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Abstract

Objective. Deep-learning (DL)-based dose engines have been developed to alleviate the intrinsic com-
promise between the calculation accuracy and efficiency of the traditional dose calculation algorithms.
However, current DL-based engines typically possess high computational complexity and require
powerful computing devices. Therefore, to mitigate their computational burdens and broaden their
applicability to a clinical setting where resource-limited devices are available, we proposed a compact
dose engine via knowledge distillation (KD) framework that offers an ultra-fast calculation speed with
high accuracy for prostate Volumetric Modulated Arc Therapy (VMAT). Approach. The KD frame-
work contains two sub-models: a large pre-trained teacher and a small to-be-trained student. The
student receives knowledge transferred from the teacher for better generalization. The trained student
serves as the final engine for dose calculation. The model input is patient computed tomography and
VMAT dose in water, and the output is DL-calculated patient dose. The ground-truth \ dose was com-
puted by the Monte Carlo module of the Monaco treatment planning system. Twenty and ten prostate
cases were included for model training and assessment, respectively. The model’s performance (tea-
cher/student/student-only) was evaluated by Gamma analysis and inference efficiency. Main results.
The dosimetric comparisons (input/DL-calculated /ground-truth doses) suggest that the proposed
engine can effectively convert low-accuracy doses in water to high-accuracy patient doses. The
Gamma passing rate (2%/2 mm, 10% threshold) between the DL-calculated and ground-truth doses
was 98.64 £ 0.62% (teacher), 98.13 = 0.76% (student), and 96.95 =+ 1.02% (student-only). The infer-
ence time was 16 milliseconds (teacher) and 11 milliseconds (student/student-only) using a graphics
processing unit device, while it was 936 milliseconds (teacher) and 374 milliseconds (student/student-
only) using a central processing unit device. Significance. With the KD framework, a compact dose
engine can achieve comparable accuracy to that of a larger one. Its compact size reduces the computa-
tional burdens and computing device requirements, and thus such an engine can be more clinically
applicable.

1. Introduction

Dose calculation is an essential part of treatment planning in radiotherapy. Its calculation accuracy and effi-
ciency can fundamentally affect the plan quality and planning time (Shepard et al 2002) especially when iterative
dose calculation processes are conducted during optimization for inverse planning (e.g. Intensity Modulated
Radiotherapy IMRT), Volumetric Modulated Arc Therapy (VMAT) planning). However, a highly accurate
dose calculation algorithm, e.g. Monte Carlo (MC) simulation, typically requires a great deal of computational
power (Chen et al 2014b, Xing et al 2020a, 2020b). Therefore, to improve planning efficiency while maintaining
ahigh level of accuracy for the final computed dose, commercialized treatment planning systems (TPSs), such as
Pinnacle (Philips Medical Systems, Madison, WI), Monaco (Elekta AB, Stockholm, Sweden), etc, typically adopt
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alow accuracy (yet fast) dose calculation algorithm (e.g. pencil beam algorithms) from the first iteration up until
the last iteration, or the last couple of iterations, of the optimization, at which point a highly accurate (yet slow)
dose calculation algorithm (e.g. Superposition/Convolution (S/C), MC simulation) is applied (Li et al 2015).
This may compromise treatment plan quality, resulting in a sub-optimal plan.

To overcome these challenges, a dose engine should ideally possess not only a high level of efficiency but also
ahigh level of accuracy for inverse planning. In recent years, many deep learning (DL) methods (Peng et al 2019,
Fuetal 2020, Kontaxis et al 2020, Xing et al 2020a, 2020b, Liu et al 2021, Tsekas et al 2021) have been proposed
for such dose engines. Two major strategies have been implemented for DL-based dose engines. One of the
strategies (Kontaxis et al 2020, Tsekas et al 2021) encodes the beam information into the learning phase of a DL
model. (Kontaxis et al 2020) proposed a so-called ‘Deep Dose’ framework, which incorporates the treatment
information into the patient anatomy for segment dose calculation of five-field (fixed) IMRT plans, using data
from 101 prostate patients (4176 segments). It can achieve an average Gamma passing rate of 97.8% and 99.5%
using 2% /2 mm Gamma criterion with a 10% dose threshold for segment dose and plan dose, respectively. The
average calculation time was 0.6 s per segment and 25 s per plan on an NVIDIA GTX Titan graphics processing
unit (GPU). This framework was also found to be effective in IMRT dose calculation within a 1.5 T magnetic
field (Tsekas et al 2021). The other strategy (Peng et al 2019, Fu et al 2020, Xing et al 2020a, 2020b, Liu et al 2021)
turns the dose calculation task into a dose conversion problem (from low-accuracy doses to high-accuracy ones)
using a DL model as a de-noising tool. Xing et al (2020a) trained a DL-based dose engine for 7-field (fixed) IMRT
plans using doses acquired from an inaccurate (but fast and low-cost) algorithm (Luand Chen 2010) and a
highly-accurate algorithm (S/C algorithm (Ahnesjo 1989)) as the input and reference outputs, respectively. Data
for a total of 78 prostate patients were collected for engine training. The model can achieve an average Gamma
passing rate 0f 98.5% (1%/1 mm) and 99.9% (2%/2 mm) at a 20% dose threshold. The average total calculation
time on an NVIDIA Tesla V100 GPU was 1.19 s per plan. Three other research groups (Peng etal 2019, Fu et al
2020, Bai et al 2021) used the same strategy to de-noise MC doses that possessed a high statistical uncertainty to
obtain ones with a lower statistical uncertainty to accelerate the planning dose calculation.

The aforementioned research groups (Peng et al 2019, Fu et al 2020, Kontaxis et al 2020, Xing et al 2020a,
2020b, Baietal 2021, Liu etal 2021, Tsekas et al 2021) have demonstrated that a DL-based dose engine is able to
offer superior computational speed compared to traditional high-accuracy algorithms, while maintaining a
comparable level of accuracy. However, much room for improvement remains for the existing framework of
DL-based dose engines to broaden their clinical applicability. First, most of the DL-based dose calculation algo-
rithms were specifically designed for fixed-field IMRT plans (Peng et al 2019, Kontaxis et al 2020, Xing et al
2020a, Liueral 2021, Tsekas et al 2021). The same calculation speed and accuracy cannot be assumed for VMAT
dose calculation. Compared to the fixed-field (fixed gantry angle) IMRT plans, a more complex beam modula-
tion is generally expected for VMAT plans as its dynamic nature with simultaneous changes of gantry rotational
speed, dose rate, and multi-leaf collimator arrangements during beam delivery (Bedford 2009, Chen et al 2014a,
Unkelbach et al 2015). Second, current DL models typically possess high computational complexity, and alarge
storage capacity is commonly needed for highly accurate dose calculations. This usually requires a powerful
computing resource (e.g. GPU), which implies a high cost for computation. It is therefore challenging to deploy
such a model on low-powered and resource-limited devices. Consequently, a small-capacity DL model with
lower computational burdens seems to be more clinically applicable. Third, to improve the model performance
on unseen data, a large and comprehensive patient database is typically included in the training phase, which
necessitates a difficult data collection task, as accessible patient data are of limited availability in many clinical
settings. Building a robust DL-based dose engine with limited patient data still remains a great challenge. There-
fore, an approach to effectively augment the training dataset for the dose calculation task would be beneficial to
the success of the DL-based dose engine.

In this study, we developed a novel DL-based dose engine for prostate VMAT plans to address the aforemen-
tioned limitations. First, instead of performing the dose calculation per aperture or control point (CP) of a
VMAT arg, the proposed framework enables a composite arc dose calculation via the composite arc dose in
water and the patient computed tomography (CT) images. This allows for a much faster VMAT dose calculation,
and thus a shorter calculation time can be expected. Second, knowledge distillation (KD) (Hinton et al 2015),
which is a model compression technique that distills the knowledge of a large-capacity model (teacher) into a
smaller one (student) without a severe loss of soundness in performance, was implemented to further decrease
the computational burdens of the DL model. As a result, the trained student can achieve a computational accur-
acy that is comparable to that of the teacher, but it is also able to attain a superior level of efficiency, which makes
the model more applicable to a clinical setting of limited computational resources. Third, limited patient data
with the arc recycling strategy were included for the model training (twenty patient cases) and performance
assessment (ten patient cases). This strategy artificially inflates the size of the raw training dataset to mitigate the
model overfitting without the requirement of extensive patient data collection. The detailed model implementa-
tions are presented in the Methods and Materials section. Comprehensive analysis of the model performance is
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conducted and discussed. The potential clinical applications of the proposed dose engine are summarized at
the end.

2. Methods and materials

In this section, we first introduce the patient CT and arc plan database for training in section 2.1. Subsequently,
data generation and preprocessing (section 2.2) and the KD framework (section 2.3) are presented in detail.
Finally, the approaches to measure the performance of the proposed DL-based dose engine are given in
section 2.4.

2.1.Patient and arc database

Twenty prostate cancer cases were collected, of which sixteen and four were randomly selected as training and
validation patients, respectively. Seventy VMAT arcs (6 MV full arcs with various collimator angles from 5° to
110°) were collected from these 20 cases. To enlarge the size of the dataset, each arc was recycled and applied to
the different patient CT's for dose calculation, and so 1120 and 280 samples (involving one arc beam, one CT,
and one computed dose matrix) were included in the training and validation datasets, respectively. This arc
recycling strategy not only artificially increases the training dataset, it also facilitates the DL model with the
learning of the effects of dosimetric variations due to various portions of the patient anatomy irradiated from the
same beam, or due to different arc beams delivered to the same anatomical site. An additional ten prostate cases
served as an independent testing dataset for performance evaluation. The detailed patient demographics and
plan information were listed in table 1.

2.2.Data generation and preprocessing
Two-channel inputs were applied for model training as well as for final DL-based dose calculation. The patient
CT images comprise the first channel of inputs. The Hounsfield Unit (HU) range of patient CT images is from 0
t0 3000. The second channel is the three-dimensional (3D) dose for the VMAT plans, computed in a patient-
contour-shaped water phantom. In contrast to other DL-based dose calculation studies (Peng et al 2019, Fu et al
2020, Xing et al 2020a, 2020b, Bai et al 2021) whose low-accuracy dose input was typically calculated by either
MC simulations or other traditional dose calculation algorithms on real patient CT's, we performed a simple
pencil beam convolution on a homogeneous (water) phantom (possessing the patient’s external contour) to
generate dose as the input. This method can be implemented easily and allows for a faster speed of dose input
generation. On the other hand, the correlation of dose variation due to anatomical heterogeneity can be extrac-
ted with the information provided by the first-channel inputs in our model. That is, the patient CT images
provide anatomical information to assist in mapping the doses from water to real patient anatomy with hetero-
geneity considerations.

To obtain the plan dose in the water phantom, we first compute the CP dose in the water phantom using the
following pencil beam convolution formula:

Di(d) = Ai(d)*K;(d). ()

In gantry coordinates, D;(d) represents the 2D dose at depth d of the phantom, perpendicular to the beam’s
central axis direction, contributed by the ith CP. A;(d) isa 2D binary function, representing the beam projection
of the ith CP aperture at depth d. It should be noted that the aperture projection region changes along the depth
due to the beam divergence, as indicated in figure 1(a). K;(d) is the 2D pencil beam kernel of the ith CP at depth d.
The nominal pencil beam kernel was simulated ona 50 x 50 x 50 cm® water phantom with 0.1 x 0.1 x 0.1
cm” resolution under an EGSnrc (Kawrakow 2000) MC environment. An enface 6 MV, 0.1 x 0.1 cm” beamlet
(projected at source-to-axis distance, SAD) at 75 cm source-to-surface distance (SSD) was employed for the simu-
lation. For the dose computation at each CP, the nominal kernel needs correction for beam divergence due to SSD
variations using the inverse square law. The convolution process at different depths is illustrated in figure 1.

By computing the 2D dose for all depths (with 0.1 cm resolution), the 3D dose in gantry coordinates for the
ith CP, namely D;, can be subsequently acquired. Finally, the VMAT plan dose in the phantom in room coordi-
nates can be found by summing all 3D CP doses using equation (2). Here, a rotation matrix R (6;) was applied to
each CP dose D; prior to final summation in order to convert the CP dose from gantry coordinates to room
coordinates. An illustration of coordinate conversion is shown in figure 2

CcP
VMAT dose = » " R(6)) D;. )
i=1

For each pair of two-channel inputs, the corresponding ground-truth plan dose was calculated on a Versa
HD (Elekta Inc., Stockholm Sweden) machine model by the MC module of the Monaco TPS (version 5.51.02)
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Table 1. Patient demographics and plan information used for the training/validation and testing datasets.

Dataset Patient numbers Tumor clinical stage Prescription Note
Training/Validation 20 Intermediate risk of prostate adenocarcinoma (stage II) 60 Gy 2 patients with titanium hip implant
Testing 10 (QD 3 Gy fraction™") 1 patient with titanium hip implant
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Figure 1. Visual illustrations of the (a) 3D binary CP beam projection, (b) 3D pencil beam dose, and (c) 3D CP dose in water.

Figure 2. An illustration of coordinate conversion from gantry to room. 6 is the rotational angle between gantry coordinates and
room coordinates for the ith CP.

witha 0.3 x 0.3 x 0.3 cm’ dose grid and a statistical uncertainty of 0.7% per calculation on alocal computer
equipped with dual 14 core Intel(R) 2.6 GHz Xeon(R) Gold 6132 central processing units (CPU) and 128 GB
RAM. All input data including 3D doses, CT images, and ground-truth MC doses were cropped to the same size
(144 x 96 x 48 voxels witharesolution of 0.3 x 0.3 x 0.3 cm’) for the sake of simplicity. For training pur-
poses, all dose values were normalized to planning monitor units (MUs).

2.3.KD framework

The KD framework (figure 3) is composed of two sub-models: a large pre-trained teacher model and a smaller
to-be-trained student model. The student model is trained under the supervision of the teacher model, and
mimics the teacher model’s behaviors in order to achieve a competitive performance with that of the teacher
model. In this framework, the training input and output to both teacher and student models are identical. The
student model receives the transferred knowledge of the pre-trained teacher model by incorporating one extra
distillation loss (the difference between the teacher’s calculation and the student’s calculation) into the loss
calculation in the training phase. The densely connected neural network (Zhang et al 2020) was chosen as a
base model architecture for both the teacher and student models’ developments. The teacher model was
trained first in order to provide good guidance for training a student model. We increased its number of train-
able parameters by implementing different spatial resolution levels (2 to 4) and applying different initial num-
bers of feature channels (16—64) until its performance was no longer improved on. For the student model, we
experimentally built a small-capacity model by limiting its number of trainable parameters. The trained
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Figure 3. The teacher-student training framework for knowledge distillation.
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Figure 4. The architecture of the final teacher and student models. The number under each block represents the number of feature
channels.

student model that has a performance comparable to that of the teacher model serves as the final dose engine
for the prostate VMAT dose calculation. The detailed architecture of the final teacher and student model is
described in section 2.3.1.

2.3.1. Teacher and student models’ architecture

The architecture of the teacher and student models is illustrated in figure 4. It is composed of an encoding path
and a decoding path. Each has three spatial resolution levels: 144 x 96 x 48,72 x 48 x 24,and

36 x 24 x 12.The first two levels in both paths consist of two convolutional layers with 3 x 3 x 3 kernelsand
zero padding, followed by batch normalization and rectified linear units (ReLu). The down-sampling between
levels in the encoding path is performed bya 2 x 2 x 2 max pooling layer with a stride size of two, while the up-
sampling between levels in the decoding path is conducted by a transposed convolutional layer with 3 x 3 x 3
kernels and a stride size of two. The skip connection copies and concatenates the high-resolution features from
the encoding path to the decoding path for preserving the local features. A dense feature aggregation block with
five dilated convolutional layers (dilation rates: 2, 3, 5,7, 9) is implemented at the bottleneck level, for which each
convolutional layer connects to every other convolutional layer. The last convolutional layer with 1 x 1 x 1
kernels reduces the feature channel to one for the final voxel-wise dose calculation. The feature channels are
doubled as the spatial resolution is halved in the encoding path, whereas the feature channels are halved as the
spatial resolution is doubled in the decoding path. The initial number of feature channel starts with 32 for the
teacher model and 16 for the student model. Accordingly, the teacher model has trainable parameters of 6.3
million, while the student model has trainable parameters of 1.6 million.
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2.3.2. Loss function
To train a teacher model, the mean absolute error (MAE) between the DL-calculated doses and the ground-truth
MC doses was used as the loss function for optimization

LN
Lyag = NZU}LH — GT,, 3

n=1

where Ly5g is the MAE as aloss function. DL ,, and GT,, are the DL-calculated dose and the ground-truth MC
dose at the nth voxel, respectively. N is the total number of voxels in the 3D volume.

To incorporate the pre-trained teacher’s knowledge into the training phase of the to-be-trained student
model in the KD framework, the parameters of the student model were optimized by minimizing the total loss
function as follows:

ﬁtotal = LMAE(DLstudent) GT) + (1 - a) . LMAE(DLstudent) DLteacher)) (4)

where Lot is the combined MAE of student loss and distillation loss. DL gent and DL eqcher are the DL-calcu-
lated doses from the student and teacher models, respectively. « is a weighting factor to combine the student loss
and distillation loss, and it was set to 0.5 in this study. In the validation phase of the KD framework, the Ly in
equation (3) was used to evaluate the model performance on the validation dataset since only the output of the
student model will be used for the final calculation.

2.3.3. Model training

The Adam algorithm with default parameters (3, = 0.9, 3, = 0.999, and epsilon = 10~%) and a learning rate of
0.0001 was selected as the optimizer to minimize the loss function. The training batch size and maximum epoch
number were chosen to be 16 and 1000, respectively. An early stopping technique was implemented to terminate
the training session at the point where the loss function did not improve by over 50 epochs. The model weights
were randomly initialized. Five-fold cross-validation was first performed to assess the stability of the DL models
and to search for the optimal hyperparameter setting. The final models were subsequently trained with the train-
ing and validation datasets combined (1400 arc samples in total), and then evaluated by the independent testing
dataset. The aforementioned settings were applied to both the teacher and student models. The DL models were
implemented with the PyTorch DL framework (version 1.10) and trained on a single NVIDIA A100 SXM4 GPU
(80 GBRAM).

2.4. Performance assessment

To assess the performance of the proposed DL-based dose engine, two key evaluation metrics: (a) dosimetric
accuracy and (b) inference efficiency, were mainly compared and discussed. First, the comparisons between the
DL-calculated and ground-truth MC doses on the testing dataset were performed based on a global Gamma
analysis using the criteria of both 2% /2 mm and 3%/3 mm with a low-dose threshold of 10%. The dosimetric
performance of the proposed dose engine on tissue heterogeneity corrections was also evaluated using a prostate
patient case with hip replacements and gas-filled rectum. Second, to measure the model inference efficiency on
both powerful and limited computing devices, an NVIDIA A100 SXM4 GPU, an NVIDIA GTX 3080 GPU (10
GB RAM), and an Intel(R) Core (TM) 3.5 GHz 19-11900KF CPU (64 GB RAM) were utilized for dose calcul-
ation. Third, to study the benefits of the KD framework, the performance of a student-only model (trained
without the KD framework) and the teacher model were also compared to the distilled student model.

3. Results

3.1. Model training results

The training session of the student model (final dose engine) trained with the KD framework took approxi-
mately 7 h on a single A100 GPU. Loss convergence curves of the training progress are presented in figure 5. Both
training loss and validation loss decrease as the epoch increases. The training was stopped when the difference of
validation losses between 50 consecutive epochs was lower than 0.0001, which ends up at 450 training epochs.

3.2. Dosimetric results of the final dose engine trained with the KD framework

3.2.1. Overall dosimetric performance

The detailed Gamma analysis of the test patients is reported in table 2. The mean as well as the standard deviation
(SD) of the Gamma passing rates for the proposed dose engine on the test patients were 98.13 = 0.76% and 99.50
=+ 0.17% using 2%,/2 mm and 3%/3 mm criteria, respectively. This indicates that the dose engine can produce
highly accurate dosimetric results that are comparable to its counterpart calculated by the Monaco MC
algorithm.
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Figure 5. Training and validation loss convergence curves of the final dose engine.
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Figure 6. The central axial slice of the (a) input doses, (b) DL-calculated doses, and (c) ground-truth doses for the test patient 1.
Absolute differences between ground-truth doses and either input doses or DL-calculated doses are presented in (d) and (e).
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Table 2. The Gamma passing rates between the
ground-truth doses and DL-calculated doses of the
proposed dose engine on the ten test patients.

Gamma passing rate (%)

Patientindex
2%/2 mm 3%/3 mm

1 99.07 99.65
2 99.27 99.71
3 98.66 99.52
4 98.04 99.54
5 97.45 99.43
6 97.11 99.20
7 97.48 99.31
8 98.69 99.67
9 97.47 99.38
10 98.10 99.54
Mean + SD 98.13+0.76 99.50+0.17

Figure 6 provides visual comparisons of the dose distribution among the input doses, DL-calculated doses,
and ground-truth doses for a sample case (test patient 1). Substantial differences between the input doses and
ground-truth doses can be observed, compared to smaller differences between the DL-calculated doses and
ground-truth doses. The Gamma passing rate between the input doses and ground-truth doses was 74.22%
usinga 2%/2 mm criterion with a 10% low-dose threshold, whereas the Gamma passing rate between the DL-
calculated doses and ground-truth doses was 99.07%. This result suggests the learning capability of our model
structure is strong, even with very coarse dose information as input.

Figure 7 shows the dose-volume histogram (DVH) of the PTV, and some organs-at-risk (OARs), calculated
by both the MC method (ground-truth) and DL model for the sample case (patient 1). The DVH curves of the
DL model are very close to their counterpart MC calculation for all of the structures.

3.2.2. Tissue heterogeneity corrections
Figure 8(a) provides a comparison of the isodose distributions between the DL-calculated doses and ground-
truth doses for a sample case (test patient 4) with titanium hip implant and gas-filled rectum. The isodose lines of
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Figure 7. A DVH plot of the ground-truth (solid) and DL-calculated (dashed) dose distributions for the PTV, rectum, bladder, and
femoral heads structures.
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Figure 8. (a) A comparison of isodose distributions between the DL-calculated (solid) and ground-truth (dashed) doses for a patient
case with titanium hip implant and gas filled rectum. (b) A DVH plot of the DL-calculated (solid) and ground-truth (dashed) dose
distributions for the PTV and OARs structures.

the DL-calculated doses were matched well to those of the ground-truth doses. Similar agreement can also be
observed in the DVH curves’ comparisons as illustrated in figure 8(b). The Gamma passing rates for this case
were 98.04% (2% /2 mm) and 99.54% (3%,/3 mm). These results indicate that the proposed DL-based dose
engine is able to properly handle the tissue heterogeneity corrections.

3.3. Dosimetric comparisons of the teacher, student, and student-only models

Figure 9 demonstrates the distributions of the Gamma passing rates on the test patients using the teacher model
and the student-only model (trained without the KD framework), as well as the student model trained with the
KD framework (final dose engine). The performance gap between a large-capacity model (teacher) and a small-
capacity model (student-only) becomes smaller when such a small-capacity model (student) is trained with the
KD framework. The Gamma passing rates on the ten test patients were 98.64 =+ 0.62% for the teacher model and
96.95 4 1.02% for the student-only model using a 2% /2 mm criterion, compared to 98.13 4 0.76% for the
student model. They were 99.63 % 0.16% for the teacher model and 99.32 = 0.32% for the student-only model
using a 3%/3 mm criterion, compared to 99.50 £ 0.17% for the student model. These results suggest that the
performance of a small-capacity DL model can be improved by the KD framework.

Figure 10 provides visual dose comparisons among the teacher, student, and student-only models using two
sample cases (test patient 2 and test patient 3) on 2D planes. Noticeable variations between the isodose lines of
the ground-truth doses and those from the student-only model can be observed. These differences (indicated by
the black arrows) are moderately alleviated with the help of the KD framework, as can be seen in figure 10. The
Gamma passing rates (2%,/2 mm and 10% dose threshold) on test patient 2 were 99.46%, 99.27%, and 97.86%,
for the teacher, student, and student-only models, respectively. They were 99.02%, 98.66%, and 97.69% on test
patient 3.
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Figure 9. The distributions of the Gamma passing rates using (a) 2%,/2 mm and (b) 3%,/3 mm criteria on the ten test patients for the
teacher, student, and student-only models.
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Figure 10. The dosimetric comparisons between the DL models’ calculated doses (solid isodose lines) and ground-truth MC doses
(dashed isodose lines) for two test patients. Doses were normalized to the maximum ground-truth dose. The number on the lines
represents the percent dose. Planar dose maps were cropped to enlarge the details.

3.4. Model inference efficiency

Table 3 reports the model inference times for the DL-based dose calculations. The student and student-only
models in general have the same level of inference efficiency since their model capacity is identical. Compared to
the large-capacity teacher model, their smaller capacity allows for a shorter inference. An interesting observation
is that the time-saving effect is actually improved for student models using the CPU, compared to that using

the GPUs.

4, Discussion

4.1. The performance of the proposed DL-based dose engine

In this work, a small-capacity DL-based dose engine for prostate VMAT plans with limited patient data was
presented. The KD framework was implemented to help improve the performance of the dose engine. In this
way, this type of engine can offer an ultra-fast calculation inference while maintaining a high level of calculation
accuracy. The results of the dosimetric comparisons (figures 6 and 7) show that the proposed dose engine can
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Table 3. The inference time of the teacher, student, and student-only
models. Batch size of 1 was used.

Inference time per arc (unit: milliseconds)

Model
GPU CPU
A100 RTX 3080
312 TFLOPS® 59.5 TFLOPS* 0.9 TFLOPS®
Teacher 16.0 +£0.27 45.5+£0.57 936.2+5.9
Student 11.0+0.31 27.8+£0.28 374.8+£3.4
Student-only 10.8+£0.22 27.2+0.29 +2.8

* TFLOPS: a trillion floating-point operations per second used to measure
the computational capacity of a computing device.

effectively translate low-accuracy arc doses in water into high-accuracy arc doses in patient anatomy for prostate
VMAT plans. The dosimetric comparisons demonstrated in figure 8 further suggest that the proposed engine is
capable of managing the tissue heterogeneity corrections in the presence of significant inhomogeneous prostate
patient anatomy with high calculation accuracy. The statistical results of the Gamma analysis from table 2
demonstrate that the dose engine is able to compute with a high level of accuracy for all the test patients. In
addition, the comparisons of the inference time reported in table 3 show that the proposed DL-based dose
engine yields a much superior inference efficiency compared to that of the large-capacity model due to its com-
pact size. These results suggest that the proposed dose engine is able to compute VMAT plans not only quickly,
but accurately. It is therefore as promising tool for accelerating dose calculation and plan optimization processes
for prostate VMAT planning.

4.2. The analysis of the proposed DL-based dose engine

To improve the calculation accuracy of the proposed small-capacity dose engine (final student model), the
knowledge of the large-capacity teacher model was integrated into the training structure. The results of the
isodose comparisons between the student model doses and the ground-truth doses (demonstrated in figure 10)
have better agreement than those for the student-only model. Moreover, the distributions of the Gamma passing
rates among the teacher, student, and student-only models (figure 9) indicate that the student model is able to
generate the doses with better accuracy than student-only model and its computational accuracy closer to what
the teacher model can achieve. A small gap between the Gamma passing rates of the teacher and student models
is still noticeable. This discrepancy is expected due to the fact that the student model has a much smaller scale of
parameters than the teacher model. Nevertheless, the proposed dose engine can still produce alevel of dose
accuracy that is comparable to some well-accepted algorithms, such as the C/S algorithm. According to our
study, the Pinnacle TPS version 16.4 (C/S based algorithm) has a 98.26 4= 0.85% Gamma passing rate using a
2%,/2 mm criterion on the test patients when compared to ground truth, which is very close to the passing rate
that our model achieved, 98.13 £ 0.76%.

From the calculation efficiency standpoint, our dose engine has a greater advantage over the MC simulation.
For example, the calculation time per arc was approximately 3.3 s (input generation: 2.9 s and model inference:
0.4 s)and 180 s on CPU-only devices using the proposed dose engine and the Monaco MC module, respectively.
In addition, comparing to other DL-based dose engines (Kontaxis et al 2020, Liu et al 2021, Tsekas et al 2021),
our engine provides an additional speed boost due to its compact size, which allows for a much faster dose
calculation speed than for a large size network. The student model decreases the inference time of the teacher
model by 31.3%, 38.9%, and 60.0% on an A100 GPU, a RTX 3080 GPU, and a CPU, respectively. It should be
noted that the reduction of computation time becomes more prominent when the DL-based dose calculation is
performed on a CPU-only computing device. A better time-saving factor is therefore anticipated when low-
powered computing devices are used for calculations.

Unlike some of the DL-based engines (Kontaxis et al 2020, Liu et al 2021, Tsekas et al 2021), which can only
calculate an individual segment per inference, the proposed dose engine is able to provide a composite VMAT
arc dose at one time using the composite doses in water as the input. Given that hundreds of sampled CPs are
typically included in a VMAT arc, our dose engine demonstrates a great advantage over the segment/CP-based
DL dose engines. It therefore leads to a substantial reduction in the overall calculation time. Moreover, adopting
dose computation in a homogeneous medium (water) as the input allows for a faster preprocessing time than do
DL engines requiring heterogeneity dose computation on CT for input generation.

During training, the same group of VMAT arcs were re-computed on different CT data sets to augment the
dosimetric input dataset. Figure 11(a) demonstrates the dosimetric results of a VMAT arc calculated on its origi-
nal planning patient anatomy, whereas the calculation results for another patient’s anatomy is shown in
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Figure 11. The identical VMAT arc calculated on (a) its original planning patient anatomy and (b) another patient’s anatomy. (c) The
50% to 90% isodose comparisons between the doses of (a) solid lines and of (b) dashed lines. The doses were normalized to the
treatment isocenter of the corresponding patient body. Dose comparison map was cropped and only included the isodose lines within
the patient body in (a).
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figure 11(b). Noticeable difference of isodose distribution between the two scenarios was observed, as shown in
figure 11(c). These dosimetric differences are due to the patient anatomy and position variations. Therefore, the
dose information obtained from same arcs but calculated on different CT data sets can be treated as additional
dosimetric inputs to effectively increase the pool of the training data. This recycling strategy is able to alleviate
the burden of massive data collection required by traditional DL frameworks. On the other hand, when the pool
of accessible raw data are too small for adequate training, the recycling strategy can also be an alternative solution
to expand the pool of training data. From a training efficacy point of view, the recycling strategy helps the DL
model to better ‘understand’ the correlation between dose deposition and anatomical variance. It can therefore
improve the robustness of the model.

The implementation of the KD framework in this study helps improve the performance of a small-capacity
DL-based dose engine. This framework involves one extra DL-based calculation of a large-capacity model and
one extra distillation loss calculation, as compared to a regular training framework. This results in a longer
model training time. For example, the training times per epoch (about 88 iterations with a training batch size of
16) on a single A100 GPU were about 55.8 s, 51.3 s, and 38.3 s for the teacher, student, and student-only models,
respectively. Accordingly, a prolonged training session can be expected when the KD framework is
implemented.

From this proof-of-principle study, we found that the proposed DL-based dose calculation framework effec-
tively works for prostate cancer cases with promising results. The feasibility of extending the proposed frame-
work to other treatment sites (e.g. head and neck, lung, etc) and implementing other model compression
techniques (e.g. parameters pruning and quantization) will be empirically investigated in a future study.

4.3. Potential clinical applications of the proposed dose engine

The repetitive dose calculations are generally required by iterative optimization processes of VMAT planning.
The DL-based dose engines with their ultra-fast calculation speed allow a considerable reduction in the planning
time. One research group (Liu et al 2021) has successfully integrated their DL-based dose engine (large-scale
convolutional neural network (CNN)) into direct aperture optimization for IMRT inverse planning. They found
that using the DL-based engine to calculate dose for each iteration can substantially reduce the planning time (up
to 53% on average) and minimize the discrepancies between the optimized doses and the final plan doses (com-
puted by high-accuracy MC algorithm). Since our method demonstrates the capability of decreasing inference
time (39% and 60% on a GPU and a CPU, respectively) from a large-scale CNN engine calculation, a further
reduction in the planning time is conceivable with the proposed KD-based DL engine. An engine with a fast
computation speed is particularly desirable for online adaptive treatment planning. It can also be utilized as a fast
and independent dose calculator for patient-specific quality assurance (QA) and TPS QA.
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5. Conclusion

In this work, an ultra-fast DL-based dose engine for prostate VMAT plans was developed. The KD framework
was implemented to improve the performance of the small-capacity dose engine. The results of dosimetric and
inference time comparisons suggest that the proposed dose engine can perform highly-accurate VMAT dose
calculations with a much faster calculation speed than traditional dose engines. Its small-capacity size further
alleviates the computational resource requirement for the DL-based dose calculation. Thus, the proposed dose
engine seems well suited to clinical settings where only limited computational devices are commonly available.
In addition, the dose engine can be implemented for treatment planning to achieve a superior-quality planina
more efficient manner.
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