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Modeling the induction, thrust, and power
of a yaw misaligned actuator disk
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Collective wind farm flow control, where wind turbines are operated in an individually
suboptimal strategy to benefit the aggregate farm, has demonstrated potential to reduce
wake interactions and increase farm energy production. However, existing wake models
used for flow control often estimate the thrust and power of yaw misaligned turbines
using simplified empirical expressions which require expensive calibration data and do
not accurately extrapolate between turbine models. The thrust, wake velocity deficit,
wake deflection, and power of a yawed wind turbine depend on its induced velocity. Here,
we extend classical one-dimensional momentum theory to model the induction of a yaw
misaligned actuator disk. Analytical expressions for the induction, thrust, initial wake
velocities, and power are developed as a function of the yaw angle and thrust coefficient.
The analytical model is validated against large eddy simulations of a yawed actuator disk.
Because the induction depends on the yaw and thrust coefficient, the power generated by
a yawed actuator disk will always be greater than a cos3(γ) model suggests, where γ is
yaw. The power lost by yaw depends on the thrust coefficient. An analytical expression
for the thrust coefficient that maximizes power, depending on the yaw, is developed
and validated. Finally, using the developed induction model as an initial condition for
a turbulent far-wake model, we demonstrate how combining wake steering and thrust
(induction) control can increase array power, compared to either independent steering or
induction control, due to the joint dependence of the induction on the thrust coefficient
and yaw angle.

1. Introduction

Wake interactions between individual horizontal axis wind turbines can reduce wind
farm energy production by 10–20% (Barthelmie et al. 2009). Utility-scale wind turbines
are controlled to maximize individual power production, rather than collective wind farm
production (Boersma et al. 2017). Individual operation entails aligning each wind turbine
in the farm with the incoming wind direction. In contrast, wake steering, where individual
wind turbines are intentionally yaw misaligned with respect to the incident wind direc-
tion, has emerged as a promising strategy to reduce wake interactions and increase col-
lective wind farm power production (e.g. Gebraad et al. 2016; Kheirabadi & Nagamune
2019; Bastankhah & Porté-Agel 2019; Zong & Porté-Agel 2021; Howland et al. 2022a).
Maximizing collective wind farm power production through wake steering control gen-
erally involves a trade-off between the power lost by the yaw misaligned turbines and
the power gained by the downwind waked turbines, compared to standard individual
control (e.g. Fleming et al. 2015). Since the power-maximizing yaw misalignment angles
for wake steering control are primarily estimated using simplified, analytical flow models
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(Gebraad et al. 2016; Fleming et al. 2019; Howland et al. 2022b), it is important to
accurately model the dependence of wind turbine power production and wake velocities
on the yaw misalignment angle.
Wind turbine power production generally decreases as a function of an increasing yaw

misalignment (γ) magnitude since the component of the wind velocity which is perpen-
dicular to the rotor decreases. Textbook materials instruct that the power production of a
yawed wind turbine will decrease following cos3(γ) (Burton et al. 2011). This estimate is
based on the application of classical one-dimensional momentum theory with an incoming
axial freestream wind speed of u∞ · cos(γ) perpendicular to the rotor. However, wind
turbines extract power from the winds at the rotor. The wind at the rotor is affected
by the velocity induced by the wind turbine. Since the induction depends on the wind
turbine thrust force and the thrust force will decrease in yaw misalignment, the induction
will depend on the yaw misalignment. The cos3(γ) model neglects the dependence of the
induction on the yaw misalignment (Micallef & Sant 2016). Given the error incurred by
the cos3(γ) model, most analytical wind farm power models assume that the power of
a yaw misaligned wind turbine follows Pr(γ) = P (γ)/P (γ = 0) = cosPp(γ), where Pp

is an empirical, turbine-specific factor that needs to be tuned using experimental data
(Dahlberg & Montgomerie 2005; Gebraad et al. 2016). However, such experiments are
costly, since they require sustained operation of utility-scale wind turbines in suboptimal
yaw misalignment angles (Howland et al. 2020c). Further, the wide spread in Pp values
reported in the literature, typically between 1<Pp<3, suggests that the cosine model is
not universal to different turbine models (Dahlberg & Montgomerie 2005; Schreiber et al.
2017; Liew et al. 2020; Howland et al. 2020c). Accurate analytical predictions of Pr(γ)
remain an outstanding challenge (Hur et al. 2019) – as a starting point, in this study, we
focus on analytical predictions of the induction and power production of yawed actuator
disks.
Through analysis of an autogyro aircraft, Glauert (1926) developed an equation for the

area-averaged induction and the coefficient of power as a function of the yawmisalignment
γ. Glauert (1926) also identified that the induction of a yawed actuator disk varies over
the rotor area about its mean value – this finding has been replicated in other actuator
disk simulations and models (see review by Hur et al. (2019)). Glauert’s yawed actuator
disk momentum theory is commonly used in blade element momentum (BEM) models of
rotational wind turbine aerodynamics (see e.g. review by Micallef & Sant 2016). Using
the Bernoulli equation, Shapiro et al. (2018) proposed an equation for the dependence of
the axial induction factor on the yaw misalignment of an actuator disk. Speakman et al.

(2021) used the axial induction equation proposed by Shapiro et al. (2018) to model
Pr(γ) for a simulation with a thrust coefficient of 0.75, which yielded improved power
predictions compared to the cos3(γ) model, but higher predictive error than a tuned
cosPp(γ) with Pp set to 1.88.
Beyond modeling the power-yaw relationship (i.e. Pr(γ)), modeling the inviscid near-

rotor wake region of a yawed actuator disk is important since inviscid models are often
used as an initial condition for turbulent wake models which are used to predict wind farm
power production (Frandsen et al. 2006; Bastankhah & Porté-Agel 2016; Shapiro et al.

2018). Therefore, it is equally important to accurately model the induction and the
streamwise and spanwise velocity deficits at the outlet of the inviscid near-wake region
for a yawed actuator disk.
Finally, a parallel line of research to wake steering has investigated methods for axial

induction flow control, where individual wind turbines reduce the magnitude of their wind
speed wake deficits by decreasing the thrust force (Annoni et al. 2016). A promising flow
control methodology combines wake steering and induction control (Munters & Meyers
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Figure 1. Control volume for the yawed actuator disk analysis. The streamwise and spanwise
directions are x and y, respectively. The actuator disk modeled wind turbine is yaw misaligned at
angle γ, where positive yaw misalignment is a counter-clockwise rotation viewed from above. As
in classical momentum theory, we consider four stations for the analysis, and the flow variables
are labeled with the corresponding station as subscript numbers. The cross-sectional areas,
streamwise velocities, spanwise velocities, pressures, and mass flow rates are denoted as A, u, v,
p, and ṁ, respectively. The unit vector normal to the yawed wind actuator disk is shown as n̂.

2018) – for such combined control, it is important to model the joint effect of the yaw
misalignment and the wind turbine thrust coefficient on the power and wake deficit.
In this study, classical, inviscid momentum theory is extended to the yaw misaligned

actuator disk. Analytical expressions are developed for the rotor normal induction, the
streamwise velocity deficit, the spanwise velocity deficit, the thrust, and the power
production of an actuator disk as a function of yaw misalignment. In §2, a model is
proposed based on a combination of momentum conservation, mass conservation, and
the Bernoulli equation. The model is validated against large eddy simulations (LES)
of a yawed actuator disk. The numerical setup of the LES is given in §3 and results
are provided in §4. The model is validated against the LES in §4.1. The dependence of
the induction, velocity deficits, and the power on the wind turbine thrust coefficient is
presented in §4.2. Further, in §4.2, the model is optimized to find the thrust coefficient
which maximizes power for each value of the yaw misalignment angle. In §4.3, the
induction model is used as an initial condition for a turbulent far-wake model. The
implications of the developed induction-yaw model on quasi-steady wake steering and
induction control are presented and discussed. Conclusions are provided in §5.

2. Yawed actuator disk momentum theory

Our goal is to model the induction, thrust, wake deficit and deflection, and the power
production of a yaw misaligned actuator disk. For the following analysis, we assume
that the flow is inviscid and frictionless. We assume that the velocity is continuous
across the actuator disk, including both the streamwise and spanwise velocities, and
that the pressure recovers to the incident freestream pressure away from the actuator
disk. We note that the pressure recovery assumption is only relevant to the Bernoulli
equation and streamwise momentum analysis. We do not apply this pressure recovery
assumption to a lateral momentum balance, since it is well-known to introduce predictive
error (Shapiro et al. 2018) due to counter-rotating vortices in the wake of yawed turbines
(Howland et al. 2016). We consider uniform inflow and an actuator disk model (ADM)
representation of the wind turbine forcing (Calaf et al. 2010; Burton et al. 2011). The
ADM is introduced in §2.1. The lateral velocity is modeled following lifting line theory



4 K. S. Heck, H. M. Johlas and M. F. Howland

(Shapiro et al. 2018) (§2.2). The induction is modeled by combining the Bernoulli equa-
tion, conservation of mass, and momentum conservation to a control volume containing
the yaw misaligned actuator disk (§2.3). A schematic of the yaw misaligned actuator disk
and the control volume is shown in Figure 1.
In §2.3, we develop the equations to predict the induction, thrust, wake deficit and

deflection, and the power production of a yaw misaligned actuator disk. In §2.4, we
consider a limiting case of the developed induction model where the outlet spanwise
velocity v4 is negligible compared to the outlet streamwise velocity u4, |v4| ≪ u4.

2.1. Actuator disk model

The thrust force from an actuator disk on the surrounding flow depends on the
freestream rotor-normal wind speed, ~u∞ · n̂ :

~FT,ideal = −1

2
ρCTAd(~u∞ · n̂)2n̂, (2.1)

where ρ is the density of the incident air, CT is the coefficient of thrust, Ad = πD2/4
is the area of the rotor disk where D is the wind turbine rotor diameter, n̂ is the unit
normal vector perpendicular to the disk, and ~u∞ is the freestream wind velocity vector
(Sørensen 2011). Wind turbines produce thrust and power based on the wind velocity at
the rotor, which has been modified by induction. Thus, the empirical thrust coefficient
CT depends on the induction. Additionally, for wind farms in the atmospheric boundary
layer, it may be challenging to estimate the value of the freestream reference wind speed
u∞ due to wakes of upstream turbines or heterogeneity in the background flow field.
Instead, an ADM is used to model wind turbine forcing, where the thrust force scales
with the rotor-normal wind speed at the disk, ~ud · n̂ rather than the freestream ~u∞ · n̂
(Calaf et al. 2010). The ADM thrust force then depends on a modified thrust coefficient
C′

T and the disk velocity (Calaf et al. 2010):

~FT = −1

2
ρC′

TAd(~ud · n̂)2n̂. (2.2)

Equation (2.2) is used in the ADM implementation in LES used for validation as well as
the derivation of the analytical model.
Assuming that the freestream wind is uniform and aligned with the x-direction, the

freestream wind vector is ~u∞ = u∞ı̂ + 0̂. However, the disk velocity may include a
component in the y-direction for yaw-misaligned turbines, and so is generally ~ud = ud ı̂+
vd̂. The rotor normal induction factor an for a rotor with yaw misalignment angle γ is
defined as

an = 1− ~ud · n̂
u∞ cos(γ)

. (2.3)

In the yaw-aligned case where n̂ = ı̂, the rotor normal induction factor an reduces to the
standard (streamwise) axial induction factor a = 1− ud/u∞. The thrust force written in
terms of the rotor normal induction factor is then

~FT = −1

2
ρC′

TAd(1− an)
2 cos2(γ)u2

∞
[cos (γ )̂ı+ sin (γ)̂] . (2.4)

The power for the actuator disk is computed as P = − ~FT · ~ud.
Rotational, utility-scale wind turbines produce a thrust force which depends on the

disk velocity (e.g. Burton et al. 2011; Sørensen 2011; Howland et al. 2020c) – the disk
velocity is lower than u∞ due to induction. Similarly, the ADM produces a thrust force
which is proportional to the disk velocity, which has been modified by induction. The
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thrust force depends on the yaw misalignment for both utility-scale, rotational wind
turbines and the ADM. In the ADM, C′

T is a fixed input. Therefore, the thrust force
of the ADM depends on the yaw misalignment following FT (γ) ∝ (1 − an(γ))

2 cos2(γ).
However, since the rotor normal induction depends on the imposed thrust force FT ,
and the thrust force decreases with an increasing magnitude of yaw misalignment, we
hypothesize that the induction factor will depend on γ.
We emphasize that the following analysis will prescribe an ADM-type forcing where

C′

T is a fixed quantity which does not depend on the yaw misalignment (see Eq. (2.2)).
For different wind turbine models, a different form of the thrust force FT may be
appropriate (i.e. a different form than Eq. (2.2)). Specifically, C′

T may not be a fixed
quantity. In general for rotational turbines, the potential dependence of C′

T on the yaw
misalignment will depend on the turbine control strategy (i.e. the blade pitch and torque
control) and the wind conditions (Howland et al. 2020c). For a different form of FT , the
quantitative model predictions would differ but the qualitative trends of the influence of
yaw misalignment on the induction are expected to apply. We further discuss this detail
and the need for future work in §5.

2.2. Lifting line spanwise velocity model with rotor normal induction depending on yaw

Yaw misaligned wind turbines generate a counter-rotating vortex pair (CVP) which
deflects and deforms the wake region into a curled wake shape (Howland et al. 2016;
Bastankhah & Porté-Agel 2016; Fleming et al. 2018; Mart́ınez-Tossas et al. 2021). The
CVP rotates about a low-pressure center. Momentum balance approaches to predict
the lateral velocity in the wake of a yaw misaligned actuator disk which neglect the
influence of the lateral pressure gradient often exhibit predictive errors (Jiménez et al.

2010; Shapiro et al. 2018). Shapiro et al. (2018) developed a model for the spanwise
velocity downwind of a yaw misaligned actuator disk. The approach uses Prandtl lifting
line theory (Milne-Thomson 1973) to predict the spanwise velocity in the inviscid near-
wake region downwind of the actuator disk. The downwash produced by the lifting line
theory was presumed to be the spanwise velocity in the outlet of the streamtube enclosing
the yawed actuator disk. The resulting model predicts the spanwise velocity disturbance
δv0 = v∞− v4 = 1

4
CTu∞ cos2(γ) sin(γ). The model exhibited excellent predictions of the

circulation at the disk hub-height (z = 0), defined as Γ0 (Shapiro et al. 2018), over a range
of yaw and thrust values. The spanwise velocity disturbance δv0 was also compared to
LES. The predictions exhibited improved accuracy compared to previous models, but had
a slight underprediction of δv0 at high yaw misalignment angles, |γ| > 20◦ (Shapiro et al.

2018).
Following §2.1, we consider the Prandtl lifting line approach developed by

Shapiro et al. (2018) applied to the ADM with a prescribed C′

T , instead of a prescribed
CT . The spanwise velocity disturbance is

δv0 = v∞ − v4 =
−Γ0

4R
=

− ~FT · ̂
2ρu∞Ad

=
1

4
C′

Tu∞ sin(γ) cos2(γ) (1− an(γ))
2 . (2.5)

Comparing Eq. (2.5) to the model proposed by Shapiro et al. (2018), C′

T is the input
fixed quantity and there is an additional non-linear dependence on an(γ). We note that
Shapiro et al. (2018) identified the influence of the yaw misalignment on the induction,
and accounted for it by plotting δv0 against CT where the thrust coefficient was empir-
ically estimated as CT = C′

T ũ
2
d/(u

2
∞

cos2(γ)), where ũd was the disk velocity measured
from the LES validation case. In the following sections, we will develop a predictive model
for an(γ) which uses Eq. (2.5).
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2.3. Model for the induction of a yaw misaligned actuator disk

To model the induction, we first apply the Bernoulli equation from stations 1 to 2 and
stations 3 to 4 within the streamtube, shown in Figure 1:

p1 +
1

2
ρ||~u1||2 = p2 +

1

2
ρ||~u2||2

p3 +
1

2
ρ||~u3||2 = p4 +

1

2
ρ||~u4||2,

(2.6)

where ||~u4|| =
√

u2
4 + v24 . We note that the outlet flow has nonzero components in the

x (̂ı) and y (̂) directions, denoted as u4 and v4, respectively (see Figure 1). Assuming
that the pressure recovers to the freestream at station 4 (p1 = p4 = p∞) and that the
velocity across the rotor disk is continuous (~u2 = ~u3 = ~ud), Eqs. (2.6) can be combined
and simplified to

p2 − p3 =
1

2
ρ
(

||~u1||2 − ||~u4||2
)

. (2.7)

Substituting in ~u1 = ~u∞, ~u4 = u4ı̂ + v4̂, and (p2 − p3)Ad = ||~FT || with ~FT given by
Eq. (2.4), this becomes

u2
∞

− u2
4 − v24 = C′

T (1− an)
2 cos2(γ)u2

∞
. (2.8)

Next, we apply mass conservation to the streamtube between stations 2 and 4, where
A2 = Ad:

~u4 · (A4 ı̂) = ~u2 · (A2n̂). (2.9)

Substituting in ~u2 = ~ud and the definition of an in Eq. (2.3), ~ud · n̂ = (1− an)u∞ cos(γ),
this simplifies to:

u4A4 = (1− an)u∞ cos(γ)Ad. (2.10)

We then apply mass conservation to the two-dimensional control volume, assuming that
the flow outside the disk streamtube is unperturbed at u∞:

ṁ1 + ṁ2 = ρ~u∞ · ~ACV − ρ~u∞ · ( ~ACV − ~A4)− ρ~u4 · ~A4

= ρA4(u∞ − u4),
(2.11)

where CV denotes the control volume (Figure 1). Finally, we apply conservation of
momentum to the control volume in the streamwise direction (̂ı), using the Reynolds
transport theorem assuming steady-state flow:

ρ
Du

Dt
=

∫

CS

ρu
(

~urel · d ~A
)

= ~FT · ı̂+ p1ACV − p4ACV , (2.12)

where CS is the control surface. By expanding the surface integral and combining terms,
this momentum balance simplifies to

~FT · ı̂ = ρu2
4A4 − ρu2

∞
A4 + (ṁ1 + ṁ2)u∞. (2.13)

Substituting Eqs. (2.4), (2.10), and (2.11) into Eq. (2.13) and simplifying gives

−1

2
C′

Tu∞(1− an) cos
2(γ) = u4 − u∞. (2.14)

Finally, we solve for an in Eq. (2.8) from Bernoulli, u4/u∞ in Eq. (2.14) from con-
servation of mass and the streamwise momentum balance, and v4/u∞ in Eq. (2.5) from
the lifting line spanwise velocity deficit model, resulting in a coupled nonlinear system
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of three equations to solve for an(γ), u4(γ), and v4(γ):































an(γ) = 1−
√

u2
∞

− u4(γ)2 − v4(γ)2
√

C′

Tu∞ cos(γ)
(a)

u4(γ)

u∞

= 1− 1
2
C′

T

(

1− an(γ)
)

cos2(γ) (b)

v4(γ)

u∞

= − 1
4
C′

T

(

1− an(γ)
)2

sin(γ) cos2(γ) (c)

(2.15)

The system in Eq. (2.15) can be solved iteratively from an initial condition from standard,
yaw-aligned momentum theory a0n = a = 1

2
(1 −

√
1− CT ) = C′

T /(C
′

T + 4) and typically
converges in less than five iterations. While the system of equations in Eq. (2.15)
converges quickly, it does not permit a straightforward solution. In §2.4, we examine a
limiting case of the model where the outlet spanwise velocity is neglected in the Bernoulli
equation, |v4| ≪ u4.
With a solution for the normal induction factor an(γ) from Eq. (2.15), the power for

a yaw misaligned actuator disk is modeled as

P (γ) = − ~FT · ~ud =
1

2
ρC′

TAd

(

1− an(γ)
)3
u3
∞

cos3(γ). (2.16)

As discussed in the introduction, the dependence of wind turbine power production on
the yaw misalignment is often described by the power ratio Pr(γ) (e.g. Howland et al.

2020c). The resulting model for the power ratio is

Pr(γ) =
P (γ)

P (γ = 0)
=

[(

1 +
1

4
C′

T

)

(1− an(γ)) cos(γ)

]3

, (2.17)

and the thrust ratio is

Tr(γ) =
FT (γ)

FT (γ = 0)
=

[(

1 +
1

4
C′

T

)

(1− an(γ)) cos(γ)

]2

. (2.18)

2.4. Limiting case of CV analysis with |v4| ≪ u4

In this section, we consider the limiting case where the outlet spanwise velocity from the
streamtube is significantly less than the outlet streamwise velocity, |v4| ≪ u4. Therefore,
the outlet velocity is ||~u4|| = u4. Starting from Eq. (2.15), the rotor normal induction is
simplified as

an(γ) =
C′

T cos2(γ)

4 + C′

T cos2(γ)
, (2.19)

which is also the induction factor reported by Shapiro et al. (2018), who assumed that the
spanwise velocity disturbance appeared infinitesimally downwind of the yawed actuator
disk and that it was constant in the streamtube downwind. The streamwise and spanwise
velocities are

u4(γ)

u∞

=
4− C′

T cos2(γ)

4 + C′

T cos2(γ)
,

v4(γ)

u∞

= −4C′

T sin(γ) cos2(γ)

(4 + C′

T cos2(γ))2
. (2.20)

The streamwise outlet velocity u4(γ) can also be written in terms of the induction factor
an(γ) such that u4(γ) = u∞(1 − 2an(γ)), where an(γ) is given by Eq. (2.19). This is
analogous to the outlet velocity from one-dimensional momentum u4(γ = 0) = u∞(1 −
2a), where a = an(γ = 0) is again the standard axial induction factor.
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The power of the yawed actuator disk in this limiting case is

P (γ) =
32ρAdC

′

T cos3(γ)u3
∞

(4 + C′

T cos2(γ))3
. (2.21)

The power and thrust ratios in this limiting case are

Pr(γ) =

[

(4 + C′

T ) cos(γ)

4 + C′

T cos2(γ)

]3

, Tr(γ) =

[

(4 + C′

T ) cos(γ)

4 + C′

T cos2(γ)

]2

. (2.22)

The power ratio model given by Eq. (2.22) was also reported by Speakman et al. (2021),
who leveraged the streamwise induction model developed by Shapiro et al. (2018) (same
as Eq. (2.19)).

3. Large eddy simulation numerical setup

Large eddy simulations are performed using an incompressible flow code PadéOps†
(Ghate & Lele 2017; Howland et al. 2020a). Fourier collocation is used in the horizontally
homogeneous directions and a sixth-order staggered compact finite difference scheme is
used in the vertical direction (Nagarajan et al. 2003). Time advancement uses a fourth-
order strong stability preserving (SSP) variant of Runge-Kutta scheme (Gottlieb et al.

2011) and the subgrid scale closure uses the sigma subfilter scale model (Nicoud et al.

2011).
The ADM is implemented with the regularization methodology introduced by

Calaf et al. (2010) and further developed by Shapiro et al. (2019a). The ADM forcing
depends on the prescribed input of C′

T (see Eq. (2.2)), which is held constant for varying

yaw misalignment angle. The discretized turbine thrust force ~f(~x) is distributed in the
computational domain (~x) through an indicator function R(~x) as

~f(~x) = ~FTR(~x). (3.1)

The thrust force ~FT is computed with Eq. (2.2), depending on the disk velocity ~ud. The
indicator function R(~x) is constructed from a decompositionR(~x) = R1(x)R2(y, z) given
by Eqs. (3.2) and (3.3)

R1(x) =
1

2s

[

erf

(√
6

∆

(

x+
s

2

)

)

− erf

(√
6

∆

(

x− s

2

)

)]

, (3.2)

R2(y, z) =
4

πD2

6

π∆2

∫∫

H
(

D/2−
√

y′2 + z′2
)

exp

(

−6
(y − y′)2 + (z − z′)2

∆2

)

dy′ dz′,

(3.3)

where H(x) is the Heaviside function, erf(x) is the error function, s is the ADM disk
thickness, and ∆ is the filter width. The disk velocity ~ud, used in the thrust force
calculation Eq. (2.2), is calculated using the indicator function such that

~ud = M

∫∫∫

R(~x)~u(~x) d3~x, (3.4)

where ~u(~x) is the filtered velocity in the LES domain. Depending on the numerical
implementation of the indicator function, particularly the selection of filter width ∆,
the ADM can underestimate the induction and therefore overestimate power production
(Munters & Meyers 2017; Shapiro et al. 2019a). To alleviate this power overestimation

† https://github.com/FPAL-Stanford-University/PadeOps
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for larger filter widths, the disk velocity calculation in Eq. (3.4) uses a correction factorM
derived by Shapiro et al. (2019a), which depends on C′

T and the filter width. To compute
the correction factor M , the Taylor series approximation for the ADM correction factor
is used (Shapiro et al. 2019a) such that

M =

(

1 +
C′

T

4

1√
3π

2∆

D

)

−1

. (3.5)

The correction factor given by Eq. (3.5) was derived by Shapiro et al. (2019a) for
yaw aligned actuator disks. For low values of ∆/D, the correction factor M has a
limited impact on the LES results and the induction and power follow momentum theory
(Shapiro et al. 2019a), but low filter widths can also result in numerical oscillations in
the flow field due to the ADM forcing discontinuity. For higher values of ∆/D with
the correction factor implemented for a yaw aligned ADM, the thrust force and power
predicted by momentum theory are well reproduced, but the induced velocity in the
LES domain does not conform to momentum theory due to the wide force smearing
fundamental to the larger values of ∆/D (see Appendix A, Figure 9). In the results
presented in §4 where analysis of the wake flow field is required, to reduce numerical
oscillations in the wake, a larger filter width of ∆/D = 3h/(2D) is used with the
correction factor M given by Eq. (3.5), where h = (∆x2 +∆y2 +∆z2)1/2. In the results
presented in §4 for which only the quantities at the actuator disk are analyzed, a smaller
filter width of ∆/D = 0.29h/D = 0.032 is used such that the correction factor is not
required to reproduce the power predicted by momentum theory for the yaw aligned
ADM (see also the discussion by Shapiro et al. 2019a). In all cases, the ADM thickness
is s = 3∆x/2. More discussion of the ADM numerical setup and the interactions between
the LES results and the filter width and the correction factor are provided in Appendix A.

Simulations are performed with uniform inflow with zero freestream turbulence.
Periodic boundary conditions are used in the lateral y-direction. A fringe region
(Nordström et al. 1999) is used in the x-direction to force the inflow to the desired
profile with a prescribed yaw angle. All simulations are performed with a domain
Lx = 25D in length and cross-sectional size Ly = 20D,Lz = 10D with 256× 512× 256
grid points. A large cross-section is used to minimize the influence of blockage on the
actuator disk model, which changes as a function of turbine yaw. A single turbine is
placed inside the domain at the center of the y–z plane at a distance 5D from the
domain inlet in the x-direction. Simulations are run for two flow-through times Lx/U∞

to allow the turbine power output to converge, which is sufficient in these zero freestream
turbulence inflow cases (Howland et al. 2016).

4. Results

In this section, the model predictions are compared to results from LES and the model
output is explored to reveal implications for wind farm flow control. In §4.1, the predictive
model developed in §2 is validated against LES. The dependence of the induction on the
coefficient of thrust is demonstrated in the model and in LES (§4.1). In §4.2, the model
is optimized to find the thrust coefficients which maximize the coefficient of power as
a function of the yaw misalignment angle, and the predictions are compared to LES.
Finally, in §4.3, the model is used as an initial condition for a turbulent far-wake model.
The influence of the induction-yaw relationship developed in §2 on a wake steering test
case is explored.
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(a) (b) (c)

Figure 2. (a) Normalized power production for the yawed actuator disk modeled wind turbine
with C′

T = 1.33, normalized by the power production for a yaw aligned actuator disk modeled
wind turbine (P (γ)/P (γ = 0)). The LES results are shown with green dots. The model
predictions are given by the Yawed CV curve, and the limiting case of |v4| ≪ u4 for the model
is shown. For reference, cos3(γ) and cos(γ) curves are shown in addition to the Glauert model
(Appendix B). (b) Zoomed in version of (a) to highlight the performance of different models.
(c) Same as (a) with cos(γ) on the x-axis.

4.1. Comparison between the model and LES

The model for Pr(γ) (Eq. 2.17) is compared to LES in Figure 2 for C′

T = 1.33 for yaw
misalignments 0◦ 6 γ 6 50◦. The model developed by Glauert (1926), with the functional
form provided in Appendix B, and the developed model in the limit of |v4| ≪ u4 (§2.4)
are also shown. Finally, cos(γ) and cos3(γ) are shown for reference. The model developed
in §2.3 exhibits the lowest predictive error compared to the LES data. Neglecting the
lateral velocity in the Bernoulli equation, |v4| ≪ u4 (§2.4), results in a consistent over-
prediction of the power production at all yaw misalignment angles because the portion of
momentum redistributed to the spanwise velocity, which does not contribute to power, is
neglected. Neglecting the lateral velocity in the Bernoulli equation (Eq. (2.7)) increases
the predicted pressure drop, and therefore the thrust force and the power, because the
energy in the spanwise velocity is not accounted for in the outlet flow.
The Glauert model results in a larger power over-prediction. This over-prediction is

expected, as discussed in Burton et al. (2011), since the lift contributions to the thrust
in the Glauert model should not contribute to power because it does not contribute
to net flow through the disk. The cos(γ) and cos3(γ) curves provide upper and lower
bounds, respectively, for the LES data and the model predictions. The commonly assumed
cos3(γ) model (Burton et al. 2011) under-predicts the power production because the yaw
misalignment reduces the thrust force, which in turn reduces the rotor-normal induction
and increases the disk velocity and the power production.
The model predictions and LES results for the rotor normal induction an(γ) are shown

in Figure 3. As with the power production, the most accurate predictions result from
the yawed CV model in §2.3. Assuming negligible lateral velocity (§2.4) results in an
under-prediction of the induction, which therefore results in an over-prediction of the
disk velocity and the power production (Figure 2). The Glauert model over-predicts the
induction, but also over-predicts the power, likely because of the lift contributions to
thrust, as mentioned previously.
The lateral velocity disturbance, δv0(γ) = v∞ − v4 = −v4, is estimated from

LES by averaging the lateral velocity in cross-sections of the actuator disk streamtube
(Shapiro et al. 2018). The lateral velocity disturbance δv0(γ), estimated as the maximum
of the cross-sectional averages over x, is shown in Figure 4(a) along with model
predictions. The maximum value of the lateral velocity disturbance δv0(γ) generally
occurs approximately D/2 downwind of the actuator disk wind turbine. The original
CT -based model of Shapiro et al. (2018) (δv0(γ) =

1
4
CTu∞ cos2(γ) sin(γ)) under-predicts



Actuator disk induction, thrust, and power in yaw misalignment 11

Figure 3. Normalized rotor normal induction for the yawed actuator disk modeled wind turbine
with C′

T = 1.33. The model predictions are given by the Yawed CV curve, and the limiting case
of |v4| ≪ u4 for the model is shown.

(a) (b)

Figure 4. (a) Normalized lateral velocity deficit with C′

T = 1.33. The model predictions for the
lateral velocity depending on CT are shown by δv0(CT ), where CT = 0.75. The model predictions
for the lateral velocity depending on the induction model given by Eq. (2.15) and C′

T are shown
by δv0(C

′

T , an). (b) Normalized streamwise velocity deficit for the yawed actuator disk modeled
wind turbine with C′

T = 1.33. The model predictions are given by the Yawed CV curve, and
the limiting case of |v4| ≪ u4 for the model is shown.

the initial lateral velocity disturbance at higher yaw angles. The model developed here
yields improved predictions compared to the original model by including the effect of
the yaw misalignment on the induction, which the original expression based on CT does
not include. Since the induction decreases with increasing magnitude of the yaw angle,
the disk velocity will increase. The increase in disk velocity increases the actuator disk
thrust force, partially counteracting the reduction in thrust force from yaw misalignment.
The lateral velocity disturbance based on C′

T and an(γ) will therefore be larger than a
prediction from a model which assumes a fixed CT as a function of yaw γ.
Finally, the streamwise velocity disturbance is shown in Figure 4(b). The LES stream-

wise velocity disturbance is estimated similarly to δv0, although the maximum values of
δu0 generally occurs approximately 2D downwind of the actuator disk. The streamwise
velocity disturbance associated with the yaw aligned wind turbine, δu0 = 2a(γ = 0), is
shown as a reference. The streamwise velocity disturbance depends strongly on the yaw
misalignment, therefore assuming δu0(γ 6= 0) = δu0(γ = 0) = 2a(γ = 0) would yield
significant predictive errors in a wake model. The full model (§2.3) has slightly improved
predictions compared to the limit of negligible lateral velocity (§2.4), but both model
estimates over-predict the streamwise velocity disturbance at larger yaw angles.
The model developed in §2 reveals that the induction an, the power P , and the power

ratio Pr all depend on both the yaw misalignment and the thrust coefficient C′

T . The
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(a) (b) (c)

Figure 5. (a) Power production for the yawed actuator disk modeled wind turbine, normalized
by the power production for a yaw aligned actuator disk modeled wind turbine for various values
of C′

T . (b) Coefficient of power Cp(γ). (c) Rotor-normal induction factor an(γ).

ADM is simulated in LES over a range of yaw misalignment and C′

T values, where each
pair (γ, C′

T ) represents a unique LES case. The influence of C′

T on the power ratio Pr

for the LES data and the model (Eq. (2.17)) is shown in Figure 5(a). The coefficient of
power CP is shown in Figure 5(b). The model predictions exhibit low error, compared
to the LES data, over a wide range of yaw and thrust values. We observe that the power
reduction by yaw misalignment inherently depends on the value of C′

T (Figure 5(a)),
due to the influence of the thrust coefficient C′

T and yaw misalignment on the induction
factor an (Figure 5(c)). This result suggests that the power lost due to yaw misalignment
in a practical field setting will be turbine-specific, since existing turbine designs operate
at a wide range of thrust coefficients (see e.g. Hansen 2015). Further, since the thrust
coefficient depends on the operating condition and turbine controller (e.g. Ainslie 1988),
the power lost due to yaw misalignment will also vary in time for a given turbine design.
Therefore, while an empirically tuned cosine model (cosPp(γ)) may yield a sufficiently
small error for a single turbine model and operating condition (e.g. Region II operation
(Pao & Johnson 2009)), it cannot be expected to extrapolate to other wind turbine
designs or control regimes. Instead, the physics-based model developed in §2 can provide
a prediction of Pr(γ), provided that the thrust force characteristics (i.e. ~FT or C′

T ) are
known for the turbine model of interest as a function of yaw misalignment. Future work
may integrate the induction-yaw model developed in §2 into BEM codes (e.g. FAST,
Jonkman et al. 2005).

4.2. Optimizing model power and wake deflection in yaw misalignment with C′

T

The induction and power models developed in §2 and the results in §4.1 indicate
that the power production of a yaw misaligned actuator disk depends on both the yaw
misalignment and the local thrust coefficient C′

T . In yaw alignment, the well-known Betz
limit result estimates that the axial induction factor which maximizes the coefficient of
power CP = 2P/(ρAdu

3
∞
) is a = 1/3 (e.g. Burton et al. 2011), with a corresponding value

of C′

T = 2. Here, we estimate the value of C′

T which maximizes CP as a function of yaw
misalignment value. The power produced by the actuator disk is given by Eq. (2.16).
The maximum power occurs at C′∗

T such that ∂P/∂C′

T = 0. Taking the derivative of
Eq. (2.16) with respect to C′

T yields

∂P

∂C′

T

=
1

2
ρAd(1− an)

3 cos3(γ)u3
∞

− 3

2
ρC′

TAd(1− an)
2 cos3(γ)u3

∞

∂an
∂C′

T

. (4.1)

For the full model (Eq. (2.15), §2.3), ∂an/∂C
′

T does not permit a straightforward
analytical solution. To result in an analytical solution, we assume the limit of |v4| ≪ u4



Actuator disk induction, thrust, and power in yaw misalignment 13

(see §2.4), giving

∂P

∂C′

T

=
128ρAd cos

3(γ)u3
∞

(4 + C′

T cos2(γ))4

[

1− 1

2
C′

T cos2(γ)

]

, (4.2)

and power is maximized (∂P/∂C′

T = 0) at

C′∗

T (γ) =
2

cos2(γ)
. (4.3)

For yaw alignment (γ = 0), the standard Betz limit result is recovered with C′∗

T (γ = 0) =
2. For yaw misalignment (γ 6= 0), the power maximizing thrust C′∗

T (γ) monotonically
increases as a function of increasing yaw misalignment magnitude. To maximize the
power production of a yaw misaligned wind turbine, the turbine should operate at a
different thrust coefficient than the standard, optimal Betz value (CT = 8/9, a = 1/3,
C′

T = 2). The maximum power production as a function of the yaw misalignment is

P ∗(γ) =
8

27
ρAdu

3
∞
cos(γ), (4.4)

and the maximum CP as a function of the yaw misalignment is

C∗

P (γ) =
16

27
cos(γ), (4.5)

which is equivalent to the Betz limit with an additional factor of cos(γ). Therefore,
subject to the assumptions discussed in §2, the minimum power production lost by a
yaw misaligned wind turbine is equal to cos(γ). As such, cos(γ) represents an upper
bound for Pr(γ) (Figure 2) if C′

T is permitted to change.
The model predictions (Eq. 2.15) for the coefficient of power CP depending on the

yaw misalignment and the thrust coefficient C′

T are shown in Figure 6(a). Additionally,
the optimal thrust coefficient C′∗

T (γ), assuming |v4| ≪ u4, is shown. The LES coefficient
of power CP , for the simulations with the disk velocity ~ud correction M developed by
Shapiro et al. (2019a) (Eq. (3.5)), is shown in Figure 6(b). Figure 6(c) shows the same
domain of input yaw misalignment and C′

T for a low value of ∆/D with M = 1. Note
that as numerical oscillations in the velocity field worsen with larger shear gradients at
the boundary of the wake, the low ∆/D LES contours in Figure 6(c) become less smooth
(and accurate) as C′

T , and therefore δu0, increases. There are similar qualitative trends
in the LES CP compared to the model predictions in Figure 6(a), especially for C′

T . 2.
As demonstrated in Figure 5, the model predicts the LES output quantitatively well. The
differences between the model predictions and LES values of CP generally increase with
increasing C′

T . One cause of discrepancy, in addition to potential modeling simplifications
in §2, is that the ADM implementation in LES is known to underestimate wind turbine
induction (Munters & Meyers 2017; Shapiro et al. 2019a). Consequently, the maximum
coefficient of power in LES is CP = 0.602, even with the correction factor used, which is
higher than the Betz limit (0.593).
Following a similar procedure, the thrust coefficient value which maximizes the magni-

tude initial lateral velocity |v4|, and therefore the wake deflection, is C′

T (γ) = 4/ cos2(γ).
However, these values of C′

T (γ) produce inductions which are greater than one, which
is inconsistent with the momentum theory based model in Eq. (2.15). Therefore, for
realizable values of C′

T , the lateral velocity magnitude |v4| is a monotonically increas-
ing function of C′

T . Conversely, u4, the streamwise wake velocity, is a monotonically
decreasing function of C′

T .
The model-predicted normalized streamwise and spanwise outlet velocities are shown in
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(a) (b) (c)

Figure 6. (a) Coefficient of power Cp = 2P (γ)/(ρAdu
3

∞) as a function of the yaw misalignment
γ and thrust coefficient C′

T estimated by the model given in Eqs. (2.15) and (2.16). The values
of C′

T which maximize power for each yaw misalignment angle are shown by the red line, given
as C′∗

T (γ) = 2/ cos2(γ). (b) Same as (a) for LES Cp results with the disk velocity correction
factor M given by Eq. (3.5) and ∆/D = 3h/(2D). (c) Same as (b) for LES Cp results with the
disk velocity correction factor M = 1 and ∆/D = 0.29h/D = 0.032.

(a) (b)

Figure 7. (a) Magnitude of the initial lateral velocity |v4|/u∞ as a function of the yaw
misalignment γ and thrust coefficient C′

T estimated by the model given in Eq. (2.15). (b) Initial
streamwise velocity u4/u∞ as a function of the yaw misalignment γ and thrust coefficient C′

T

estimated by the model given in Eq. (2.15).

Figures 7(a) and 7(b), respectively. While the power production reveals a non-monotonic
trend and permits an optimal set of thrust coefficients (C′∗

T (γ)), both u4 and |v4| show
monotonic behavior for realizable values of C′

T . For wake steering, the power production
of a waked turbine will depend on both the streamwise wake velocity (u4), and the
wake deflection (integrated form of v4). Notably, the wake deflection is an increasing
function of C′

T (Figure 7(a)), but the velocity deficit is also an increasing function of
C′

T (Figure 7(b)). Therefore, the value of C′

T which maximizes the power production
of a waked downwind turbine will depend on the wind farm and flow configuration. In
§4.3, we explore this dependency in an analytical, turbulent wake model which uses the
inviscid model developed in §2 as an initial condition.

4.3. Implications for wake steering and induction control

The impact of the yaw misalignment γ on the rotor normal induction an will impact
the power production, wake deflection, and wake velocity deficit of a yaw misaligned
turbine. All three of these effects will modify the performance of wake steering control
(intentional yaw misalignment). Similarly, as demonstrated in §4.1 and §4.2, changing the
local thrust coefficient C′

T (often called induction control) will also influence the power
and wake properties of a yaw misaligned turbine. In this section, we assess the role of
yaw and thrust modifications on combined wake steering and induction flow control.
To assess the role of the developed induction model on wake steering and induction-
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based wind farm flow control, the model (see §2, Eq. (2.15)) is used as an initial condition
for a turbulent far-wake model. Inviscid near-wake models are commonly used as ini-
tial conditions for far-wake models (e.g. Frandsen et al. 2006; Bastankhah & Porté-Agel
2016; Shapiro et al. 2018). A Gaussian far-wake model is used, and the full model form
is provided in Appendix C.
We consider a simplified wind turbine array with two wind turbines spaced with

streamwise and spanwise separation of Sx = 8D and Sy = 0.5D, respectively. Given
the spanwise spacing of Sy = 0.5D, positive yaw misalignments (counter-clockwise
rotation viewed from above) will be preferable to negative yaw (e.g. Howland et al.

2022b). For illustrative purposes, the wake model parameters, the wake spreading rate
and the proportionality constant of the presumed Gaussian wake, are set to representative
values in the literature of kw = 0.07 (Stevens et al. 2015; Howland et al. 2020b) and
σ0 = 0.25 (Shapiro et al. 2019b), respectively. We vary the yaw misalignment γ1 and
the thrust coefficient C′

T,1 of the leading freestream turbine. The yaw misalignment and
thrust coefficient for the downwind turbine are held constant at the individual power
maximization levels of γ2 = 0◦ and C′

T,2 = 2, respectively.
We consider the wind farm efficiency as a function of the yaw misalignment and the

thrust coefficient of the leading turbine. The wind turbine efficiency ηi for turbine i is
given by

ηi(γ1, C
′

T,1) =
Pi(γ1, C

′

T,1)
1
2
ρAdu3

∞

. (4.6)

Equation (4.6), which is a nondimensional representation of the power production, differs
from Cp because it is based on the freestream wind speed u∞ for both freestream and
waked turbines. The power production of each turbine is estimated as

Pi(γ) =
1

2
ρC′

T,iAd

[

(1− an,i(γi, C
′

T,i)) cos(γi)ue,i

]3
, (4.7)

where ue is the rotor-averaged velocity accounting for wake interactions (more details

provided in Appendix C). The wind farm efficiency is η =
∑Nt

i=1 ηi/Nt, where Nt is the
number of wind turbines.
The total wind turbine array efficiency η is shown as a function of γ1 and C′

T,1 in
Figure 8(a), with the array efficiency maximizing point denoted with the star symbol.
We can make a few observations. First, we note that the maximum array efficiency does
not occur at γ1 = 0◦ and C′

T = 2, the optimal settings for an individual turbine, meaning
that the array efficiency can be increased through flow control. The array efficiency
maximizing value of C′

T,1 at each yaw misalignment value is shown by a dashed line in
Figure 8(a).
Second, the maximum array efficiency is also not located directly on the individual

turbine CP maximizing curve (see §4.2) of C′∗

T,1(γ) = 2/ cos2(γ). In particular, the
array efficiency maximizing values of C′

T,1 are always below the turbine 1 efficiency

maximizing values given by C′∗

T,1(γ) = 2/ cos2(γ). At low yaw misalignment values, the
array and individual turbine maximizing values of C′

T,1 differ the most and this difference
decreases with increasing yaw misalignment angles. The efficiency of turbine 1 is shown
in Figure 8(b). As is shown, the array efficiency is maximized at a turbine 1 yaw and
thrust which is neither the standard Betz maximum nor the maximum as a function of γ
(Eq. (4.3)). While operating turbine 1 at C′∗

T,1(γ) would maximize the turbine 1 power,
given the applied yaw misalignment, this operation also results in larger wake velocity
deficits. The efficiency of turbine 2 depending on γ1 and C′

T,1 is shown in Figure 8(c).
The efficiency of turbine 2 increases with increasing turbine 1 yaw or a decreasing turbine
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(a) (b) (c)

Figure 8. Wake model predictions for the (a) total wind farm efficiency η, (b) freestream
individual turbine 1 efficiency, and (c) waked individual turbine 2 efficiency. The efficiency is
calculated using Eq. (4.6). The location of maximum array efficiency (highest total array power
output) is indicated with a star symbol. The values of C′

T which maximize the total array
power (turbines 1 and 2) for each yaw misalignment angle are shown by the dashed purple line,
as predicted empirically from the wake model output. The values of C′

T which maximize the
freestream turbine power (turbine 1) for each yaw misalignment angle are shown by the red line,
and given as C′∗

T (γ) = 2/ cos2(γ). In (b), the individual freestream yaw-aligned wind turbine
efficiency maximizing thrust coefficient C′∗

T (γ = 0) = 2 is shown with a horizontal line.

1 thrust coefficient. In summary, the array efficiency maximizing operation has a lower
value of C′

T,1 than the value which maximizes the power of turbine 1, in order to increase
the power of turbine 2. The operating point of optimal efficiency is a combination of
yaw and induction control. At lower yaw values, induction control (reduction in C′

T,1)
is more active. At higher yaw values, the array efficiency is maximized at values of
C′

T,1 which are close to the operation which maximizes the upstream turbine efficiency

(C′∗

T,1(γ) = 2/ cos2(γ)).
The proximity of the optimal operating point to the turbine 1 power maximizing curve

(C′∗

T (γ) = 2/ cos2(γ)) reaffirms that wake steering control is strongly dependent on the
power-yaw relationship of the freestream turbine, since the freestream turbines contribute
a larger fraction of the total array power (Howland et al. 2020c, 2022b). However, the
departure from the curve (i.e. the misalignment of the solid red line and the dashed
purple line in Figure 8(a)) reaffirms that it is also important to accurately model the
wakes and the power of each turbine in the array to locate the array power-maximizing
operation. The power-maximizing operation will depend on the wind conditions and the
wind farm geometry, necessitating an accurate parametric model which can capture these
trends. The model developed in §2 and used here enables the prediction of the induction,
thrust, and power of a yaw misaligned actuator disk, in addition to the velocity deficit
initial conditions for far-wake models.

5. Conclusions

The velocity induced by an actuator disk depends jointly on the yaw misalignment
angle and the thrust coefficient. This dependence affects the thrust, wake velocity deficit,
wake deflection, and power production of a yaw misaligned actuator disk. Therefore,
the characteristic reduction in power production associated with wind turbine yaw
misalignment depends on the thrust coefficient of the wind turbine. As such, a tuned,
empirical cosine model (Pr = cosPp(γ)) for the power-yaw relationship of a wind turbine
is inherently turbine model-specific. Specifically, the empirical power-yaw factor Pp can
only be potentially reasonable for turbines with the same thrust coefficient, although we
note that the relative error of a cosine-based model increases with increasing yaw angles
since the true form of Pr is not exactly a cosine function.
An analytical model for the induction of a yaw misaligned actuator disk is developed
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and validated against large eddy simulations of an actuator disk model wind turbine. The
model yields improved quantitative predictions of the induction, velocities, and power
of a yawed actuator disk, compared to existing models, by accounting for the effect of
the induction on the wind turbine thrust and the momentum associated with the lateral
velocity at the outlet of the streamtube encompassing the disk. We optimize the coefficient
of power predicted by the developed model to find the thrust coefficient which maximizes
the power production of a yawed actuator disk for each value of the yaw misalignment
angle. The optimization results, which are the yawed actuator disk analogue to the
classical Betz limit, demonstrate that the thrust coefficient should increase monotonically
with an increasing magnitude of yaw misalignment to track the optimal power production
(C′∗

T (γ) = 2/ cos2(γ)) and that the maximum power produced by an individual yaw
misaligned actuator disk is C∗

P (γ) =
16
27

cos(γ).
Finally, the developed induction model is used as an initial condition for a turbulent

far-wake model to explore an example, two-turbine wind farm control scenario. The
model-predicted combined power production for the two turbine array is maximized
through a combination of yaw (wake steering) and thrust coefficient (induction) control
modifications which deviate from the individual turbine power-maximizing operation
(C′

T = 2, γ = 0◦). The yaw and thrust coefficient of the leading turbine affect its own
power production (power-yaw relationship Pr(γ)) but also affect the wake velocity deficit
and wake deflection, which influences the power production of the downwind turbine. The
modeling results demonstrate the physical mechanisms for synergistic wake steering and
induction, a strategy which has been shown to be effective in previous simulation studies
of farm flow control (e.g. Munters & Meyers 2018).
For rotational, utility-scale wind turbines, the realized power-yaw relationship (i.e.

Pr(γ)) will depend on the realized local thrust coefficient C′

T and any potential de-
pendence of C′

T on the yaw misalignment angle. Such a dependence can be integrated
into the present modeling framework through the functional form of the thrust force
(Eq. (2.2)). In addition to the effects of the yaw and thrust coefficient on the rotor-
averaged induction, yaw misalignment also generates an induced velocity which exhibits
spatial variation over the rotor area (Hur et al. 2019). Future work that focuses on
extending the present analysis to rotational wind turbines should consider the effects
of spatially variable induction.
Often, numerical implementations of blade-element momentum (BEM) theory predict

that the power ratio of a yaw misaligned wind turbine follows Pr = cos3(γ) (e.g.
Liew et al. 2020). Yawed wind turbines, operating with a fixed C′

T in uniform flow, will
not have a power ratio of Pr = cos3(γ) since the rotor-normal induction factor is reduced
by the yaw misalignment. The power produced by a yaw misaligned turbine is therefore
greater than Pr = cos3(γ) (i.e. Pp < 3), although the particular value of power lost by yaw
will depend on C′

T . Future work should incorporate the induction model developed here
into BEM solvers. Finally, this study focused on spatially uniform inflow. Wind speed
and direction shear (Howland et al. 2020c) and wake interactions (Liew et al. 2020) affect
the power production of yaw misaligned wind turbines. Future work should consider the
effects of wind speed and direction shear on the induced velocity of a yawed actuator
disk.

Acknowledgements

K.S.H. and M.F.H. acknowledge funding from the National Science Foundation (Fluid
Dynamics program, grant number FD-2226053). H.M.J. acknowledges support from
Siemens Gamesa Renewable Energy. M.F.H. gratefully acknowledges partial support from



18 K. S. Heck, H. M. Johlas and M. F. Howland

the MIT Energy Initiative andMIT Civil and Environmental Engineering. All simulations
were performed on Stampede2 supercomputer under the XSEDE project ATM170028.
The authors thank Aditya Aiyer and Carl Shapiro for insightful discussions during the
beginning of this study.

Declaration of Interests

The authors report no conflict of interest.

Appendix A. Sensitivity of LES ADM induction to numerical setup

The rotor-normal induction factor an for C′

T = 1.33 is shown as a function of the
yaw misalignment angle γ in Figure 9(a) for LES cases with (M given by Eq. (3.5))
and without (M = 1) the disk velocity correction factor M . For the yaw aligned ADM,
the uncorrected disk velocity simulation with a small filter width ∆/D = 0.29h/D =
0.032 approaches the momentum theory estimate of an = 0.25, (ân(γ = 0) = 0.245).
On the other hand, the larger filter width case, ∆/D = 3h/(2D), results in an under-
prediction of the momentum theory induction (ân(γ = 0) = 0.220), even with the disk
velocity correction activated. While the smaller filter width more accurately reproduces
yaw aligned momentum theory at the disk, it also introduces numerical oscillations in
the wake flow field which can introduce errors in wake analysis. However, the rotor-
normal induction, when normalized by the yaw aligned induction (an(γ)/an(γ = 0)),
shown in Figure 9(b) demonstrates that the normalized quantities are less sensitive to
the numerical setup. Therefore, in the results in §4, where analysis of the wake velocity
is required (for δu0 and δv0) and normalized quantities are presented, we use the disk
correction with M given by Eq. (3.5) and a larger filter width ∆/D = 3h/(2D). In
§4, where unnormalized quantities are presented and the wake flow is not analyzed, we
use a smaller filter width ∆/D = 0.29h/D = 0.032 which reproduces well-accepted
momentum theory for the yaw aligned turbine and does not require the disk velocity
correction (Shapiro et al. 2019a).

Appendix B. Glauert induction and power-yaw model

Glauert (1926) developed a model for the relationship between the thrust coefficient
CT and the induction normal to the rotor agn (see derivation in Burton et al. 2011)

CT = 4agn

√

1− agn(2 cos(γ)− agn). (B 1)

Eq. (B 1) can be solved iteratively for agn given a known CT from the initial condition of
the yaw aligned induction. The Glauert model for CP is

Cg
P = 4agn

√

1− agn(2 cos(γ)− agn)(cos(γ)− agn), (B 2)

and the Glauert power ratio model is P g
r (γ) = Cg

P (γ)/C
g
P (γ = 0), where Cg

P is estimated
using Eq. (B 2).

Appendix C. Far-wake model

The inviscid near-wake model developed in §2 can provide the initial conditions for
self-similar far-wake models. The streamwise and spanwise velocity initial conditions
are u4 and v4, respectively (see §2). We use a far-wake model based on the analytical
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(a) (b)

Figure 9. (a) Rotor-normal induction for the yawed actuator disk modeled wind turbine with
C′

T = 1.33. The LES results are shown with (M given by Eq. (3.5), ∆/D = 3h/(2D)) and
without (M = 1, ∆/D = 0.29h/D = 0.032) the disk velocity ~ud correction factor. The cases
with and without the correction factor use a larger and smaller filter width ∆, respectively. The
model predictions are given by the Yawed CV curve, and the limiting case of |v4| ≪ u4 is shown.
(b) Same as (a) except the rotor-normal induction values are normalized by the yaw aligned
ADM rotor-normal induction, an(γ)/an(γ = 0).

integration of the lifting line model (Shapiro et al. 2018) shown in Howland et al. (2019).
The wind turbine wakes are modeled as two-dimensional Gaussian velocity deficits
(Bastankhah & Porté-Agel 2014; Shapiro et al. 2018; Howland et al. 2019). The model
is steady-state and two-dimensional. We define the upwind turbine with the index i and
the downwind turbine with the index j. The velocity deficit associated with an upwind
turbine i is

dui(x, y) = δui(x)
D2

8σ2
0,i

exp

(

− (y − yc,i(x))
2

2σ2
0,id

2
i (x)

)

, (C 1)

where D is the turbine diameter and the streamwise and spanwise directions are x
and y, respectively. The coordinate system is defined with respect to the position
of the upwind turbine i, such that the centroid of turbine i is at x = 0 and y =
0. The normalized far-wake diameter as a function of the streamwise location x is
di(x) = 1 + kw,i log (1 + exp[2(x/D − 1)]). The wake spreading coefficient is kw and the
proportionality constant of the presumed Gaussian wake is σ0. The lateral centroid of the
wake of turbine i is yc,i. With freestream wind u∞ in the x-direction and zero freestream
wind in the spanwise direction, the streamwise velocity deficit δui(x) is modeled as
(Shapiro et al. 2018)

δui(x) =
u∞ − u4,i

d2i (x)

1

2

[

1 + erf

(

x√
2D/2

)]

, (C 2)

and the wake centerline lateral velocity as a function of the x position for the upwind
turbine is

δvi(x) =
−v4,i
d2i (x)

1

2

[

1 + erf

(

x√
2D/2

)]

. (C 3)

The lateral centroid of the wake, produced by upwind turbine i, is given by

yc,i(x) =

∫ x

x0,i

−δvi(x
′)

u∞

dx′. (C 4)
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The rotor averaged velocity deficit is (Howland et al. 2019)

∆ui,j(x) =

√
2πδui(x)di(x)D

16σ0,i

[

erf

(

yT +D/2− yc,i(x)√
2σ0,idi(x)

)

− erf

(

yT −D/2− yc,i(x)√
2σ0,idi(x)

)]

,

(C 5)
where the lateral turbine centroid of downwind turbine j is yT . The rotor averaged
velocity at the downwind turbine j is therefore given by

ue,j = u∞ −∆ui,j , (C 6)

and the power production of turbine j, following Eq. (2.16), is

Pj =
1

2
ρC′

T,jAd [(1 − an,j) cos(γj)ue,j ]
3 . (C 7)

The power of turbine i is modeled similarly.
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