analog IPs, SerDes, accelerator etc.) and tech nodes (e.g., 7nm
or beyond) from different foundries are interconnected in package
level using the advanced packaging technologies, such as CoWoS,
EMIB, etc. [2].

The value proposition of chiplet-based architectures is manifold.
First, compared to multiple monolithic SoCs interconnected via
off-package or off-board links such as PCIe, NVLink, CXL etc. [2],
package-level integration of multiple monolithic SoCs via 2.5D or
3D has accelerated performance and lower energy consumption.
Training any state-of-the-art AI or Deep Learning model with a
single GPU is nearly impossible due to extreme computing and
memory demands. The data centers are equipped with clusters
of powerful computers connected via PCIe. Even though these
supercomputers can deal with large workloads, off-board commu-
nications come with a great expense of power, performance, and
area. Combining as many chiplets as possible at the package level
will alleviate the off-package communication costs. Second, it en-
ables IP reuse and provides flexibility in picking the best process
node for the required IP. For example, SerDes IO, analog, and RF
IPs have higher design complexity, lower shrink factor, and lower
performance or power gain in advanced tech nodes compared to
digital logic IPs [7] [19]. Heterogeneous chiplet architecture enables
the integration of analog and IO blocks from mature technology
whereas digital logic blocks from the latest tech node ensure leading
performance, performance/$, and performance/W at the shortest
time-to-market [2] [19]. Third, it yields better due to smaller die
sizes [2]. Finally, it enables a shorter IC design cycle, lower develop-
ment, manufacturing, and NRE cost by reusing pre-existing chiplets
[2]. Leveraging the chiplet concept, in 2017 the DARPA announced
the Common Heterogenous Integration and Intellectual Property
(IP) Reuse Strategies program (which is still going on) to achieve
3 goals: (i) Extending Moore’s Laws, (ii) Enabling heterogeneous
integration, and (iii) Empowering system integrators, to cope with
the ever explosive growth of the powerful semiconductor needs
[2].

Few commercial chiplet-based products are available in the mar-
ket [6] [10] [19] [20] and most are designed and developed at verti-
cally integrated companies [21]. The vertically integrated products
do not ensure the versatile chiplet based ecosystem. The complete
adoption of chiplet-based architecture is holding off because of
the lack of top-level/system-level heterogeneous design aggrega-
tion, planning, and optimization. Designers must consider system
requirements, stacking/packaging technologies, interconnect ar-
chitecture, resource management, chiplet granularity, placement,
reliability, scalability, etc., to optimize Power, Performance, and
Area (PPA) [7] [21]. Currently, many flavors of packaging technolo-
gies, both from 2.5D and 3D, are available from the industry leaders,
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Figure 1: Overview of the proposed optimization scheme. Examples of a few possible design scenarios are shown in the Design space. L, R, T, B,
M represent left, right, top, bottom, and middle, respectively.

which makes it difficult for system designers and integrators to
choose the optimum set of configurations from the vast design
space based on the system requirements [2]. The various packaging
technologies differ in fabrication cost and complexity, performance,
and underlying integration technologies [2]. As a result, no single
package technology can be marked as superior to others. Each of
the other domains, such as resource allocation, chiplet granularity,
placement, Network on Package (NoP), and interconnect architec-
tures, to name a few, also has an extensive design space. A proper
co-optimization across all these domains based on the system and
application requirements at the available cost is necessary for a
successful chiplet based system design. Optimizing all possible do-
mains results in a combinatorial explosion where brute force search
is not an option and random search might not result in the optimum
point. The expensive (in terms of time and resources) simulation
environment of chip design exacerbates this problem.

In this work, we strive to bridge the gap between the system
requirements and design aggregation, planning, and optimization
for chiplet-based architecture. We incorporate resource allocation,
partitioning and placement of chiplets, and packaging technologies
in our optimization problem and solve for the optimum PPA within
the cost budget. The contributions of the paper are as follows.

• In our chiplet-based PPA optimization problem, we take
resource allocation such as the number of AI chiplets, mem-
ory size and bandwidth; partitioning and placement of the
chiplets, such as aspect ratio of the accelerator chiplet arrays,
layout, and logical placement of accelerator, memory and
host CPU; and different packaging technology (i.e., CoWoS,
EMIB, InFO, SoIC, and FOVEROS [2]), and their attributes
such as bandwidth, bump pitch density, cost and complexity,
etc., to integrate the chiplets in a single package into account.

• Due to the expensive and intricate simulation behavior of
each step of chip design (e.g., logic synthesis, STA analysis,
PnR, EMIR and reliability analysis), we model it as a black
box function and solve the problem with bayesian approach
to look for global maxima. We build an objective function

that minimizes Area, Energy, Latency, and Cost & Complexity
and maximizes Throughput and Bandwidth.

• Because of the unavailability of public data on chip design
that can act as a dataset and expensive simulation method-
ology, we build an analytical model to create a synthetic
dataset. Based on the fundamental concepts of the VLSI de-
sign and very few publicly available data from industrial
products as base value, our analytical model is very efficient
(in terms of time and resources) and alleviates the need for
iterative expensive simulations for dataset creation. We also
train an ML model on our custom dataset to mimic the sim-
ulation with CAD tools during our optimization.

The rest of the article is organized as follows. Section II briefly
reviews the literature; section III illustrates the methodology; sec-
tion IV provides the experimental results; and section V concludes
the paper.

2 RELATED WORK
There have been a few explorations of the chiplet-based architec-
ture for DNN accelerator; some of them focus on optimizing the
workload mapping to the chiplets [8] [23] [24] , while others focus
on the exploration of the Network-on-Packcage (NoP) and reliable
routing protocols for chiplets based architecture [25] [26]. With a
handful of packaging technologies available for chiplet integration
and their different configuration, no studies have, to our knowledge,
performed the co-optimization of different packagaing technolo-
gies (including 2.5D and 3D), resource allocation, and placement to
optimize the system PPA for AI accelerators. [4] performed a cross-
layer co-optimization network design and chiplet placement, but
only for 2.5D systems. The use of Machine Learning, Reinforcement
Learning, and different optimization schemes to optimize different
domains of ASIC design, including AI accelerator, are also available
in the literature [11] [12] [13] [16] [27] . However, none of them
optimized different packaging technology and their configuration.
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3 SYSTEM TECHNOLOGY CO-OPTIMIZATION
OF CHIPLET-BASED AI ACCELERATOR

The fundamental goal of our optimization problem is to minimize
the system area, energy consumption, latency, and cost & complex-
ity while maximizing the system performance and bandwidth based
on the system application. Our optimization methodology compre-
hends a wide range of design spaces of resource allocation, chiplet
partitioning, logical placement, and packaging technology to reach
an optimum solution. In this section, we explain our optimization
methodology in detail. The overview of our optimization scheme is
shown in Fig. 1.

3.1 Formulating the Objective function
To minimize the system area, energy consumption, latency, cost &
complexity and maximize the system throughput and bandwidth
based on system requirements, we define our objective function as

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 : 𝛼 ∗ ( 1
𝐴
) + 𝛽 ∗ (𝑇ℎ + 𝐵𝑊 + 1

𝐿
) + 𝛾 ∗ ( 1

𝐸
)

+𝛿 ∗ ( 1
𝐶𝐶

)
(1)

Where, 𝐴 = 𝐴𝑟𝑒𝑎, 𝑇ℎ = 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 , 𝐵𝑊 = 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝐿 =

𝐿𝑎𝑡𝑒𝑛𝑐𝑦, 𝐸 = 𝐸𝑛𝑒𝑟𝑔𝑦/𝑏𝑖𝑡 𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐶𝐶 = 𝑑𝑒𝑠𝑖𝑔𝑛 𝑎𝑛𝑑

𝑚𝑎𝑛𝑢𝑓 𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡&𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 of the system.𝛼, 𝛽,𝛾 ,
and 𝛿 are coefficients that allow the users to put the specific weigh-
tage on the specific parameters during the optimization. We define∑(𝛼, 𝛽,𝛾, 𝛿) = 1, where any coefficient with 0 value represents
no weightage (i.e., that term will be dropped from the objective
function) and any coefficient with 1 value represents the highest
weightage. The user needs to choose the appropriate values of the
coefficients based on the system requirement. For example, the
energy coefficient, 𝛾 , should be higher for low-power applications.
If the coefficients have equal values (i.e., 0.25 each), the optimizer
will put equal effort into optimizing all parameters.

3.2 Dataset Generation
This subsection will describe our analytical model to create the
dataset and each component of our objective function. Our dataset
consists of Resource allocation space, Chip partitioning and chiplet
placement space, and packaging space.

3.2.1 Resource Allocation. Resource allocation impacts the device’s
performance and area. The 𝐴𝑟𝑒𝑎(𝐴) and 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑇ℎ) of our
objective function come directly from the resource allocation space.
The system latency also depends on resource allocation. However,
we discuss the latency, in detail, in section 3.2.2 as the chiplet
partitioning and placement also impact it. We define the system
area 𝐴 as

𝐴 =

𝑝,𝑞∑︁
𝑖=4, 𝑗=1

(𝑎𝑐𝑐_𝑎𝑟𝑒𝑎𝑖 + 𝑐𝑝𝑢_𝑎𝑟𝑒𝑎 𝑗 + ℎ𝑏𝑚_𝑎𝑟𝑒𝑎) + 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑎𝑟𝑒𝑎

(2)
Where, 𝑎𝑐𝑐_𝑎𝑟𝑒𝑎 = 𝐴𝐼 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 𝑎𝑟𝑒𝑎; 𝑖 , varying from 4 to 𝑝 ,
is the number of AI accelerator chiplets integrated on a package;
𝑐𝑝𝑢_𝑎𝑟𝑒𝑎 = 𝑎𝑟𝑒𝑎 𝑜 𝑓 𝑒𝑎𝑐ℎ 𝐶𝑃𝑈 ; 𝑗 is the number of CPUs that
can vary from 1 to 𝑞; 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑎𝑟𝑒𝑎 is the area dedicated for the
chiplet-to-chiplet routing of the signal. 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑎𝑟𝑒𝑎 again depends
on the network topology (e.g., mesh, crossbar, torus etc.) and the
packaging technology (e.g., 2.5D and 3D). In this work, we consider
AI accelerator chiplets connected in a 2D (𝑋 ×𝑌 ) mesh topology to

Figure 2: Illustration of latency (in terms of hop) calculation. (a)
AI-to-AI chiplet communication, considering the farthest chiplets as
source-destination pair. (b) One HBM chiplet, located at the left con-
nected in 2.5D, and the farthest AI chiplet as source-destination pair.
(c) One HBM chiplet, 3D-stacked on top of a left-most AI chiplet, and
the farthest AI chiplet as source-destination pair. (d) 5 HBM chiplets
are placed in 5 different positions. The highest latency decreases
from 6 hops (case (c)) to 3 hops with most of the AI chiplets can be
provided with data in 2 hops by nearest HBMs.

create our dataset. We explore different aspect ratios of the array
by varying the X dimension from 2 to𝑚 and the Y dimension from
2 to 𝑛, where, 𝑝 = 𝑚 ∗ 𝑛 and 𝑚,𝑛 ≥ 2. The host CPU and HBM
chiplets can be interconnected in 2.5D or 3D stacked on top of the
AI chiplets (will be discussed in detail in section 3.2.2). The system
Throughput, 𝑇ℎ, is defined as

𝑇ℎ =

𝑝∑︁
𝑖=4

𝑃𝑒𝑎𝑘_𝑇ℎ𝑖 (3)

Where 𝑃𝑒𝑎𝑘_𝑇ℎ is the peak attainable throughput of AI accelerator
chiplets and 𝑖 is the number of the AI chiplets. We take the area and
throughput of each AI chiplet from SIMBA [23], CPU area from
[19], and HBM area from [1] and using equations 2-3, we calculate
the system area and throughput for various resource amount.
Table 1: Resource allocation, chiplet partitioning, and placement
space

Parameter Values

AI chiplet X dim 2 to 16 @ step of 1
AI chiplet Y dim 2 to 16 @ step of 1
No. of CPU/HBM chiplets 1 to 5 @step of 1

CPU/HBM locations [left, right, top, bottom, middle,
3D-stacked]; 26 − 1 locations

3.2.2 Chiplet Partitioning and Placement. Chiplet partitioning and
the logical placement of the chiplets have impacts on the device’s
performance. In this section, we consider dividing the total allo-
cated HBM into multiple chiplets and place the chiplets in multiple
positions. The partitioning of a large chunk of memory into mul-
tiple memory chiplets ( instead of placing the large memory in
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Table 2: Analytical expressions for CPU/HBM-to-AI chiplet latency

#CPU/HBM Locations 𝐿𝐶𝑃𝑈 /𝐻𝐵𝑀−𝑡𝑜−𝐴𝐼
2.5D 3D

1 Left/right 𝑚 + ⌊𝑛2 ⌋ 𝑚 + ⌊𝑛2 ⌋ − 1
1 Top/bottom ⌊𝑚2 ⌋ + 𝑛 ⌊𝑚2 ⌋ + 𝑛 − 1
1 Middle ⌈𝑚2 ⌉ + ⌈𝑛2 ⌉ − 1 m,n(even):⌈𝑚2 ⌉ + ⌈𝑛2 ⌉

m,n (odd): ⌈𝑚2 ⌉ + ⌈𝑛2 ⌉ − 2
otherwise: ⌈𝑚2 ⌉ + ⌈𝑛2 ⌉ − 1

2 Left+right ⌈𝑚2 ⌉ + ⌊𝑛2 ⌋ ⌈𝑚2 ⌉ + ⌊𝑛2 ⌋ − 1
2 Top+bottom ⌊𝑚2 ⌋ + ⌈𝑛2 ⌉ ⌊𝑚2 ⌋ + ⌈𝑛2 ⌉ − 1
2 Left/right + Top/Bottom 𝑚𝑖𝑛(𝑚,𝑛) + ⌊𝑚𝑎𝑥 (𝑚,𝑛)

2 ⌋ 𝑚𝑖𝑛(𝑚,𝑛) + ⌊𝑚𝑎𝑥 (𝑚,𝑛)
2 ⌋ − 1

2 Left/right/top/bottom + middle ⌈𝑚2 ⌉ + ⌈𝑛2 ⌉ − 1 m,n (even):⌈𝑚2 ⌉ + ⌈𝑛2 ⌉
m,n (odd): ⌈𝑚2 ⌉ + ⌈𝑛2 ⌉ − 2
otherwise: ⌈𝑚2 ⌉ + ⌈𝑛2 ⌉ − 1

3 Left+right+middle, Top+bottom+middle ⌊𝑚2 + 𝑛
2 ⌋ − 1 m,n (odd):⌊𝑚2 + 𝑛

2 ⌋ − 2
otherwise:⌊𝑚2 + 𝑛

2 ⌋ − 1
3 Left+right+top/bottom, Top+bottom+left/right ⌊𝑚2 + 𝑛

2 ⌋ ⌊𝑚2 + 𝑛
2 ⌋ − 1

3 Left/right+top/bottom+middle m,n (even):𝑚𝑖𝑛(𝑚,𝑛) − 1 m,n (odd):𝑚𝑖𝑛(𝑚,𝑛) − 1
otherwise:𝑚𝑖𝑛(𝑚,𝑛) otherwise:𝑚𝑖𝑛(𝑚,𝑛)

4 Left+right+top+bottom m,n (even): 𝑚𝑎𝑥 (𝑚,𝑛)
2 + 1 m,n (even): 𝑚𝑎𝑥 (𝑚,𝑛)

2
otherwise: ⌈𝑚𝑎𝑥 (𝑚,𝑛)

2 ⌉ otherwise: ⌈𝑚𝑎𝑥 (𝑚,𝑛)
2 ⌉ − 1

4 Middle+left+right+top/bottom, Middle+top+bottom+left/right m,n (even): 𝑚𝑎𝑥 (𝑚,𝑛)
2 m,n (even): 𝑚𝑎𝑥 (𝑚,𝑛)

2 + 1
otherwise: ⌈𝑚𝑎𝑥 (𝑚,𝑛)

2 ⌉ m,n (odd): ⌈𝑚𝑎𝑥 (𝑚,𝑛)
2 ⌉ − 1

otherwise: ⌈𝑚𝑎𝑥 (𝑚,𝑛)
2 ⌉

5 Left+right+top+bottom+middle m,n (even): 𝑚𝑎𝑥 (𝑚,𝑛)
2 + 1 m,n (even): 𝑚𝑎𝑥 (𝑚,𝑛)

2
otherwise: ⌈𝑚𝑎𝑥 (𝑚,𝑛)

2 ⌉ otherwise: ⌈𝑚𝑎𝑥 (𝑚,𝑛)
2 ⌉ − 1

one place) and placing these multiple memory chiplets in different
positions improves the system latency. Because the communication
latency depends on the physical location of the data [18] [23]. Fig.
2 illustrates how chiplet partitioning and placement improve the
system latency. Please note this placement only considers logical
placement, i.e., chiplet-to-chiplet logical connection. We consider a
2D mesh of AI accelerator chiplets. Therefore, there are 6 locations:
left, right, top, bottom, middle, and 3D stacking, to place the host
CPUs and HBMs around the AI chiplet array. These locations re-
sult in 26 − 1 combinations for CPU and HBM placements. Table 1
presents all parameters and their values for the resource allocation,
chiplet partitioning, and placement space.

The chiplet-to-chiplet data communication latency, 𝐿, of our
objective function is calculated from the parameters of this space.
The actual chiplet-to-chiplet data communication latency depends
on various factors, such as process technology node, number of
repeaters/buffer between source to destination, routing arbitra-
tion, thermal conditions, signal referencing circuitry, etc. However,
we calculate the latency in terms of data source-destination hop
counts. The reason is that running the actual simulation and finding
the communication latency is costly and time-consuming. Instead,
through our analytical modeling we express the latency in terms
of the AI chiplet X and Y dimensions for different locations of CPU
and HBM chiplets. While the hop count does not capture the ac-
tual latency, the actual latency depends on the hop count, and we
achieve a significant run time improvement to estimate the overall
system latency. We take the worst-case source-destination pair as
the latency to be more conservative.

The 𝐿 of the objective function comprises AI-to-AI, CPU-to-AI,
and HBM-to-AI communication latency.

𝐿 = 𝐿𝐴𝐼−𝑡𝑜−𝐴𝐼 + 𝐿𝐶𝑃𝑈 −𝑡𝑜−𝐴𝐼 + 𝐿𝐻𝐵𝑀−𝑡𝑜−𝐴𝐼 (4)

AI-to-AI communication latency is
𝐿𝐴𝐼−𝑡𝑜−𝐴𝐼 =𝑚 + 𝑛 − 2 (5)

Where,𝑚 = no. of AI chiplets in X dimension, and 𝑛 = no. of AI
chiplets in Y dimension. CPU/HBM-to-AI latency depends on the
CPU/HBM position and the AI chiplets array dimension. In table
2, we present the expressions of 𝐿 for different CPU and HBM
locations.

Table 3: Parameters and Values of Packaging Space

Parameter Values

Package type CoWoS (2.5D), EMIB(2.5D), InFO(2.5D),
FOVEROS(3D), SoIC(3D)

IO density/mm2 500 to 1,000,000 @ step of 1000
Data rates (Gbps) 10 to 50 @ step of 2
Trace length (mm) 0.5 to 10 @ step of 2
RDL layer counts 1 to 14 @ step of 2

3.2.3 Packaging Space. The packaging space plays the most impor-
tant role as it impacts half of the parameters of the objective func-
tion: 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (𝐵𝑊 ), 𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑏𝑖𝑡 𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝐸),
and 𝐶𝑜𝑠𝑡 𝑎𝑛𝑑 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝐶𝐶). We explore different types of
packaging architecture, their data rates, IO density, trace length
(bump to bump distance between two interconnected dies), and
RDL counts [3], [9], [14], [15], [17] to calculate the bandwidth, en-
ergy/bit, and cost and complexity. The bandwidth is calculated as a
function of data rate per pin:

𝐵𝑊 = 𝑃 ∗ 𝐷𝑅 (6)

Where, 𝑃 = 𝐼𝑂/𝑚𝑚2, i.e., pin count, and 𝐷𝑅 = 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 /𝑝𝑖𝑛.
Taking data form [1] [7], [17], as base value, we interpolate the
energy/bit, E, and RDL counts as a function of trace length and bump
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Figure 3: Interdependency between different parameters of the state space. (a-d) AI-AI chiplet communication latency, throughput, area, and
final cost function as functions of the number of AI chiplets, respectively. (e-f) Bandwidth, Energy/bit data transfer, cost & complexity, and
final cost function as functions of package type, respectively. Except for the final cost functions, the data are normalized w.r.t. the maximum
values of the corresponding feature domain.

pitch [7]. We comprehend the heat management, integration cost,
TSV-associated overhead (e.g. keep out zone), signal communication
integrity to quantify the cost and complexity [3], [9], [14], [15], [17].
The parameters and their values that are considered to create the
dataset are shown in Table 3.

3.3 Optimization Scheme
Our optimization engine is built based on the Bayesian Optimization
that tries to maximize the objective function (eqn. 1). 𝐵𝑎𝑦𝑒𝑠𝑂𝑝𝑡
comprises two main components: (i) a Bayesian Statistical model,
commonly known as the Surrogate model to capture the behavior
of the objective function, and (ii) an acquisition function to decide
which region to sample next [5].

3.3.1 Surrogate Model. We model our objective function using a
GPRegressor [22]. We use Radial Basis Function (RBF) kernel∑︁

0
(𝑥, 𝑥 ′) = 𝛼0𝑒𝑥𝑝 (−||𝑥 − 𝑥 ′ | |2) (7)

where, | |𝑥−𝑥 ′ | |2 = ∑𝑑
𝑖=1 𝛼𝑖 (𝑥𝑖−𝑥 ′𝑖 )

2, and 𝛼0:𝑑 are the parameters of
the kernel [5]. The parameters of the kernel were optimized using
the 𝑓𝑚𝑖𝑛_𝑙_𝑏𝑓 𝑔𝑠_𝑏 algorithm [22].

3.3.2 Acquisition Function. We use the Expected Improvement (EI)
acquisition function. It calculates the expectation at a new point,
𝑓 (𝑥), greater than the current best so far, 𝑓 (𝑥∗):

𝐸𝐼 (𝑥) = E[𝑚𝑎𝑥 (0, (𝑓 (𝑥) − 𝑓 (𝑥∗)))]

=

{
(𝜇 (𝑥) − 𝑓 (𝑥∗) − 𝜁 )Φ(𝑍 ) + 𝜎 (𝑥)𝜙 (𝑍 ), if 𝜎 (𝑥) > 0
0, if 𝜎 (𝑥) = 0

(8)

Where,

𝑍 =

{
𝜇 (𝑥 )−𝑓 (𝑥∗ )−𝜁

𝜎 (𝑥 ) , if 𝜎 (𝑥) > 0
0, if 𝜎 (𝑥) = 0

(9)

𝜇 (𝑥) and 𝜎 (𝑥) are the mean and standard deviation, respectively.
Φ and 𝜙 are the CDF and PDF of the standard normal distribution,

Figure 4: DecsisionTreeRegressor accuracy

respectively [5]. 𝜁 controls the amount of exploration during the op-
timization, whose higher value is responsible for more exploration.
We use 𝜁=0.01 in our case.

Combinedwith the GPRegressor, which tests a range of candidate
samples from the domian, the EI acquisition function scores each
of the samples and keeps the scores that tend to maximize the
cost function and is worth to be evaluated with the expensive cost
function. We call these Bayes suggested points.

3.3.3 Machine Learning (ML) predictor. We need to evaluate the
expensive cost function, which is the circuit simulation with CAD
tools, such as HSPICE, PrimeTime, NanoTime, etc at Bayes sug-
gested points. However, simulation using the CAD tool is highly
time and resource constrained. To circumvent this we train an ML
model to predict the cost function values at the Bayes suggested
points. This ML predictor is used to evaluate the costly objective
function at the Bayes suggested points with very high accuracy.

4 RESULTS AND ANALYSIS
In this section, we analyze our custom dataset and evaluate the
performance of our ML predictor and the Bayes optimizer.

4.1 Dataset Analysis
Throughput increases as the number of AI chiplet increases (Fig. 3
(a)). However, fewer AI chiplets tend to maximize the cost function
because of the area and latency increase (Fig. 3 (a,c,d)). Please note
that other features, such as the number of CPU/HBM chiplets and
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Table 4: Optimized design choices

AI-chiplet dim HBM count HBM location. Package type Data Rate/pin(gbps) IO density/mm2

2x2 3 left+right+ FOVEROS 20 110000
top/bottom (3D-stacked)

 

 

Figure 5: (a) Total state space (search space) with huge sample size,
(b) Initial dataset to the optimizer with only 500 samples, (c) Updated
dataset after 200 iterations of the optimizer. Optimizer finds the
points (at the top right corner circled in red) that maximize the cost
function.
their location, impact the final cost function. Because of the space
constraint, we are not able to illustrate all of the contributing factors
to the final cost function with the figure.

In the packaging space, the 3D packaging, FOVEROS and SoIC,
have the higher bandwidth (3 (e)) due to their higher data rate and
denser IO density compared to the 2.5D packagings. 3Ds also has
lower energy compared to 2.5D (Fig. 3 (f)). However, they have
higher cost & complexity compared to 2.5D (Fig. 3 (g)). Overall, the
highest bandwidth and the lowest energy of FOVEROS outweigh
its highest cost & complexity to maximize the final cost function
(Fig. 3 (h)).

4.2 ML Predictor
We train a DecisionTreeRegressor on our custom dataset of sample
size ∼ 50k. On the test set of sample size ∼ 40k, it achieves a mean
absolute error of 0.0014 and a 𝑟2 score of 0.99. Fig 4 shows the actual
cost function values and the predicted cost function values on the
test data almost overlap each other. We use absolute error as the
loss function and expand the tree nodes until all leaves are pure to
reach the desired accuracy. We aim for higher accuracy as we use
this model to mimic the real simulation with CAD tools.

4.3 Optimizer
Fig. 5 (a) shows the state space we consider for this work. In reality,
it can be even larger. Fig. 5 (b) shows the initial dataset with only
500 samples (a small subset of the total state space) to our optimizer.
The initial dataset does not have the points that maximize the cost
function. However, with only 200 iterations, the optimizer locates
the points that maximize the cost function (Fig. 5 (c)). The run time
of the optimizer is also very low, in seconds range. The set of points
(i.e., design choices) that our optimizer suggests as the optimum so
far are presented in Table 4.

5 CONCLUSION
In this study, we perform System and Design Technology Co-
optimization (STCO & DTCO) of AI chiplet-based accelerator by
exploring several domains of chiplet-based architecture to find the
optimum design choices. We define a vast search space, create a
custom dataset within the space, and locate the design choices that
maximize our cost function with the help of the optimizer. Our
optimizer demonstrates resource and time consumption efficiency
by locating the global maxima within the search space with only
200 iterations and a run time of 𝑠𝑒𝑐 range.
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