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Abstract

Objective. Deep-learning (DL)-based dose engines have been developed to alleviate the intrinsic com-

promise between the calculation accuracy and efficiency of the traditional dose calculation algorithms.

However, currentDL-based engines typically possess high computational complexity and require

powerful computing devices. Therefore, tomitigate their computational burdens and broaden their

applicability to a clinical settingwhere resource-limited devices are available, we proposed a compact

dose engine via knowledge distillation (KD) framework that offers an ultra-fast calculation speedwith

high accuracy for prostate VolumetricModulatedArc Therapy (VMAT).Approach. TheKD frame-

work contains two sub-models: a large pre-trained teacher and a small to-be-trained student. The

student receives knowledge transferred from the teacher for better generalization. The trained student

serves as thefinal engine for dose calculation. Themodel input is patient computed tomography and

VMATdose inwater, and the output isDL-calculated patient dose. The ground-truth dosewas com-

puted by theMonte Carlomodule of theMonaco treatment planning system. Twenty and ten prostate

cases were included formodel training and assessment, respectively. Themodel’s performance (tea-

cher/student/student-only)was evaluated byGamma analysis and inference efficiency.Main results.

The dosimetric comparisons (input/DL-calculated/ground-truth doses) suggest that the proposed

engine can effectively convert low-accuracy doses inwater to high-accuracy patient doses. The

Gammapassing rate (2%/2mm, 10% threshold) between theDL-calculated and ground-truth doses

was 98.64± 0.62% (teacher), 98.13± 0.76% (student), and 96.95± 1.02% (student-only). The infer-

ence timewas 16milliseconds (teacher) and 11milliseconds (student/student-only) using a graphics

processing unit device, while it was 936milliseconds (teacher) and 374milliseconds (student/student-

only)using a central processing unit device. Significance.With theKD framework, a compact dose

engine can achieve comparable accuracy to that of a larger one. Its compact size reduces the computa-

tional burdens and computing device requirements, and thus such an engine can bemore clinically

applicable.

1. Introduction

Dose calculation is an essential part of treatment planning in radiotherapy. Its calculation accuracy and effi-

ciency can fundamentally affect the plan quality and planning time (Shepard et al 2002) especially when iterative

dose calculation processes are conducted during optimization for inverse planning (e.g. IntensityModulated

Radiotherapy (IMRT), VolumetricModulatedArc Therapy (VMAT) planning). However, a highly accurate

dose calculation algorithm, e.g.Monte Carlo (MC) simulation, typically requires a great deal of computational

power (Chen et al 2014b, Xing et al 2020a, 2020b). Therefore, to improve planning efficiencywhilemaintaining

a high level of accuracy for thefinal computed dose, commercialized treatment planning systems (TPSs), such as

Pinnacle (PhilipsMedical Systems,Madison,WI),Monaco (Elekta AB, Stockholm, Sweden), etc, typically adopt
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a low accuracy (yet fast) dose calculation algorithm (e.g. pencil beam algorithms) from thefirst iteration up until

the last iteration, or the last couple of iterations, of the optimization, at which point a highly accurate (yet slow)

dose calculation algorithm (e.g. Superposition/Convolution (S/C),MC simulation) is applied (Li et al 2015).

Thismay compromise treatment plan quality, resulting in a sub-optimal plan.

To overcome these challenges, a dose engine should ideally possess not only a high level of efficiency but also

a high level of accuracy for inverse planning. In recent years,many deep learning (DL)methods (Peng et al 2019,

Fu et al 2020, Kontaxis et al 2020, Xing et al 2020a, 2020b, Liu et al 2021, Tsekas et al 2021) have been proposed

for such dose engines. Twomajor strategies have been implemented forDL-based dose engines. One of the

strategies (Kontaxis et al 2020, Tsekas et al 2021) encodes the beam information into the learning phase of aDL

model. (Kontaxis et al 2020) proposed a so-called ‘DeepDose’ framework, which incorporates the treatment

information into the patient anatomy for segment dose calculation of five-field (fixed) IMRTplans, using data

from101 prostate patients (4176 segments). It can achieve an averageGammapassing rate of 97.8% and 99.5%

using 2%/2 mmGamma criterionwith a 10%dose threshold for segment dose and plan dose, respectively. The

average calculation timewas 0.6 s per segment and 25 s per plan on anNVIDIAGTXTitan graphics processing

unit (GPU). This frameworkwas also found to be effective in IMRTdose calculationwithin a 1.5 Tmagnetic

field (Tsekas et al 2021). The other strategy (Peng et al 2019, Fu et al 2020, Xing et al 2020a, 2020b, Liu et al 2021)

turns the dose calculation task into a dose conversion problem (from low-accuracy doses to high-accuracy ones)

using aDLmodel as a de-noising tool. Xing et al (2020a) trained aDL-based dose engine for 7-field (fixed) IMRT

plans using doses acquired from an inaccurate (but fast and low-cost) algorithm (Lu andChen 2010) and a

highly-accurate algorithm (S/Calgorithm (Ahnesjö 1989)) as the input and reference outputs, respectively. Data

for a total of 78 prostate patients were collected for engine training. Themodel can achieve an averageGamma

passing rate of 98.5% (1%/1 mm) and 99.9% (2%/2 mm) at a 20%dose threshold. The average total calculation

time on anNVIDIATesla V100GPUwas 1.19 s per plan. Three other research groups (Peng et al 2019, Fu et al

2020, Bai et al 2021) used the same strategy to de-noiseMCdoses that possessed a high statistical uncertainty to

obtain ones with a lower statistical uncertainty to accelerate the planning dose calculation.

The aforementioned research groups (Peng et al 2019, Fu et al 2020, Kontaxis et al 2020, Xing et al 2020a,

2020b, Bai et al 2021, Liu et al 2021, Tsekas et al 2021) have demonstrated that aDL-based dose engine is able to

offer superior computational speed compared to traditional high-accuracy algorithms, whilemaintaining a

comparable level of accuracy.However,much room for improvement remains for the existing framework of

DL-based dose engines to broaden their clinical applicability. First,most of theDL-based dose calculation algo-

rithmswere specifically designed for fixed-field IMRTplans (Peng et al 2019, Kontaxis et al 2020, Xing et al

2020a, Liu et al 2021, Tsekas et al 2021). The same calculation speed and accuracy cannot be assumed forVMAT

dose calculation. Compared to the fixed-field (fixed gantry angle) IMRTplans, amore complex beammodula-

tion is generally expected for VMATplans as its dynamic naturewith simultaneous changes of gantry rotational

speed, dose rate, andmulti-leaf collimator arrangements during beamdelivery (Bedford 2009, Chen et al 2014a,

Unkelbach et al 2015). Second, currentDLmodels typically possess high computational complexity, and a large

storage capacity is commonly needed for highly accurate dose calculations. This usually requires a powerful

computing resource (e.g. GPU), which implies a high cost for computation. It is therefore challenging to deploy

such amodel on low-powered and resource-limited devices. Consequently, a small-capacity DLmodel with

lower computational burdens seems to bemore clinically applicable. Third, to improve themodel performance

on unseen data, a large and comprehensive patient database is typically included in the training phase, which

necessitates a difficult data collection task, as accessible patient data are of limited availability inmany clinical

settings. Building a robustDL-based dose engine with limited patient data still remains a great challenge. There-

fore, an approach to effectively augment the training dataset for the dose calculation taskwould be beneficial to

the success of theDL-based dose engine.

In this study, we developed a novel DL-based dose engine for prostate VMATplans to address the aforemen-

tioned limitations. First, instead of performing the dose calculation per aperture or control point (CP) of a

VMATarc, the proposed framework enables a composite arc dose calculation via the composite arc dose in

water and the patient computed tomography (CT) images. This allows for amuch faster VMATdose calculation,

and thus a shorter calculation time can be expected. Second, knowledge distillation (KD) (Hinton et al 2015),

which is amodel compression technique that distills the knowledge of a large-capacitymodel (teacher) into a

smaller one (student)without a severe loss of soundness in performance, was implemented to further decrease

the computational burdens of theDLmodel. As a result, the trained student can achieve a computational accur-

acy that is comparable to that of the teacher, but it is also able to attain a superior level of efficiency, whichmakes

themodelmore applicable to a clinical setting of limited computational resources. Third, limited patient data

with the arc recycling strategywere included for themodel training (twenty patient cases) and performance

assessment (ten patient cases). This strategy artificially inflates the size of the raw training dataset tomitigate the

model overfittingwithout the requirement of extensive patient data collection. The detailedmodel implementa-

tions are presented in theMethods andMaterials section. Comprehensive analysis of themodel performance is
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conducted and discussed. The potential clinical applications of the proposed dose engine are summarized at

the end.

2.Methods andmaterials

In this section, wefirst introduce the patient CT and arc plan database for training in section 2.1. Subsequently,

data generation and preprocessing (section 2.2) and theKD framework (section 2.3) are presented in detail.

Finally, the approaches tomeasure the performance of the proposedDL-based dose engine are given in

section 2.4.

2.1. Patient and arc database

Twenty prostate cancer cases were collected, of which sixteen and fourwere randomly selected as training and

validation patients, respectively. Seventy VMAT arcs (6MV full arcs with various collimator angles from5° to

110°)were collected from these 20 cases. To enlarge the size of the dataset, each arc was recycled and applied to

the different patient CTs for dose calculation, and so 1120 and 280 samples (involving one arc beam, oneCT,

and one computed dosematrix)were included in the training and validation datasets, respectively. This arc

recycling strategy not only artificially increases the training dataset, it also facilitates theDLmodel with the

learning of the effects of dosimetric variations due to various portions of the patient anatomy irradiated from the

same beam, or due to different arc beams delivered to the same anatomical site. An additional ten prostate cases

served as an independent testing dataset for performance evaluation. The detailed patient demographics and

plan informationwere listed in table 1.

2.2.Data generation and preprocessing

Two-channel inputs were applied formodel training aswell as forfinalDL-based dose calculation. The patient

CT images comprise thefirst channel of inputs. TheHounsfieldUnit (HU) range of patient CT images is from0

to 3000. The second channel is the three-dimensional (3D) dose for theVMATplans, computed in a patient-

contour-shapedwater phantom. In contrast to otherDL-based dose calculation studies (Peng et al 2019, Fu et al

2020, Xing et al 2020a, 2020b, Bai et al 2021)whose low-accuracy dose inputwas typically calculated by either

MC simulations or other traditional dose calculation algorithms on real patient CTs, we performed a simple

pencil beam convolution on a homogeneous (water) phantom (possessing the patient’s external contour) to

generate dose as the input. Thismethod can be implemented easily and allows for a faster speed of dose input

generation.On the other hand, the correlation of dose variation due to anatomical heterogeneity can be extrac-

tedwith the information provided by the first-channel inputs in ourmodel. That is, the patient CT images

provide anatomical information to assist inmapping the doses fromwater to real patient anatomywith hetero-

geneity considerations.

To obtain the plan dose in thewater phantom,we first compute theCPdose in thewater phantomusing the

following pencil beam convolution formula:

=D d A d K d . 1i i i*( ) ( ) ( ) ( )

In gantry coordinates, D di ( ) represents the 2Ddose at depth d of the phantom, perpendicular to the beam’s

central axis direction, contributed by the ithCP. A di ( ) is a 2Dbinary function, representing the beamprojection

of the ithCP aperture at depth d. It should be noted that the aperture projection region changes along the depth

due to the beamdivergence, as indicated infigure 1(a). K di ( ) is the 2Dpencil beamkernel of the ithCP at depthd.

The nominal pencil beamkernelwas simulated on a ´ ´50 50 50 cm3water phantomwith ´ ´0.1 0.1 0.1

cm3 resolution under anEGSnrc (Kawrakow2000)MCenvironment. An enface 6MV, ´0.1 0.1 cm2beamlet

(projected at source-to-axis distance, SAD) at 75 cm source-to-surface distance (SSD)was employed for the simu-

lation. For the dose computation at eachCP, the nominal kernel needs correction for beamdivergence due to SSD

variations using the inverse square law. The convolution process at different depths is illustrated infigure 1.

By computing the 2Ddose for all depths (with 0.1 cm resolution), the 3Ddose in gantry coordinates for the

ith CP, namely D ,i can be subsequently acquired. Finally, theVMATplan dose in the phantom in room coordi-

nates can be found by summing all 3DCPdoses using equation (2). Here, a rotationmatrix qR i( )was applied to

eachCPdose Di prior tofinal summation in order to convert the CPdose from gantry coordinates to room

coordinates. An illustration of coordinate conversion is shown infigure 2

å q=
=

R DVMAT dose . 2

i

i i

1

CP

( ) ( )

For each pair of two-channel inputs, the corresponding ground-truth plan dosewas calculated on aVersa

HD (Elekta Inc., Stockholm Sweden)machinemodel by theMCmodule of theMonaco TPS (version 5.51.02)
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Table 1.Patient demographics and plan information used for the training/validation and testing datasets.

Dataset Patient numbers Tumor clinical stage Prescription Note

Training/Validation 20 Intermediate risk of prostate adenocarcinoma (stage II) 60 Gy 2 patients with titaniumhip implant

Testing 10 (QD3 Gy fraction−1
) 1 patient with titaniumhip implant
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with a ´ ´0.3 0.3 0.3 cm3 dose grid and a statistical uncertainty of 0.7%per calculation on a local computer

equippedwith dual 14 core Intel(R) 2.6 GHzXeon(R)Gold 6132 central processing units (CPU) and 128GB

RAM.All input data including 3Ddoses, CT images, and ground-truthMCdoses were cropped to the same size

( ´ ´144 96 48 voxels with a resolution of ´ ´0.3 0.3 0.3 cm3
) for the sake of simplicity. For training pur-

poses, all dose valueswere normalized to planningmonitor units (MUs).

2.3. KD framework

TheKD framework (figure 3) is composed of two sub-models: a large pre-trained teachermodel and a smaller

to-be-trained studentmodel. The studentmodel is trained under the supervision of the teachermodel, and

mimics the teachermodel’s behaviors in order to achieve a competitive performancewith that of the teacher

model. In this framework, the training input and output to both teacher and studentmodels are identical. The

studentmodel receives the transferred knowledge of the pre-trained teachermodel by incorporating one extra

distillation loss (the difference between the teacher’s calculation and the student’s calculation) into the loss

calculation in the training phase. The densely connected neural network (Zhang et al 2020)was chosen as a

basemodel architecture for both the teacher and studentmodels’ developments. The teachermodel was

trained first in order to provide good guidance for training a studentmodel.We increased its number of train-

able parameters by implementing different spatial resolution levels (2 to 4) and applying different initial num-

bers of feature channels (16–64) until its performancewas no longer improved on. For the studentmodel, we

experimentally built a small-capacitymodel by limiting its number of trainable parameters. The trained

Figure 1.Visual illustrations of the (a) 3Dbinary CPbeamprojection, (b) 3Dpencil beamdose, and (c) 3DCPdose inwater.

Figure 2.An illustration of coordinate conversion fromgantry to room. qi is the rotational angle between gantry coordinates and
room coordinates for the ith CP.
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studentmodel that has a performance comparable to that of the teachermodel serves as the final dose engine

for the prostate VMATdose calculation. The detailed architecture of the final teacher and studentmodel is

described in section 2.3.1.

2.3.1. Teacher and studentmodels’ architecture

The architecture of the teacher and studentmodels is illustrated infigure 4. It is composed of an encoding path

and a decoding path. Each has three spatial resolution levels: ´ ´144 96 48, ´ ´72 48 24, and

´ ´36 24 12.Thefirst two levels in both paths consist of two convolutional layers with ´ ´3 3 3 kernels and

zero padding, followed by batch normalization and rectified linear units (ReLu). The down-sampling between

levels in the encoding path is performed by a ´ ´2 2 2max pooling layer with a stride size of two, while the up-

sampling between levels in the decoding path is conducted by a transposed convolutional layer with ´ ´3 3 3

kernels and a stride size of two. The skip connection copies and concatenates the high-resolution features from

the encoding path to the decoding path for preserving the local features. A dense feature aggregation blockwith

five dilated convolutional layers (dilation rates: 2, 3, 5, 7, 9) is implemented at the bottleneck level, for which each

convolutional layer connects to every other convolutional layer. The last convolutional layer with ´ ´1 1 1

kernels reduces the feature channel to one for the final voxel-wise dose calculation. The feature channels are

doubled as the spatial resolution is halved in the encoding path, whereas the feature channels are halved as the

spatial resolution is doubled in the decoding path. The initial number of feature channel starts with 32 for the

teachermodel and 16 for the studentmodel. Accordingly, the teachermodel has trainable parameters of 6.3

million, while the studentmodel has trainable parameters of 1.6million.

Figure 3.The teacher-student training framework for knowledge distillation.

Figure 4.The architecture of thefinal teacher and studentmodels. The number under each block represents the number of feature
channels.
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2.3.2. Loss function

To train a teachermodel, themean absolute error (MAE) between theDL-calculated doses and the ground-truth

MCdoses was used as the loss function for optimization

å= -
=N

1
DL GT , 3

n

N

n nMAE

1

 ∣ ∣ ( )

where MAE is theMAE as a loss function. DL n and GT n are theDL-calculated dose and the ground-truthMC

dose at the nth voxel, respectively.N is the total number of voxels in the 3D volume.

To incorporate the pre-trained teacher’s knowledge into the training phase of the to-be-trained student

model in theKD framework, the parameters of the studentmodel were optimized byminimizing the total loss

function as follows:

a a= + -DL , GT 1 DL , DL , 4total MAE student MAE student teacher  · ( ) ( ) · ( ) ( )

where total is the combinedMAEof student loss and distillation loss. DLstudent and DLteacher are theDL-calcu-

lated doses from the student and teachermodels, respectively. a is a weighting factor to combine the student loss

and distillation loss, and it was set to 0.5 in this study. In the validation phase of theKD framework, the MAE in

equation (3)was used to evaluate themodel performance on the validation dataset since only the output of the

studentmodel will be used for the final calculation.

2.3.3.Model training

TheAdam algorithmwith default parameters (b1= 0.9, b2 = 0.999, and epsilon= -10 8) and a learning rate of

0.0001was selected as the optimizer tominimize the loss function. The training batch size andmaximumepoch

numberwere chosen to be 16 and 1000, respectively. An early stopping techniquewas implemented to terminate

the training session at the point where the loss function did not improve by over 50 epochs. Themodel weights

were randomly initialized. Five-fold cross-validationwas first performed to assess the stability of theDLmodels

and to search for the optimal hyperparameter setting. Thefinalmodels were subsequently trainedwith the train-

ing and validation datasets combined (1400 arc samples in total), and then evaluated by the independent testing

dataset. The aforementioned settings were applied to both the teacher and studentmodels. TheDLmodels were

implementedwith the PyTorchDL framework (version 1.10) and trained on a singleNVIDIAA100 SXM4GPU

(80GBRAM).

2.4. Performance assessment

To assess the performance of the proposedDL-based dose engine, two key evaluationmetrics: (a) dosimetric

accuracy and (b) inference efficiency, weremainly compared and discussed. First, the comparisons between the

DL-calculated and ground-truthMCdoses on the testing dataset were performed based on a global Gamma

analysis using the criteria of both 2%/2 mmand 3%/3 mmwith a low-dose threshold of 10%. The dosimetric

performance of the proposed dose engine on tissue heterogeneity corrections was also evaluated using a prostate

patient case with hip replacements and gas-filled rectum. Second, tomeasure themodel inference efficiency on

both powerful and limited computing devices, anNVIDIAA100 SXM4GPU, anNVIDIAGTX3080GPU (10

GBRAM), and an Intel(R)Core (TM) 3.5 GHz i9–11900KFCPU (64GBRAM)were utilized for dose calcul-

ation. Third, to study the benefits of theKD framework, the performance of a student-onlymodel (trained

without theKD framework) and the teachermodel were also compared to the distilled studentmodel.

3. Results

3.1.Model training results

The training session of the studentmodel (final dose engine) trainedwith theKD framework took approxi-

mately 7 h on a single A100GPU. Loss convergence curves of the training progress are presented infigure 5. Both

training loss and validation loss decrease as the epoch increases. The trainingwas stoppedwhen the difference of

validation losses between 50 consecutive epochswas lower than 0.0001, which ends up at 450 training epochs.

3.2.Dosimetric results of thefinal dose engine trainedwith theKD framework

3.2.1. Overall dosimetric performance

The detailedGamma analysis of the test patients is reported in table 2. Themean aswell as the standard deviation

(SD) of theGammapassing rates for the proposed dose engine on the test patients were 98.13± 0.76% and 99.50

± 0.17%using 2%/2 mmand 3%/3 mmcriteria, respectively. This indicates that the dose engine can produce

highly accurate dosimetric results that are comparable to its counterpart calculated by theMonacoMC

algorithm.
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Figure 6 provides visual comparisons of the dose distribution among the input doses, DL-calculated doses,

and ground-truth doses for a sample case (test patient 1). Substantial differences between the input doses and

ground-truth doses can be observed, compared to smaller differences between theDL-calculated doses and

ground-truth doses. TheGammapassing rate between the input doses and ground-truth doses was 74.22%

using a 2%/2 mmcriterionwith a 10% low-dose threshold, whereas theGammapassing rate between theDL-

calculated doses and ground-truth doses was 99.07%. This result suggests the learning capability of ourmodel

structure is strong, evenwith very coarse dose information as input.

Figure 7 shows the dose-volume histogram (DVH) of the PTV, and some organs-at-risk (OARs), calculated

by both theMCmethod (ground-truth) andDLmodel for the sample case (patient 1). TheDVHcurves of the

DLmodel are very close to their counterpartMC calculation for all of the structures.

3.2.2. Tissue heterogeneity corrections

Figure 8(a) provides a comparison of the isodose distributions between theDL-calculated doses and ground-

truth doses for a sample case (test patient 4)with titaniumhip implant and gas-filled rectum. The isodose lines of

Figure 5.Training and validation loss convergence curves of thefinal dose engine.

Figure 6.The central axial slice of the (a) input doses, (b)DL-calculated doses, and (c) ground-truth doses for the test patient 1.
Absolute differences between ground-truth doses and either input doses orDL-calculated doses are presented in (d) and (e).

Table 2.TheGammapassing rates between the
ground-truth doses andDL-calculated doses of the
proposed dose engine on the ten test patients.

Patient index
Gammapassing rate (%)

2%/2 mm 3%/3 mm

1 99.07 99.65

2 99.27 99.71

3 98.66 99.52

4 98.04 99.54

5 97.45 99.43

6 97.11 99.20

7 97.48 99.31

8 98.69 99.67

9 97.47 99.38

10 98.10 99.54

Mean± SD 98.13± 0.76 99.50± 0.17
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theDL-calculated doses werematchedwell to those of the ground-truth doses. Similar agreement can also be

observed in theDVHcurves’ comparisons as illustrated in figure 8(b). TheGammapassing rates for this case

were 98.04% (2%/2 mm) and 99.54% (3%/3 mm). These results indicate that the proposedDL-based dose

engine is able to properly handle the tissue heterogeneity corrections.

3.3.Dosimetric comparisons of the teacher, student, and student-onlymodels

Figure 9 demonstrates the distributions of theGammapassing rates on the test patients using the teachermodel

and the student-onlymodel (trainedwithout theKD framework), as well as the studentmodel trainedwith the

KD framework (final dose engine). The performance gap between a large-capacitymodel (teacher) and a small-

capacitymodel (student-only) becomes smaller when such a small-capacitymodel (student) is trainedwith the

KD framework. TheGammapassing rates on the ten test patients were 98.64± 0.62% for the teachermodel and

96.95± 1.02% for the student-onlymodel using a 2%/2 mmcriterion, compared to 98.13± 0.76% for the

studentmodel. Theywere 99.63± 0.16% for the teachermodel and 99.32± 0.32% for the student-onlymodel

using a 3%/3 mmcriterion, compared to 99.50± 0.17% for the studentmodel. These results suggest that the

performance of a small-capacity DLmodel can be improved by theKD framework.

Figure 10 provides visual dose comparisons among the teacher, student, and student-onlymodels using two

sample cases (test patient 2 and test patient 3) on 2Dplanes. Noticeable variations between the isodose lines of

the ground-truth doses and those from the student-onlymodel can be observed. These differences (indicated by

the black arrows) aremoderately alleviatedwith the help of theKD framework, as can be seen infigure 10. The

Gammapassing rates (2%/2 mmand 10%dose threshold) on test patient 2were 99.46%, 99.27%, and 97.86%,

for the teacher, student, and student-onlymodels, respectively. Theywere 99.02%, 98.66%, and 97.69%on test

patient 3.

Figure 7.ADVHplot of the ground-truth (solid) andDL-calculated (dashed) dose distributions for the PTV, rectum, bladder, and
femoral heads structures.

Figure 8. (a)A comparison of isodose distributions between theDL-calculated (solid) and ground-truth (dashed) doses for a patient
case with titaniumhip implant and gas filled rectum. (b)ADVHplot of theDL-calculated (solid) and ground-truth (dashed) dose
distributions for the PTV andOARs structures.
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3.4.Model inference efficiency

Table 3 reports themodel inference times for theDL-based dose calculations. The student and student-only

models in general have the same level of inference efficiency since theirmodel capacity is identical. Compared to

the large-capacity teachermodel, their smaller capacity allows for a shorter inference. An interesting observation

is that the time-saving effect is actually improved for studentmodels using theCPU, compared to that using

theGPUs.

4.Discussion

4.1. The performance of the proposedDL-based dose engine

In this work, a small-capacity DL-based dose engine for prostate VMATplanswith limited patient data was

presented. TheKD frameworkwas implemented to help improve the performance of the dose engine. In this

way, this type of engine can offer an ultra-fast calculation inference whilemaintaining a high level of calculation

accuracy. The results of the dosimetric comparisons (figures 6 and 7) show that the proposed dose engine can

Figure 9.The distributions of theGammapassing rates using (a) 2%/2 mmand (b) 3%/3 mmcriteria on the ten test patients for the
teacher, student, and student-onlymodels.

Figure 10.The dosimetric comparisons between theDLmodels’ calculated doses (solid isodose lines) and ground-truthMCdoses
(dashed isodose lines) for two test patients. Doseswere normalized to themaximumground-truth dose. The number on the lines
represents the percent dose. Planar dosemapswere cropped to enlarge the details.
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effectively translate low-accuracy arc doses inwater into high-accuracy arc doses in patient anatomy for prostate

VMATplans. The dosimetric comparisons demonstrated infigure 8 further suggest that the proposed engine is

capable ofmanaging the tissue heterogeneity corrections in the presence of significant inhomogeneous prostate

patient anatomywith high calculation accuracy. The statistical results of theGamma analysis from table 2

demonstrate that the dose engine is able to computewith a high level of accuracy for all the test patients. In

addition, the comparisons of the inference time reported in table 3 show that the proposedDL-based dose

engine yields amuch superior inference efficiency compared to that of the large-capacitymodel due to its com-

pact size. These results suggest that the proposed dose engine is able to compute VMATplans not only quickly,

but accurately. It is therefore as promising tool for accelerating dose calculation and plan optimization processes

for prostate VMATplanning.

4.2. The analysis of the proposedDL-based dose engine

To improve the calculation accuracy of the proposed small-capacity dose engine (final studentmodel), the

knowledge of the large-capacity teachermodel was integrated into the training structure. The results of the

isodose comparisons between the studentmodel doses and the ground-truth doses (demonstrated infigure 10)

have better agreement than those for the student-onlymodel.Moreover, the distributions of theGammapassing

rates among the teacher, student, and student-onlymodels (figure 9) indicate that the studentmodel is able to

generate the doses with better accuracy than student-onlymodel and its computational accuracy closer towhat

the teachermodel can achieve. A small gap between theGammapassing rates of the teacher and studentmodels

is still noticeable. This discrepancy is expected due to the fact that the studentmodel has amuch smaller scale of

parameters than the teachermodel. Nevertheless, the proposed dose engine can still produce a level of dose

accuracy that is comparable to somewell-accepted algorithms, such as theC/S algorithm. According to our

study, the Pinnacle TPS version 16.4 (C/S based algorithm)has a 98.26± 0.85%Gammapassing rate using a

2%/2 mmcriterion on the test patients when compared to ground truth, which is very close to the passing rate

that ourmodel achieved, 98.13± 0.76%.

From the calculation efficiency standpoint, our dose engine has a greater advantage over theMC simulation.

For example, the calculation time per arcwas approximately 3.3 s (input generation: 2.9 s andmodel inference:

0.4 s) and 180 s onCPU-only devices using the proposed dose engine and theMonacoMCmodule, respectively.

In addition, comparing to otherDL-based dose engines (Kontaxis et al 2020, Liu et al 2021, Tsekas et al 2021),

our engine provides an additional speed boost due to its compact size, which allows for amuch faster dose

calculation speed than for a large size network. The studentmodel decreases the inference time of the teacher

model by 31.3%, 38.9%, and 60.0%on anA100GPU, a RTX 3080GPU, and aCPU, respectively. It should be

noted that the reduction of computation time becomesmore prominent when theDL-based dose calculation is

performed on aCPU-only computing device. A better time-saving factor is therefore anticipatedwhen low-

powered computing devices are used for calculations.

Unlike some of theDL-based engines (Kontaxis et al 2020, Liu et al 2021, Tsekas et al 2021), which can only

calculate an individual segment per inference, the proposed dose engine is able to provide a composite VMAT

arc dose at one time using the composite doses inwater as the input. Given that hundreds of sampledCPs are

typically included in aVMAT arc, our dose engine demonstrates a great advantage over the segment/CP-based

DL dose engines. It therefore leads to a substantial reduction in the overall calculation time.Moreover, adopting

dose computation in a homogeneousmedium (water) as the input allows for a faster preprocessing time than do

DL engines requiring heterogeneity dose computation onCT for input generation.

During training, the same group of VMAT arcs were re-computed on different CTdata sets to augment the

dosimetric input dataset. Figure 11(a)demonstrates the dosimetric results of a VMAT arc calculated on its origi-

nal planning patient anatomy,whereas the calculation results for another patient’s anatomy is shown in

Table 3.The inference time of the teacher, student, and student-only
models. Batch size of 1was used.

Model
Inference time per arc (unit:milliseconds)

GPU CPU

A100 RTX 3080

312TFLOPSa 59.5 TFLOPSa 0.9 TFLOPSa

Teacher 16.0± 0.27 45.5± 0.57 936.2± 5.9

Student 11.0± 0.31 27.8± 0.28 374.8± 3.4

Student-only 10.8± 0.22 27.2± 0.29 ± 2.8

a TFLOPS: a trillionfloating-point operations per second used tomeasure

the computational capacity of a computing device.
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figure 11(b). Noticeable difference of isodose distribution between the two scenarios was observed, as shown in

figure 11(c). These dosimetric differences are due to the patient anatomy and position variations. Therefore, the

dose information obtained from same arcs but calculated on different CTdata sets can be treated as additional

dosimetric inputs to effectively increase the pool of the training data. This recycling strategy is able to alleviate

the burden ofmassive data collection required by traditional DL frameworks. On the other hand, when the pool

of accessible raw data are too small for adequate training, the recycling strategy can also be an alternative solution

to expand the pool of training data. From a training efficacy point of view, the recycling strategy helps theDL

model to better ‘understand’ the correlation between dose deposition and anatomical variance. It can therefore

improve the robustness of themodel.

The implementation of theKD framework in this study helps improve the performance of a small-capacity

DL-based dose engine. This framework involves one extraDL-based calculation of a large-capacitymodel and

one extra distillation loss calculation, as compared to a regular training framework. This results in a longer

model training time. For example, the training times per epoch (about 88 iterations with a training batch size of

16) on a single A100GPUwere about 55.8 s, 51.3 s, and 38.3 s for the teacher, student, and student-onlymodels,

respectively. Accordingly, a prolonged training session can be expectedwhen theKD framework is

implemented.

From this proof-of-principle study, we found that the proposedDL-based dose calculation framework effec-

tivelyworks for prostate cancer cases with promising results. The feasibility of extending the proposed frame-

work to other treatment sites (e.g. head and neck, lung, etc) and implementing othermodel compression

techniques (e.g. parameters pruning and quantization)will be empirically investigated in a future study.

4.3. Potential clinical applications of the proposed dose engine

The repetitive dose calculations are generally required by iterative optimization processes of VMATplanning.

TheDL-based dose engines with their ultra-fast calculation speed allow a considerable reduction in the planning

time.One research group (Liu et al 2021) has successfully integrated their DL-based dose engine (large-scale

convolutional neural network (CNN)) into direct aperture optimization for IMRT inverse planning. They found

that using theDL-based engine to calculate dose for each iteration can substantially reduce the planning time (up

to 53%on average) andminimize the discrepancies between the optimized doses and the final plan doses (com-

puted by high-accuracyMCalgorithm). Since ourmethod demonstrates the capability of decreasing inference

time (39%and 60%on aGPU and aCPU, respectively) from a large-scale CNNengine calculation, a further

reduction in the planning time is conceivable with the proposedKD-basedDL engine. An enginewith a fast

computation speed is particularly desirable for online adaptive treatment planning. It can also be utilized as a fast

and independent dose calculator for patient-specific quality assurance (QA) andTPSQA.

Figure 11.The identical VMAT arc calculated on (a) its original planning patient anatomy and (b) another patient’s anatomy. (c)The
50% to 90% isodose comparisons between the doses of (a) solid lines and of (b) dashed lines. The doses were normalized to the
treatment isocenter of the corresponding patient body. Dose comparisonmapwas cropped and only included the isodose lineswithin
the patient body in (a).
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5. Conclusion

In this work, an ultra-fast DL-based dose engine for prostate VMATplanswas developed. TheKD framework

was implemented to improve the performance of the small-capacity dose engine. The results of dosimetric and

inference time comparisons suggest that the proposed dose engine can performhighly-accurate VMATdose

calculations with amuch faster calculation speed than traditional dose engines. Its small-capacity size further

alleviates the computational resource requirement for theDL-based dose calculation. Thus, the proposed dose

engine seemswell suited to clinical settings where only limited computational devices are commonly available.

In addition, the dose engine can be implemented for treatment planning to achieve a superior-quality plan in a

more efficientmanner.
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