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Abstract
An interior penalty discontinuous Galerkin method is devised to approximate mini-

mizers of a linear folding model by discontinuous isoparametric finite element functions
that account for an approximation of a folding arc. The numerical analysis of the dis-
crete model includes an a priori error estimate in case of an accurate representation of
the folding curve by the isoparametric mesh. Additional estimates show that geomet-
ric consistency errors may be controlled separately if the folding arc is approximated
by piecewise polynomial curves. Various numerical experiments are carried out to
validate the a priori error estimate for the folding model.

1 Model Problem

Due to the appearance in natural processes and their importance to modern technical
devices, foldable structures have attracted a lot of attention in recent decades. Appli-
cations include flapping mechanisms in biology [14, 1], protein folding [30, 19], movable
structures in architecture [27, 29], sheet (metal) pressing and wrapping [22, 24] or origami
and kirigami [25, 15, 11, 21]. We address in this article the numerical discretization of
a linear folding model. The interior penalty discontinuous Galerkin method turns out to
be a practical candidate for this purpose as gradient jumps of the deformation may be
neglected along the interface, thereby allowing for the simulation of foldable configura-
tions. A corresponding large deformation model has recently been derived via dimension
reduction by Bartels, Bonito and Hornung [6]. The authors adapt arguments from
the seminal work of Friesecke, James and Müller [18] to account for the presence of
a folding arc and follow ideas of Bartels [4] and Bonito, Nochetto and Ntogkas [9]
for the numerical realization.
To introduce the discontinuous Galerkin method, we follow the derivation of [9] for a
classical bending problem and include a folding mechanism. Let � µ R2 be a bounded
polygonal Lipschitz domain and assume that � is partitioned into two subdomains �1
and �2 by an interface �if , in the sense that � = �1 fi �2 fi �if , as shown in Figure
1. We consider small displacements that are allowed to fold along the interface, giving
rise to a linear bending problem. The problem is closely related to the linear Kirchho�
model, see e.g. [5, Chapter 8], in which the deformation is assumed to be a perturbation
of the identity in vertical direction. For this type of small deflections the usual isometry
constraint of the nonlinear model is negligible. In particular, for a suitably rescaled body
force f œ L

2(�), we seek a minimizer u : � æ R of the continuous energy

E(u) = 1
2

⁄

�\�if
|D2

u|2 dx ≠
⁄

�
fu dx , (1)

in the set of admissible functions

V(g, �) :=
Ó

v œ H
2(�1 fi �2) fl H

1(�)
--- v = g, Òv = � on ˆD�

Ô
. (2)
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The function space encodes clamped boundary conditions u = g and Òu = � on a subset
ˆD� µ ˆ�. Here we assume that the boundary data g œ H

1/2(ˆD�) and � œ [H1/2(ˆD�)]2
are traces of functions g œ H

1(�) and � œ [H1(�)]2. In addition, the configuration is
allowed to fold along �if since u is only required to be piecewise in H

2 and globally in H
1.

The Euler–Lagrange equation for a minimizer u œ V(g, �) of (1) is
⁄

�\�if
D

2
u : D

2
v dx =

⁄

�
fv dx ’v œ V(0, 0) . (3)

The strong form of (3) reads

div div D
2
u = �2

u = f in � , (4)

with natural boundary conditions

ˆ÷Òu = D
2
u ÷ = 0, ˆ÷�u = (div D

2
u) ÷ = 0 on ˆ� \ ˆD� , (NBC)

and the outward unit normal vector ÷ to �, as well as natural interface conditions

[[u]] = 0, ˆ÷Òu = 0, [[ˆ÷�u]] = 0 on �if
, (NIC)

with [[u]] := u|�2≠u|�1 and the outward unit normal vector ÷ pointing from �1 into �2. The
first interface term arises from the weak di�erentiability condition u œ H

1(�). Besides,
for smooth test functions one expects [[ˆ÷Òu]] = [[ˆ÷�u]] = 0 on �if . However, since we
allow test functions v œ V(0, 0) to have kinks across the interface �if , the second interface
condition in (NIC) becomes ˆ÷Òu = 0. It infers that the curvature of the deformation
along the fold vanishes in direction normal to the interface.
In what follows we assume that the geometry of the fold is compatible with the boundary
conditions, such that there exists a unique solution to the problem. For instance, if the
interface is straight and clamped boundary conditions are only imposed on one side of the
fold, a solution on the other side of the fold might not be unique.

�2�1

�if

Figure 1: Sketch of the domain � = �1 fi �2 fi �if with curved interface �if , based on [10].

The outline of the article is as follows. In Section 2 we introduce the isoparametric interior
penalty discontinuous Galerkin method and show existence and uniqueness of discrete
solutions. The a priori error estimate is derived in Section 3. Section 4 addresses the
polynomial approximation of the curved interface. Numerical experiments are stated in
Section 5.

2 Discretization

In this section we introduce the finite element discretization of the linear folding model.
The isoparametric method accounts for an accurate representation of piecewise polyno-
mial interfaces while the discontinuous Galerkin method allows us to simulate foldable
structures when gradient jumps of the deformation are dropped along the folding curve.
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2.1 Isoparametric Method

We assume that every element of the triangulation T œ Th is given by the image of a
reference triangle ‚T under an isoparametric elemental di�eomorphism ÂT : ‚T æ T of
polynomial degree k œ N, in particular ÂT œ [Pk( ‚T )]2. Assuming shape regularity of the
mesh provides that the derivative scales linearly with the diameter hT of the element T , in
the sense that ||DÂT ||

LŒ(‚T ) v hT and ||DÂ
≠1
T

||LŒ(T ) v h
≠1
T

. Proposition 1 from Lenoir

[20] (see also Scott [28]) guarantees that we may choose mappings ÂT , such that

||Dm
ÂT ||

LŒ(‚T ) . h
m

T for 2 Æ m Æ k + 1 .

This is the case if nodes (i.e. the degrees of freedom) of the curved element T are h
m-

close to the corresponding nodes of the linear triangle ÂT with the same vertices as T , see
Ciarlet and Raviart [13]. Since ||D2

ÂT ||
LŒ(‚T ) . ||DÂT ||

LŒ(‚T ), we also conclude from
Ern and Guermond [17, Lemma 13.5] the converse estimate

||Dm
Â

≠1
T

||LŒ(T ) . h
≠m

T
for 2 Æ m Æ k + 1 .

For further aspects of isoparametric mappings we refer the reader to [12]. In what fol-
lows, we assume that the interface is accurately resolved by the isoparametric mesh, or
equivalently, that �if is given by the image of a piecewise polynomial map of degree k œ N
from straight segments. This allows us to avoid geometrical errors in the a priori analysis.
Corresponding errors are controlled separately, which is the subject of Section 4.
The main feature of isoparametric methods is that the polynomial degree of the elemental
mappings and that of the discrete functions coincide. With that in mind, we define the
discrete space of discontinuous piecewise polynomials on a reference element ‚T by

Vk

h :=
Ó

v œ L
2(�)

--- v|T = ‚v ¶ Â
≠1
T

, ‚v œ Pk( ‚T ) ’T = ÂT ( ‚T ) œ Th

Ô
. (5)

Note that functions in Vk

h
are in general not polynomials on the physical element T if

k Ø 2. We denote by S0
h

and Sb
h

the set of edges contained in � (up to endpoints) and ˆD�,
respectively. Contributions on ˆ� \ ˆD� vanish due to the natural boundary conditions
(NBC). Hence, the set of edges that enter the discontinuous Galerkin formulation is defined
by Sh = S0

h
fi Sb

h
. Since the (approximate) interface is accurately resolved by the mesh,

we denote by S if
h

the set of edges contained in �if (up to endpoints). The corresponding
skeleton is denoted by �h := fi{S œ Sh}. The sets �0

h
, �b

h
and �if

h
are defined similarly.

2.2 Interior Penalty Discontinuous Galerkin Method

To introduce the discontinuous Galerkin method we follow standard procedure from [9, 16].
We denote by [[ · ]] and {{·}} the jump and average of a function v over an inner side S œ S0

h

with S = ˆT+ fl ˆT≠ and the unit normal ÷ pointing from T+ into T≠. In particular, let

[[v]]|S(x) := v|T+(x) ≠ v|T≠(x), {{v}}|S(x) := 1
2(v|T+(x) + v|T≠(x)) . (6)

For boundary sides S œ Sb
h

we set {{v}}|S := v|S and consider the space

Vk

h(g, �) :=
Ó

v œ Vk

h

--- [[v]]|S = g ≠ v, [[Òv]]|S = � ≠ Òv on every S œ Sb
h

Ô
(7)

to weakly enforce the Dirichlet boundary data. The sets Vk

h
and Vk

h
(g, �) coincide but the

latter contains a di�erent interpretation of boundary jumps.
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The elementwise applied di�erential operators are denoted by a subindex h. For example,
the elementwise gradient is defined via (Òhv)|T := Ò(v|T ).
To derive the bilinear form of the discontinuous Galerkin method, we multiply the strong
form (4) by a test function vh œ Vk

h
(0, 0) and use elementwise integration by parts twice.

Summing over all elements, we get

Èf, vhÍL2(�) =
ÿ

T œTh

ÈD2
u, D

2
hvhÍL2(T ) ≠ Èˆ÷Òu, ÒhvhÍL2(ˆT ) + Èˆ÷�u, vhÍL2(ˆT ) . (8)

We collect the contributions over each side S with a change in sign due to the definition
of the jump and the normal ÷. Side terms on ˆ� \ ˆD� vanish because of the natural
boundary conditions (NBC). In addition, terms involving ˆ÷Òu vanish on �if

h
due to

the second interface condition (NIC). Assuming that u œ H
4(�1 fi �2) fl H

1(�) and
incorporating again the interface conditions, the jumps [[ˆ÷Òu]] and [[ˆ÷�u]] vanish on every
edge S œ Sh \ Sb

h
. On boundary sides S œ Sb

h
we use the conventions {{ˆ÷Òu}} = ˆ÷Òu

and [[v]] = ≠v. Applying the elementary formula [[a b]] = [[a]]{{b}} + [[b]]{{a}}, we arrive at

Èf, vhÍL2(�) = ÈD2
u, D

2
hvhÍL2(�) + È{{ˆ÷Òu}}, [[Òhvh]]Í

L2(�h\�if
h) ≠ È{{ˆ÷�u}}, [[vh]]ÍL2(�h) .

Using [[u]] = 0 on �h and [[Òu]] = 0 on �h \ �if
h
, we add vanishing penalty terms to arrive

at the following formulation including a symmetric bilinear form

Èf, vhÍL2(�) = ÈD2
u, D

2
hvhÍL2(�)

+ È{{ˆ÷Òu}}, [[Òhvh]]Í
L2(�h\�if

h) + È{{ˆ÷Òhvh}}, [[Òu]]Í
L2(�h\�if

h)

≠ È{{ˆ÷�u}}, [[vh]]ÍL2(�h) ≠ È{{ˆ÷�hvh}}, [[u]]ÍL2(�h)

+ “1Èh≠1[[Òu]], [[Òhvh]]Í
L2(�h\�if

h) + “0Èh≠3[[u]], [[vh]]ÍL2(�h)

=: ah(u, vh) ,

(9)

where the parameter h is locally equivalent to the size hS of an edge S. Hence, the
discontinuous Galerkin method consists of finding uh œ Vk

h
(g, �), such that

ah(uh, vh) = Èf, vhÍL2(�) ’vh œ Vk

h(0, 0) . (10)

The regularity of solutions to second order interface problems generally depends on geo-
metric properties of the interface [26]. We implicitly assume that �if divides � in such
a way, that the solution of (4) satisfies u œ H

4(�1 fi �2) fl H
1(�). Weaker regularity

assumptions would be su�cient to ensure the consistency of the method in the sense of
the following proposition, the additional regularity is required for the error analysis.

Proposition 1 (Galerkin orthogonality). Assume that the solution of the strong form (4)
satisfies u œ H

4(�1 fi �2) fl H
1(�), then we have

ah(u ≠ uh, vh) = 0 ’vh œ Vk

h(0, 0) . (11)

Proof. The assumed regularity and the interface conditions (NIC) provide ˆ÷Òu = 0
on �if

h
, [[u]] = [[ˆ÷Òu]] = [[ˆ÷�u]] = 0 on �h and [[Òu]] = 0 on �h \ �if

h
, which yields

ah(u, vh) = Èf, vhÍL2(�) for all vh œ Vk

h
(0, 0).

Remark 1. For unfitted meshes a geometric consistency error enters the formulation. In
the case of a piecewise polynomial approximation of the interface, the additional term can
be controlled separately, see Section 4.
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In what follows we consider homogeneous boundary data (g, �) = (0, 0), which is justified
below in the proof of Proposition 2. The subindex h of the elementwise applied di�erential
operators is dropped for ease of notation. Since the bilinear form ah is symmetric we define
the dG-norm as

||vh||dG :=
A

ÿ

T œTh

||D2
vh||2

L2(T ) +
ÿ

SœSh\Sif
h

“1
hS

||[[Òvh]]||2
L2(S) +

ÿ

SœSh

“0
h

3
S

||[[vh]]||2
L2(S)

B1/2

,

which is a norm on Vk

h
for any “0, “1 > 0, provided that �b

h
fl (ˆ�i/ˆ�if) ”= ÿ for all i œ

{1, 2}. The following inverse estimates [9, Lemma 9.1] ensure boundedness and coercivity
of the bilinear form ah with respect to || . ||dG on Vk

h
.

Lemma 1 (Inverse estimates). For T œ Th and an edge S œ Sh of T , we have for every
vh œ Vk

h
the estimates

||D2
vh||L2(S) Æ c1h

≠1/2
S

||D2
vh||L2(T ) , ||D3

vh||L2(S) Æ c0h
≠3/2
S

||D2
vh||L2(T ) . (12)

Proof. See [9, Lemma 9.1].

The inverse estimates allow for a bound of the jump-average terms by the remaining terms
included in the bilinear form ah.

Lemma 2 (Jump-average bounds). Let c0 and c1 be the constants of the inverse estimates.
(i) For S œ Sh \ S if

h
and the edge patch Ê(S) = T+ fi T≠ we have

⁄

S

{{ˆ÷Òvh}}[[Òwh]] ds Æ c
2
1

“1
||D2

vh||2
L2(Ê(S)) + “1

4hS

||[[Òwh]]||2
L2(S) . (13)

(ii) For S œ Sh and the edge patch Ê(S) = T+ fi T≠ we have
⁄

S

{{ˆ÷�vh}}[[wh]] ds Æ c
2
0

“0
||D2

vh||2
L2(Ê(S)) + “0

4h
3
S

||[[wh]]||2
L2(S) . (14)

Proof. By Hölder’s inequality and the inverse estimates of Lemma 1, we deduce that
⁄

S

{{ˆ÷Òvh}}[[Òwh]] ds Æ ||{{D
2
vh}}||L2(S)||[[Òwh]]||L2(S)

Æ c1h
≠1/2
S

||D2
vh||L2(Ê(S))||[[Òwh]]||L2(S) .

Similar arguments apply to the left-hand side of the second item. Young’s inequality
ab Æ a

2 + b
2
/4 yields the desired estimates.

With the jump-average bounds we conclude the coercivity and boundedness of the bilinear
form ah with respect to || . ||dG on Vk

h
. In particular, the discontinuous Galerkin method

admits a unique solution uh œ Vk

h
(g, �).

Proposition 2 (Existence and uniqueness). If “0, “1 are su�ciently large we have:
(i) The bilinear form ah is coercive, in the sense that

ah(vh, vh) Ø 1
2 ||vh||2dG ’vh œ Vk

h .

5
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(ii) The bilinear form ah is continuous, i.e.,

ah(vh, wh) Æ c||vh||dG||wh||dG ’vh, wh œ Vk

h .

(iii) The discontinuous Galerkin method admits a unique solution uh œ Vk

h
(g, �), such that

ah(uh, vh) = ¸h(vh) ’vh œ Vk

h .

Proof. (i) Summing the jump-average bounds of Lemma 2 over all elements T œ Th yields

2
ÿ

SœSh\Sif
h

⁄

S

{{ˆ÷Òvh}}[[Òvh]] ds Ø ≠6c
2
1

“1

ÿ

T œTh

||D2
vh||2

L2(T ) ≠ 1
2

ÿ

SœSh\Sif
h

“1
hS

||[[Òvh]]||2
L2(S) ,

where we used that each element has three sides. Analogously, we have

2
ÿ

SœSh

⁄

S

{{ˆ÷�vh}}[[vh]] ds Ø ≠6c
2
0

“0

ÿ

T œTh

||D2
vh||2

L2(T ) ≠ 1
2

ÿ

SœSh

“0
h

3
S

||[[vh]]||2
L2(S) .

Finally, if “0 and “1 are su�ciently large such that 6c
2
0/“0 Æ 1/2 and 6c

2
1/“1 Æ 1/2, the

jump-average terms can be absorbed and we conclude that

ah(vh, vh) Ø 1
2

A
ÿ

T œTh

||D2
vh||2

L2(T ) +
ÿ

SœSh\Sif
h

“1
hS

||[[Òvh]]||2
L2(S) +

ÿ

SœSh

“0
h

3
S

||[[vh]]||2
L2(S)

B

= 1
2 ||vh||2dG .

(ii) The boundedness of ah follows by the inverse estimates of Lemma 1.
(iii) The Lax–Milgram lemma provides the existence of a unique solution for homogeneous
boundary data (g, �) = (0, 0). For non-homogeneous data (g, �), we require compatible
boundary conditions, in the sense that � = Òg|ˆD�. As a result, we may assume that
u = Âu + g and Òu = ÒÂu + �, where Âu and ÒÂu satisfy homogeneous boundary conditions.
The Lax–Milgram lemma provides the existence of a unique solution Âu to a problem with
a modified linear functional Â̧

h. In particular, problem (10) is well-posed.

To simplify the a priori error analysis, we include the linear terms involving the boundary
data in the right hand side of equation (10) to arrive at the equivalent formulation: Find
uh œ Vk

h
(0, 0) = Vk

h
such that

ah(uh, vh) = ¸h(vh) ’vh œ Vk

h , (15)

with the linear form
¸h(vh) := Èf, vhÍL2(�) ≠ Èˆ÷Òhvh, �Í

L2(�b
h) + Èˆ÷�hvh, gÍ

L2(�b
h)

+ “1Èh≠1�, ÒhvhÍ
L2(�b

h) + “0Èh≠3
g, vhÍ

L2(�b
h) ,

(16)

where we used the convention [[v]]|S = ≠v|S for S œ Sb
h
.

Remark 2 (Local discontinuous Galerkin method). We note that by following ideas of [8],
we may introduce a reconstructed Hessian Hh to obtain a discontinuous Galerkin method
that is well posed for arbitrarily small penalty parameters “0 and “1. The operator Hh is
defined by combining the broken Hessian D

2
h
vh with globalized liftings of both the jump of

the broken gradient [Òhvh] and the jump of the deformation [vh]. This leads to additional
technical di�culties in the error estimate.

6
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3 A Priori Error Estimate

To prove an interpolation estimate on curved triangles, we transform integrals back to a
reference element, on which approximation results like the Bramble–Hilbert lemma can
directly be applied. By similar transformations to reference sides (on which classical trace
estimates apply), the result can then be extended to an interpolation estimate on curved
sides. The following inequality from Ern and Guermond [17, Lemma 13.5]

||Dm
Â

≠1
T

||LŒ(T ) . ||DÂ
≠1
T

||m
LŒ(T ) ’ 2 Æ m Æ k + 1 , (17)

ensures that appearing derivatives of the isoparametric mappings can be bounded by
||Dm

Â
≠1
T

||LŒ(T ) . h
≠m

T
via the shape-regularity assumption. Repeated application of the

chain and product rules then imply

||Dm
v||L2(T ) . h

1≠m

T

mÿ

j=1
||Dj ‚v||

L2(‚T ) . (18)

Owing to [20, Proposition 1], the map ÂT can be chosen such that ||Dm
ÂT ||

LŒ(‚T ) . h
m

T

for 2 Æ m Æ k + 1, which leads to the estimate

||Dm‚v||
L2(‚T ) . h

m≠1
T

mÿ

j=1
||Dj

v||L2(T ) . h
m≠1
T

||v||Hm(T ) . (19)

Remark 3. In contrast to usual estimates for a�ne elemental mappings ÂT œ [P1( ‚T )]2
with H

m-seminorm on the right hand side, we have the full H
m-norm due to non-vanishing

higher derivatives D
m

ÂT ”= 0 for m Ø 2. This also a�ects the a priori error estimate
derived below in Theorem 1.

Let ‚I : C
0( ‚T ) æ Vk

h
( ‚T ) denote the Lagrange interpolation operator of degree k Ø 1 over

‚T and define the induced Lagrange interpolation operator Ih : C
0(T ) æ Vk

h
(T ) via

Ihv := ‚I(v ¶ ÂT ) ¶ Â
≠1
T

= ‚I‚v ¶ Â
≠1
T

. (20)

We utilize the following interpolation estimate [9, Lemma 9.4], which is originally formu-
lated for curved quadrilaterals but applies to curved triangles analogously.

Lemma 3 (Interpolation estimate on curved triangles). Let T œ Th be given by the image
of an isoparametric mapping ÂT œ [Pk( ‚T )]2 that satisfies

||Dm
ÂT ||

LŒ(‚T ) . h
m

T ’ 2 Æ m Æ k + 1 .

For v œ H
k+1(T ) and the (induced) Lagrange interpolant Ihv œ Vk

h
(T ) we have

h
m≠2
T

|v ≠ Ihv|Hm(T ) . h
k≠1
T

||v||Hk+1(T ) ’ 0 Æ m Æ k + 1 . (21)

With the help of Lemma 3 we prove an interpolation estimate on curved sides.

Lemma 4 (Interpolation estimate on curved sides). Let the assumptions of Lemma 3 be
satisfied. For a side S œ Sh and an element T œ {T+, T≠} adjacent to S we have

h
m≠3/2
S

|v ≠ Ihv|Hm(S) . h
k≠1
T

||v||Hk+1(T ) ’ 0 Æ m Æ k , (22)

where the H
m(S)-norm is defined via transformation to a flat domain.

7
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Proof. For transformations to reference sides we make use of Nanson’s formula [23], which
states that the ratio between the measures on ‚S and S is given by det(DÂT )|DÂ

≠T

T
÷‚S |.

Using the trace inequality on reference sides with diameter h‚S gives

||‚v||2
L2(‚S) . ||‚v||2

L2(‚T ) + ||Ò‚v||2
L2(‚T ) . (23)

We now extend the classical trace estimate to the isoparametric case. Combining the
above results, a transformation shows that

||v||2
L2(S) =

⁄

‚S
‚v2 det(DÂT )|DÂ

≠T

T
÷‚S | dŝ . hT ||‚v||2

L2(‚S)

(23)
. hT ||‚v||2

L2(‚T ) + hT ||Ò‚v||2
L2(‚T )

(19)
. h

≠1
T

||v||2
L2(T ) + hT ||Òv||2

L2(T ) ,

(24)

where ||‚v||2
L2(‚T )

. h
≠2
T

||v||2
L2(T ). Derivatives are estimated in a similar fashion via

||Dm
v||2

L2(S) . h
1≠2m

T

mÿ

j=1
||Dj ‚v||2

L2(‚S)

(23)
. h

1≠2m

T

m+1ÿ

j=1
||Dj ‚v||2

L2(‚T )

(19)
.

m+1ÿ

j=1
h

2j≠2m≠1
T

jÿ

i=1
||Di

v||2
L2(T ) .

(25)

With Lemma 3 we conclude

h
≠3
S

||v ≠ Ihv||2
L2(S)

(24)
. h

≠4
T

||v ≠ Ihv||2
L2(T ) + h

≠2
T

||Ò(v ≠ Ihv)||2
L2(T )

. h
2k≠2
T

||v||2
Hk+1(T ) ,

which gives the assertion for m = 0. Analogously, we have for the derivatives

h
2m≠3
S

||Dm(v ≠ Ihv)||2
L2(S)

(25)
.

m+1ÿ

j=1
h

2j≠4
T

jÿ

i=1
||Di(v ≠ Ihv)||2

L2(T )

.
m+1ÿ

j=1
h

2j≠4
T

jÿ

i=1
h

2k≠2i+2
T

||v||2
Hk+1(T ) ,

for every m Æ k. We use the fact, that hT . 1 and i Æ j implies h
2(j≠i)
T

. 1. Noting that
the above estimate can thus be simplified, we arrive at

h
2m≠3
S

||Dm(v ≠ Ihv)||2
L2(S) . h

2k≠2
T

||v||2
Hk+1(T ) ,

which completes the proof.

Theorem 1 (Error estimate). Let Th be a mesh given by the images of isoparametric
mappings ÂT œ [Pk( ‚T )]2 that resolve the interface �if and satisfy

||Dm
ÂT ||

LŒ(‚T ) . h
m

T 2 Æ m Æ k + 1 ,

for every T œ Th. Define the maximum diameter of elements in Th as h := maxT œTh hT .
(i) For k Ø 3 and u œ H

k+1(�1 fi �2) fl H
1(�) we have

||u ≠ uh||dG . h
k≠1||u||Hk+1(�1fi �2) . (26)

(ii) For k = 2 and u œ H
4(�1 fi �2) fl H

1(�) we have

||u ≠ uh||dG . h||u||H4(�1fi �2) . (27)

8
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Proof. (i) We first consider the case k Ø 3. Let Ihu œ Vk

h
be the Lagrange interpolant of

u, which is well-defined since H
2(T ) µ C

0(T ). By the triangle inequality we have

||u ≠ uh||dG Æ ||u ≠ Ihu||dG + ||Ihu ≠ uh||dG Æ ||eI ||dG + ||dh||dG ,

where eI = u ≠ Ihu and dh = uh ≠ Ihu. To estimate the dG-norm of eI we use Lemmas 3
and 4 to conclude

||eI ||2dG =
ÿ

T œTh

||D2
eI ||2

L2(T ) +
ÿ

SœSh\Sif
h

“1
hS

||[[ÒeI ]]||2
L2(S) +

ÿ

SœSh

“0
h

3
S

||[[eI ]]||2
L2(S)

. h
2k≠2||u||2

Hk+1(�1fi �2) .

To estimate the dG-norm of dh we use the Galerkin orthogonality of Proposition 1 to infer

ah(dh, vh) = ah(uh ≠ Ihu, vh) = ah(u ≠ Ihu, vh) = ah(eI , vh) ’vh œ Vk

h .

As a consequence, coercivity of ah and the Cauchy-Schwarz inequality yield

1
2 ||dh||2dG Æ ah(dh, dh) = ah(eI , dh)

Æ
ÿ

T œTh

||D2
eI ||L2(T )||D2

dh||L2(T )

+
ÿ

SœSh\Sif
h

||{{ˆ÷ÒeI}}||L2(S)||[[Òdh]]||L2(S) + ||{{ˆ÷Òdh}}||L2(S)||[[ÒeI ]]||L2(S)

+
ÿ

SœSh

||{{ˆ÷�eI}}||L2(S)||[[dh]]||L2(S) + ||{{ˆ÷�dh}}||L2(S)||[[eI ]]||L2(S)

+
ÿ

SœSh\Sif
h

“1
hS

||[[ÒeI ]]||L2(S)||[[Òdh]]||L2(S) +
ÿ

SœSh

“0
h

3
S

||[[eI ]]||L2(S)||[[dh]]||L2(S) .

The inverse estimates of Lemma 1 imply

||{{ˆ÷Òdh}}||L2(S) Æ ch
≠1/2
S

||D2
dh||L2(T ) ,

||{{ˆ÷�dh}}||L2(S) Æ ch
≠3/2
S

||D2
dh||L2(T ) ,

where T œ {T+, T≠} is the element with the larger contribution. Hence,

||{{ˆ÷Òdh}}||L2(S)||[[ÒeI ]]||L2(S) Æ c
2

hS

||[[ÒeI ]]||2
L2(S) + 1

4 ||D2
dh||2

L2(T ) ,

||{{ˆ÷�dh}}||L2(S)||[[eI ]]||L2(S) Æ c
2

h
3
S

||[[eI ]]||2
L2(S) + 1

4 ||D2
dh||2

L2(T ) ,

by Young’s inequality ab Æ a
2 + b

2
/4. Similarly, we obtain

||{{ˆ÷ÒeI}}||L2(S)||[[Òdh]]||L2(S) Æ hS

“1
||{{ˆ÷ÒeI}}||2

L2(S) + “1
4hS

||[[Òdh]]||2
L2(S) ,

||{{ˆ÷�eI}}||L2(S)||[[dh]]||L2(S) Æ h
3
S

“0
||{{ˆ÷�eI}}||2

L2(S) + “0
4h

3
S

||[[dh]]||2
L2(S) ,

9



S. Bartels, A. Bonito and P. Tscherner

as well as
“1
hS

||[[ÒeI ]]||L2(S)||[[Òdh]]||L2(S) Æ “1
hS

||[[ÒeI ]]||2
L2(S) + “1

4hS

||[[Òdh]]||2
L2(S) ,

“0
h

3
S

||[[eI ]]||L2(S)||[[dh]]||L2(S) Æ “0
h

3
S

||[[eI ]]||2
L2(S) + “0

4h
3
S

||[[dh]]||2
L2(S) ,

and lastly

||D2
eI ||L2(T )||D2

dh||L2(T ) Æ ||D2
eI ||2

L2(T ) + 1
4 ||D2

dh||2
L2(T ) .

The sum of all terms involving dh coincides with (1/4)||dh||2dG and can be absorbed on
the left-hand side (1/2)||dh||2dG. A final application of Lemmas 3 and 4 on the remaining
terms involving eI yields

||dh||2dG .
ÿ

T œTh

||D2
eI ||2

L2(T ) +
ÿ

SœSh\Sif
h

hS ||{{ˆ÷ÒeI}}||2
L2(S) + h

≠1
S

||[[ÒeI ]]||2
L2(S)

+
ÿ

SœSh

h
3
S ||{{ˆ÷�eI}}||2

L2(S) + h
≠3
S

||[[eI ]]||2
L2(S)

. h
2k≠2||u||2

Hk+1(�1fi �2) ,

which shows the claim for k Ø 3.
(ii) For the case k = 2, Lemmas 3 and 4 can be applied to terms up to second order m Æ 2

||eI ||2dG +
ÿ

SœSh\Sif
h

hS ||{{ˆ÷ÒeI}}||2
L2(S) . h

2||u||2
H3(�1fi �2) . h

2||u||2
H4(�1fi �2) .

However, Lemma 4 does not apply to the third order side term ||{{ˆ÷�eI}}||L2(S) due to
the restriction m Æ k. Nevertheless, we may take a similar workaround as in Proposition
4.4 from [9]. By the same arguments as in the proof of Lemma 4 we have

h
3
S ||{{ˆ÷�eI}}||2

L2(S) . h
≠2
T

1 3ÿ

j=1
||Dj ‚eI ||2

L2(‚T ) + ||D4 ‚eI ||2
L2(‚T )

2
,

where we split the highest order term from the lower order ones. By a transformation to
the element T , the Bramble–Hilbert lemma and using that ||u||H3(T ) . ||u||H4(T ) we have

h
≠2
T

3ÿ

j=1
||Dj ‚eI ||2

L2(‚T )

(19)
.

3ÿ

j=1
h

2j≠4
T

jÿ

i=1
||Di

eI ||2
L2(T ) . h

2
T ||u||2

H4(T ) .

To treat the fourth order term, we add and subtract the Lagrange interpolant ‚I3‚u

||D4(‚u ≠ ‚I‚u)||2
L2(‚T ) . ||D4(‚u ≠ ‚I3‚u)||2

L2(‚T ) + ||D4(‚I3‚u ≠ ‚I‚u)||2
L2(‚T ) .

Again, by the Bramble-Hilbert lemma and (19) we have ||D4(‚u≠‚I3‚u)||2
L2(‚T )

. h
6
T

||u||2
H4(T ).

Since the second norm only involves polynomials on ‚T , we use an inverse estimate

||D4(‚I3‚u ≠ ‚I‚u)||2
L2(‚T ) . ||D3(‚I3‚u ≠ ‚I‚u)||2

L2(‚T ) .

10
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Next, we add and subtract ‚u and apply the Bramble-Hilbert lemma and (19) to deduce

||D4(‚I3‚u ≠ ‚I‚u)||2
L2(‚T ) . ||D3(‚u ≠ ‚I3‚u)||2

L2(‚T ) + ||D3(‚u ≠ ‚I‚u)||2
L2(‚T )

. h
6
T ||u||2

H4(T ) + h
4
T ||u||2

H3(T ) .

Combining the previous estimates, we arrive at

h
3
S ||{{ˆ÷�eI}}||2

L2(S) . h
≠2
T

1 3ÿ

j=1
||Dj ‚eI ||2

L2(‚T ) + ||D4 ‚eI ||2
L2(‚T )

2

. h
≠2
T

1
h

4
T ||u||2

H4(T ) + h
6
T ||u||2

H4(T ) + h
4
T ||u||2

H3(T )
2

. h
2||u||2

H4(T ) ,

which completes the proof.

4 Interface Approximation

In practice, the interface is generally not given as a union of images of polynomial maps.
This section addresses the piecewise polynomial approximation of the interface. There are
many results on the approximation of domains involving curved boundaries, e.g. for the
Laplace–Beltrami operator [7] or for fourth order Kirchho� plate bending problems [2].
We follow ideas for isoparametric finite elements [20] by Lenoir. The aim is to compare
the exact solution defined on the curved domain � with the transformed solution defined
on an approximation �m of � that consists of polynomial elements T

m of order m Ø 1
with maximum diameter h. Our error estimates then rely on the existence of a map
�h : �m æ � satisfying for every T

m the estimate

||Ds(�h ≠ idT m)||LŒ(T m) . h
m+1≠s ’ 0 Æ s Æ m + 1 . (28)

An explicit formula for the map is given in [20, eq. (32)]. In case of the Poisson problem
≠�u = f with u = 0 on ˆ�, we denote Âu = u ¶ �h and J = Ò�h. Equation (28) gives an
h

m-bound on the right-hand side of the following identity
⁄

�
Òu · Òv dx ≠

⁄

�m
ÒÂu · ÒÂv dx̃ =

⁄

�m
ÒÂu · [det(J)J≠1

J
≠€ ≠ I]ÒÂv dx̃ ,

which is also called the geometric consistency error.

In case of an internal interface approximation, we assume that Th and T m

h
are triangula-

tions of �, such that possibly non-polynomial elements T œ Th resolve the interface �if

exactly and such that the interface is approximated by sides of elements T
m œ T m

h
of poly-

nomial order m Ø 1 with nodes (degrees of freedom) on �if , thus forming an approximate
interface �if

m. From [20] we know, that there exist local mappings �T : T
m æ T between

the triangulations, satisfying the following key properties. The collection of these local
maps defines a global map �h : T m

h
æ Th.

Lemma 5 (Properties of �T ). (i) There exist local mappings �T : T
m æ T satisfying

||Ds(�T ≠ idT m)||LŒ(T m) . h
m+1≠s

T
’ 0 Æ s Æ m + 1 , (29)

||Ds(�≠1
T

≠ idT )||LŒ(T ) . h
m+1≠s

T
’ 0 Æ s Æ m + 1 . (30)

11
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(ii) The maps �T : T
m æ T satisfy

sup
xœT m

| det(D�T ) ≠ 1 | . h
m

T , (31)

sup
xœT

| det(D�≠1
T

) ≠ 1 | . h
m

T . (32)

(iii) For every v œ H
k(T ) and Âv = v ¶ �T we have equivalence of the norms

||Âv||Hk(T m) ≥ ||v||Hk(T ) . (33)

Proof. (i) The first item follows by arguments of [20].
(ii) The second item is a consequence of (i).
(iii) The norm equivalence follows by a transformation formula, using that ||D�≠1

T
||LŒ(T )

and || det(D�T )||LŒ(T m) are uniformly bounded with respect to h (see equation (SM2.10)
in the supplementary materials of [2]).

We require clamped boundary conditions u = g and Òu = � on ˆ� and denote

A(g, �) :=
Ó

v œ H
2(� \ �if) fl H

1(�)
--- v = g, Òv = � on ˆ�

Ô
, (34)

Am(g, �) :=
Ó

v œ H
2(� \ �if

m) fl H
1(�)

--- v = g, Òv = � on ˆ�
Ô

. (35)

Consider the following problem: Find u œ A(g, �), such that for every v œ A(0, 0) we have
⁄

�\�if
D

2
u : D

2
v dx =

⁄

�
fv dx . (P)

Furthermore, we define the approximate problem: Find Âum œ Am(g, �), such that for
every Âv œ Am(0, 0) we have

⁄

�\�if
m

D
2Âum : D

2Âv dx̃ =
⁄

�
ÂfmÂv dx̃ . (Pm)

Error estimates rely on the following result for the geometric consistency error.

Lemma 6 (Geometric consistency error). With the above assumptions, we have
----
⁄

T

D
2
v : D

2
w dx ≠

⁄

T m
D

2Âv : D
2 Âw dx̃

---- . h
m≠1||v||H2(T )||w||H2(T ) (36)

Proof. We denote Âv = v ¶ �T and Âx = �≠1
T

(x) œ T
m for x œ T . The chain rule gives

D
2
v(x) = D

2�≠1
T

(x)ÒÂv(Âx) + D�≠1
T

(x)D2Âv(Âx)D�≠T
T

(x) .

For simplicity we omit the arguments x and Âx in the following. A transformation shows
⁄

T

D
2
v : D

2
w dx ≠

⁄

T m
D

2Âv : D
2 Âw dx̃ = I + II + III + IV

with terms I, II and III including D
2�≠1

h

I =
⁄

T m
D

2�≠1
T

ÒÂv : D
2�≠1

T
Ò Âw det(D�T ) dx̃ ,

II =
⁄

T m
D

2�≠1
T

ÒÂv : D�≠1
T

D
2 ÂwD�≠T

T
det(D�T ) dx̃ ,

III =
⁄

T m
D�≠1

T
D

2ÂvD�≠T
T

: D
2�≠1

T
Ò Âw det(D�T ) dx̃ ,

12
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and the term IV excluding D
2�≠1

T

IV =
⁄

T m
D�≠1

T
D

2ÂvD�≠T
T

: D�≠1
h

D
2 ÂwD�≠T

T
det(D�T ) dx̃ ≠

⁄

T m
D

2Âv : D
2 Âw dx̃ .

Since ||D�≠1
T

||LŒ(T ) and || det(D�T )||LŒ(T m) are uniformly bounded with respect to h,
estimate (30) for s = 2, the triangle and the Cauchy–Schwarz inequality yield

|I + II + III| . h
m≠1
T

||Âv||H2(T m)|| Âw||H2(T m) .

To treat the fourth term, we add and subtract D�≠1
T

D
2ÂvD�≠T

T
: D�≠1

T
D

2 ÂwD�≠T
T

as well
as D�≠1

T
D

2ÂvD�≠T
T

: D
2 Âw to arrive at

IV =
⁄

T m
D�≠1

T
D

2ÂvD�≠T
T

: D�≠1
h

D
2 ÂwD�≠T

T
(det(D�T ) ≠ 1) dx̃

+
⁄

T m
D�≠1

T
D

2ÂvD�≠T
T

: (D�≠1
h

D
2 ÂwD�≠T

T
≠ D

2 Âw) dx̃

+
⁄

T m
(D�≠1

T
D

2ÂvD�≠T
T

≠ D
2Âv) : D

2 Âw dx̃

= IVa + IVb + IVc .

By (31) and the same arguments as above we have

|IVa| . h
m

T ||Âv||H2(T m)|| Âw||H2(T m) .

To deal with IVb and IVc we add an subtract respectively D�≠1
T

D
2ÂvD�≠T

T
: D�≠1

T
D

2 Âw
and D�≠1

T
D

2Âv : D
2 Âw to obtain

IVb =
⁄

T m
D�≠1

T
D

2ÂvD�≠T
T

: D�≠1
T

D
2 Âw(D�≠T

T
≠ I) dx̃

+
⁄

T m
D�≠1

T
D

2ÂvD�≠T
T

: (D�≠1
T

≠ I)D2 Âw dx̃ ,

IVc =
⁄

T m
DÂ

≠1
T

D
2Âv(D�≠T

T
≠ I) : D

2 Âw dx̃ +
⁄

T m
(DÂ

≠1
T

≠ I)D2Âv : D
2 Âw dx̃ .

From the identity

||D�≠1
T

≠ I||LŒ(T ) = ||(D�≠1
T

≠ I)T||LŒ(T ) = ||D�≠T
T

≠ I||LŒ(T )

and estimate (30) for s = 1 we deduce

|IVb + IVc| . h
m

T ||Âv||H2(T m)|| Âw||H2(T m) .

Combining all the results, using the norm equivalence (33) and h
m

T
. h

m≠1
T

yields (36).

We next state the main result of this section.

Theorem 2 (Error estimate). Let u œ A(g, �) be the solution to (P) and Âum œ Am(g, �)
be the solution to (Pm). With um = Âum ¶ �≠1

T
we have

||D2(u ≠ um)||L2(Th) . || Âfm ≠ Âf det(D�h)||L2(T m
h ) + h

m≠1||Âum||H2(T m
h ) . (37)

Upon choosing Âfm = Âf det(D�h) we conclude

||D2(u ≠ um)||L2(Th) . h
m≠1||Âum||H2(T m

h ) .

13
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Proof. Let v = um ≠ u. By (36) we have

||D2(u ≠ um)||2
L2(Th) =

⁄

Th

D
2(um ≠ u) : D

2
v dx

=
⁄

Th

D
2
um : D

2
v dx ≠

⁄

Th

D
2
u : D

2
v dx

.
⁄

T m
h

D
2Âum : D

2Âv dx̃ ≠
⁄

Th

D
2
u : D

2
v dx

+ h
m≠1||Âum||H2(T m

h )||Âv||H2(T m
h )

=
⁄

T m
h

ÂfmÂv dx̃ ≠
⁄

Th

fv dx + h
m≠1||Âum||H2(T m

h )||Âv||H2(T m
h )

. || Âfm ≠ Âf det(D�h)||L2(T m
h )||Âv||L2(T m

h ) + h
m≠1||Âum||H2(T m

h )||Âv||H2(T m
h ) ,

where we used that u and Âum solve (P) and (Pm), respectively, followed by a transformation
formula for the term including f and Hölder’s inequality. Due to the clamped boundary
conditions, we have for every Âv œ Am(0, 0) the Poincaré inequalities

||Âv||L2(T m
h ) . ||ÒÂv||L2(T m

h ) . ||D2Âv||L2(T m
h ) .

This implies the equivalence of the H
2-norm ||Âv||H2(T m

h ) to the H
2-seminorm ||D2Âv||L2(T m

h ).
Combining the above results with the norm equivalence (33) yields

||D2(u ≠ um)||2
L2(Th) .

Ë
|| Âfm ≠ Âf det(D�h)||L2(T m

h ) + h
m≠1||Âum||H2(T m

h )
È
||D2

v||L2(Th) .

Absorbing ||D2
v||L2(Th) on the left-hand side concludes the proof.

Remark 4 (Babuöka’s paradox). The scaling h
m≠1 of Theorem 2 is in agreement with

the implication of Babuöka’s paradox [3], in which a sequence of polygonal, nested domains
(Ên)nœN converging to the open unit ball Ê = B1(0) œ R2 is considered, i.e.,

Ê
n µ Ê

n+1 µ Ê, ’n œ N,

Ên æ Ê, as n æ Œ ,

in the sense that for every point x œ Ê there exists an index n(x) > 0 such that x œ Ên for
all n > n(x). The paradox states, that solutions un of a Kirchho� plate bending problem
defined on (Ên)nœN with simple support boundary conditions fail to converge to the solution
u of the limit problem defined on Ê. Similarly, our error estimate indicates, that solutions
defined for a piecewise linear approximation of the interface (m=1) may not converge to
the solution of the exact interface problem.

5 Numerical Experiments

In this section we provide numerical results that were obtained using Matlab. These
include experimental convergence rates that confirm the scaling of the a priori error esti-
mate under suitably imposed boundary conditions. In addition, we compare the folding
model to the classical bending model without a fold. The interface of the folding model is
highlighted by a solid curve in the following figures. For all the simulations we use second
order isoparametric elements (k = 2) and “0 = “1 = 10.
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5.1 Bending vs Folding

We first demonstrate the influence of the folding mechanism by comparing the classical
bending model without a fold to the folding model with a quadratic interface, given by
�(y) = [2/3≠2/3(y≠y

2), y]€ for di�erent boundary conditions, � = (0, 1)2 and f = 0. The
colors in the figures represent the elementwise bending energy density of the configurations.
For the first experiment we apply fully clamped boundary conditions on ˆD� = ˆ�, as
shown in Figure 2. Large curvatures focus around the folding points on the boundary in
both simulations. In addition, we observe singularities at the respective corners of the
interface in the folding model. This demonstrates the fact, that the regularity of solutions
depends on the geometry of the interface and its compatibility to the boundary conditions.

Figure 2: Numerical simulation of the classical bending model without a fold (left) and
the folding model with quadratic interface (right) for fully clamped boundary conditions.

Next we compare simulations for clamped boundary conditions u = 0 and Òu ”= 0 on the
two sides {x = 0} and {x = 1}, see Figure 3. In the model without a fold, the curvatures
are uniformly distributed along the plate with a slight increase in the direction of the plate
center. In case of the folding model, high energy values are localized on the left side of the
fold with maximum values occurring around the corners of the corresponding subdomain.

Figure 3: Numerical simulation of the model without a fold (left) and the folding model
with quadratic interface (right) for clamped boundary conditions on two sides of the plate.

For the next simulation we apply clamped boundary conditions u = 0.3 on {x = 0},
u = 0 on {x = 1} and Òu = 0 on both sides, as can be seen in Figure 4. The energy
distributions of both configurations are very similar. In contrast to the previous simulation,
large curvature values occur along the Dirichlet boundary with decreasing values in the
direction of the plate center. Low curvature values are distributed along the fold, even
around the endpoints of the interface.
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Figure 4: Numerical simulation of the model without a fold (left) and the folding model
with quadratic interface (right) for clamped boundary conditions on two sides of the plate.

For the final simulation of this section, we apply clamped boundary conditions u = 0 and
Òu = 0 on the right side {x Ø 2/3} fl ˆ� (of the folding curve) and fix u(x0) = 0.3 for
x0 = [0, 0.5]T to ensure uniqueness of the folding configuration, as shown in Figure 5.
Regarding the folding model, the deflection is very small on the right side of the interface
with main bending e�ects occurring on the left side. Large curvatures concentrate around
the endpoints of the fold. In striking contrast to the deformation without a fold, the
folding deformation bends downwards towards the middle {y = 0.5} of the plate on the
left side of the fold due to the shape of the interface.

Figure 5: Numerical simulation of the model without a fold (left) and the folding model
with quadratic interface (right) for clamped boundary conditions on one side of the plate.

We observe from the simulations, that the shape of the folding curve has a great impact on
the structure of the deformation and its energy distribution. Depending on the boundary
conditions, large curvatures focus around the fold and the boundary of the plate. The
shape of the interface dictates in which direction the plate bends on either side of the fold.

5.2 Convergence Rates

Meaningful convergence rates require the availability of a piecewise regular solution to
the continuous problem. The existence of such a solution depends on the geometry of
the folding curve and its compatibility to the boundary conditions. To avoid possible
single corner singularities (as can be observed in Figure 2), we consider clamped boundary
conditions g = � = 0 on ˆ� and a uniform force f(x, y) = 100 on �. We compare
configurations and convergence rates for the model without a fold to the folding model with
a straight interface at {x = 0.5}, a piecewise linear and a piecewise quadratic interface,
both approximating �(y) = [2/3 ≠ 1/6 sin(fiy), y]€ as h æ 0, see Figure 6 and Table 1.
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Figure 6: Numerical solutions (left) and experimental error values (right) for the bending
model without a fold and the folding model with a straight interface at {x = 0.5}, a
piecewise linear and a piecewise quadratic interface, both approximating �(y) = [2/3 ≠
1/6 sin(fiy), y]€ (from top to bottom).
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Since the solution u to the continuous problem is unknown, we compute for a sequence of
triangulations (Tj)j=0,1,... and sj = ||uj ||dG the extrapolated values

s̃j =
sjsj≠2 ≠ s

2
j≠1

sj ≠ 2sj≠1 + sj≠2
,

in order to approximate the value s = ||u||dG. The errors ||u≠uh||dG are then approximated
using the Galerkin orthogonality

||u ≠ uh||2dG = ||uh||2dG ≠ ||u||2dG .

DoFs No Fold Linear Fold Pw. Lin. Fold Appr. Pw. Quadr. Fold Appr.
192 1.3020 1.2874 1.2190 1.3384
768 1.3158 1.2801 1.1767 1.2049

3072 1.2823 1.2292 1.1243 1.1281
12288 1.2262 1.1597 1.0916 1.0948
49152 1.1744 1.0828 1.0242 1.0261

196608 1.1737 1.0820 1.0230 1.0248

Table 1: Experimental convergence rates of the || . ||dG-norm for the bending model without
a fold and the folding model with a straight interface at {x = 0.5}, a piecewise linear and
a piecewise quadratic interface, both approximating �(y) = [2/3 ≠ 1/6 sin(fiy), y]€ (from
left to right).

We observe a linear rate of convergence from Figure 6 and Table 1 in all four cases. In
particular, the simulations confirm the theoretical scaling h

k≠1 of Theorem 1 for k = 2.
A Babuöka-like paradox could not be observed for the piecewise linear approximation of
the interface. The geometric consistency error might be too small to be quantified in our
simulation.
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