1730

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 10, OCTOBER 2021

Designing Efficient and High-Performance Al
Accelerators With Customized STT-MRAM

Kaniz Mishty and Mehdi Sadi™, Member, IEEE

Abstract— We demonstrate the design of efficient and high-
performance artificial intelligence (AI)/deep learning accel-
erators with customized spin transfer torque (STT)-MRAM
(STT-MRAM) and a reconfigurable core. Based on model-driven
detailed design space exploration, we present the design method-
ology of an innovative scratchpad-assisted on-chip STT-MRAM-
based buffer system for high-performance accelerators. Using
analytically derived expression of memory occupancy time of Al
model weights and activation maps, the volatility of STT-MRAM
is adjusted with process and temperature variation aware scaling
of thermal stability factor to optimize the retention time, energy,
read/write latency, and area of STT-MRAM. From the analysis
of Al workloads and accelerator implementation in 14-nm
technology, we verify the efficacy of our AI accelerator with
STT-MRAM (STT-AI). Compared to an SRAM-based imple-
mentation, the STT-AI accelerator achieves 75% area and 3%
power savings at isoaccuracy. Furthermore, with a relaxed bit
error rate and negligible AI accuracy tradeoff, the designed
STT-AI Ultra accelerator achieves 75.4% and 3.5% savings
in area and power, respectively, over regular SRAM-based
accelerators.

Index Terms— Artificial intelligence (AI) accelerator, deep
learning, spin transfer torque (STT)-MRAM (STT-MRAM).

NOMENCLATURE
Nin_ch Number of input channels.
Nout_chn Number of input channels.
Npat Number of images per minibatch.
kn Kernel height.
ky Kernel width.
P PE internal size.
Wa Accelerator array width (PEs).
H, Accelerator array height (PEs).
Wsa Systolic array width (# of MACs), Py % Wy.
Notmap_rw Number of rows in ofmap.
Nofmap_cl Number of columns in ofmap.

Total clk cycles per iteration in conv./systolic
mode of accelerator.

Nfe Number of neurons in the input FC layer.

Mic Number of neurons in the output FC layer.
Tex Clock cycle time.

N, cyc_per_stp

Manuscript received April 5, 2021; revised July 6, 2021; accepted
August 11, 2021. Date of publication September 1, 2021; date of current
version October 6, 2021. This work was supported by the Auburn University
IGP grant. (Corresponding author: Mehdi Sadi.)

The authors are with the Department of Electrical and Computer
Engineering, Auburn University, Auburn, AL 36849 USA (e-mail:
kzmO114@auburn.edu; mehdi.sadi @auburn.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2021.3105958.

Digital Object Identifier 10.1109/TVLSL.2021.3105958

I. INTRODUCTION

HE demand for deep learning and artificial intelli-

gence (Al) is growing at a rapid pace across a wide
range of applications, such as self-driving vehicles, image and
voice recognition, medical imaging and diagnosis, finance and
banking, and defense operations. Because of these data-driven
analytics and Al boom, demands in deep learning and Al
will emerge at both data centers and the edge [1]-[4]. In a
recent market research [1], it has been reported that Al-related
semiconductors will see a growth of about 18% annually over
the next few years—five times greater than the rate for non-
Al applications. By 2025, Al-related semiconductors could
account for almost 20% of all semiconductor demand, which
would translate into about $67 billion in revenue [1]. As a
result, significant R&D efforts in developing Al accelerators—
optimized to achieve much higher throughput in deep learning
compared to GPUs—are underway from academia, big techs,
and startups [2].

On-chip memory capacity plays a significant role in
the performance and energy efficiency of Al tasks [2], [3],
[5], [6]. In an AT accelerator, off-chip dynamic random access
memory (DRAM) accesses can take 200 times and ten times
more energy compared to the local register file and global
buffer (GLB) memory, respectively [5]. Larger on-chip buffer
memory is needed to minimize DRAM accesses, and it can
improve the energy efficiency and speed of the accelerator.
However, conventional static random access memory (SRAM)-
based solutions suffer from area constraints and leakage power
at advanced technology nodes [7], [8], which is a major con-
cern for the energy-constraint [oT domain. Spin transfer torque
(STT)-MRAM (STT-MRAM) has the potential to replace
SRAM as the GLB in high-performance Al accelerators that
require large on-chip memory [3], [9]. As conventional embed-
ded flash storage suffers from scalability and reliability issues
at advanced nodes [8], emerging memory-based solutions are
required for AI accelerators. As analyzed in detail in [10],
because of weight reuse in deep learning, radiation-induced
soft errors in the memory block of the accelerator can impact
the accuracy of Al models. This is especially a concern for
safety-critical applications, such as autonomous vehicles with
rigid FIT requirements [10], and STT-MRAM can be a better
option for these types of applications.

At scaled technologies (e.g., 10 nm and newer), static energy
loss from the high leakage current dominates the overall
energy dissipation in DRAM and SRAM technologies [8].
Although Trench cap-based embedded DRAM (eDRAM) has
a higher density compared to SRAM, the leakage power and

1063-8210 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0468-7810

MISHTY AND SADI: DESIGNING EFFICIENT AND HIGH-PERFORMANCE AI ACCELERATORS WITH CUSTOMIZED STT-MRAM

scaling challenges of eDRAM at advanced process nodes
make it less competitive in the future technology roadmap [8].
Beyond the 28-nm node, eFlash faces scaling challenges, and
eMRAM technology becomes superior over eFlash because
of its lower write voltage and energy, higher endurance, lower
area, and faster read/write time [11]. The emerging resistive
RAM (RRAM) and phase change (PCM)-based cross-point
memory suffer from endurance, reliability, and variability
problems [8], [12]. Among all the emerging embedded mem-
ory technologies, STT-MRAM is one of the most promising
due to its high energy efficiency, write endurance (e.g., more
than 1 million cycles), high cell density, high-temperature
data retention capability, operating voltage comparable with
CMOS logic, and immunity to soft errors [7], [8], [13]-[17].
Moreover, STT-MRAM is highly compatible with CMOS and
requires only two to six extra masks in the backend-of-the-line
(BEOL) process [7], [14]. Because of the leakage power issue,
beyond a certain memory size, embedded MRAM becomes
more energy efficient compared to SRAM [7].

While performing deep learning/Al tasks, the throughput
of the AI accelerator primarily depends on: 1) the number
of processing elements (PEs) and 2) the size of on-chip
buffer memory [2], [3]. As a result, area efficiency is of
paramount importance for Al accelerators, and the critical
design goal is to increase PE density and on-chip memory
capacity. Because of compact size (6 F2 of STT-MRAM versus
100F? of SRAM [18], [19]), STT-MRAM has the potential
to outperform conventional SRAM as the on-chip memory
in accelerators. At isomemory capacities, the MRAM mod-
ule occupies a much lower area compared to SRAM [7].
In addition, for power constraint mobile/edge/IoT applications,
STT-MRAM-based Al accelerators can significantly minimize
static power compared to SRAMs. However, the higher write
energy and write latency of conventional eMRAM can be
a deterrent in their full adoption in AI accelerators. In this
article, we present a methodology to design efficient Al
accelerators with customized STT-MRAM that can provide
high bit-cell density while still ensuring fast write speed and
decreased write energy. We achieve this feat by analyzing
the volatility requirement of weight and input/output feature-
map (ifmap/ofmap) data on-chip and scaling the eMRAM’s
retention time accordingly without incurring unacceptable bit
error rates (BERs). In contrast to crossbar-based in-memory
inference hardware, in this article, our objective is to analyze
the memory constraints and energy efficiency problem of
regular Al accelerator hardware.

To the best of our knowledge, this is the first extensive work
on designing Al/deep learning accelerators with STT-MRAM-
based on-chip memory systems. The key contributions and
highlights of this article are given as follows.

1) We present an innovative runtime reconfigurable core
design that can be optimized for both dot products of
convolution layers and matrix multiplications of fully
connected (FC) layers.

2) We derive the analytical expressions of occupancy times
of weights and input/output feature maps in the global
memory of the Al accelerator between different stages
(i.e., Conv. layer followed by Conv., Conv. layer fol-

1731

lowed by FC layer, and FC-FC) of Al/deep learn-
ing operation. Guided by this data activity duration,
we scale the retention time of STT-MRAM and cus-
tomize the design for application as the GLB memory in
an energy-efficient Al accelerator. We consider process
variations and runtime temperature fluctuations in this
scaling procedure to ensure negligible read/write BERs
and retention failures (RFs) across all corners.

3) Based on detailed design space exploration using state-
of-the-art Al/deep learning models, an Al accelerator
system and MRAM technology codesign framework are
presented with the key innovations.

a) It optimizes STT GLB size to minimize DRAM
accesses.

b) A novel scratchpad-assisted STT-MRAM-based
GLB architecture is presented to minimize the
writes to the MRAM by bypassing writes of the
partial ofmaps to the scratchpad.

¢) For inference-only tasks, to store the trained
weights, a specially customized embedded STT-
MRAM—as a flash replacement—with optimized
retention time (e.g., three to four years) and robust
BER is used.

4) To further improve the energy and area efficiency,
we exploited the inherent error tolerance of deep learn-
ing/Al models and created two STT-MRAM banks for
the GLB. For the first bank, the thermal stability factor
is scaled further to a relaxed BER, and the less critical
half of the weights/fmap bits (e.g., LSB groups) is
assigned to this memory block. The second bank has
scaled retention time with a robust BER, and the other
remaining half of the bits (e.g., MSB groups) is stored
in this bank.

The rest of this article is organized as follows. The back-
ground is discussed in Section II. STT-MARM-based optimum
Al/deep learning accelerator design methodology is presented
in Section III. The AI accelerator-aware eMRAM technology
codesign methodology is presented in Section IV. We present
simulation results in Section V, related work in Section VI,
and conclusions in Section VII, respectively.

II. BACKGROUND

A. Deep Neural Networks

At the core of deep learning/Al is the deep neural network
(DNN). Modern state-of-the-art DNN consists of stacks of
convolution layers to extract the objects’ features and a few
FC layers at the end to classify them. In convolution, kernels
convolve over input feature maps (ifmap) to extract embedded
features and generate the output feature maps (ofmap) by
accumulating the partial sums (psums), as shown in Fig. 1.
Each fmap and filter is a 3-D structure consisting of mul-
tiple 2-D planes, and a batch of 3-D fmaps is processed
by a group of 3-D filters in a layer. Activation functions
(e.g., ReLU) operate on the results before they go to the
maxpooling layer. The computations of a convolutional layer

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

1732

Convolution Operation Fully Connected
Layers
2
X,=ReLu(X*W + b)
Ninen) . -
1| | |Output channel =N, . -
) Nz [% Nopmare N
Input fmaps (ifmap) | ||ouput channel =1 [Filters| |Output fmaps (ofinap) layer 1 layer2
Fig. 1. Convolution and FC layer operations.
can be expressed as
Ofmap[z][u][x][y] = ReLU
Ninch ky ky
x| Blul+ E E E Iz][v][Sx +i]
v=1 i=1 j=I

X [Sy + j1 x Flu][o][i]1[/]

0<z<N, 0=<u < Noych

0 <y < Nofmap_rw> 0 =< x < Nofimap_cl
Notmap_rw = ((Up — kp +2P)/S) + 1
Notmap_ct = ((Ip — ko +2P)/S) + 1 ()

where Ofmap, N, F, I, P, S, and B represent output feature
maps, the number of inputs in a Batch, filter weights, input
feature maps, padding, stride size, and bias, respectively [5].

Unlike the convolution layers, each neuron of the FC layer is
generally connected to every other neuron of its previous/next
layer with a specific weight (0 for no connection). The compu-
tations of FC layers are matrix/vector—matrix multiplications,
where the output activation (X,) of a layer is obtained by
multiplying the input activation (X;) matrix/vector with the
weight matrix (W) followed by the addition of a bias term
and, finally, passing the result through a nonlinear function,
X, = ReLu(X; * W + b).

B. Deep Learning/Al Hardware Accelerators

SIMD, or systolic array-based hardware, is the present state-
of-the-art hardware to accelerate Al operations [2], [3]. The
systolic array is only optimized for matrix—matrix multiplica-
tion. Mapping the convolution dot products into the matrix
multiplications by converting the activation maps into the
Toeplitz matrix and the kernel weights into a row vector
is a popular solution to address this problem. Nonetheless,
it involves redundant data in the input feature map, which
gives rise to inefficient memory storage and complex memory
access pattern [2]. More recently, heterogeneous architectures
are evolving, which have optimized cores for convolution and
FC layers [6]. While this solves the complications regarding
Toeplitz matrix conversion, it incurs area overhead. Because
when convolution core is active, FC core remains idle, wasting
circuit area. In response to the existing issues, in this article,
we propose a novel concept of a reconfigurable core capable
of efficiently performing both convolution dot products and
matrix multiplications based on the operation-dependent (i.e.,
convolution or FC) control signal.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 10, OCTOBER 2021

Global Buffer

s Weight Storage Memory 2 DA .
= 1ray o

é Memory Customized STT- fi Y bl
ok (for Inference Tasks with [¢) MRAM [®[Reconfigurable
=Y pre-trained models) PE Cores
5 Customized STT-MRAM St i
ux ¢
6 Al/Deep Learning Accelerator
| CPU |

Fig. 2. Al accelerator with reconfigurable cores optimized for both Conv.
and FC layers, and STT-MRAM based on-chip memory.

C. Memory System in Al/Deep Learning Hardware

The memory system is one of the vital metrics in determin-
ing the performance of Al hardware. Each off-chip DRAM
access is 100-200 times more energy costly than any ALU
operation or a local memory (e.g., register file/scratchpad)
access [2]. Energy-constraint Al hardware leverages a memory
hierarchy of register files, GLB, and DRAM. Moreover, a sig-
nificant amount of memory is required to store the pretrained
weights for inference-only applications. The larger the GLB
memory, the more energy-efficient the Al hardware is due to
lower DRAM access. Most of the existing DNN hardware
uses SRAM both as GLB and register file and eFlash as
weight storage [2]. Because of the large size of SRAM and
static energy loss due to high leakage at scaled nodes (e.g.,
10 nm and newer), the GLB size cannot be increased beyond
a certain threshold energy-efficiently. eFlash starts to suffer
from scaling challenges even at earlier technology, such as
28 nm [11]. The benefits of our proposed A-customized
STT-MRAM as a replacement of both the SRAM-based GLB
and the eFlash-based weight storage memory are many-fold:
higher memory capacity, lower read-write latency and energy,
and higher endurance against soft errors.

III. EFFICIENT AI/DEEP LEARNING HARDWARE

Fig. 2 depicts the top-level architecture of the accel-
erator containing the proposed reconfigurable core and
MRAM-based memory system. The following sub-sections
describe the dataflow in convolution and systolic mode and
formulate the memory occupancy time in each mode.

A. Reconfigurable Core

The architecture and workflow of our proposed reconfig-
urable core are quite simple but powerful enough to sup-
port both matrix multiplication and convolution dot product
at run-time configuration. The reconfigurable core consists
of three MAC modules and four multiplexers. Each MAC
contains a BFloatl6 multiplier and an FP32 adder [20], [21]
to accommodate both training and inference. If only inference
is desired, the hardware can be 8-bit int8 type [2], [3]. The
multipliers take input feature maps and filter weights as inputs
and pass the results to their neighboring adders to be added
with the previous partial sum results. The multiplexers act
as mode selectors of the core. When Mode is deasserted,
the MACs are disconnected from each other, and their outputs
are collected downward to reflect the systolic array architecture
[see Fig. 3(b)]. On the other hand, when Mode is asserted,
three MACs collectively act as a convolution block that

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

MISHTY AND SADI: DESIGNING EFFICIENT AND HIGH-PERFORMANCE AI ACCELERATORS WITH CUSTOMIZED STT-MRAM

O
=f

oo
oo
2D array of

reconfigurable cores
(PE/MAC)

OO0 oo
Ooo-00
Ooo-00

(b)

© Mode Vpg_ouT

Fig. 3. (a) Reconfigurable core. (b) Reconfigurable core acting as building
block of systolic array when mode is low. (c) Reconfigurable core acting as
convolution PE when mode is high.

performs three dot products parallelly and produces one partial
sum [see Fig. 3(c)]. In this case, adder; adds the outputs
of multiplier; and multiplier, to produce the intermediate
sum. Meanwhile, adder; adds the multipler; output with the
previous partial sum. These operations occur concurrently,
provided that the input activations and filter weights are
assigned to the multipliers parallelly. Once the outputs from
adder; and adder; are ready, adder, sums them up to produce
the PE_OUT. The building block containing three MACs and
four Muxes is defined as a PE block for convolution in this
work. Fig. 3 illustrates the functionality of the reconfigurable
core in systolic array mode (b) and convolution mode (c).
Since most state-of-the-art DNN architecture has a kernel size
of 3, we chose the number of blocks as 3 in the reconfigurable
core. However, designers can adjust this parameter to achieve
the highest possible computation/utilization efficiency of the
reconfigurable core as needed based on use cases.

B. STT-MRAM Based On-Chip Memory System

The prime criteria of memory to sustain as an on-chip
memory are high density, low read/write latency, and energy.
Conventional STT-MRAM suffers from high read/write energy
and latency. However, in the case of on-chip memory/GLB,
the intrinsic nonvolatility property of STT-MARM can be
compromised to minimize the read/write energy and latency
by adjusting the thermal stability factor (A). Considering the
data retention time in the GLB, A can be scaled down to
achieve a significant reduction in read/write energy, latency,
and increase in cell density. This section will formulate
necessary expressions to calculate the data retention time in
the GLB for the most time-consuming Al operations, such as
the convolution layer and FC layer operations. The derived
expressions will help us to precisely determine the maximum
data retention time in GLB and, thus, help to scale down A.

Deep learning/Al operations are layerwise sequential oper-
ations (i.e., the current layer’s output acts as input to the

1733

following layer). To formulate the data retention time between
two consecutive layers, in the inference mode, we define T
as the time required by the accelerator to generate the ofmap
of one layer. Once the ofmap of a layer is generated, it goes
through pooling and activation functions to serve as the input
to the following layer. We refer Tyool_relu as the time required
to perform the maxpooling and ReLLU operations. The time
required to generate the ofmap of the following layer is termed
T5. Finally, T, is the data retention time in memory between
two consecutive convolution (or FC) layers.

1) Retention Time for Conv—Conv Layers: In the convolu-
tion mode, each PE block of the array performs the dot product
between the input feature maps (ifmaps) and weights. Each
unit PE block’s size is defined as P;, where P, represents the
number of elements that the MAC module can process. The
ifmaps and kernel weights are loaded into the PE array from
GLB memory, and the PE array computations occur in parallel.
Without loss of generality, in our analysis, we adopted the row
stationary dataflow where kernel rows are loaded into the PE
blocks and kept stationary, and ifmaps are shifted according
to the stride size [2], [5]. The partial sums are accumulated
vertically to generate the ofmaps. This process is repeated
until a complete ofmap is generated. Setting Mode = 1 in the
Muxes of the PE blocks (Fig. 3) ensures that the reconfigurable
core is acting as a convolution core.

To calculate 7, we formulate an expression to estimate the
time required to generate the output of a convolution layer.
We assume that the operations related to the next output
channel will be assigned in the accelerator array only after
all the MAC operations related to the previous output channel
have been completed. In other words, in an iteration of the
accelerator array, the input channels present in it are all related
to the same output channel. In addition to simplifying the PE
scheduling procedure, this assumption also aligns with our
goal of obtaining a convolution layer’s worst case completion
time.

For layer n — 1, a single row of a partial ofmap (i.e.,
ofmap corresponding to one kernel and one input channel)
will require (kj, * [k, /P;]) PE blocks (symbol meanings are
given in the Nomenclature), implying that a partial ofmap for
a single input channel will require, Nofmp_rw * kp * [ky/Ps]
PEs. (The [] symbol means ceil operation where the result is
rounded to the nearest larger integer.) An example of convolu-
tion operation inside the core in Conv. mode is shown in Fig. 4.

Next, we find out how many partial ofmaps (i.e., how many
input channels) can be fit in the full accelerator array in one
step. This number is obtained by dividing the total available
PEs in the accelerator array, Wy * H,, by the number of PEs
required for one input channel. The total number of required
steps (i.e., number of times the complete accelerator array will
be used) for all input channels (Nj, o) for one 3-D filter (i.e.,
one output channel), Ngeps_per_out_ch» an be expressed as

ky
Nin_ch * kh * Nofmp_rw * ’7_‘

Ps
WA % HA

—‘ . (2

N, steps_per_out_ch =

The details of the symbols used in (2)-(6) can be
found in the Nomenclature. Time for each of the above

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

1734

BBl) Bl BB P Py

1 1 I I I., I Iy Iy | EPRRI EEIN £
Fu Ty 7| F., 7 |‘”‘P"‘“2F.. Py TPl | [| o [Faol || Pl By [P || P [Fos [Fos
E E E3 E 1 PE2 PE3
T I T
1 1 1 1 1 1 L L L I Ly Iy | PRE TRE | PR PR
Far | Fop | Fo ||| (Far | Foa | P | | | (ol Fop [P) | | Far | Foo By | || Pt | P | Py ||| For | Fo |
PE 4 PE 5 PEG PE4 PES PEG .
T
1. 1. 1) I L 1. 1 1 T Iy Iy | PR TRE Is; | Is3 | Isy
[(Fa [Fy [Fss Fy | Fy Fy ||| Fy Fy Fy Fy | Fy | Fy
PE7 PES PE 9 PE 7 PES PE 9
Stride Step 1 Stride Step 2
@ Outputs:
To [T |1 L[L[1 T [[T, [ofu | [ofus | ofix nfu ofiz [ofyy |
(Fu | Fo [Fi ||| [(FulFo [Ful || [Fy [Fo | Fiy gf ofy or,, ofyy ol‘u
PE 1 PE2 PE3
I Lofu | oy | [ofu] ot [of:]
1 Iy | I ! ! Iy 1y Iy | L .
([T [o | || (o [g [o] || [T [[] | AfterStride After Stride - Afier Stride
PE4 PES PEG Step 1 Step tep
Ty | Tos | 1z Tgy [T | s T [Te | 1
[Fai | Fa [Fas
PE7 PES PE9

Stride Step 3

Fig. 4. 3 x 3 kernel (k, = k,, = 3) is convolved (with stride = 1) over
a5 x 5 ifmap to produce 3 x 3 ofmap (Nofmp_rw = Nofmp_ct = 3). The size
of unit PE block is Py = 3. Total nine PE blocks are required.

steps is given as

Tper_step = To * Ncyc_per_slp * Nofmp_cl * Npat. (3)

Neye_per_sip Tefers to the total clock cycles required in the
accelerator, for one image of the batch, to perform: 1) dot
products between the kernel and ifmap elements; 2) partial
sum accumulation of the dot products; and 3) partial sum
of ofmap of previous input channel with current channel.
This term depends on the circuit-level implementation of
accelerator hardware. The term Nogmap_c1 appears in (3) because
the kernel needs to be shifted (i.e., according to the stride
parameter of convolution) this many times to generate the
partial ofmap for each input channel. Ny, appears in the
equation since each image from the minibatch will be seri-
ally processed [5]. Between each input channel operations,
the partial sum of ofmaps of the input channels will be stored
in the scratchpad to be accumulated to the next input channel’s
partial ofmaps to finally create the full ofmap output for that
particular output channel and filter. The total time required to
generate each output channel/ofmap, #yer out_ch» is given by

Tper_out_ch = Nsteps_per_out_ch * Iper_step- 4)

If there are a total of Nyy_chn Output channels, then the total
time required to generate the full ofmap (i.e., for all output
channels) is 71 = fper_out_ch* Nout_chn- Using (2)—(4), the T} term
can be expressed with the following equation. All parameters
in (5) are for Conv. layer n — 1

ky
Nin_ch * kh * Nofmp_rw * IVF‘Y-‘
WA * HA

T = * Tox

* N, cyc_per_stp ¥ N, ofmp_cl * N bat * N, out_chn- (5)

The ofmap of layer n — 1 will act as ifmap to next layer
n after passing through the ReLLU and MaxPool layers. The
ifmap, should be retained in the memory until layer n has
finished reading it to generate its output ofmap,. A closer
look into the situation will reveal that the input data read
time for layer n is related to the ofmap, generation time. This
implies that the ifmap, data need to be in the memory for a
maximum duration of time that is equal to the time required
for complete ofmap, generation. Considering the above facts,
we first calculate ofmap, generation time using the similar

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 10, OCTOBER 2021

m Partial sum movement
Pl = Activation Data movement

X1 X12 X13 Xi4] [Wi1 W12 Wi3 Wiyl

X21 X22 Xo3 Xo4 ,{anzzwz; Wzﬁ

Y7131 X33 X33 X34[¥| W31 W32 W33 Wiy
X41 X42 X43 X44] [Wa1Wap W43 Way

X1

X11 X12/[X13 X4
X21 X029 [X23 Xo.
X31 X32| 33 X34
X41 X42)

X12

X13 |+

WiTWi2[Wi3 Wiy
« |W21W2oWa3 Wog

X14 |-

B2y ERE

(@ (®)

cf+dh

Fig. 5. (a) Dataflow inside systolic array and (b) larger matrices can be
divided into smaller submatrices to fit in the systolic array. An example of
dividing two 4 x 4 matrix into four 2 x 2 matrices.

methods of (2)—(5) and then assign it as 7,. All parameters
in (6) are for Conv. layer n

ky
Nin_ch * kh * Nofmp_rw *IV

Ky
Py
WA * HA

T = * To * Ncyc_per_stp

* Nofmp701 * Nbat * Noulfchn- (6)

ReLU and MaxPool layers take relatively much shorter
time compared to Conv. layers do. Therefore, we can directly
estimate Tool_relu from hardware implementation of ReLU and
MaxPool layers. Combining Ty, 7>, and Tpool_relus WE can
estimate the required data retention time, 7T, in memory
between two consecutive Conv. layers in inference phase

Trel_conv—conv =T + Tpool_relu + 1. (7)

2) Retention Time for FC-FC Layers: To perform the
computations associated with FC layers, the reconfigurable
core transforms into the systolic array. This is achieved by
disabling the mode signal of the Muxes present in the PE
blocks. In this section, we formulate an expression to estimate
the time required to compute the output of an FC layer. The
systolic array shown in Fig. 3(b) has H4 x Wsa MAC modules.
Because of the reconfigurable feature of the core, Wsp =
P; x W4. The weights are loaded into the array according to
the capacity of the systolic array implying that the number
of weights can be loaded into the array in one step is equal
to the number of MACs present in the array, Ny per seep =
Hy % Wsa. If the total number of weights is greater than
the number of weights, the array can accommodate in one
step, i.e., N wt > Nwi_per_sep> Using the concept of divide
& conquer in matrix multiplication [see Fig. 5(b)], we find
out how many steps (i.e., number of times we need to load
new weights to the accelerator array) are required to complete
the computation with all elements of the weight matrix. The
number of steps required to complete the computation with all
weights is [myg./Hs] * [ng/Wsal. (For symbol meanings,
see the Nomenclature.) In every step, the array is loaded with
Nut_per_step Weights, inputs are streamed from left to right, and
the partial sums move downward to be collected in accumula-
tors [3]. The clock cycles required to complete each step are
Neye_per_sip that depends on the circuit-level implementation of
systolic array hardware and the dimension of systolic array
core. Combining the above terms, and considering there are
Ny, images in the minibatch, the time required to generate the

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

MISHTY AND SADI: DESIGNING EFFICIENT AND HIGH-PERFORMANCE AI ACCELERATORS WITH CUSTOMIZED STT-MRAM

WL= Word line

= Reference Layer [l = Insulating oxide layer = Free Layer
BL= Bit Line

a WL = VDD a % WL =VDD sL=Source Line
=8 < Z © g
- > (=) Il >
SN S = 1
T2 - T = < - =
8 %‘ Access Transistor § = 2 Access Transistor B
=32 235 £ S
=2 E - E & 2
B2 L0 Lo (1) az| 2 Lusie (0) B

(a) (b) 7

Fig. 6. Bit-cell of STT-MRAM. (a) Reading from it and writing 1.
(b) Writing 0.

output of FC layer (n — 1), T}, is expressed in the following
equation:

T = _fC k fe k T k N *k N (8)
1 1k s b
H Ws [cyc_per_stp at

where all parameters are for FC layer (n — 1).

FC layer n will consider the output of previous FC layer
(n—1) as its input. The output of FC,,_; should be stored in the
memory until FC,, has completed reading it for generating its
output. With this reasoning, we calculate the output generation
time for FC, following the above method and assign it as 7.
All parameters of (9) are for FC layer n

my nf
T = ’V_C—‘ * ’7 - —‘ * To * Ncyc_per_slp * Npa. (9)

Hy Wsa
Two consecutive FC layers do not have maxpooling layer
in between. Therefore, we can find the data retention time,
Tret_fe—tc, for an FC layer followed by another FC as

Tret_te—tc = Th + 1. (10)

C. Retention Time of Convolution Layer Followed by FC
Layer

The retention time between a convolution layer followed by
an FC layer is also expressed as

Trelﬁconvffc =T + Tpoolfrelu + T (11)

where 7’| is the time required to generate the Conv. layer
ofmap and T, is the time required to generate the FC layer
output.

Using the above expressions of weight, ifmap, and ofmap
occupancy times in GLB memory, for a particular accelera-
tor hardware architecture and the operating clock frequency,
we can estimate the maximum retention time required for
STT-MRAM-based GLBs. The MRAM write and read times
will be added with the above retention time expressions. As the
MRAM read/write times are orders of magnitude lower (i.e.,
less than 10 ns) compared to the retention times 77 and 7 that
are in the ms or s range, as explained in Section IV, we did
not explicitly add the MRAM read/write time with the above
retention time (7i) expressions.

IV. OPTIMIZING STT-MRAM FOR Al ACCELERATORS

A bit-cell of STT-MRAM consists of a magnetic tunnel
junction (MTJ) for storing the bit and an access transistor
to read/write the bit. The MTJ contains two ferromagnetic
layers: 1) fixed magnetic orientation and 2) free layer whose
orientation can be switched externally by an applied current.
The orientation of the free layer relative to the reference layer
represents the state of the stored bit. Fig. 6 depicts the cell
schematic, read, and write operations.

1735

A. Critical Design and Performance Parameters of MTJ

1) Thermal Stability Factor and Critical Current: The
energy barrier E,, in which the free layer magnetization must
overcome to switch its stable state, is defined as the thermal
stability factor (A) and is expressed as [22], [23]

E, HgMgV
"~ kgT 2kpT
where Ej is the energy barrier of free layer, kg is Boltzmann’s
constant, 7' is the temperature, Hg is the anisotropy field,
Mg is the saturation magnetization, and V is the volume of
MTJ.

The critical current, /., is defined as the minimum current
required to flip the state of the free layer [19], [22], [23]. The
critical switching current is modeled as [22], [23]

dekpT 4 M,
I = ets *g*A* 14 et
h n 2Hg

where e is the electron charge, kg is Boltzmann’s constant,
T is the temperature, h is Plank’s constant, a is the LLGE
damping constant, # is the STT-MRAM efficiency parameter,
4w Mg is the effective demagnetization field, and Hg is the
anisotropy field.

2) Retention Time and Retention Failure: Once data are
written, MTJ should retain its state, even if the power source
is removed, until any external force is applied to flip the
state. However, due to thermal noise, the logic state might get
flipped unintentionally. The maximum time MTJ can retain
its nonvolatility is known as the data retention time. The RF
probability for a given time period . is [22], [23]

12)

13)

trel
T % exp(A)i| (14
where . is the retention time and 7 is the technology
constant.

3) Read Disturbance (RD): To read a bit from STT-MRAM,
read current /,, much less than the critical current /., is flown
from bitline through the access transistor and MTJ. Fig. 6
shows that writing 1 and reading (both 0 & 1) share the
same current path. This can sometimes cause the unintentional
switching of the bit-cell content resulting in RD. For read
current /. and read latency 7., the probability of RD can be
modeled as [22], [23]

Prp=1-— exp|:—

t,

o exp(a(1-4))

4) Write Error Rate (WER): Writing a bit-cell requires a
write current 7, larger than /., to be flown between BL to
SL, as shown in Fig. 6. Because of the stochastic nature
of the write operation, the switching time of MTJ varies
from access to access [19], [22], [23]. If the write current
is terminated before the free layer has successfully changed
its state, the write operation can be erroneous. For write
pulsewidth 7,,, the WER is [22], [23]

—w2A (4 - 1)
Trreolo 0]

Prp =1 —exp (15)

WERp; = 1 — exp (16)

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

1736

B. Customizing STT-MRAM for Al Accelerators

1) Scaling Thermal Stability Factor: To achieve typical
retention period of ten years, the thermal stability factor,
A > 60, is required [11], [14], [19], [22], [23]. However,
such a long retention time may be unnecessary depending on
the application. For example, if MRAM is used as the GLB
memory in Al accelerators, then the retention time can be
significantly scaled depending on the weight and input/output
feature-map data occupancy time (e.g., ms to s ranges) in that
memory. If STT-MRAM is used as an eFlash replacement for
pretrained weight storage for Al inference tasks, then three
to five years retention might be enough instead of ten years.
From (12), it is seen that, by adjusting the volume (i.e., area
and/or thickness) of the MTJ, the thermal stability factor (A)
can be scaled. In other words, considering the target operating
temperature range of the AI accelerator and the expected
lifetime of the data, scaling down of thermal stability factor
will improve area efficiency by increasing the memory bit-cell
density. Moreover, with scaled A and bit-cell area, the cell
would require a lower operating current, thus saving energy.

2) Optimizing Read/Write Latency and Energy at Target
WER and RD: Recent state-of-the-art STT-MRAMs can com-
pete or outperform SRAMs in all aspects except write energy
and write latency [7], [14], [15]. However, for Al acceler-
ator applications, by scaling A and the retention time of
STT-MRAM, we can circumvent the write energy and latency
limitations. Equation (16) implies that write latency is f,, o
In(A) at constant WER. We can exploit this relationship to
reduce the write latency with a scaling down of A. From (14),
we infer that retention time f. is exponentially proportional
to A. Thus, depending on the desired retention period of
STT-MRAM in the AI accelerator, we can optimally scale
down A and also minimize write latency at that target reten-
tion time. However, (16) also implies an inverse relationship
between write latency and WER, which hinders us from
aggressively scaling down write latency at the desired A.
Fortunately, to boost the writing speed at the scaled A, we can
keep I,, higher (e.g., close to the prescaled value), and this can
assist in designing an STT-MRAM with high write-speed [19].
Recently, high-speed write has been experimentally demon-
strated in [17] by optimizing the free layer materials. We can
identify the optimum A and /,, that minimize write latency
and write energy while still satisfying the WER and retention
time requirements for the Al accelerator. As depicted in (13),
with scaling of A the critical current /. decreases linearly, and
hence, the read current /, also decreases. At this scaled A and
I,, the read latency can also be scaled by adjusting the sense
amplifier reference voltage [7], [19]. Equation (15) implies
that, at scaled A, the shortened read pulse duration will also
ensure that the read disturb rate is within the acceptable target.

C. Addressing Process and Temperature Variation

Recent experimental results show that, by adjusting MTJ
free-layer material properties [16] or by dimension scaling [6],
the retention time and write speed can be adjusted. However,
the performance of MRAM can degrade due to the process
and temperature variations [7], [14], [24]. Process-induced

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 10, OCTOBER 2021

1 wrno

ne.
Process
Variation

|
|
APTﬁGuardBanded !
|

-nc
a3 nc

|

| Process

| Variation

i
I |

| Tempu | (Nominal Process
WWikin, d Temperature) ' Wil
Apr v = (Target Ascatea) an per Apr Max

Fig. 7. Impact of process and temperature variation on thermal stability
factor (A).

Iread_low-resismnce

N\~ \ |
mfemnce }
| |
| |

1

Ireadﬁhi gh-resistance
v Lurite |

Current

Iwriteﬁ]ow Iwrite nom Iwriteihigh
AScalcd APT_GuardBanded AI’Tj\/IAX
Thm nom Tw[d

Fig. 8. Distribution of read/write currents with PT variation. Worst case
occurs when worst process corners experience Thor OF Teold-

variations in free layer thickness in MTJ and in access tran-
sistor channel length/width and threshold voltage contribute to
the performance variations in MRAM. From silicon measure-
ment data in [7], the standard deviation (o) of MTJ diameter
variation was reported to be 2.1% of the mean. To ensure
that the adjusted A accounts for process variations, we ensure
that enough guard band (e.g., 40) is added, as shown in (17)
and (18).

The bit-cells are placed compactly on the layout; as a result,
the bit-cell to bit-cell variations within the same die/chip are
minimal, and the process variation is dominated by the chip-to-
chip variations. A increases with an increase in MTJ diameter
and Hy due to process variation and a decrease in temperature
from the nominal value [see Fig. 7 and (12)]. An increase in A
increases the critical current (/.), which eventually increases
the write current (/,,) [see (13) and (16)]. Given the smaller
write pulse, write failure occurs when supplied 7, is less
than the required 7,,. Worst case occurs when both: 1) the
supplied I,, decreases due to the access transistor being in
the slow process corner and 2) the required 7, increases
due to an increase in A resulting from Process and runtime
Temperature (PT) variations. On the other hand, a decrease in
A beyond a minimum due to PT variation will result in RF
[see (14)].

To protect the desired Ageq against the worst case PT
variation, appropriate guard band needs to be added. The
A p7T_GuardBanded 1S chosen to cover both the worst case 40 range
(i.e., 99.993% of the samples) of process variation and high
temperature operating scenario, as shown in (17)

Ascaled =< (APT_GuardBanded - 40) * (Tnom/Thol) (17)
Apr MaX = (APT_GuardBanded +40) * (Tnom/ Teota). (18)

The chips located on the right-hand side of the process
variation distribution (i.e., 4 + n *x o, where n >
1) of Apr GuardBandea Will experience larger A, as shown
in Figs. 7 and 8. In addition, at cold temperatures, A will
further increase to Apr max, as shown in (18). Although
the higher Apr max > Ascalea Will be benign for retention
time, the required write current will increase in this sce-
nario to confine the write time and WER of these samples
within the nominal bound. Designing the write driver for this
worst case scenario will dissipate unnecessary power for all
other nonworst case samples. To address this, we propose a

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

MISHTY AND SADI: DESIGNING EFFICIENT AND HIGH-PERFORMANCE AI ACCELERATORS WITH CUSTOMIZED STT-MRAM

Process (P) and

VDD Temperature (T) Monitor

Digital Controller

-o| W/4 L:(W/4 I—c(W/4 -c| W/4§

i Regular
i current
{ driver | Additional current sources to
MTJ Biteell [£ compensate PT variations _ ¢
Array
Fig. 9. Modified write driver.
~
E
& o)
8= =
n 8 s
- & =
s S
S X g
@ = g 3,
)
ngs.zs- T j65 T
=2
5 %’og 25f 5 B
€58 7 ‘ g
322 :
88t eraliling [11]; &
2R
(b) oL ¥ L II 11 |, 2
- - -
) % al 18 &
53
B s 3f 16 =
= &5 S
g 23 2 14 =
25 <
S5E 11l > &
(C)gﬁﬁo»III I% L= Q-:l: L 1o =
> & dOHQ O N > L]
© FEETT T LS SIS E S S
VI TEIESTIEL ST EFLFEFF FWw
TS EES N F S ST
< Wt &-\\o o B S
N4
Fig. 10. (a) Complete sizes of widely used AI models. (b) Activation map

(ofmap/ifmap) sizes. (c) Weight sizes for Conv. layers.

dynamically adjustable write driver depicted in Fig. 9. In addi-
tion to adjusting the write current according to the process
variation profile of the MRAM chip/die, a PT monitor senses
the runtime temperature and adjusts the current dynamically by
turning on/off the pMOS transistors (see Fig. 9). For example,
at the nominal process and temperature, the extra transistors
can be OFF; however, at PT-induced rise in A, the transistors
can be individually activated to ensure successful write.

In summary, we design the MTJ with higher Apr GuardBanded
than the desired Agc,eq to accommodate potential degradation
in thermal stability from worst case 40 process variation and
runtime high temperature and proposed a write-driver with
the controllable current drive to address the high write-current
demand at cold temperature and slow process corner.

D. MRAM Write Energy Optimization With ScratchPad

Since the write energy of STT-MRAM is higher than the
read energy, we propose an innovative scratchpad-assisted
MRAM GLB architecture to minimize the write frequency in
STT-MRAM and, thus, further optimize the energy. Reduced
write-frequency is achieved by using a small global SRAM
scratchpad, typically in the kB range (details in Section V),
in addition to a large (i.e., MB range) global STT-MRAM
buffer. When the accelerator PE array generates partial ofmaps
(i.e., ofmap corresponding to each input channel), they need to
be stored somewhere in memory to be added to the next partial
ofmap to produce the complete ofmap of an output channel.

1737

—+—AlexNet —7— Efficientnetb0 —p—Mobilenetv2 —+—Resnet18 Vgg16
—e—Darknet19 —%—Googlenet NasnetLarge —6—Resnets0 —6—\Vgg19
Darknet53 ~ —A—Inceptionresnetv2 —#—Nasnetmobile ——Shufflenet —2—Xception

——Densenet201 —&—Inceptionv3 —#—Resnet101 —<—Squeezenet

Size (MB) [int8 data]
Size (MB) [Bf16 data]

Batch Sizes

Fig. 11. Required capacity of GLB with varying batch sizes to avoid DRAM
access during inference.

The reason behind these partial-ofmap writes is that the
accelerator might not produce the complete ofmap in one step.
Between the subsequent steps, the partial ofmap result from
the previous step needs to be written in the memory to be sub-
sequently read and accumulated with the partial ofmap result
from the following step. Adding this small SRAM scratch-
pad memory (for intermediate ofmap writes) with MRAM
GLB further improves the energy efficiency. In summary,
our proposed scratchpad-assisted MRAM memory architecture
provides energy efficiency by: 1) minimizing the STT-MRAM
write frequency and 2) in addition, at a smaller size, SRAM
is more energy-efficient than STT-MRAM [7].

V. RESULTS AND ANALYSIS
A. Design Space Exploration for Selecting Memory Capacity

Nineteen widely used state-of-the-art deep learning mod-
els were analyzed to design and validate our STT-MRAM-
based Al accelerator with the reconfigurable core. Fig. 10(a)
shows the model sizes both in 8-bit int8 (left Y-axis) and
16-bit BrainFloat16 (BF16) [20], [21] (right Y-axis) datatypes.
For inference-only accelerator int8 datatype and hardware
suffice, however, if full-scale training or transfer learn-
ing is desired, then BF16 hardware and data-type are
necessary [20], [21]. The models’ sizes imply that around
280 and 140 MB of STT-MRAM are required as non-
volatile (NVM) weight storage memory to store the pre-
trained models using BF16 and int8 datatypes, respectively.
The STT-MARM NVM weight storage memory can replace
the currently used eFlash memory as an efficient alternative.
Fig. 10(b) and (c) represents the input/output feature map and
weight size ranges of all models for convolution layers both in
int8 (left Y-axis) and BF16 (right Y-axis) formats, and these
data help us to estimate the maximum required GLB memory
size to avoid DRAM accesses during each convolution layer
operation. In the cases of FC layer operations, only the feature
maps, usually in the kB range for most of the models, are
stored in the GLB, and the weights, around 200 MB in size for
the largest model in BF16, are directly assigned from DRAM
(or weight-storage NVM) to the systolic array for matrix
multiplications. Hence, we ignored the FC layers’ weight
and activation sizes from design space analysis for selecting
on-chip GLB memory capacity.

To fit a Conv. Layer data completely into the GLB, it needs
the capacity to store: 1) input fmap (ifmap); 2) filter weights;
and 3) output fmap (ofmap) of the current layer. Fig. 11 shows

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

1738
—+—AlexNet —v— Efficientnetb0 —b—Mobilenetv2 —+—Resnet18 Vgg16 |
—e—Darknet19 4—Googlenet NasnetLarge —©—Resnet50 ——Vgg19

Darknet53
—»—Densenet201 —&— Inceptionv3

—A—|nceptionresnetv2 —%—Nasnetmobile ——Shufflenet —4—Xception
—*—Resnet101 —<—Squeezenet

2| Int8 data type 10¢ Bfloat16 data type

Buffer Size = 12MB Buffer Size = 12MB

1.5
1

Extra DRAM Access
Latency (milliseconds)

0.5
0
(a) Batch Sizes () Batch Sizes
- 2
a Int8 data type Bf16 data type
23515 Batch Size = 4 6 Batch Size = 4
<
S -
s
g5 1 4
e &
g 05 2
0 0
2 4 8 10 12 2 4 8 10 12
©) Global Buffer Size (MB) () Global Buffer Size (MB)
Fig. 12. For Conv. layers and total extra DRAM access latency for varying

batch sizes: (a) int8 and (b) BF16 datatypes; total extra DRAM access energy
for varying GLB size: (c) int8 and (d) BF16 datatypes.

the required GLB size for 19 widely used deep learning models
in int8 (left Y-axis) and BF16 (right Y-axis) for different batch
sizes. For a smaller batch size (i.e., <2), a maximum of 12 MB
of GLB would be enough for the int§ datatype. With 12-MB
on-chip GLB memory, most of the models, except a few (e.g.,
Darknet53, VGG19, Nasnetlarge, and Xception), can support
larger batch sizes, such as 8. For BF16, 12 MB would suffice
for batch size 1 for all models. If pruned models [2] are
used, the batch of more images can be fit into the GLB. For
high-performance accelerators that operate with larger batches
of data, the GLB size can be further increased.

When a Conv. layer data—ifmap, weight, and ofmap—does
not fit into GLB at one attempt, extra DRAM accesses are
needed, incurring extra energy and latency. Fig. 12(a) shows
that, if a GLB of 12 MB is used, even larger batch sizes, such
as 8, the extra DRAM access-related latency is zero for most
of the models (int8 case) and around 2 ms for few models. For
the BF16 datatype, the extra DRAM access latency increases
slightly but is within 10 ms. Fig. 12(c) depicts that, if the
GLB size is 12 MB, for most of the models in int8 datatype,
extra DRAM access-associated energy reduces to zero. For
BF16 datatype, most models would need a few extra DRAM
accesses [see Fig. 12(d)]. The DRAM access energy and
latency were calculated for dual-channel DDR4-2933 DRAM
with 64-bit data bus.

B. Memory Retention Time Estimation for AI Models

The data retention time in GLB for the models (in
BF16 datatype) is calculated using (5)-(11) (see Section III)
and the postlayout timing results from the implementation
of our proposed reconfigurable accelerator core at 14-nm
technology (see Table I). The results for 42 x 42 MAC array
and batch size 16, as presented in Fig. 13, show that the
maximum data retention time in GLB for all models is less
than 1.5 s where most models have retention time less than
0.5 s. The retention time goes even smaller (in ms range) for

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 10, OCTOBER 2021

=
~

-

o
«n

(seconds)

Retention Time Range
o

Fig. 13. GLB retention time range for 42 x 42 MAC array (Bfloat16 hard-
ware and CLK details in Table I) and a batch size of 16.

—o—42X42 MAC array —&— 36X36 MACarray —{>— 60X60 MAC array ‘

(seconds)
o
w

o
= . .
'E - 1.8+ Fixed batch size =16 1
c T 14

5 <

c O

g © 1

3 o

v 2

-4 0.5 K

3

s 0

QE-’ 14F —o— Batch Size=4 1
= 1} —a— Batch Size=8

S —f>— Batch Size=16

=]

=

(7]

=

9]

o

x

©

=

Fig. 14. Required retention time of MRAM GLB for Bfloatl6 hardware
(CLK cycles and frequency given in Table I). (a) Varying MAC array capacity.
(b) Varying batch sizes.

int8 datatype as the clock cycle reduces significantly (usually
1-2 clock cycles) in int8 version hardware. Fig. 14(a) shows
the maximum retention time for all models (in BF16 datatype)
for fixed batch size 16 and varying MAC array sizes, whereas
Fig. 14(b) shows the maximum retention time needed for a
fixed MAC array size of 42 x 42 for varying batch sizes. From
the figures, it is evident that a further reduction in retention
time can be achieved by using the proper combination of batch
and MAC array sizes.

C. Customizing STT-MRAM for Al Accelerator

Using (14), we analyzed the impact of the thermal stability
factor (A) on retention time within certain BERs. To identify
the target BER of STT-RAM for applications in pretrained
weight storage and GLB memory, we first analyzed the size
of modern Al models. From Fig. 10(a), it can be seen that
a few hundred MBs would be enough to store the pretrained
weights; within this memory capacity, we choose BER in the
order of 107 (i.e., one bit-flip per one billion bits). Given
the worst case cumulative BER can occur from RF, RD, and
write error (WE), the worst case bit-flips for VGG16 at this
BER is about 12 bits. This BER is negligible and cannot make
any impact on the Al task’s accuracy [25]. Fig. 15(a) shows
that, with A = 39, we can ensure that the loaded pretrained
weight will successfully remain in the accelerator for about
three years at this target BER, which is enough, given that Al
models are replaced frequently with better ones.

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

MISHTY AND SADI: DESIGNING EFFICIENT AND HIGH-PERFORMANCE AI ACCELERATORS WITH CUSTOMIZED STT-MRAM

1739

-9 -8 -8 -8 -8 -8
2 4 %10 239 3 x 10 Ac19 3 x 10 Ao 1 3 x 10 s PE (U m— s 3><10 —— A-19
% 3 Aes A=195 é Target RD—A=195 Target KD a=195|| o A=19.5 2=;3-§
E > —— A=20 Error Rate ™ A=27.5 —a=s| 8 A=27.5 =27.
-(“‘; | Target RF 'g 2 2/ Error Rate 5 2 Target Write 2 Target Write
w2 Error Rate 2 =} Error Rate Error Rate
5 R Q1 === e = s a1 R — s N
=1 9 2
g 3 =
o ~
~0 0 0) -
1 2 3 4 02 04 06 02 04 06 25 3 35 4 45 5 1 12 14 16
Time (Years) Time (Seconds) Read Pulse Duration (ns) Read Pulse Duration (ns) Write Pulse Duration (ns) ~ Write Pulse Duration (ns)
(@) (®) (© @ (e) ®
Fig. 15. (a) Thermal stability (A) scaling for three-year retention time (for pretrained weight storage NVM application). (b) A and retention time scaling

for accelerator’s GLB memory design. (c) and (d) With scaled A and read pulsewidth scaling while ensuring that RD BER is within limit. (e) and (f) Write
latency scaling with A and within target WER. Note that (c) and (e) use base-case (10-year ret. time) from [7], and (d) and (f) from [14]. Target BER is

chosen to ensure no accuracy impact on Al tasks [25].

To obtain device-level process/temperature variation profile,
we varied MTJ physical parameters. In our SPICE Monte
Carlo simulation flow, the sample size was 10000. We chose
process variation ¢ = 2.1% of mean (experimentally observed
in [6]), Thor = 120 °C (393 K), and T,qq¢ = —20 °C (253 K)
in 17 and 18. We adjust A =39 to Apy gg = 55 after guard-
banding. After performing device- and circuit-level simula-
tions to verify the functionality of the bit-cell and memory
array, we performed a system-level evaluation of the design.

For GLB memory, we can lower A and retention time
according to the average occupancy time of weight and
input/output fmaps in the accelerator’s GLB memory. Also,
since this memory size is within few tens of MB (e.g., 12 MB),
we can increase the BER to 1078, which will cause less
than three bit-flips in the worst case (i.e., considering BER
from RE, RD, and WE) at this memory size. The accuracy
impact of deep learning models at this BER and memory
size is negligible [25]. In Fig. 15(b), at scaled A 19.5
(after PT guard band Apr gg = 27.5), we can achieve 3 s
of retention time (which is much higher than the minimum
required, as shown in Fig. 14) at the target BER of 1073, In [6]
the fabricated diameter reported was 38 nm for A = 60. In our
case to scale it to A = 27.5, we estimate the scaled diameter
to be 17.2 nm. Moreover, if both free-layer material property
adjustment [16] and scaling are done, then we can achieve the
desired A at a relatively higher MTJ diameter.

Next, we analyze the impact of scaling A on the read
pulsewidth. If the read pulsewidth is large, then the chances
of RD increase. Moreover, with scaling A = 19.5 (after
guard-banding Apr gg = 27.5), the required read current also
decreases. As a result, a significant reduction in read energy is
also possible. In our study of A scaling impact of read/write
latency, as the base-case STT-MARM parameters, we used the
chip-implemented data of [7] and [14]. Fig. 15(c) and (e) uses
base-case (i.e., A = 60) from [7], and (d) and (f) from [14].
With the scaling of retention time, the write latency only
scales as a factor of In(A); to further decrease the write
latency, we can use the write current as another knob, as dis-
cussed in Section IV. The write latency scaling is shown in
Fig. 15(e) and (f).

We used the destiny memory modeling tool [18] to compare
STT-MRAM area and energy with SRAM, while A is scaled
down. Although theoretically, STT-MRAM has a minimum
area of 6F2; however, silicon results show that the MRAM
area is scaled by 70% compared to SRAM at 14-nm node [7].

Authorized licensed use limited to: Auburn University. Downloaded on

I STT-VRAM ISRAM|

=N

> 25
5 1° Scaled A=275 || § 10° [Scaled A=27.5 |
T <
g ° B 10
: | | | | | ! |
©
AN =
u £ g0
: |I|||||| 5 iy
Zo 4 10 12 16 32 64 10 12 16 32 64
(a) Memow Size (MB) (b) MemOI'VS|Ze (MB)
3 25 ,
o 1° ScaledA 17.5 g 10 ScaledA 17.5
& <
5 1
T S
£’ II I £ 10°
S S
g 10 12 16 32 64 =4 10 12 16 32 64
Memory Size (MB) Memory Size (MB)
(© d)

Fig. 16. Energy and area comparison of SRAM and STT-MRAM for various
sizes. A scaled: (a) and (b) for GLB and (c) and (d) for eMRAM banks to
store lower half (i.e., LSB groups) of weight/fmap bits.

We modified the destiny tool to incorporate this silicon obser-
vation. The results for scaled A at the 14-nm technology
node are shown in Fig. 16. We see a significant advan-
tage from STT-MRAM beyond 4-MB capacity. Compared to
SRAM, the area scales by more than ten times at isomemory
capacity [see Fig. 16(b) and (d)]. Similarly, for STT-MRAM,
the relative energy efficiency improves as the memory capacity
increases [see Fig. 16(a) and (c)]. These results imply that
STT-MRAM can offer significant performance gains at future
high-performance Al accelerators that will use large on-chip
buffer memory.

D. Energy Optimization With Variable Retention MRAM
Banks

We further improved the efficiency in STT-AI Ultra accel-
erator with two separate MRAM banks of A = 27.5 and
A =12.5 (Apr g = 17.5). The first half of the weight/fmap
bits is considered significant (MSB group) and stored in
Apr gg = 27.5 bank and the rest of the LSB groups in
Apr gg = 17.5 bank. For the LSB group at Apr gg = 17.5,
we relaxed the BER to 1075, as shown in Fig. 17. The relative
gains in energy and area are shown in Fig. 16(c) and (d).

E. Optimizing Energy With Scratchpad for Partial Ofmaps

Our simulation results show that, for STT-MRAM, the write
energy is about 70% more than the read energy at scaled A.

July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

1740
g o 10° [—aen2 M 2200 [y
é A=125 % Target A=125 3..; A=12.5
EI.S —A=175 21,5 Emrgkm —A=175 %1.5 —A=175
= 2 <]
§ 1r=—mt=> SR R
£ | A f LY
205 Target [| 0.5 20,50 Target
E Error Rate g z L Error Rate
o] . " 1
~ 0 1 2 02 04 06 1.5 2 25

(@ Time (Seconds) (b) Read Pulse Duration (ns) ~ (¢) Write Pulse Duration (ns)
Fig. 17. A Scaling with relaxed BER for LSB bit groups. (a) Retention,
(b) read, and (c) write latency within target BER. (Base case, A = 60, and
data modeled after [14].)

5})
—~ =
2 2
23 s
oS 5]
P E
= G
=)
Fig. 18. Maximum size of partial ofmaps.
- I-SRAM only [T MRAM only [MRAM with Scratch-pad
> : T : T :
§ 1
w 0.756
3
g 05
g 0.25
5
0
= 2 8 10 12
Global Buffer Size (MB)
Fig. 19. Comparison of buffer memory energy dissipation for: 1) SRAM;

2) MRAM; and 3) MRAM with scratch pad architectures.

As described in Section IV-D, using a small SRAM scratchpad
for writing the intermediate partial ofmaps instead of the
MRAM can significantly reduce the write frequency and save
energy. Fig. 18 shows the partial ofmap size distribution. For
the BF16 data type, we see that 52-kB (26 kB for int8) scratch-
pad will fit most of the models in one attempt. The normal-
ized energy improvements of the proposed scratchpad-assisted
MRAM system are shown in Fig. 19 for ResNet-50 model and
14-nm technology.

F. Accelerator Implementation

We implemented our Al accelerator architecture with recon-
figurable cores (i.e., in Fig. 3), at the RTL level using
BF16 hardware as BF16 can support both inference and
training. We used Synopsys 14-nm standard cell library [26]
to complete synthesis, and place and route of the design.
The postlayout CLK cycle data for the PE/MAC are shown
in Table I. The top-level view of physical design from
ICC2 tool [26] is shown in Fig. 20. We used the Synopsys
14-nm memory compiler to create the SRAMs for our base-
line accelerator. Results from postlayout and timing-closed
accelerator design are shown in Table II, where row 7 shows
the area and power for the baseline accelerator with 12-MB
GLB memory. Next, to implement the MRAM-based STT-AI
accelerator, we estimated areas and power data from the
destiny [18] tool at scaled A and modeled those as a black
box in the physical design part in Synopsys ICC2 [26] for
14-nm node. The 52-kB SRAM scratchpad is divided into two
banks with individual CLK/power gating. Rows 4 and 8 show

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 10, OCTOBER 2021

TABLE I

RECONFIGURABLE PE CORE DETAILS (BFLOAT16 HARDWARE, AND
SYNTHESIZED WITH 14-nm STANDARD CELL LIBRARY [26])

Reconfigurable Core Mode | CLK Freq | Required CLK Cycles
Systolic Core (1 MAC) 1 GHz 11
Conv. Core (3 MAC) 1 GHz 17

STT-MRAM

42x42 array of PE

Scratch Pad

(b)

Fig. 20. Top-level floorplan view from ICC2. Accelerator designed with
(a) 12-MB SRAM and (b) 12 MB-STT-MRAM with scratchpad.
TABLE II
ACCELERATOR DESIGN DETAILS AT 14 nm
Dynamic | Leakage
. Area
Module Details 5 Power Power
(mm?~)
(mW) (mW)
Functional Resonﬁgurable core 408 954 091
Core with 42x42 MACs
RAM 12 MB SRAM global
S S globa 16.2 48.98 021
Block memory
STT-MARM 12 MB MRAM Lol 17.61 0.08
(A=217.5) global memory
STT-MRAM 6 MB MRAM (A=17.5) 093 1375 0.06
(A=17.5, A=27.5) 6 MB MRAM (A=27.5)
RAM hP: 2 KB 26KB block
S . ScratchPad 5 . (two 26 bf)c S 0.069 02 8E-4
(for MRAM) with CLK/power gating)
Baseline Functional C d
Accelerator unetion Tore an 2028 | 1003 113
SRAM (Row 3 above)
(SRAM-based)
TT-Al F ional
N unctional core and 5.09 972 0.99
Accelerator STT-RAM (Row 4 above)
STT-Al Ul Functional C d
tra ‘unctional ore an 5.0 968 0.98
Accelerator STT-RAM (Row 5 above)

that the STT-AI accelerator offers significant area and leakage
energy savings. The STT-AI Ultra accelerator achieves further
improvements in power and area, as shown in row 9 in Table II.

G. Accelerator Performance With ImageNet Dataset

Next, we modeled our hardware and STT-MRAM BERs
in PyTorch [27] and ran inference for pretrained AlexNet,
VGG16, and ResNet-50 models with ImageNet bench-
mark to obtain top-one and top-five accuracy results. With
STT-MRAM having Apr gg = 27.5, there was no accuracy
loss compared to the baseline SRAM version. However, for
STT-AI Ultra accelerator, with BER = 107> in half of the
bits (LSB group in lower A STT-MRAM bank), we observed

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

MISHTY AND SADI: DESIGNING EFFICIENT AND HIGH-PERFORMANCE AI ACCELERATORS WITH CUSTOMIZED STT-MRAM

9 Top-1 without Pruning Top-1 with Pruning

9
[STT-Al/Baseline [STT-Al/Baseline
I STT-Al Ultra 90 g0 |IEMSTT-AlUlra {90

Top-5 without Prunin, Top-5 with Prunin;
5 P 9 %0 5 P- 9

®
S

85 70

@
S

80 60

Accuracy (%)
3

50 75 50

& @ e R
PW*\A ?\es$e\ \100 Pla*\A @Gs“a\ QGO

&
P\@& ‘;\ee\w R

CO
P)g;& \2@9$?> Neco

Fig. 21. Top-one and top-five accuracy comparisons for STT-Al/Baseline
and STT-AI Ultra cases. No accuracy change for STT-Al/baseline cases, and
negligible (less than 1% normalized) accuracy change occurs on STT-AI Ultra
accelerator. Both original and pruned (at 50% pruing rate) [2] model results
are shown.

negligible (less than 1% normalized) accuracy loss, as shown
in Fig. 21.

VI. RELATED WORK

Over the last decade, STT-MRAM technology has
been extensively researched for its high-endurance, radi-
ation hardness, nonvolatility, and high-density memory
properties [28]-[33]. The prior works on STT-MRAM appli-
cations can be broadly categorized into two domains: 1) its use
as the last-level cache memory in processors and 2) its applica-
tion in emerging process-in-memory (PIM)-based computing
paradigm.

Several studies [28]-[32] have used STT-MRAM in PIM
setting due to complex and tunable resistance dynamics
achieved through its spin-transfer torque mechanism and
simultaneous access to multiple word-lines of the same array.
Yan et al. [29] proposed crossbar arrays where the internal
resistance states—which were used to mimic the weights of
the models—of STT-MRAM were tuned to support nonuni-
form quantization. Some studies, such as [34], used the PIM
architecture, where the MAC operation was simplified to addi-
tion/subtraction and bit-wise operation by manipulating the
models’ parameters. Shi et al. [31] mapped the LeNet5 model
to a synaptic cross-bar array of STT-MRAM memory cells
for inference. However, major challenges of PIM over con-
ventional deep learning/Al are: 1) requirements of additional
circuitry, such as DAC and ADC, which results in area
overhead; 2) quantization of weights to be represented with
fewer bits resulting in lower precision; 3) in digital PIM,
extra manipulation of models’ algorithm is needed to replace
MAC with the bit-wise operation; and 4) in most of the cases,
PIM is only suitable for inference-only applications. Although
PIM-based analog architectures provide fast execution, the per-
formance, energy efficiency, and reliability of analog PIM still
lag behind the state-of-the-art Al accelerators [2], [3], [12].

While some research leveraged the scalable property of ther-
mal stability factor of STT-MRAM to replace SRAM-based
cache memory, others used the error tolerance property of
certain applications and designed STT-MRAM-based energy-
efficient cache with approximate storage. In [35], the retention
time of STT-RAM was scaled to implement cache memory
that can compete with SRAM-based caches, and DRAM-like
refresh was used to compromise the ultralow retention time.
In [36], the STT-MRAM-based approximate cache was pro-
posed to exploit the error-resilience property of some spe-
cific applications. Unlike previous studies, Sayed et al. [37]

1741

proposed a hybrid STT-MRAM design for cache for different
applications depending on the run-time requirements without
compromising reliability.

In [38], a hybrid of SRAM and 3-D-stacked STT-MRAM-
based Al accelerator was proposed for real-time learning
where eMRAM acted as weight storage memory for infre-
quently accessed and updated layers, such as all convolutional
layers and first few FC layers for a transfer learning followed
by the reinforcement learning algorithm. However, due to the
use of typical slow and write-power-hungry STT-MRAM, this
study could not completely exploit STT-MRAM to substitute
SRAM and eventually used SRAM for storing weights of the
last few FC layers that are accessed and updated frequently.

In summary, prior notable research on STT-MRAM appli-
cations has focused on implementing last-level cache memory
and designing in-memory computing architectures. Our work
is the first to present a detailed analysis on the feasibility of
using STT-MRAM as high bandwidth on-chip buffer memory
in DNN/AI accelerator hardware that can offer much larger
capacity at lower energy and area costs compared to SRAM.
Moreover, for complete DNN model storage in edge inference
devices, the nonvolatility relaxed STT-MRAM design is pre-
sented as an alternative to eFlash, which suffers from scaling
limitations at advanced technology nodes.

VII. CONCLUSION

In this article, we demonstrated the design of highly
efficient Al/deep learning accelerators that utilize emerg-
ing STT-MRAMs. Based on detailed design space explo-
ration, we designed the STT-MRAM-based GLB to minimize
DRAM access latency and energy, and reduce the area and
power of the MRAM buffer. We presented an innovative
runtime-reconfigurable core optimized for multiplication in
convolution and FC layers. A scratchpad-assisted STT-MRAM
GLB design has been demonstrated that reduces the frequency
of energy-dominant write operations of the partial ofmaps
during convolution. Using actual data occupancy times in
memory for Al tasks, we guide the STT-MRAM thermal
stability factor scaling. We showed that, with the STT-AI
accelerator, 75% area and 3% power savings are possible
at isoaccuracy. Furthermore, with STT-AI Ultra, 75.4% and
3.5% savings are possible in area and power, respectively,
over regular SRAM-based accelerators at minimal accuracy
tradeoff.

REFERENCES

[1] G. Batra et al., “Artificial-intelligence hardware: New opportunities for
semiconductor companies,” McKinsey & Company, Tech. Rep., 2019.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295-2329, Dec. 2017.

[3] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, “A domain-specific
architecture for deep neural networks,” ACM Commun., vol. 61, no. 9,
pp. 50-59, 2018.

[4] M. Sadi and U. Guin, “Test and yield loss
Al and deep learning accelerators,” IEEE Trans.
Design Integr. Circuits Syst., early access, Jan.
10.1109/TCAD.2021.3051841.

[5] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017.

reduction of
Comput.-Aided
14, 2021, doi:

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.2021.3051841

1742

[6]

[7]

[8]
[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 10, OCTOBER 2021

D. Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, “DNPU: An energy-
efficient deep-learning processor with heterogeneous multi-core archi-
tecture,” IEEE Micro, vol. 38, no. 5, pp. 85-93, Sep. 2018.

S. Sakhare et al., “Jsw of 5.5 MA/cm? and RA of 5.2-Q - um? STT-
MRAM technology for LLC application,” IEEE Trans. Electron Devices,
vol. 67, no. 9, pp. 3618-3625, Aug. 2020.

H.-S. P. Wong et al. (2020). Stanford Memory Trends. [Online]. Avail-
able: https://nano.stanford.edu/stanford-memory-trends

S. Moore, “Cerebras’s giant chip will smash deep learning’s speed
barrier,” IEEE Spectrum, Tech. Rep., 2020.

G. Li et al., “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., Nov. 2017, pp. 1-12.

A. Antonyan, S. Pyo, H. Jung, and T. Song, “Embedded MRAM macro
for eFlash replacement,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2018, pp. 1-4.

H. Li, M. Bhargava, P. N. Whatmough, and H.-S.-P. Wong, “On-chip
memory technology design space explorations for mobile deep neural
network accelerators,” in Proc. 56th Annu. Design Automat. Conf.,
Jun. 2019, pp. 1-6.

Q. Dong et al., “A 1 Mb 28 nm STT-MRAM with 2.8 ns read access
time at 1.2 V VDD using single-cap offset-cancelled sense amplifier and
in-situ self-write-termination,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 480-482.

L. Wei et al., “A 7 Mb STT-MRAM in 22 FFL FinFET technology with
4 ns read sensing time at 0.9 V using write-verify-write scheme and
offset-cancellation sensing technique,” in /IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 214-216.

Y.-D. Chih et al., “A 22 nm 32 Mb embedded STT-MRAM with 10 ns
read speed, 1M cycle write endurance, 10 years retention at 150°C and
high immunity to magnetic field interference,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 222-224.

J. Park et al., “A novel integration of STT-MRAM for on-chip hybrid
memory by utilizing non-volatility modulation,” in IEDM Tech. Dig.,
Dec. 2019, pp. 2-5.

G. Hu et al., “Spin-transfer torque MRAM with reliable 2 ns writing for
last level cache applications,” in IEDM Tech. Dig., Dec. 2019, pp. 2-6.
M. Poremba, S. Mittal, D. Li, J. S. Vetter, and Y. Xie, “Destiny: A tool
for modeling emerging 3D NVM and eDRAM caches,” in Proc. Design,
Autom. Test Eur. Conf. Exhib., Mar. 2015, pp. 1543-1546.

A. Raychowdhury, D. Somasekhar, T. Karnik, and V. De, “Design
space and scalability exploration of 1T-1STT MTJ memory arrays in
the presence of variability and disturbances,” in [EDM Tech. Dig.,
Dec. 2009, pp. 1-4.

S. Wang and P. Kanwar, “BFloat16: The secret to high performance on
cloud TPUs,” Google Cloud Blog, Tech. Rep., 2019.

D. Kalamkar et al, “A study of BFLOAT16 for deep
learning training,” 2019, arXiv:1905.12322. [Online]. Available:
https://arxiv.org/abs/1905.12322

A. V. Khvalkovskiy et al., “Basic principles of STT-MRAM cell
operation in memory arrays,” J. Phys. D, Appl. Phys., vol. 46, no. 7,
Feb. 2013, Art. no. 074001.

Z. Diao et al., “Spin-transfer torque switching in magnetic tunnel
junctions and spin-transfer torque random access memory,” J. Phys.,
Condens. Matter, vol. 19, no. 16, Apr. 2007, Art. no. 165209.

J. M. Iwata-Harms et al., “High-temperature thermal stability driven
by magnetization dilution in CoFeB free layers for spin-transfer-torque
magnetic random access memory,” Sci. Rep., vol. 8, no. 1, pp. 1-7,
Dec. 2018.

B. Reagen e al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in Proc. 55th ACM/ESDA/IEEE Design Autom.
Conf. (DAC), Jun. 2018, pp. 1-6.

Synopsys. Accessed: Mar. 2021. [Online]. Available:
https://www.synopsys.com//

PyTorch. Accessed: Mar. 2021. [Online]. Available: https://pytorch.org/
S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory
with spin-transfer torque magnetic ram,” /EEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 3, pp. 470-483, Dec. 2017.

H. Yan, H. R. Cherian, E. C. Ahn, X. Qian, and L. Duan, “ICELIA:
A full-stack framework for STT-MRAM-based deep learning accelera-
tion,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 2, pp. 408422,
Feb. 2020.

A. Anwar, A. Raychowdhury, R. Hatcher, and T. Rakshit, “XBAROPT-
enabling ultra-pipelined, novel STT MRAM based processing-in-
memory DNN accelerator,” in Proc. 2nd IEEE Int. Conf. Artif. Intell.
Circuits Syst. (AICAS), Aug. 2020, pp. 36-40.

[317 Y. Shi, S. Oh, Z. Huang, X. Lu, S. H. Kang, and D. Kuzum, “Perfor-
mance prospects of deeply scaled spin-transfer torque magnetic random-
access memory for in-memory computing,” IEEE Electron Device Lett.,
vol. 41, no. 7, pp. 1126-1129, Jul. 2020.

[32] H. Zhuang et al., “A second-order noise-shaping SAR ADC with passive
integrator and tri-level voting,” IEEE J. Solid-State Circuits, vol. 54,
no. 6, pp. 1636-1647, Jun. 2019.

[33] FE. Ferdaus, B. M. S. B. Talukder, M. Sadi, and M. T. Rahman, “True ran-
dom number generation using latency variations of commercial MRAM
chips,” in Proc. 22nd Int. Symp. Qual. Electron. Design (ISQED),
Apr. 2021, pp. 510-515.

[34] S. Angizi, Z. He, A. Awad, and D. Fan, “MRIMA: An MRAM-based
in-memory accelerator,” [EEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 5, pp. 1123-1136, May 2020.

[35] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
“Relaxing non-volatility for fast and energy-efficient STT-RAM caches,”
in Proc. IEEE 17th Int. Symp. High Perform. Comput. Archit., Feb. 2011,
pp. 50-61.

[36] A. Ranjan, S. Venkataramani, Z. Pajouhi, R. Venkatesan, K. Roy, and
A. Raghunathan, “STAxCache: An approximate, energy efficient STT-
MRAM cache,” in Proc. Design, Automat. Test Europe Conf. Exhib.
(DATE), Mar. 2017, pp. 356-361.

[37] N. Sayed, L. Mao, R. Bishnoi, and M. B. Tahoori, “Compiler-assisted
and profiling-based analysis for fast and efficient STT-MRAM on-chip
cache design,” ACM Trans. Design Autom. Electron. Syst., vol. 24, no. 4,
pp. 1-25, Jul. 2019.

[38] I. Yoon, M. A. Anwar, R. V. Joshi, T. Rakshit, and A. Raychowdhury,
“Hierarchical memory system with STT-MRAM and SRAM to support
transfer and real-time reinforcement learning in autonomous drones,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 3, pp. 485-497,
Sep. 2019.

Kaniz Mishty received the B.S. degree in electron-
ics and communication engineering from Khulna
University of Engineering & Technology, Khulna,
Bangladesh, in 2018. She is currently working
toward the Ph.D. degree in electrical and computer
engineering (ECE) at Auburn University, Auburn,
AL, USA.

As a Summer Intern, she worked on incorporating
Al/machine learning in ASIC design flows at Qual-
comm, Santa Clara, CA, USA. Her current research
interests are energy- and area-efficient VLSI sys-
tem design, artificial intelligence (AI)/neuromorphic hardware design, and
Al/machine learning (ML) in computer-aided design (CAD).

Mehdi Sadi (Member, IEEE) received the B.S.
degree from Bangladesh University of Engineer-
ing and Technology, Dhaka, Bangladesh, in 2010,
the M.S. degree from the University of Califor-
nia at Riverside, Riverside, CA, USA, in 2011,
and the Ph.D. degree in electrical and computer
engineering (ECE) from the University of Florida,
Gainesville, FL, USA, in 2017.

He was a Senior Research and Development SoC
Design Engineer with the Xeon Server CPU Design
Team, Intel Corporation, Hillsboro, OR, USA. He is
currently an Assistant Professor with the Department of Electrical and
Computer Engineering (ECE), Auburn University, Auburn, AL, USA. His
research focus is on developing algorithms and computer-aided-design (CAD)
techniques for implementation, design, reliability, and security of artificial
intelligence (Al), and brain-inspired computing hardware. He has published
more than 20 peer-reviewed research articles. His research also spans into
developing machine learning-/Al-enabled design flows for System-on-Chip
(SoC) and design-for-robustness for safety-critical Al hardware systems.

Dr. Sadi was a recipient of the Semiconductor Research Corporation Best
in Session Award and the Intel Xeon Design Group Recognition Awards.

Authorized licensed use limited to: Auburn University. Downloaded on July 03,2023 at 08:06:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

