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FULLY DECOUPLED ENERGY-STABLE NUMERICAL SCHEMES FOR

TWO-PHASE COUPLED POROUS MEDIA AND FREE FLOW WITH

DIFFERENT DENSITIES AND VISCOSITIES

Yali Gao1, Xiaoming He2,* , Tao Lin3 and Yanping Lin4

Abstract. In this article, we consider a phase field model with different densities and viscosities
for the coupled two-phase porous media flow and two-phase free flow, as well as the corresponding
numerical simulation. This model consists of three parts: a Cahn–Hilliard–Darcy system with different
densities/viscosities describing the porous media flow in matrix, a Cahn–Hilliard–Navier–Stokes system
with different densities/viscosities describing the free fluid in conduit, and seven interface conditions
coupling the flows in the matrix and the conduit. Based on the separate Cahn–Hilliard equations
in the porous media region and the free flow region, a weak formulation is proposed to incorporate
the two-phase systems of the two regions and the seven interface conditions between them, and the
corresponding energy law is proved for the model. A fully decoupled numerical scheme, including
the novel decoupling of the Cahn–Hilliard equations through the four phase interface conditions, is
developed to solve this coupled nonlinear phase field model. An energy-law preservation is analyzed
for the temporal semi-discretization scheme. Furthermore, a fully discretized Galerkin finite element
method is proposed. Six numerical examples are provided to demonstrate the accuracy, discrete energy
law, and applicability of the proposed fully decoupled scheme.
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1. Introduction

Multi-phase flow appears in a wide range of applications, from fluid dynamics and fluid-surfactant dynamics
to solid physics and biomedical sciences. Multi-phase flow in karstic geometry, as a typical multi-phase flow in
coupled free flow region and porous medium region, plays a crucial role in the research of contaminant transport
in groundwater system [59, 68, 83, 86]. Related work can be extended to study other important problems with
this type of coupled flows, such as oil recovery in petroleum engineering [42, 88, 96], cardiovascular blood flow
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[37], and proton exchange membrane fuel cell [84]. Therefore, it is worthwhile to develop efficient numerical
schemes for studying these coupled multi-phase flow problems.

In the past two decades, scientists have published research results about single-phase models of the coupled
free flow and porous media flow [7,17,21,28,53,60,77], which are composed of Stokes/Navier–Stokes equation,
Darcy’s law, and three interface conditions coupling these two parts. There have been abundant numerical
attempts for these models, for instance, domain decomposition methods [10,18,19,25,31,33,48], discontinuous
Galerkin method [41, 54, 65, 76], two-grid/multi-grid methods [3, 14, 70], and many others. However, there have
been much less works about the important multi-phase models of the coupled free flow and porous media flow
which are much more challenging than the single phase models in this area.

Phase-field has become a popular modeling technique in simulating multi-phase flow [11,12,64,66,67,73,89,95]
as a viable tool to describe the interfacial motion between two immiscible fluids. By this technique, the interface
is described by a smooth layer with finite width so that the singularities across the interface is removed [34,56,80].
One of its attractive features is that it automatically captures the interface transition in numerical simulation
based on the energy law [57,62].

In recent years, the phase field modeling for two-phase flow across the interface between free flow region and
porous medium region has started to attract researchers’ attention [5,26,27,30,39,49,50,82]. Among the models
proposed in these works, we will consider the modeling ideas in [27,39,49,50]. Han et al. [49] deduced a family
of phase field models for the two-phase flows in karstic geometry based on a fundamental diffuse interface model
with constant density/viscosity, which preserves some physical property, e.g., energy law. Then, for these models,
Chen et al. [27] and Han et al. [50] systematically studied the existence and uniqueness of the weak solution, and
proposed and analyzed some unconditionally stable numerical algorithms for the involved Cahn–Hilliard–Stokes–
Darcy system with constant density/viscosity. Gao et al. [39] developed a partially decoupled numerical method
for the Cahn–Hilliard–Navier–Stokes–Darcy (CHNSD) system with constant density/viscosity. Gao et al. [40]
developed another type of partially decoupled numerical method in a simplified framework for CHNSD model
with different densities/viscosities based on the idea of a single Cahn–Hilliard equation on the whole domain
(including both the porous media region and the free flow region). Hence it does not consider the four phase field
interface conditions but only the three flow field interface conditions in the design of the partially decoupling
scheme. Due to the large scale computation of the realistic applications of the CHNSD system with different
densities/viscosities, a fully decoupled scheme is in great needs to further improve the computational efficiency.
Therefore, in this article, we will develop a fully decoupled scheme, including the decoupling of the Cahn–Hilliard
equations in the porous media region and the free flow region through the four phase field interface conditions,
the decoupling of the flow fields through the three flow interface conditions, the decoupling between the phase
field and flow field by operator splitting, the decoupling between the velocity and pressure by rotational pressure
projection, and the invariant energy quadratization (IEQ) method to handle the nonlinear potential term.

The CHNSD model with different density/viscosity considered in this article consists of a coupled Cahn–
Hilliard–Navier–Stokes system with different density/viscosity describing the dynamics of free flow fluid in
conduit, a coupled Cahn–Hilliard–Darcy (or Cahn–Hilliard–Hele–Shaw) system with different density/viscosity
describing the evolution of porous media flow in matrix, and seven interface conditions describing the transi-
tion of two-phase flow across the interface between the conduit region and the matrix region. Three interface
conditions are for the flow field and the other four interface conditions are for the phase field. For this sophisti-
cated CHNSD model with different densities and viscosities, here are a few major numerical challenges: (i) the
coupling of free flow region and porous media region demands high computing costs; (ii) different densities and
viscosity cause the strong coupling and large derivative across the interface between two fluids; (iii) the relative
slow motion in matrix requires long time numerical simulation; (iv) the coupling between the phase function and
the flow (in both regions) mandates complicated computation; (v) the inherent stiffness in the phase field model
associated with the thin transition layer calls for a carefully treatment to capture the evolution of interface
between binary immersible fluids. Even though methods dealing with one of the challenges mentioned above
may exist, a straightforward combination of the existing methods cannot address these challenges posed by
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such a complicated coupled system. It is our intention to develop efficient and stable numerical schemes for
simulating this CHNSD model with different density/viscosity.

Techniques can be found in the literature for efficiently dealing with the stiffness in diffuse interface models,
for example, the convex splitting method [6, 43, 44, 94], the stabilized semi-implicit approach [15, 35, 90], the
invariant energy quadratization (IEQ) method [24, 58, 72, 91, 93, 97, 98], the scalar auxiliary variable (SAV)
approach [74, 81, 92, 99], the exponential time differencing method [63, 87], etc. The idea of the IEQ is inspired
by a Lagrange multiplier method [47]. An essential effect of the IEQ method is to semi-implicitly treat the
nonlinear term for phase field type models by making free energy quadratic, which yields a linear system at
each time step. The IEQ method requires the nonlinear potential to be bounded from below; nevertheless, most
nonlinear potentials usually satisfy this constraints.

In this article, we develop energy-law preserving time-stepping schemes for solving the CHNSD system with
different density/viscosity, by using the following ideas. To decouple the computation for fluid equations in
free flow region and in porous media region, we adopt a novel weak formulation that weakly enforces interface
conditions imposed at the boundary between these two regions. The ideas of the IEQ approach and operator
slitting technique will be employed to derive a partially decoupled method. The pressure correction method and
stabilization strategy are exploited to design a completely decoupled energy-stable numerical scheme. Following
these ideas, a fully decoupled numerical method is developed by cooperating the grad-div technique. The pro-
posed methods solve the two Cahn–Hilliard systems in their own subdomains, respectively, instead of directly
solving one Cahn–Hilliard equation on the whole domain [27, 40]. The unconditional stability is proved for the
semi-discretization schemes of the two decoupled schemes. It’s worth to be pointed out that the decoupling
technique for fluid and phase field variables is not trivial because of the different densities considered in the
momentum equation for binary fluids. To the best of our knowledge, this is the first work to develop the fully
decoupled numerical method for CHNSD system with different densities and viscosities.

The rest of the article is as follows. In Section 2, we present a Cahn–Hilliard–Navier–Stokes–Darcy (CHNSD)
model for two-phase flows associated with different densities and viscosities in free fluid region together with
porous media. We also prove the energy law of this model. In Section 3, we develop two unconditionally stable
decoupled numerical methods by weakly enforcing the domain interface boundary conditions, and discuss their
energy dissipation law. In Section 4, we present a fully discrete Galerkin finite element method for this CHNSD
model. In Section 5, we present several tests to demonstrate the accuracy and energy law of numerical simulations
generated by the proposed schemes, and distinctive features of two-phase flows in the free flow region and the
porous media region.

2. Cahn–Hilliard–Navier–Stokes–Darcy model

In this section, we briefly present the Cahn–Hilliard–Navier–Stokes–Darcy (CHNSD) model with different
densities and viscosities based on the existing Cahn–Hilliard–Stokes–Darcy model [49,50] and CHNSD model [39]
for matched density in karstic geometry. After deriving a weak formulation in cooperate with the interface
conditions for this coupled model, we show that the model obeys a dissipative energy law at the PDE level.

2.1. Model system

Consider the temporal domain [0, 𝑇 ] (𝑇 > 0). Let Ω = Ω𝑐

⋃︀
Ω𝑚 ⊂ R

𝑑, (𝑑 = 2, 3) be a bounded domain,
where Ω𝑐 is the free flow region and Ω𝑚 is the porous media region. These two subdomains have Lipschtiz
continuous boundaries 𝜕Ω𝑐 and 𝜕Ω𝑚, respectively, which form the interface Γ := 𝜕Ω𝑚 ∩ 𝜕Ω𝑐. Denote the unit
normal vector from porous media Ω𝑚 to free fluid region Ω𝑐 by 𝑛𝑐 and its opposite vectors by 𝑛𝑚. A geometry
in two dimensions is depicted in Figure 1.

We consider the double well potential for the Helmholtz free energy 𝐹 (𝜑) = 1

4𝜖
(𝜑2−1)2, and let 𝑓(𝜑) = 𝐹 ′(𝜑),

where 𝜖 is the thickness of transition layer between two immiscible fluids. Let 𝜑𝑗 denote the phase function with
respect to Ω𝑗 (𝑗 = 𝑐,𝑚) taking distinct values ±1 to indicate two different fluid phases and varying smoothly
across the diffuse interfacial region. The mobility variable is represented by 𝑀𝑗 (𝑗 = 𝑐,𝑚) as a function of order
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parameter 𝜑. Variable 𝑤𝑗 (𝑗 = 𝑐,𝑚) is the chemical potential related to phase variable 𝜑𝑗 . The parameter 𝛾 is
the elastic relaxation time of mixing interface.

In this paper, we consider the two-phase fluids with different densities 𝜌 and viscosities 𝜈 between fluids as
follows

𝜌 =
𝜌1 − 𝜌2

2
𝜑+

𝜌1 + 𝜌2

2
, 𝜈 =

𝜈1 − 𝜈2
2

𝜑+
𝜈1 + 𝜈2

2
· (2.1)

We denote the external gravitational forces by 𝜌𝑔 arising from density difference corresponding to the gravity
vector 𝑔 = 𝑔𝑗, where the constant 𝑔 represents the gravity acceleration and 𝑗 describes the unit vector directing
upward.

We assume that the two-phase flow in the porous media region Ω𝑚 is described by the Cahn–Hilliard–Darcy
(CHD) system as follows:

K
−1𝑢𝑚 + ∇𝑝𝑚 − 𝑤𝑚∇𝜑𝑚 = 𝜌𝑔, (2.2)

∇ · 𝑢𝑚 = 0, (2.3)

𝜕𝜑𝑚

𝜕𝑡
+ 𝑢𝑚 · ∇𝜑𝑚 −∇ · (𝑀𝑚∇𝑤𝑚) = 0, (2.4)

𝑤𝑚 + 𝛾𝜖△𝜑𝑚 − 𝛾𝑓(𝜑𝑚) = 0, (2.5)

where 𝑡 ∈ [0, 𝑇 ], 𝑢𝑚 denotes the advective velocity, 𝑝𝑚 denotes the hydraulic head. The parameter K represents
hydraulic conductivity tensor. It is noticeable that, by plugging (2.2) into (2.3), one can eliminate the velocity
variable 𝑢𝑚, and obtain the following Possion formulation

−∇ · (K∇𝑝𝑚 − K𝑤𝑚∇𝜑𝑚) = 0. (2.6)

We assume that the two-phase flow with different densities and viscosities in the free fluid region Ω𝑐 is
described by the Cahn–Hilliard–Navier–Stokes (CHNS) system as follows:

𝜌

(︂
𝜕𝑢𝑐

𝜕𝑡
+ (𝑢𝑐 · ∇)𝑢𝑐

)︂
−∇ · T(𝑢𝑐, 𝑝𝑐) − 𝑤𝑐∇𝜑𝑐 = 𝜌𝑔, (2.7)

∇ · 𝑢𝑐 = 0, (2.8)

𝜕𝜑𝑐

𝜕𝑡
+ 𝑢𝑐 · ∇𝜑𝑐 −∇ · (𝑀𝑐∇𝑤𝑐) = 0, (2.9)

𝑤𝑐 + 𝛾𝜖△𝜑𝑐 − 𝛾𝑓(𝜑𝑐) = 0, (2.10)

where 𝑡 ∈ [0, 𝑇 ], 𝑢𝑐 and 𝑝𝑐 represent the fluid velocity and the pressure in conduit, respectively. T(𝑢𝑐, 𝑝𝑐) =
2𝜈D(𝑢𝑐)−𝑝𝑐I prescribes the stress tensor with the deformation tensor D(𝑢𝑐) = (∇𝑢𝑐+∇𝑇 𝑢𝑐)/2 and the identity
matrix I.

In order to accomplish the exchange of fluids across interface Γ between the conduit and the matrix, we
consider the following interface conditions:

𝜑𝑐 = 𝜑𝑚, (2.11)

𝑤𝑐 = 𝑤𝑚, (2.12)

∇𝜑𝑐 · 𝑛𝑐 = −∇𝜑𝑚 · 𝑛𝑚, (2.13)

𝑀𝑐∇𝑤𝑐 · 𝑛𝑐 = −𝑀𝑚∇𝑤𝑚 · 𝑛𝑚, (2.14)

𝑢𝑐 · 𝑛𝑐 = −𝑢𝑚 · 𝑛𝑚, (2.15)

−𝑛𝑐 · (T(𝑢𝑐, 𝑝𝑐) · 𝑛𝑐) +
𝜌

2
|𝑢𝑐|2 = 𝑝𝑚, (2.16)

−𝜏 𝑗 · (T(𝑢𝑐, 𝑝𝑐) · 𝑛𝑐) =
𝛼𝜈

√
𝑑√︀

trace(
∏︀

)
𝜏 𝑗 · 𝑢𝑐, (2.17)
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Figure 1. A sketch of the porous median domain Ω𝑚, fluid domain Ω𝑐, and the interface Γ.

where 𝜏 𝑗 (𝑗 = 1, · · · , 𝑑− 1) are the unit tangential vectors along the interface and
∏︀

is the permeability of the
porous media,

∏︀
= K𝜈(𝜑𝑐) [14, 22, 49]. Equations (2.11)–(2.14) describe the continuity of the phase variable,

chemical potential function as well as their derivative with respect to normal direction [49,50]. Equation (2.15)
stands for the continuity of velocity in normal direction and guarantees the mass conservation. Equation (2.16)
is known as Lions interface condition describing the balance of forces [28, 49, 51] arising from the momentum
equation written in divergence form [20,32]. Equation (2.17) is the well-known Beavers–Joseph–Saffman–Jones
(BJSJ) interface condition [7, 16].

We assume that the coupled CHNSD system satisfies the following boundary conditions

𝑢𝑐|Γ𝑐
= 0, ∇𝜑𝑐 · 𝑛𝑐|Γ𝑐

= 0, 𝑀𝑐∇𝑤𝑐 · 𝑛𝑐|Γ𝑐
= 0, (2.18)

𝑢𝑚 · 𝑛𝑚|Γ𝑚
= 0, ∇𝜑𝑚 · 𝑛𝑚|Γ𝑚

= 0, 𝑀𝑚∇𝑤𝑚 · 𝑛𝑚|Γ𝑚
= 0, (2.19)

where Γ𝑐 = 𝜕Ω𝑐∖Γ and Γ𝑚 = 𝜕Ω𝑚∖Γ, as well as initial conditions

𝜑𝑗(0, 𝑥, 𝑦) = 𝜑0
𝑗 (𝑥, 𝑦), 𝑗 = 𝑐,𝑚, 𝑢𝑐(0, 𝑥, 𝑦) = 𝑢0

𝑐(𝑥, 𝑦). (2.20)

Without loss of generality, K is assumed to be a bounded, symmetric and uniformly positive definite matrix
throughout the paper. For the sake of simplicity, we ignore the body force term 𝜌𝑔 as presented in (2.2) and
(2.7) in the rest part of this paper except otherwise specified.

Following the idea in [45,79], denoting 𝜎 =
√
𝜌, we deduce

𝜎
𝜕(𝜎𝑢𝑐)

𝜕𝑡
= 𝜌

𝜕𝑢𝑐

𝜕𝑡
+

1

2

𝜕𝜌

𝜕𝑡
𝑢𝑐 = 𝜌

𝜕𝑢𝑐

𝜕𝑡
− 1

2
∇ · (𝜌𝑢𝑐)𝑢𝑐

by using the mass conservation equation

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑢𝑐) = 0. (2.21)

Then, we can rewrite (2.7) as

𝜎
𝜕(𝜎𝑢𝑐)

𝜕𝑡
+ 𝜌(𝑢𝑐 · ∇)𝑢𝑐 −∇ · T(𝑢𝑐, 𝑝𝑐) − 𝑤𝑐∇𝜑𝑐 +

1

2
∇ · (𝜌𝑢𝑐)𝑢𝑐 = 0. (2.22)
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The mass conservation (2.21) implies

d

d𝑡

(︂
𝜌,

|𝑢𝑐|2
2

)︂
=

(︂
𝜌
𝜕𝑢𝑐

𝜕𝑡
,𝑢𝑐

)︂
+

(︂
𝜌𝑡,

|𝑢𝑐|2
2

)︂

=

(︂
𝜌
𝜕𝑢𝑐

𝜕𝑡
,𝑢𝑐

)︂
−
(︂
∇ · (𝜌𝑢𝑐),

|𝑢𝑐|2
2

)︂

=

(︂
𝜌
𝜕𝑢𝑐

𝜕𝑡
,𝑢𝑐

)︂
+ (𝜌𝑢𝑐 · ∇𝑢𝑐,𝑢𝑐) −

1

2

∫︁

Γ

𝜌(𝑢𝑐 · 𝑢𝑐)(𝑢𝑐 · 𝑛𝑐) d𝑠. (2.23)

Remark 2.1. We follow the idea presented in [38, 78] for (2.21) and (2.22). There is another alternative ther-
modynamically consistent model for impressible two-phase flow with different densities [1,80], which obeys the
conservation property

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑢𝑐) + ∇ · 𝐽 = 0, (2.24)

where 𝐽 = 𝜌2−𝜌1

2
𝑀𝑐∇𝑤𝑐. In this case, one may modify the interface condition (2.16) to obtain energy dissipation

law of the two-phase flow since interface conditions are critical for the mathematical modeling of multi-domain
two-phase model. In this paper, we focus on the efficient decoupled numerical schemes of CHNSD model asso-
ciated with (2.21) for different densities.

In order to explicitly handle with the nonlinear term in double well potential, we introduce new variables

𝑅𝑗 = 𝜑2
𝑗 − 1, 𝑗 = 𝑐,𝑚, (2.25)

and then 𝑓(𝜑𝑗) = 1

𝜖
𝑅𝑗𝜑𝑗 . Therefore, the Cahn–Hilliard equation in matrix and conduit can be transformed into

the following equivalent system:

𝜕𝜑𝑗

𝜕𝑡
+ 𝑢𝑗 · ∇𝜑𝑗 −∇ · (𝑀𝑗∇𝑤𝑗) = 0, (2.26)

𝑤𝑗 + 𝛾𝜖△𝜑𝑗 −
𝛾

𝜖
𝑅𝑗𝜑𝑗 = 0, (2.27)

𝜕𝑅𝑗

𝜕𝑡
= 2𝜑𝑗

𝜕𝜑𝑗

𝜕𝑡
· (2.28)

2.2. The weak formulation

In this subsection, the weak formulation is presented for the CHNSD model system (2.2)–(2.17). We will use
the Sobolev space 𝐻𝑚(Ω) associated with norm ‖ · ‖𝑚, and the space 𝐻𝑚

0 (Ω) = {𝑣 ∈ 𝐻𝑚(Ω) : 𝑣|𝜕Ω = 0}, where
𝑚 is a nonnegative integer. We use ‖ · ‖ and ‖ · ‖∞ to denote the 𝐿2 norm and the 𝐿∞ norm, respectively. We
consider a Hilbert space 𝐻̇1(Ω𝑗) = 𝐻1(Ω𝑗) ∩ 𝐿̇2(Ω𝑗), 𝑗 = 𝑐,𝑚, where 𝐿̇2(Ω𝑗) is defined as follows

𝐿̇2(Ω𝑗) :=

{︃
𝑣 ∈ 𝐿2(Ω𝑗) :

∫︁

Ω𝑗

𝑣 d𝑥 = 0

}︃
. (2.29)

These basic spaces are then used to define the following spaces:

𝑋𝑐 =
{︁

𝑣 ∈
[︀
𝐻1(Ω𝑐)

]︀𝑑 | 𝑣 = 0 on Γ𝑐

}︁
,

𝑋𝑚 =
{︁

𝑣 ∈
[︀
𝐻1(Ω𝑚)

]︀𝑑 | 𝑣 · 𝑛𝑚 = 0 on Γ𝑚

}︁
,

𝑄𝑚 = 𝐻̇1(Ω𝑚), 𝑄𝑐 = 𝐻1(Ω𝑐),
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𝑋𝑗,div = {𝑣 ∈ 𝑋𝑗 | ∇ · 𝑣 = 0},
𝑌𝑗 = 𝐻1(Ω𝑗), 𝑗 = 𝑐,𝑚.

We use (·, ·) to denote the 𝐿2 inner product on the subdomain Ω𝑗 , 𝑗 = 𝑐,𝑚, and use ⟨·, ·⟩ to denote the 𝐿2

inner product on the interface Γ. Also, we use 𝑃𝜏 to denote the projection onto the tangent space on Γ, i.e.,
𝑃𝜏𝑢 =

∑︀𝑑−1

𝑗=1
(𝑢 · 𝜏 𝑗)𝜏 𝑗 .

Using the interface conditions (2.11)–(2.17) and the IEQ approach, we can obtain the following weak form
for the reformulated CHNSD system: find

(𝑝𝑚, 𝜑𝑚, 𝑤𝑚,𝑢𝑐, 𝑝𝑐, 𝜑𝑐, 𝑤𝑐) ∈ (𝑄𝑚, 𝑌𝑚, 𝑌𝑚,𝑋𝑐, 𝑄𝑐, 𝑌𝑐, 𝑌𝑐)

such that

(K∇𝑝𝑚,∇𝑞) − (K𝑤𝑚∇𝜑𝑚,∇𝑞) − ⟨𝑢𝑐 · 𝑛𝑐, 𝑞⟩ = 0, ∀𝑞 ∈ 𝑄𝑚, (2.30)
(︂
𝜕𝜑𝑚

𝜕𝑡
, 𝜓

)︂
+ (𝑢𝑚 · ∇𝜑𝑚, 𝜓) + (𝑀𝑚∇𝑤𝑚,∇𝜓) + ⟨𝑀𝑐∇𝑤𝑐 · 𝑛𝑐, 𝜓⟩ + ⟨𝜑𝑚 − 𝜑𝑐, 𝜓⟩ = 0, ∀𝜓 ∈ 𝑌𝑚, (2.31)

(𝑤𝑚, 𝜔) − 𝛾𝜖(∇𝜑𝑚,∇𝜔) − 𝛾

𝜖
(𝑅𝑚𝜑𝑚, 𝜔) − 𝛾𝜖⟨∇𝜑𝑐 · 𝑛𝑐, 𝜔⟩ + ⟨𝑤𝑚 − 𝑤𝑐, 𝜔⟩ = 0, ∀𝜔 ∈ 𝑌𝑚, (2.32)

(︂
𝜎
𝜕(𝜎𝑢𝑐)

𝜕𝑡
,𝑣

)︂
+ (𝜌(𝑢𝑐 · ∇)𝑢𝑐,𝑣) + (2𝜈D(𝑢𝑐),D(𝑣)) − (𝑝𝑐,∇ · 𝑣)

− (𝑤𝑐∇𝜑𝑐,𝑣) +
1

2
(∇ · (𝜌𝑢𝑐)𝑢𝑐,𝑣) +

⟨
𝑝𝑚 − 𝜌

2
|𝑢𝑐|2,𝑣 · 𝑛𝑐

⟩

+
𝛼
√
𝑑√︀

trace(
∏︀

)
⟨𝜈𝑃𝜏𝑢𝑐, 𝑃𝜏𝑣⟩ = 0, ∀𝑣 ∈ 𝑋𝑐, (2.33)

(∇ · 𝑢𝑐, 𝑞) = 0, ∀𝑞 ∈ 𝑄𝑐, (2.34)
(︂
𝜕𝜑𝑐

𝜕𝑡
, 𝜓

)︂
+ (𝑢𝑐 · ∇𝜑𝑐, 𝜓) + (𝑀𝑐∇𝑤𝑐,∇𝜓) + ⟨𝑀𝑚∇𝑤𝑚 · 𝑛𝑚, 𝜓⟩ + ⟨𝜑𝑐 − 𝜑𝑚, 𝜓⟩ = 0, ∀𝜓 ∈ 𝑌𝑐, (2.35)

(𝑤𝑐, 𝜔) − 𝛾𝜖(∇𝜑𝑐,∇𝜔) − 𝛾

𝜖
(𝑅𝑐𝜑𝑐, 𝜔) − 𝛾𝜖⟨∇𝜑𝑚 · 𝑛𝑚, 𝜔⟩ + ⟨𝑤𝑐 − 𝑤𝑚, 𝜔⟩ = 0, ∀𝜔 ∈ 𝑌𝑐, (2.36)

(︂
𝜕𝑅𝑗

𝜕𝑡
, 𝜒

)︂
= 2

(︂
𝜑𝑗

𝜕𝜑𝑗

𝜕𝑡
, 𝜒

)︂
, ∀𝜒 ∈ 𝑌𝑗 , (2.37)

where 𝑡 ∈ [0, 𝑇 ], 𝑇 > 0, 𝑢𝑚 ∈ 𝐿∞(0, 𝑇 ; [𝐿2(Ω𝑚)]𝑑) ∩ 𝐿2(0, 𝑇 ;𝑋𝑚), 𝑢𝑐 ∈ 𝐿∞(0, 𝑇 ; [𝐿2(Ω𝑐)]
𝑑) ∩ 𝐿2(0, 𝑇 ;𝑋𝑐,div),

𝜕𝑢𝑐

𝜕𝑡
∈ 𝐿2(0, 𝑇 ;𝑋 ′

𝑐,div), 𝑝𝑗 ∈ 𝐿2(0, 𝑇 ;𝑄𝑗), 𝜑𝑗 ∈ 𝐿∞(0, 𝑇 ;𝑌𝑗) ∩ 𝐿2(0, 𝑇 ;𝐻3(Ω𝑗)),
𝜕𝜑𝑗

𝜕𝑡
∈ 𝐿2(0, 𝑇 ;𝑌 ′

𝑗 ), 𝑤𝑗 ∈
𝐿2(0, 𝑇 ;𝑌𝑗), and 𝑗 = {𝑐,𝑚}. Here, by (2.2), we have assumed that 𝑢𝑚 can be obtained as follows:

(𝑢𝑚,𝑣) = (K(−∇𝑝𝑚 + 𝑤𝑚∇𝜑𝑚),𝑣), ∀𝑣 ∈ 𝑋𝑚. (2.38)

We follow the idea in [39] to solve the two Cahn–Hilliard equations on Ω𝑚 and Ω𝑐 separately with appropriate
treatment for the phase interface conditions (2.11)–(2.14). This is in constrast to the idea in [27], where a single
Cahn–Hilliard equation was solved over the whole domain Ω. The other three interface conditions (2.15)–
(2.17) are utilized in the traditional way for the single-phase Navier–Stokes–Darcy model [4, 22,32,51,75].

Lemma 2.2. Assume 𝜑𝑗 ∈ 𝐻2(Ω𝑗), 𝑤𝑗 ∈ 𝐻2(Ω𝑗), 𝑢𝑐 ∈ [𝐻2(Ω𝑐)]
𝑑, 𝑢𝑚 ∈ [𝐻1(Ω𝑚)]𝑑. Then the weak formula-

tion (2.30)–(2.37) and the CHNSD model (2.2)–(2.17) are equivalent. In particular, the solution

(𝑝𝑚, 𝜑𝑚, 𝑤𝑚,𝑢𝑐, 𝑝𝑐, 𝜑𝑐, 𝑤𝑐) ∈ (𝑄𝑚, 𝑌𝑚, 𝑌𝑚,𝑋𝑐, 𝑄𝑐, 𝑌𝑐, 𝑌𝑐)

of the weak formulation (2.30)–(2.37) satisfies the strong interface conditions (2.11), (2.12), and the weak

interface conditions as follows, for 𝑗 = 𝑐,𝑚,

⟨𝑢𝑐 · 𝑛𝑐 + 𝑢𝑚 · 𝑛𝑚, 𝑞⟩ = 0, ∀𝑞 ∈ 𝑌𝑚, (2.39)
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⟨𝑀𝑚∇𝑤𝑚 · 𝑛𝑚 +𝑀𝑐∇𝑤𝑐 · 𝑛𝑐, 𝜓⟩ = 0, ∀𝜓 ∈ 𝑌𝑗 , (2.40)

⟨∇𝜑𝑐 · 𝑛𝑐 + ∇𝜑𝑚 · 𝑛𝑚, 𝜔⟩ = 0, ∀𝜔 ∈ 𝑌𝑗 , (2.41)
⟨
𝑝𝑚 − 𝜌

2
|𝑢𝑐|2 − (T(𝑢𝑐, 𝑝𝑐) · 𝑛𝑐) · 𝑛𝑐,𝑣 · 𝑛𝑐

⟩

+

⟨
(T(𝑢𝑐, 𝑝𝑐) · 𝑛𝑐) · 𝜏 𝑗 +

𝛼𝜈
√
𝑑√︀

trace(
∏︀

)
(𝑢𝑐 · 𝜏 𝑗),𝑣 · 𝜏 𝑗

⟩
= 0. (2.42)

Proof. On one hand, one can easily derive the weak formulation (2.30)–(2.37) from the CHNSD system (2.2)–
(2.17), by utilizing the Green’s formula and the interface/boundary conditions. On the other hand, one can
obtain (2.2)–(2.10) after applying integration by parts to the weak formulation while choosing the test functions
satisfying 𝑞 ∈ 𝐻1

0 (Ω𝑗), 𝜓 ∈ 𝐻1
0 (Ω𝑗), 𝜔 ∈ 𝐻1

0 (Ω𝑗), 𝑣 ∈ [𝐻1
0 (Ω𝑐)]

𝑑 for 𝑗 = 𝑐,𝑚.
In the following, we focus on the equivalence on the interface. First, applying integration by parts and using

(2.2) and boundary condition for 𝑢𝑚 in (2.19), one can easily conduct (2.39) from (2.30).
Second, similar to the proof of (2.39), using integration by parts and (2.18), we can derive (2.42) from (2.33).
Next, we present the proof that the continuous interface conditions (2.11), (2.12) and (2.40), (2.41) hold in

the variational formulation when restricted to the interface Γ. Recall that the weak solution satisfies (2.2)–(2.5)
and (2.7)–(2.10).Using (2.31), (2.32), (2.35), (2.36), and integration by parts, we can obtain

⟨𝜑𝑚 − 𝜑𝑐, 𝜓⟩ + ⟨𝑀𝑚∇𝑤𝑚 · 𝑛𝑚 +𝑀𝑐∇𝑤𝑐 · 𝑛𝑐, 𝜓⟩ = 0, ∀𝜓 ∈ 𝑌𝑚, (2.43)

⟨𝑤𝑚 − 𝑤𝑐, 𝜔⟩ + 𝛾𝜖⟨∇𝜑𝑐 · 𝑛𝑐 + ∇𝜑𝑚 · 𝑛𝑚, 𝜔⟩ = 0, ∀𝜔 ∈ 𝑌𝑚, (2.44)

⟨𝜑𝑐 − 𝜑𝑚, 𝜓⟩ + ⟨𝑀𝑚∇𝑤𝑚 · 𝑛𝑚 +𝑀𝑐∇𝑤𝑐 · 𝑛𝑐, 𝜓⟩ = 0, ∀𝜓 ∈ 𝑌𝑐, (2.45)

⟨𝑤𝑐 − 𝑤𝑚, 𝜔⟩ + 𝛾𝜖⟨∇𝜑𝑚 · 𝑛𝑚 + ∇𝜑𝑐 · 𝑛𝑐, 𝜔⟩ = 0, ∀𝜔 ∈ 𝑌𝑐. (2.46)

Choosing 𝜓 = 𝜑𝑚 − 𝜑𝑐 in (2.43) and (2.45), and subtracting these two equations, we have

⟨𝜑𝑚 − 𝜑𝑐, 𝜑𝑚 − 𝜑𝑐⟩ = 0,

namely 𝜑𝑚 = 𝜑𝑐. Hence we obtain (2.11). Choosing 𝜔 = 𝑤𝑐 − 𝑤𝑚 in (2.44) and (2.46), and subtracting these
two equations, we have

⟨𝑤𝑚 − 𝑤𝑐, 𝑤𝑚 − 𝑤𝑐⟩ = 0.

Then, we obtain 𝑤𝑚 = 𝑤𝑐, namely, the interface condition (2.12).
Plugging (2.11) and (2.12) into (2.43) and (2.44), we obtain (2.40) and (2.41). Hence we complete the proof

of Lemma 2.2. �

2.3. A dissipative energy law

For the solution to the coupled CHNSD system, we consider its energy in the following form:

𝐸(𝑡) =
1

2
‖𝜎𝑢𝑐‖2 + 𝛾

[︂
𝜖

2
‖∇𝜑𝑐‖2 +

1

4𝜖
‖𝑅𝑐‖2

]︂
+ 𝛾

[︂
𝜖

2
‖∇𝜑𝑚‖2 +

1

4𝜖
‖𝑅𝑚‖2

]︂
(2.47)

which will not grow as suggested by the theorem below.

Theorem 2.3. The smooth solution (𝑢𝑚,𝑢𝑐, 𝜑𝑚, 𝜑𝑐) of the coupled CHNSD system with different densi-

ties (2.2)–(2.20) satisfies the following energy dissipation law

d

d𝑡
𝐸(𝑡) = −𝒟(𝑡), (2.48)

where 𝒟 is defined by

𝒟(𝑡) =
⃦⃦
⃦
√

2𝜈D(𝑢𝑐)
⃦⃦
⃦

2

+
⃦⃦
⃦
√

K−1𝑢𝑚

⃦⃦
⃦

2

+𝑀𝑐‖∇𝑤𝑐‖2
+𝑀𝑚‖∇𝑤𝑚‖2

+
𝛼
√
𝑑√︀

trace(
∏︀

)
⟨𝜈𝑃𝜏𝑢𝑐, 𝑃𝜏𝑢𝑐⟩. (2.49)
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Proof. We firstly consider the conduit part. By letting 𝑣 = 𝑢𝑐, 𝑞 = 𝑝𝑐, 𝜓 = 𝑤𝑐, 𝜔 = −𝜕𝜑𝑐

𝜕𝑡
in (2.33)–(2.36),

𝜒 = 𝛾
2𝜖
𝑅𝑐 in (2.37), applying the interface conditions (2.11) and (2.12), and summing up the resultants together,

we have

1

2

d

d𝑡
‖𝜎𝑢𝑐‖2

+ 𝛾

[︂
𝜖

2

d

d𝑡
‖∇𝜑𝑐‖2

+
1

4𝜖

d

d𝑡
‖𝑅𝑐‖2

]︂
+ (𝜌(𝑢𝑐 · ∇)𝑢𝑐,𝑢𝑐) +

1

2
(∇ · (𝜌𝑢𝑐)𝑢𝑐,𝑢𝑐)

+
⃦⃦
⃦
√

2𝜈D(𝑢𝑐)
⃦⃦
⃦

2

+𝑀𝑐‖∇𝑤𝑐‖2 +
𝛼
√
𝑑√︀

trace(
∏︀

)
⟨𝜈𝑃𝜏𝑢𝑐, 𝑃𝜏𝑢𝑐⟩

+ ⟨𝑀𝑚∇𝑤𝑚 · 𝑛𝑚, 𝑤𝑐⟩ + 𝛾𝜖

⟨
∇𝜑𝑚 · 𝑛𝑚,

d

d𝑡
𝜑𝑐

⟩
+
⟨
𝑢𝑐 · 𝑛𝑐, 𝑝𝑚 − 𝜌

2
|𝑢𝑐|2

⟩
= 0. (2.50)

Using integration by parts we can see

((𝜌𝑢𝑐 · ∇)𝑢𝑐,𝑢𝑐) +
1

2
(∇ · (𝜌𝑢𝑐)𝑢𝑐,𝑢𝑐) =

1

2
⟨𝜌𝑢𝑐 · 𝑢𝑐,𝑢𝑐 · 𝑛𝑐⟩. (2.51)

Applying (2.51) in (2.50) leads to

1

2

d

d𝑡
‖𝜎𝑢𝑐‖2

+ 𝛾[
𝜖

2

d

d𝑡
‖∇𝜑𝑐‖2

+
1

4𝜖

d

d𝑡
‖𝑅𝑐‖2] +

⃦⃦
⃦
√

2𝜈D(𝑢𝑐)
⃦⃦
⃦

2

+𝑀𝑐‖∇𝑤𝑐‖2
+ ⟨𝑢𝑐 · 𝑛𝑐, 𝑝𝑚⟩

+
𝛼
√
𝑑√︀

trace(
∏︀

)
⟨𝜈𝑃𝜏𝑢𝑐, 𝑃𝜏𝑢𝑐⟩ + ⟨𝑀𝑚∇𝑤𝑚 · 𝑛𝑚, 𝑤𝑐⟩ + 𝛾𝜖

⟨
∇𝜑𝑚 · 𝑛𝑚,

d

d𝑡
𝜑𝑐

⟩
= 0. (2.52)

Then, for the matrix part, choosing 𝑞 = 𝑝𝑚 in (2.30) and 𝜓 = 𝑤𝑚 in (2.31), adding the resultants together
and applying (2.38), we obtain

(︂
𝜕𝜑𝑚

𝜕𝑡
, 𝑤𝑚

)︂
+ (𝑢𝑚 · ∇𝜑𝑚, 𝑤𝑚) − (𝑢𝑚,∇𝑝𝑚) +𝑀𝑚‖∇𝑤𝑚‖2

+ ⟨𝑀𝑐∇𝑤𝑐 · 𝑛𝑐, 𝑤𝑚⟩ − ⟨𝑢𝑐 · 𝑛𝑐, 𝑝𝑚⟩ = 0. (2.53)

Using 𝑣 = 𝑢𝑚 in (2.38) yields

⃦⃦
⃦
√

K−1𝑢𝑚

⃦⃦
⃦

2

= −(∇𝑝𝑚,𝑢𝑚) + (𝑤𝑚∇𝜑𝑚,𝑢𝑚). (2.54)

We add (2.53) and (2.54) to obtain

(︂
𝜕𝜑𝑚

𝜕𝑡
, 𝑤𝑚

)︂
+
⃦⃦
⃦
√

K−1𝑢𝑚

⃦⃦
⃦

2

+𝑀𝑚‖∇𝑤𝑚‖2
+ ⟨𝑀𝑐∇𝑤𝑐 · 𝑛𝑐, 𝑤𝑚⟩ − ⟨𝑢𝑐 · 𝑛𝑐, 𝑝𝑚⟩ = 0. (2.55)

By taking 𝜔 = −𝜕𝜑𝑚

𝜕𝑡
in (2.32) and 𝜒 = 𝛾

2𝜖
𝑅𝑚 in (2.37), respectively, and adding (2.55), we derive

𝛾

[︂
𝜖

2

d

d𝑡
‖∇𝜑𝑚‖2

+
1

4𝜖

d

d𝑡
‖𝑅𝑚‖2

]︂
+
⃦⃦
⃦
√

K−1𝑢𝑚

⃦⃦
⃦

2

+𝑀𝑚‖∇𝑤𝑚‖2

+ ⟨𝑀𝑐∇𝑤𝑐 · 𝑛𝑐, 𝑤𝑚⟩ + 𝛾𝜖

⟨
∇𝜑𝑐 · 𝑛𝑐,

d

d𝑡
𝜑𝑚

⟩
− ⟨𝑢𝑐 · 𝑛𝑐, 𝑝𝑚⟩ = 0. (2.56)

By adding (2.52) and (2.56), applying the interface conditions (2.11)–(2.14), we obtain (2.48).

�
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3. Energy-stable time-stepping methods

In this section, we present and analyze a partially decoupled time-stepping scheme and a fully decoupled
scheme for solving the CHNSD system (2.30)–(2.37). First, for a preparation and by following the ideas in [69],
we have the following lemma for estimating the interface terms.

Lemma 3.1. There exists a constant 𝐶 such that, for 𝑣 ∈ 𝑋𝑐, 𝑞𝑚 ∈ 𝑄𝑚

|⟨𝑣 · 𝑛𝑐, 𝑞𝑚⟩| ≤ 𝐶‖𝑣‖𝑋div
‖∇𝑞𝑚‖, (3.1)

where ‖𝑣‖2
𝑋div

= ‖𝑣‖2 + ‖∇ · 𝑣‖2. If 𝑣 satisfy

(∇ · 𝑣, 𝑞𝑚) = 0, ∀𝑞𝑚 ∈ 𝑄𝑚, (3.2)

then

|⟨𝑣 · 𝑛𝑐, 𝑞𝑚⟩| ≤ 𝐶‖𝑣‖‖∇𝑞𝑚‖. (3.3)

Also, in discussions from now on, we let the time step size be Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 = 𝑇
𝑀

, 𝑡𝑛 be the 𝑛th discrete time
level, and 𝑀 = 𝑇

∆𝑡
.

3.1. A partially decoupled scheme based on the pressure correction method

Following the works in [39], we decouple CHNSD system into two subsystem by the modification of the
interface conditions. Then we use a stabilization technique to decouple the CHNS system and the CHD system
into two subsystems, respectively. Consequently, we obtain four sub-systems. Finally, we employ the pressure
projection correction method [38, 78] in dealing with Navier–Stokes equations to derive a linearized system
with energy-preserving property. These essential components help us obtain a decoupled, linearized, and energy
stable scheme for the temporal discretization as follows.

Step 1. Find (𝜑𝑛+1
𝑚 , 𝑤𝑛+1

𝑚 ) ∈ 𝑌𝑚 × 𝑌𝑚, such that

(︂
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚

Δ𝑡
, 𝜓

)︂
− (K∇𝑝𝑛

𝑚 · ∇𝜑𝑛
𝑚, 𝜓) +

(︀
K𝑤𝑛+1

𝑚 ∇𝜑𝑛
𝑚 · ∇𝜑𝑛

𝑚, 𝜓
)︀

+
(︀
𝑀𝑚∇𝑤𝑛+1

𝑚 ,∇𝜓
)︀

+ ⟨𝑀𝑐∇𝑤𝑛
𝑐 · 𝑛𝑐, 𝜓⟩ + ⟨𝜑𝑛

𝑚 − 𝜑𝑛
𝑐 , 𝜓⟩ = 0, ∀𝜓 ∈ 𝑌𝑚, (3.4)

(︀
𝑤𝑛+1

𝑚 , 𝜔
)︀
− 𝛾𝜖

(︀
∇𝜑𝑛+1

𝑚 ,∇𝜔
)︀
− 𝛾

𝜖
(𝑅𝑛

𝑚𝜑
𝑛
𝑚, 𝜔) − 𝑆𝛾

𝜖

(︀
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚, 𝜔

)︀

− 𝛾𝜖⟨∇𝜑𝑛
𝑐 · 𝑛𝑐, 𝜔⟩ + ⟨𝑤𝑛

𝑚 − 𝑤𝑛
𝑐 , 𝜔⟩ = 0, ∀𝜔 ∈ 𝑌𝑚, (3.5)

where we have used

𝑢𝑛+1
𝑚 = −K∇𝑝𝑛

𝑚 + K𝑤𝑛+1
𝑚 ∇𝜑𝑛

𝑚. (3.6)

Step 2. Find 𝑝𝑛+1
𝑚 ∈ 𝑄𝑚, such that

(︀
K∇𝑝𝑛+1

𝑚 ,∇𝑞
)︀
−
(︀
K𝑤𝑛+1

𝑚 ∇𝜑𝑛
𝑚,∇𝑞

)︀
− ⟨𝑢𝑛

𝑐 · 𝑛𝑐, 𝑞⟩ + 𝛽Δ𝑡
(︀
∇𝑝𝑛+1

𝑚 ,∇𝑞
)︀

= 0, ∀𝑞 ∈ 𝑄𝑚. (3.7)

Step 3. Find
(︀
𝜑𝑛+1

𝑐 , 𝑤𝑛+1
𝑐

)︀
∈ 𝑌𝑐 × 𝑌𝑐, such that

(︂
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐

Δ𝑡
, 𝜓

)︂
+ (𝑢𝑛

𝑐⋆ · ∇𝜑𝑛
𝑐 , 𝜓) +

(︀
𝑀𝑐∇𝑤𝑛+1

𝑐 ,∇𝜓
)︀

+ ⟨𝑀𝑚∇𝑤𝑛
𝑚 · 𝑛𝑚, 𝜓⟩

+
⟨︀
𝜑𝑛+1

𝑐 − 𝜑𝑛+1
𝑚 , 𝜓

⟩︀
= 0, ∀𝜓 ∈ 𝑌𝑐, (3.8)

(︀
𝑤𝑛+1

𝑐 , 𝜔
)︀
− 𝛾𝜖

(︀
∇𝜑𝑛+1

𝑐 ,∇𝜔
)︀
− 𝛾

𝜖
(𝑅𝑛

𝑐 𝜑
𝑛
𝑐 , 𝜔) − 𝑆𝛾

𝜖

(︀
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐 , 𝜔

)︀
− 𝛾𝜖⟨∇𝜑𝑛

𝑚 · 𝑛𝑚, 𝜔⟩



FULLY DECOUPLED ENERGY-STABLE NUMERICAL SCHEMES 1333

+
⟨︀
𝑤𝑛+1

𝑐 − 𝑤𝑛+1
𝑚 , 𝜔

⟩︀
= 0. ∀𝜔 ∈ 𝑌𝑐, (3.9)

where 𝑢𝑛
𝑐⋆ is given by

𝑢𝑛
𝑐⋆ = 𝑢𝑛

𝑐 +
1

𝜌𝑛
Δ𝑡𝑤𝑛+1

𝑐 ∇𝜑𝑛
𝑐 . (3.10)

Step 4. Find
(︁
̃︀𝑢𝑛+1

𝑐 ,𝑢𝑛+1
𝑐 , 𝑝𝑛+1

𝑐

)︁
∈ 𝑋𝑐 × 𝑋𝑐 ×𝑄𝑐, such that

(︃
𝜌𝑛 ̃︀𝑢

𝑛+1

𝑐 − 𝑢𝑛
𝑐

Δ𝑡
,𝑣

)︃
+
(︁
𝜌𝑛(𝑢𝑛

𝑐 · ∇)̃︀𝑢𝑛+1

𝑐 ,𝑣
)︁

+
(︁
2𝜈𝑛

D

(︁
̃︀𝑢𝑛+1

𝑐

)︁
,D(𝑣)

)︁

−
(︀
𝑤𝑛+1

𝑐 ∇𝜑𝑛
𝑐 ,𝑣

)︀
+

1

2

(︂
̃︀𝑢𝑛+1

𝑐

𝜌𝑛+1 − 𝜌𝑛

Δ𝑡
,𝑣

)︂
+

1

2

(︁
∇ · (𝜌𝑛𝑢𝑛

𝑐 )̃︀𝑢𝑛+1

𝑐 ,𝑣
)︁

+
⟨︀
𝑝𝑛+1

𝑚 − 𝑝𝑛+1
𝑐 ,𝑣 · 𝑛𝑐

⟩︀
− 1

2

⟨
𝜌𝑛𝑢𝑛

𝑐 · ̃︀𝑢𝑛+1

𝑐 ,𝑣 · 𝑛𝑐

⟩

+
𝛼
√
𝑑√︀

trace(
∏︀

)

⟨
𝜈𝑛𝑃𝜏 ̃︀𝑢𝑛+1

𝑐 , 𝑃𝜏𝑣
⟩

= 0, ∀𝑣 ∈ 𝑋𝑐. (3.11)

(︃
𝜌𝑛+1 𝑢𝑛+1

𝑐 − ̃︀𝑢𝑛+1

𝑐

Δ𝑡
,𝑣

)︃
+
(︀
∇𝑝𝑛+1

𝑐 ,𝑣
)︀

= 0, ∀𝑣 ∈ 𝑋𝑐, (3.12)

(︀
∇ · 𝑢𝑛+1

𝑐 , 𝑞
)︀

= 0, ∀𝑞 ∈ 𝑄𝑐. (3.13)

Step 5. Find 𝑅𝑛+1
𝑐 ∈ 𝑌𝑐 and 𝑅𝑛+1

𝑚 ∈ 𝑌𝑚, such that

(︂
𝑅𝑛+1

𝑐 −𝑅𝑛
𝑐

Δ𝑡
, 𝜒

)︂
= 2

(︂
𝜑𝑛

𝑐

𝜑𝑛+1
𝑐 − 𝜑𝑛

𝑐

Δ𝑡
, 𝜒

)︂
, ∀𝜒 ∈ 𝑌𝑐, (3.14)

(︂
𝑅𝑛+1

𝑚 −𝑅𝑛
𝑚

Δ𝑡
, 𝜒

)︂
= 2

(︂
𝜑𝑛

𝑚

𝜑𝑛+1
𝑚 − 𝜑𝑛

𝑚

Δ𝑡
, 𝜒

)︂
, ∀𝜒 ∈ 𝑌𝑚. (3.15)

Remark 3.2. In the scheme above, we imposed the following interface condition for the intermediate velocity
̃︀𝑢𝑛+1

𝑐 :

̃︀𝑢𝑛+1

𝑐 · 𝑛𝑐|Γ = 𝑢𝑛+1
𝑐 · 𝑛𝑐|Γ. (3.16)

Remark 3.3. The two extra terms 𝑆𝛾
𝜖

(𝜑𝑛+1
𝑚 − 𝜑𝑛

𝑚) and 𝑆𝛾
𝜖

(𝜑𝑛+1
𝑐 − 𝜑𝑛

𝑐 ) in (3.5) and (3.9), respectively, are
stabilizers usually employed to enhance the stability and maintain the resolution with a positive stabilizing
parameter 𝑆.

Remark 3.4. The term 𝛽(∇𝑝𝑛+1
𝑚 ,∇𝑞) in (3.7) is introduced to ensure the stability of numerical scheme with

respect to the positive parameter 𝛽.

Theorem 3.5. Assume that the stabilized parameter 𝛽 is chosen to be large enough. Then The time-stepping

scheme (3.4)–(3.15) is unconditionally stable, namely (𝑢𝑛+1
𝑐 , 𝑝𝑛+1

𝑚 , 𝑝𝑛+1
𝑐 , 𝜑𝑛+1

𝑚 , 𝜑𝑛+1
𝑐 , 𝑅𝑛+1

𝑚 , 𝑅𝑛+1
𝑐 ) defined by

(3.4)–(3.15) satisfies the energy dissipation law:

ℰ𝑛+1

𝑝𝑑 − ℰ𝑛
𝑝𝑑 ≤ −𝒟𝑛+1

𝑝𝑑 , (3.17)

where ℰ𝑛
𝑝𝑑 is defined as

ℰ𝑛
𝑝𝑑 =

1

2
‖𝜎𝑛𝑢𝑛

𝑐 ‖2
+ 𝛾

[︂
𝜖

2
‖∇𝜑𝑛

𝑐 ‖2
+

1

4𝜖
‖𝑅𝑛

𝑐 ‖2

]︂
+ 𝛾

[︂
𝜖

2
‖∇𝜑𝑛

𝑚‖2
+

1

4𝜖
‖𝑅𝑛

𝑚‖2

]︂
+

1

2
Δ𝑡
⃦⃦
⃦
√

K∇𝑝𝑛
𝑚

⃦⃦
⃦

2

, (3.18)
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𝒟𝑛+1

𝑝𝑑 is given by

𝒟𝑛+1

𝑝𝑑 = Δ𝑡
⃦⃦
⃦
√

2𝜈𝑛D

(︁
̃︀𝑢𝑛+1

𝑐

)︁⃦⃦
⃦

2

+
1

4
Δ𝑡
⃦⃦
⃦
√

K∇
(︀
𝑝𝑛+1

𝑚 − 𝑝𝑛
𝑚

)︀⃦⃦
⃦

2

+
𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑐 −∇𝜑𝑛
𝑐

⃦⃦2
+
𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑚 −∇𝜑𝑛
𝑚

⃦⃦2

+
𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑐 −𝑅𝑛
𝑐

⃦⃦2
+
𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑚 −𝑅𝑛
𝑚

⃦⃦2
+
𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐

⃦⃦2
+
𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚

⃦⃦2

+ Δ𝑡𝑀𝑐

⃦⃦
∇𝑤𝑛+1

𝑐

⃦⃦2
+ Δ𝑡𝑀𝑚

⃦⃦
∇𝑤𝑛+1

𝑚

⃦⃦2
+ Δ𝑡

𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐 , 𝑃𝜏𝑢𝑛+1
𝑐

⟩︀
. (3.19)

Proof. We first consider the conduit part. By (2.51), we have

(︁
(𝜌𝑛𝑢𝑛

𝑐 · ∇)̃︀𝑢𝑛+1

𝑐 , ̃︀𝑢𝑛+1

𝑐

)︁
+

1

2

(︁
∇ · (𝜌𝑛𝑢𝑛

𝑐 )̃︀𝑢𝑛+1

𝑐 , ̃︀𝑢𝑛+1

𝑐

)︁
=

1

2

⟨
𝜌𝑛𝑢𝑛

𝑐 · ̃︀𝑢𝑛+1

𝑐 , ̃︀𝑢𝑛+1

𝑐 · 𝑛𝑐

⟩
. (3.20)

By taking the test function 𝑣 = Δ𝑡̃︀𝑢𝑛+1

𝑐 in (3.11), 𝑣 = Δ𝑡𝑢𝑛+1
𝑐 in (3.12) and 𝑞 = Δ𝑡𝑝𝑛+1

𝑐 in (3.13), then adding
these two equations, combining the result with (3.20), the interface condition (3.16), and the identity

2𝑎(𝑎− 𝑏) = 𝑎2 − 𝑏2 + (𝑎− 𝑏)2, (3.21)

we obtain

1

2

[︂⃦⃦
𝜎𝑛+1𝑢𝑛+1

𝑐

⃦⃦2 − ‖𝜎𝑛𝑢𝑛
𝑐⋆‖

2
+
⃦⃦
⃦𝜎𝑛

(︁
̃︀𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐⋆

)︁⃦⃦
⃦

2

+
⃦⃦
⃦𝜎𝑛+1

(︁
𝑢𝑛+1

𝑐 − ̃︀𝑢𝑛+1

𝑐

)︁⃦⃦
⃦

2
]︂

+ Δ𝑡
⃦⃦
⃦
√

2𝜈𝑛D

(︁
̃︀𝑢𝑛+1

𝑐

)︁⃦⃦
⃦

2

+ Δ𝑡
⟨︀
𝑢𝑛+1

𝑐 · 𝑛𝑐, 𝑝
𝑛+1
𝑚

⟩︀
+ Δ𝑡

𝛼
√
𝑑√︀

trace(
∏︀

)

⟨
𝜈𝑛𝑃𝜏 ̃︀𝑢𝑛+1

𝑐 , 𝑃𝜏 ̃︀𝑢𝑛+1

𝑐

⟩
= 0, (3.22)

where the Green’s formula is used for term
(︀
∇𝑝𝑛+1

𝑐 ,𝑢𝑛+1
𝑐

)︀
= −

(︀
𝑝𝑛+1

𝑐 ,∇ · 𝑢𝑛+1
𝑐

)︀
+
⟨︀
𝑝𝑛+1

𝑐 ,𝑢𝑛+1
𝑐 · 𝑛𝑐

⟩︀
.

In order to deal with the ‖𝜎𝑛𝑢𝑐⋆‖2 term, we rewrite (3.10) as

𝜌𝑛(𝑢𝑛
𝑐⋆ − 𝑢𝑛

𝑐 )

Δ𝑡
= 𝑤𝑛+1

𝑐 ∇𝜑𝑛
𝑐 , (3.23)

and take the inner product of (3.23) with Δ𝑡𝑢𝑛
𝑐⋆. Then, by the identity (3.21), we obtain

1

2

[︁
‖𝜎𝑛𝑢𝑛

𝑐⋆‖2 − ‖𝜎𝑛𝑢𝑛
𝑐 ‖2

+ ‖𝜎𝑛(𝑢𝑛
𝑐⋆ − 𝑢𝑛

𝑐 )‖2
]︁

= Δ𝑡
(︀
𝑤𝑛+1

𝑐 ∇𝜑𝑛
𝑐 ,𝑢

𝑛
𝑐⋆

)︀
. (3.24)

Letting 𝜓 = Δ𝑡𝑤𝑛+1
𝑐 in (3.8), and applying (2.11) and (3.10), we get

(︀
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐 , 𝑤

𝑛+1
𝑐

)︀
+ Δ𝑡

(︀
𝑢𝑛

𝑐⋆ · ∇𝜑𝑛
𝑐 , 𝑤

𝑛+1
𝑐

)︀
+ Δ𝑡𝑀𝑐

⃦⃦
∇𝑤𝑛+1

𝑐

⃦⃦2
+ Δ𝑡

⟨︀
𝑀𝑚∇𝑤𝑛

𝑚 · 𝑛𝑐, 𝑤
𝑛+1
𝑐

⟩︀
= 0. (3.25)

Then, we use 𝜔 = −
(︀
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐

)︀
and 𝜒 = 𝛾

2𝜖
Δ𝑡𝑅𝑛+1

𝑐 in (3.9) and (3.14), respectively, and let 𝜒 =
𝛾
𝜖
Δ𝑡
(︀
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐

)︀
in (3.14), utilize (2.12) and (3.21) to derive

−
(︀
𝑤𝑛+1

𝑐 , 𝜑𝑛+1
𝑐 − 𝜑𝑛

𝑐

)︀
+
𝛾𝜖

2

[︁⃦⃦
∇𝜑𝑛+1

𝑐

⃦⃦2 − ‖∇𝜑𝑛
𝑐 ‖2
]︁

+
𝛾

4𝜖

[︁⃦⃦
𝑅𝑛+1

𝑐

⃦⃦2 − ‖𝑅𝑛
𝑐 ‖2
]︁

+ 𝛾𝜖
⟨︀
∇𝜑𝑛

𝑚 · 𝑛𝑚, 𝜑
𝑛+1
𝑐 − 𝜑𝑛

𝑐

⟩︀

+
𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑐 −∇𝜑𝑛
𝑐

⃦⃦2
+
𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑐 −𝑅𝑛
𝑐

⃦⃦2
+
𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐

⃦⃦2
= 0. (3.26)

Adding (3.22), (3.24), (3.25) and (3.26), we get

1

2

[︁⃦⃦
𝜎𝑛+1𝑢𝑛+1

𝑐

⃦⃦2 − ‖𝜎𝑛𝑢𝑛
𝑐 ‖2
]︁

+
𝛾𝜖

2

[︁⃦⃦
∇𝜑𝑛+1

𝑐

⃦⃦2 − ‖∇𝜑𝑛
𝑐 ‖2
]︁

+
𝛾

4𝜖

[︁⃦⃦
𝑅𝑛+1

𝑐

⃦⃦2 − ‖𝑅𝑛
𝑐 ‖2
]︁
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+
1

2

[︂⃦⃦
⃦𝜎𝑛

(︁
̃︀𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐⋆

)︁⃦⃦
⃦

2

+
⃦⃦
⃦𝜎𝑛+1

(︁
𝑢𝑛+1

𝑐 − ̃︀𝑢𝑛+1

𝑐

)︁⃦⃦
⃦

2

+ ‖𝜎𝑛(𝑢𝑛
𝑐⋆ − 𝑢𝑛

𝑐 )‖2

]︂

+ Δ𝑡
⃦⃦
⃦
√

2𝜈𝑛D

(︁
̃︀𝑢𝑛+1

𝑐

)︁⃦⃦
⃦

2

+ Δ𝑡𝑀𝑐

⃦⃦
∇𝑤𝑛+1

𝑐

⃦⃦2
+
𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑐 −∇𝜑𝑛
𝑐

⃦⃦2

+
𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑐 −𝑅𝑛
𝑐

⃦⃦2
+
𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐

⃦⃦2
+ 𝛾𝜖

⟨︀
∇𝜑𝑛

𝑚 · 𝑛𝑚, 𝜑
𝑛+1
𝑐 − 𝜑𝑛

𝑐

⟩︀

+ Δ𝑡
⟨︀
𝑀𝑚∇𝑤𝑛

𝑚 · 𝑛𝑚, 𝑤
𝑛+1
𝑐

⟩︀
+ Δ𝑡

⟨︀
𝑢𝑛+1

𝑐 · 𝑛𝑐, 𝑝
𝑛+1
𝑚

⟩︀

+ Δ𝑡
𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐 , 𝑃𝜏𝑢𝑛+1
𝑐

⟩︀
= 0. (3.27)

Next, we consider the matrix part. Choosing 𝜓 = Δ𝑡𝑤𝑛+1
𝑚 in (3.4), using (2.11) and (3.6), we derive

(︀
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚, 𝑤

𝑛+1
𝑚

)︀
+ Δ𝑡

(︀
𝑢𝑛+1

𝑚 · ∇𝜑𝑛
𝑚, 𝑤

𝑛+1
𝑚

)︀
+ Δ𝑡𝑀𝑚

⃦⃦
∇𝑤𝑛+1

𝑚

⃦⃦2
+ Δ𝑡

⟨︀
𝑀𝑐∇𝑤𝑛

𝑐 · 𝑛𝑐, 𝑤
𝑛+1
𝑚

⟩︀
= 0. (3.28)

Taking 𝜔 = −
(︀
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚

)︀
in (3.5), 𝜒 = 𝛾

2𝜖
Δ𝑡𝑅𝑛+1

𝑚 in (3.15), and then taking the summation, apply-
ing (2.12), and (3.21), we obtain

−
(︀
𝑤𝑛+1

𝑚 , 𝜑𝑛+1
𝑚 − 𝜑𝑛

𝑚

)︀
+
𝛾𝜖

2

[︁⃦⃦
∇𝜑𝑛+1

𝑚

⃦⃦2 − ‖∇𝜑𝑛
𝑚‖2

]︁
+
𝛾

4𝜖

[︁⃦⃦
𝑅𝑛+1

𝑚

⃦⃦2 − ‖𝑅𝑛
𝑚‖2

]︁
+ 𝛾𝜖

⟨︀
∇𝜑𝑛

𝑐 · 𝑛𝑐, 𝜑
𝑛+1
𝑚 − 𝜑𝑛

𝑚

⟩︀

+
𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑚 −∇𝜑𝑛
𝑚

⃦⃦2
+
𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑚 −𝑅𝑛
𝑚

⃦⃦2
+
𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚

⃦⃦2
= 0. (3.29)

We take the inner product of (3.6) with 𝑣ℎ = Δ𝑡K−1𝑢𝑛+1
𝑚 , let 𝑞 = Δ𝑡𝑝𝑛+1

𝑚 in (3.6), and add the resultants
together to obtain

Δ𝑡
⃦⃦
⃦
√

K−1𝑢𝑛+1
𝑚

⃦⃦
⃦

2

+
1

2
Δ𝑡

[︂⃦⃦
⃦
√

K∇𝑝𝑛+1
𝑚

⃦⃦
⃦

2

−
⃦⃦
⃦
√

K∇𝑝𝑛
𝑚

⃦⃦
⃦

2

+
⃦⃦
⃦
√

K∇
(︀
𝑝𝑛+1

𝑚 − 𝑝𝑛
𝑚

)︀⃦⃦
⃦

2
]︂

+ 𝛽Δ𝑡2‖∇𝑝𝑛+1
𝑚 ‖2

− Δ𝑡
(︀
∇
(︀
𝑝𝑛+1

𝑚 − 𝑝𝑛
𝑚

)︀
,𝑢𝑛+1

𝑚

)︀
− Δ𝑡

(︀
𝑤𝑛+1

𝑚 ∇𝜑𝑛
𝑚,𝑢

𝑛+1
𝑚

)︀
− Δ𝑡

⟨︀
𝑢𝑛

𝑐 · 𝑛𝑐, 𝑝
𝑛+1
𝑚

⟩︀
= 0. (3.30)

Adding (3.28), (3.29) and (3.30), and then applying

Δ𝑡
⃒⃒(︀
∇
(︀
𝑝𝑛+1

𝑚 − 𝑝𝑛
𝑚

)︀
,𝑢𝑛+1

𝑚

)︀⃒⃒
≤ Δ𝑡

⃦⃦
⃦
√

K−1𝑢𝑛+1
𝑚

⃦⃦
⃦

2

+
1

4
Δ𝑡
⃦⃦
⃦
√

K∇
(︀
𝑝𝑛+1

𝑚 − 𝑝𝑛
𝑚

)︀⃦⃦
⃦

2

(3.31)

we obtain

1

2
𝛾𝜖
[︁⃦⃦

∇𝜑𝑛+1
𝑚

⃦⃦2 − ‖∇𝜑𝑛
𝑚‖2

]︁
+
𝛾

4𝜖

[︁⃦⃦
𝑅𝑛+1

𝑚

⃦⃦2 − ‖𝑅𝑛
𝑚‖2

]︁
+

1

2
Δ𝑡

[︂⃦⃦
⃦
√

K∇𝑝𝑛+1
𝑚

⃦⃦
⃦

2

−
⃦⃦
⃦
√

K∇𝑝𝑛
𝑚

⃦⃦
⃦

2
]︂

≤ −1

2
𝛾𝜖
⃦⃦
∇𝜑𝑛+1

𝑚 −∇𝜑𝑛
𝑚

⃦⃦2 − Δ𝑡𝑀𝑚

⃦⃦
∇𝑤𝑛+1

𝑚

⃦⃦2 − 1

4
Δ𝑡
⃦⃦
⃦
√

K∇
(︀
𝑝𝑛+1

𝑚 − 𝑝𝑛
𝑚

)︀⃦⃦
⃦

2

− 𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑚 −𝑅𝑛
𝑚

⃦⃦2 − 𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚

⃦⃦2 − 𝛽Δ𝑡2
⃦⃦
∇𝑝𝑛+1

𝑚

⃦⃦2
+ Δ𝑡

⟨︀
𝑢𝑛

𝑐 · 𝑛𝑐, 𝑝
𝑛+1
𝑚

⟩︀

− 𝛾𝜖
⟨︀
∇𝜑𝑛

𝑐 · 𝑛𝑐, 𝜑
𝑛+1
𝑚 − 𝜑𝑛

𝑚

⟩︀
− Δ𝑡

⟨︀
𝑀𝑐∇𝑤𝑛

𝑐 · 𝑛𝑐, 𝑤
𝑛+1
𝑚

⟩︀
. (3.32)

Summing up (3.27) and (3.32), and applying Lemma 2.2, we have

1

2

[︁⃦⃦
𝜎𝑛+1𝑢𝑛+1

𝑐

⃦⃦2 − ‖𝜎𝑛𝑢𝑛
𝑐 ‖2
]︁

+
𝛾𝜖

2

[︁⃦⃦
∇𝜑𝑛+1

𝑐

⃦⃦2 − ‖∇𝜑𝑛
𝑐 ‖2
]︁

+
1

2
𝛾𝜖
[︁⃦⃦

∇𝜑𝑛+1
𝑚

⃦⃦2 − ‖∇𝜑𝑛
𝑚‖2

]︁
+
𝛾

4𝜖

[︁⃦⃦
𝑅𝑛+1

𝑐

⃦⃦2 − ‖𝑅𝑛
𝑐 ‖

2
]︁

+
𝛾

4𝜖

[︁⃦⃦
𝑅𝑛+1

𝑚

⃦⃦2 − ‖𝑅𝑛
𝑚‖2

]︁
+

1

2
Δ𝑡

[︂⃦⃦
⃦
√

K∇𝑝𝑛+1
𝑚

⃦⃦
⃦

2

−
⃦⃦
⃦
√

K∇𝑝𝑛
𝑚

⃦⃦
⃦

2
]︂
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≤ −1

2

[︂⃦⃦
⃦𝜎𝑛

(︁
̃︀𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐⋆

)︁⃦⃦
⃦

2

+
⃦⃦
⃦𝜎𝑛+1

(︁
𝑢𝑛+1

𝑐 − ̃︀𝑢𝑛+1

𝑐

)︁⃦⃦
⃦

2

+ ‖𝜎𝑛(𝑢𝑛
𝑐⋆ − 𝑢𝑛

𝑐 )‖2

]︂

− Δ𝑡
⃦⃦
⃦
√

2𝜈𝑛D

(︁
̃︀𝑢𝑛+1

𝑐

)︁⃦⃦
⃦

2

− 1

4
Δ𝑡
⃦⃦
⃦
√

K∇
(︀
𝑝𝑛+1

𝑚 − 𝑝𝑛
𝑚

)︀⃦⃦
⃦

2

− Δ𝑡𝑀𝑐

⃦⃦
∇𝑤𝑛+1

𝑐

⃦⃦2 − Δ𝑡𝑀𝑚

⃦⃦
∇𝑤𝑛+1

𝑚

⃦⃦2

− 𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑐 −∇𝜑𝑛
𝑐

⃦⃦2 − 𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑚 −∇𝜑𝑛
𝑚

⃦⃦2 − 𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑐 −𝑅𝑛
𝑐

⃦⃦2 − 𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑚 −𝑅𝑛
𝑚

⃦⃦2

− 𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐

⃦⃦2 − 𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚

⃦⃦2 − Δ𝑡
𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐 , 𝑃𝜏𝑢𝑛+1
𝑐

⟩︀

− 𝛽Δ𝑡2
⃦⃦
∇𝑝𝑛+1

𝑚

⃦⃦2
+ Δ𝑡|

⟨︀(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

)︀
· 𝑛𝑐, 𝑝

𝑛+1
𝑚

⟩︀
|. (3.33)

Now, we estimate the last interface term in equation (3.33). Because 𝑢𝑛
𝑐 and 𝑢𝑛+1

𝑐 satisfy (3.2), by using
(3.3) in Lemma 3.1, we obtain

Δ𝑡
⃒⃒⟨︀(︀

𝑢𝑛
𝑐 − 𝑢𝑛+1

𝑐

)︀
· 𝑛𝑐, 𝑝

𝑛+1
𝑚

⟩︀⃒⃒
≤ 𝐶Δ𝑡

⃦⃦
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

⃦⃦
‖∇𝑝𝑛

𝑚‖

≤ 1

6
min{𝜌1, 𝜌2}

⃦⃦
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

⃦⃦2
+ 𝐶Δ𝑡2‖∇𝑝𝑛

𝑚‖2
. (3.34)

By the triangle inequality, we have

−1

2

[︂⃦⃦
⃦𝜎𝑛

(︁
̃︀𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐⋆

)︁⃦⃦
⃦

2

+
⃦⃦
⃦𝜎𝑛+1

(︁
𝑢𝑛+1

𝑐 − ̃︀𝑢𝑛+1

𝑐

)︁⃦⃦
⃦

2

+ ‖𝜎𝑛(𝑢𝑛
𝑐⋆ − 𝑢𝑛

𝑐 )‖2

]︂

≤ −1

6
min{𝜌1, 𝜌2}

⃦⃦
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

⃦⃦2
. (3.35)

Adding (3.33)–(3.35), we derive

ℰ𝑛+1

𝑝𝑑 − ℰ𝑛
𝑝𝑑 ≤ −

(︁
𝛽 − 𝐶

)︁
Δ𝑡2

⃦⃦
∇𝑝𝑛+1

𝑚

⃦⃦2 − Δ𝑡
⃦⃦
⃦
√

2𝜈𝑛D

(︁
̃︀𝑢𝑛+1

𝑐

)︁⃦⃦
⃦

2

− 1

4
Δ𝑡
⃦⃦
⃦
√

K∇
(︀
𝑝𝑛+1

𝑚 − 𝑝𝑛
𝑚

)︀⃦⃦
⃦

2

− Δ𝑡𝑀𝑐

⃦⃦
∇𝑤𝑛+1

𝑐

⃦⃦2 − Δ𝑡𝑀𝑚

⃦⃦
∇𝑤𝑛+1

𝑚

⃦⃦2 − 𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑐 −∇𝜑𝑛
𝑐

⃦⃦2

− 𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑚 −∇𝜑𝑛
𝑚

⃦⃦2 − 𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑐 −𝑅𝑛
𝑐

⃦⃦2 − 𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑚 −𝑅𝑛
𝑚

⃦⃦2

− 𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐

⃦⃦2 − 𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚

⃦⃦2 − Δ𝑡
𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐 , 𝑃𝜏𝑢𝑛+1
𝑐

⟩︀
. (3.36)

If we impose 𝛽 ≥ 2𝐶 which only depends on the geometry of Ω𝑚 and Ω𝑐, one can obtain (3.17). Thus, we
complete the proof of Theorem 3.5. �

3.2. A fully decoupled scheme based on grad-div stabilized method

The time-stepping scheme (3.4)–(3.15) presented in the previous subsection decouples the Cahn–Hilliard–
Navier–Stokes system in the free fluid region and the Cahn–Hilliard–Darcy system in the porous medium region.
But the velocity and pressure in conduit are still coupled, while artificial boundary conditions is imposed to
directly decouple the pressure and velocity resulting in the loss of accuracy [46]. In this subsection, we revise
the partially decoupled scheme for a better efficiency. Specifically, we modify the standard pressure correction
scheme in rotational version and introduce a grad-div stabilization [8, 9, 29, 36, 61] to completely decouple the
velocity and pressure for Navier–Stokes equation while retaining the unconditionally stability stated as a discrete
energy law.

In the first three steps of this new scheme, we follow the first three steps of the algorithm above to solve (3.4),
(3.5), (3.7), (3.8), (3.9) sequentially for

(︀
𝜑𝑛+1

𝑚 , 𝑤𝑛+1
𝑚

)︀
, 𝑝𝑛+1

𝑚 , and
(︀
𝜑𝑛+1

𝑐 , 𝑤𝑛+1
𝑐

)︀
, respectively. Then we solve the

following decoupled systems to obtain 𝑢𝑛+1
𝑐 ∈ 𝑋𝑐 and 𝑝𝑛+1

𝑐 ∈ 𝑄𝑐.
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Step 4. Find 𝑢𝑛+1
𝑐 ∈ 𝑋𝑐, such that

(︂
𝜌𝑛 𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

Δ𝑡
,𝑣

)︂
+
(︀
𝜌𝑛(𝑢𝑛

𝑐 · ∇)𝑢𝑛+1
𝑐 ,𝑣

)︀
+
(︀
2𝜈𝑛

D
(︀
𝑢𝑛+1

𝑐

)︀
,D(𝑣)

)︀
−
(︀
𝑤𝑛+1

𝑐 ∇𝜑𝑛
𝑐 ,𝑣

)︀

+
1

2

(︂
𝑢𝑛+1

𝑐

𝜌𝑛+1 − 𝜌𝑛

Δ𝑡
,𝑣

)︂
−
(︀
𝑝𝑛

𝑐 + 𝑠𝑛 − 𝑠𝑛−1,∇ · 𝑣
)︀

+
1

2

(︀
∇ · (𝜌𝑛𝑢𝑛

𝑐 )𝑢𝑛+1
𝑐 ,𝑣

)︀

+
𝜉

Δ𝑡

(︀
∇ ·
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

)︀
,∇ · 𝑣

)︀
+
⟨︀
𝑝𝑛+1

𝑚 ,𝑣 · 𝑛𝑐

⟩︀
− 1

2

⟨︀
𝜌𝑛𝑢𝑛

𝑐 · 𝑢𝑛+1
𝑐 ,𝑣 · 𝑛𝑐

⟩︀

+
𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐 , 𝑃𝜏𝑣
⟩︀

= 0, ∀𝑣 ∈ 𝑋𝑐. (3.37)

Step 5. Find 𝑠𝑛+1 ∈ 𝑄𝑐, such that

(︀
𝑠𝑛+1 − 𝑠𝑛, 𝑧

)︀
= − 𝜁

Δ𝑡

(︀
∇ · 𝑢𝑛+1

𝑐 , 𝑧
)︀
, ∀𝑧 ∈ 𝑄𝑐, (3.38)

where 𝜁 = 1

2
min{𝜌1, 𝜌2}.

Step 6. Find 𝑟𝑛+1 ∈ 𝑄𝑐, such that
(︀
𝑟𝑛+1 − 𝑟𝑛, 𝑞

)︀
= −

(︀
∇ · 𝑢𝑛+1

𝑐 , 𝑞
)︀
, ∀𝑞 ∈ 𝑄𝑐. (3.39)

Step 7. Compute 𝑝𝑛+1
𝑐 ∈ 𝑄𝑐 by

𝑝𝑛+1
𝑐 = 𝑠𝑛+1 + 𝜈𝑟𝑛+1, (3.40)

where 𝜈 = min{𝜈1, 𝜈2}.
Step 8. Find 𝑅𝑛+1

𝑐 ∈ 𝑌𝑐 and 𝑅𝑛+1
𝑚 ∈ 𝑌𝑚, such that

(︂
𝑅𝑛+1

𝑐 −𝑅𝑛
𝑐

Δ𝑡
, 𝜒

)︂
= 2

(︂
𝜑𝑛

𝑐

𝜑𝑛+1
𝑐 − 𝜑𝑛

𝑐

Δ𝑡
, 𝜒

)︂
, ∀𝜒 ∈ 𝑌𝑐, (3.41)

(︂
𝑅𝑛+1

𝑚 −𝑅𝑛
𝑚

Δ𝑡
, 𝜒

)︂
= 2

(︂
𝜑𝑛

𝑚

𝜑𝑛+1
𝑚 − 𝜑𝑛

𝑚

Δ𝑡
, 𝜒

)︂
, ∀𝜒 ∈ 𝑌𝑚. (3.42)

Theorem 3.6. Assume that stabilized parameter 𝛽 is chosen to be large enough and 𝜉 ≥ 3

4
min{𝜌1, 𝜌2}. Then

(𝑢𝑛+1
𝑐 , 𝑝𝑛+1

𝑚 , 𝑝𝑛+1
𝑐 , 𝜑𝑛+1

𝑚 , 𝜑𝑛+1
𝑐 , 𝑅𝑛+1

𝑚 , 𝑅𝑛+1
𝑐 , 𝑠𝑛+1, 𝑟𝑛+1) defined by the fully decoupled time discretization (3.4)–

(3.10) and (3.37)–(3.42) satisfies the following discrete energy law:

ℰ𝑛+1

𝑓𝑑 − ℰ𝑛
𝑓𝑑 ≤ −𝒟𝑛+1

𝑓𝑑 , (3.43)

where ℰ𝑛
𝑓𝑑 is defined as

ℰ𝑛
𝑓𝑑 =

1

2
‖𝜎𝑛𝑢𝑛

𝑐 ‖2
+ 𝛾

[︂
𝜖

2
‖∇𝜑𝑛

𝑐 ‖2
+

1

4𝜖
‖𝑅𝑐‖2

]︂
+ 𝛾

[︂
𝜖

2
‖∇𝜑𝑛

𝑚‖2
+

1

4𝜖
‖𝑅𝑚‖2

]︂

+
𝜉

2
‖∇ · 𝑢𝑛

𝑐 ‖2
+

1

2
Δ𝑡
⃦⃦
⃦
√

K∇𝑝𝑛
𝑚

⃦⃦
⃦

2

+
1

2
𝜈Δ𝑡‖𝑟𝑛‖2

+
Δ𝑡2

2𝜁
‖𝑠𝑛‖2

. (3.44)

and

𝒟𝑛+1

𝑓𝑑 =
1

4
Δ𝑡
⃦⃦
⃦
√

K∇
(︀
𝑝𝑛+1

𝑚 − 𝑝𝑛
𝑚

)︀⃦⃦
⃦

2

+ Δ𝑡𝑀𝑐

⃦⃦
∇𝑤𝑛+1

𝑐

⃦⃦2
+ Δ𝑡𝑀𝑚

⃦⃦
∇𝑤𝑛+1

𝑚

⃦⃦2
+
𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑐 −∇𝜑𝑛
𝑐

⃦⃦2

+
𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑚 −∇𝜑𝑛
𝑚

⃦⃦2
+

Δ𝑡2

2𝜁

⃦⃦
𝑠𝑛 − 𝑠𝑛−1

⃦⃦2
+
𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑐 −𝑅𝑛
𝑐

⃦⃦2
+
𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑚 −𝑅𝑛
𝑚

⃦⃦2

+
𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐

⃦⃦2
+
𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚

⃦⃦2
+ Δ𝑡

𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐 , 𝑃𝜏𝑢𝑛+1
𝑐

⟩︀
.
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Proof. We focus on discussion of the decoupling method for Navier–Stokes equation in conduit part.
By taking the test function 𝑣 = Δ𝑡𝑢𝑛+1

𝑐 in (3.37), combining with (3.20), and the identity (3.21), we obtain

1

2

[︁⃦⃦
𝜎𝑛+1𝑢𝑛+1

𝑐

⃦⃦2 − ‖𝜎𝑛𝑢𝑛
𝑐⋆‖2

+
⃦⃦
𝜎𝑛
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐⋆

)︀⃦⃦2
]︁

+ Δ𝑡
⃦⃦
⃦
√

2𝜈𝑛D
(︀
𝑢𝑛+1

𝑐

)︀⃦⃦
⃦

2

+
𝜉

2

[︁⃦⃦
∇ · 𝑢𝑛+1

𝑐

⃦⃦2 − ‖∇ · 𝑢𝑛
𝑐 ‖2

+
⃦⃦
∇ ·
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

)︀⃦⃦2
]︁

− Δ𝑡
(︀
𝑝𝑛

𝑐 + 𝑠𝑛 − 𝑠𝑛−1,∇ · 𝑢𝑛+1
𝑐

)︀
+ Δ𝑡

⟨︀
𝑢𝑛+1

𝑐 · 𝑛𝑐, 𝑝
𝑛+1
𝑚

⟩︀

+ Δ𝑡
𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐 , 𝑃𝜏𝑢𝑛+1
𝑐

⟩︀
= 0. (3.45)

Taking 𝑞 = 𝜈Δ𝑡𝑟𝑛 in (3.39) and taking the 𝐿2 inner product of (3.40) by 𝑞 = Δ𝑡∇ · 𝑢𝑛+1
𝑐 at time 𝑡𝑛, then

adding these two equations, using the identity (3.21), we have

1

2
𝜈Δ𝑡

[︁⃦⃦
𝑟𝑛+1

⃦⃦2 − ‖𝑟𝑛‖2 −
⃦⃦
𝑟𝑛+1 − 𝑟𝑛

⃦⃦2
]︁

+ Δ𝑡
(︀
𝑝𝑛

𝑐 ,∇ · 𝑢𝑛+1
𝑐

)︀
− Δ𝑡

(︀
𝑠𝑛,∇ · 𝑢𝑛+1

𝑐

)︀
= 0. (3.46)

Summing up (3.45), (3.46), and (3.24), we obtain

1

2

[︁⃦⃦
𝜎𝑛+1𝑢𝑛+1

𝑐

⃦⃦2 − ‖𝜎𝑛𝑢𝑛
𝑐 ‖2

+
⃦⃦
𝜎𝑛
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐⋆

)︀⃦⃦2
+ ‖𝜎𝑛(𝑢𝑛

𝑐⋆ − 𝑢𝑛
𝑐 )‖2

]︁
+ Δ𝑡

⃦⃦
⃦
√

2𝜈𝑛D
(︀
𝑢𝑛+1

𝑐

)︀⃦⃦
⃦

2

+
𝜉

2

[︁⃦⃦
∇ · 𝑢𝑛+1

𝑐

⃦⃦2 − ‖∇ · 𝑢𝑛
𝑐 ‖2

+
⃦⃦
∇ ·
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

)︀⃦⃦2
]︁

+ Δ𝑡
⟨︀
𝑢𝑛+1

𝑐 · 𝑛𝑐, 𝑝
𝑛+1
𝑚

⟩︀

+
1

2
𝜈Δ𝑡

[︁⃦⃦
𝑟𝑛+1

⃦⃦2 − ‖𝑟𝑛‖2 −
⃦⃦
𝑟𝑛+1 − 𝑟𝑛

⃦⃦2
]︁

+ Δ𝑡
𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐 , 𝑃𝜏𝑢𝑛+1
𝑐

⟩︀

−Δ𝑡
(︀
2𝑠𝑛 − 𝑠𝑛−1,∇ · 𝑢𝑛+1

𝑐

)︀
= Δ𝑡

(︀
𝑤𝑛+1

𝑐 ∇𝜑𝑛
𝑐 ,𝑢

𝑛
𝑐⋆

)︀
. (3.47)

Now, we estimate the term
(︀
2𝑠𝑛 − 𝑠𝑛−1,∇ · 𝑢𝑛+1

𝑐

)︀
. Taking 𝑧 = ∆𝑡2

𝜁
𝑠𝑛+1 in (3.38) and using (3.21), we obtain

Δ𝑡2

2𝜁

[︁⃦⃦
𝑠𝑛+1

⃦⃦2 − ‖𝑠𝑛‖2
+
⃦⃦
𝑠𝑛+1 − 𝑠𝑛

⃦⃦2
]︁

= −Δ𝑡
(︀
∇ · 𝑢𝑛+1, 𝑠𝑛+1

)︀
. (3.48)

Taking 𝑧 = −∆𝑡2

𝜁
(𝑠𝑛+1 − 2𝑠𝑛 + 𝑠𝑛−1) in (3.38) and using (3.21), we obtain

− Δ𝑡2

2𝜁

[︁⃦⃦
𝑠𝑛+1 − 𝑠𝑛

⃦⃦2 −
⃦⃦
𝑠𝑛 − 𝑠𝑛−1

⃦⃦2
+
⃦⃦
𝑠𝑛+1 − 2𝑠𝑛 + 𝑠𝑛−1

⃦⃦2
]︁

= Δ𝑡
(︀
∇ · 𝑢𝑛+1

𝑐 , 𝑠𝑛+1 − 2𝑠𝑛 + 𝑠𝑛−1
)︀
.(3.49)

On one hand, set 𝑧 = ∆𝑡2

2𝜁
(𝑠𝑛+1 − 2𝑠𝑛 + 𝑠𝑛−1) and taking the difference of (3.38) at step 𝑡𝑛 and step 𝑡𝑛+1 to

derive

Δ𝑡2

2𝜁

⃦⃦
𝑠𝑛+1 − 2𝑠𝑛 + 𝑠𝑛−1

⃦⃦2 ≤ 𝜁

2

⃦⃦
∇ ·
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

)︀⃦⃦2
. (3.50)

On the other hand, set 𝑞 = 1

2
𝜈Δ𝑡(𝑟𝑛+1 − 𝑟𝑛) in (3.39) to conclude that

1

2
𝜈Δ𝑡

⃦⃦
𝑟𝑛+1 − 𝑟𝑛

⃦⃦2 ≤ 1

2
𝜈Δ𝑡

⃦⃦
∇ · 𝑢𝑛+1

𝑐

⃦⃦2 ≤ 1

4
Δ𝑡
⃦⃦
⃦
√

2𝜈𝑛∇ · 𝑢𝑛+1
𝑐

⃦⃦
⃦

2

≤ 1

4
𝑑Δ𝑡

⃦⃦
⃦
√

2𝜈𝑛D
(︀
𝑢𝑛+1

𝑐

)︀⃦⃦
⃦

2

. (3.51)

where well-known Korn’s inequality
⃦⃦
∇ · 𝑢𝑛+1

𝑐

⃦⃦2 ≤ 𝑑
⃦⃦
D
(︀
𝑢𝑛+1

𝑐

)︀⃦⃦2
is used.

We add equations (3.47)–(3.51) to get

1

2

[︁⃦⃦
𝜎𝑛+1𝑢𝑛+1

𝑐

⃦⃦2 − ‖𝜎𝑛𝑢𝑛
𝑐 ‖2

+
⃦⃦
𝜎𝑛
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐⋆

)︀⃦⃦2
+ ‖𝜎𝑛(𝑢𝑛

𝑐⋆ − 𝑢𝑛
𝑐 )‖2

]︁
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+
𝜉

2

[︁⃦⃦
∇ · 𝑢𝑛+1

𝑐

⃦⃦2 − ‖∇ · 𝑢𝑛
𝑐 ‖2

+
⃦⃦
∇ ·
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

)︀⃦⃦2
]︁

+
1

2
𝜈Δ𝑡

[︁⃦⃦
𝑟𝑛+1

⃦⃦2 − ‖𝑟𝑛‖2
]︁

+
Δ𝑡2

2𝜁

[︁⃦⃦
𝑠𝑛+1

⃦⃦2 − ‖𝑠𝑛‖2
+
⃦⃦
𝑠𝑛 − 𝑠𝑛−1

⃦⃦2
]︁

+ Δ𝑡
𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐 , 𝑃𝜏𝑢𝑛+1
𝑐

⟩︀

+ Δ𝑡
⟨︀
𝑢𝑛+1

𝑐 · 𝑛𝑐, 𝑝
𝑛+1
𝑚

⟩︀
≤ 𝜁

2

⃦⃦
∇ ·
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

)︀⃦⃦2
+ Δ𝑡

(︀
𝑤𝑛+1

𝑐 ∇𝜑𝑛
𝑐 ,𝑢

𝑛
𝑐⋆

)︀
. (3.52)

Following the process in the proof of Theorem 3.5, one can derive (3.25) and (3.26) for CH equation in free
flow region, and (3.32) for CHD system. Summing up (3.52), (3.25), (3.26) and (3.32), and applying Lemma 2.2,
we have

ℰ𝑛+1

𝑓𝑑 − ℰ𝑛
𝑓𝑑 +

1

2

[︁⃦⃦
𝜎𝑛+1(𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐⋆)
⃦⃦2

+ ‖𝜎𝑛(𝑢𝑛
𝑐⋆ − 𝑢𝑛

𝑐 )‖2
]︁

+
1

4
Δ𝑡
⃦⃦
⃦
√

K∇(𝑝𝑛+1
𝑚 − 𝑝𝑛

𝑚)
⃦⃦
⃦

2

+
𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑐 −∇𝜑𝑛
𝑐

⃦⃦2
+
𝛾𝜖

2

⃦⃦
∇𝜑𝑛+1

𝑚 −∇𝜑𝑛
𝑚

⃦⃦2
+
𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑐 −𝑅𝑛
𝑐

⃦⃦2
+
𝛾

4𝜖

⃦⃦
𝑅𝑛+1

𝑚 −𝑅𝑛
𝑚

⃦⃦2

+ Δ𝑡𝑀𝑐

⃦⃦
∇𝑤𝑛+1

𝑐

⃦⃦2
+ Δ𝑡𝑀𝑚

⃦⃦
∇𝑤𝑛+1

𝑚

⃦⃦2
+
𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑐 − 𝜑𝑛
𝑐

⃦⃦2
+
𝑆𝛾

𝜖

⃦⃦
𝜑𝑛+1

𝑚 − 𝜑𝑛
𝑚

⃦⃦2

+
Δ𝑡2

2𝜁

⃦⃦
𝑠𝑛 − 𝑠𝑛−1

⃦⃦2
+
𝜉 − 𝜁

2

⃦⃦
∇ ·
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

)︀⃦⃦2
+ Δ𝑡

𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐 , 𝑃𝜏𝑢𝑛+1
𝑐

⟩︀

≤ −𝛽Δ𝑡2
⃦⃦
∇𝑝𝑛+1

𝑚

⃦⃦2
+ Δ𝑡|

⟨︀(︀
𝑢𝑛

𝑐 − 𝑢𝑛+1
𝑐

)︀
· 𝑛𝑐, 𝑝

𝑛+1
𝑚

⟩︀
|. (3.53)

Now, we estimate the last interface term in the above equation (3.53). We obtain by using (3.1)

Δ𝑡|
⟨︀(︀

𝑢𝑛
𝑐ℎ − 𝑢𝑛+1

𝑐ℎ

)︀
· 𝑛𝑐, 𝑝

𝑛+1
𝑚

⟩︀
| ≤ 𝐶Δ𝑡

⃦⃦
𝑢𝑛

𝑐 − 𝑢𝑛+1
𝑐

⃦⃦
𝑋div

‖∇𝑝𝑛
𝑚‖

≤ 1

4
min{𝜌1, 𝜌2}

⃦⃦
𝑢𝑛

𝑐 − 𝑢𝑛+1
𝑐

⃦⃦2

𝑋div

+ 𝐶Δ𝑡2‖∇𝑝𝑛
𝑚‖2

(3.54)

≤ 1

4

⃦⃦
𝜎𝑛
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

)︀⃦⃦2
+

1

4
min{𝜌1, 𝜌2}

⃦⃦
∇ ·
(︀
𝑢𝑛

𝑐 − 𝑢𝑛+1
𝑐

)︀⃦⃦2
+ 𝐶Δ𝑡2

⃦⃦
∇𝑝𝑛+1

𝑚

⃦⃦2
.

We take the together with (3.53), (3.54) and (3.35) to obtain

ℰ𝑛+1

𝑓𝑑 − ℰ𝑛
𝑓𝑑 ≤ −𝒟𝑛+1

𝑓𝑑 −
(︁
𝛽 − 𝐶

)︁
Δ𝑡2

⃦⃦
∇𝑝𝑛+1

𝑚

⃦⃦2 − 𝜉 − 𝜁 − 1

4
min{𝜌1, 𝜌2}
2

⃦⃦
∇ ·
(︀
𝑢𝑛+1

𝑐 − 𝑢𝑛
𝑐

)︀⃦⃦2
. (3.55)

If we impose 𝛽 ≥ 2𝐶 and 𝜉 ≥ 3

4
min{𝜌1, 𝜌2}, we have (3.43). Therefore, we complete the proof of

Theorem 3.6. �

4. Fully discrete numerical schemes

In this section, we present a fully discrete scheme by further discretizing the underlying spaces in the fully
decouple time stepping scheme described by (3.4)–(3.10) and (3.37)–(3.42). Specifically, we let ℑℎ be a quasi-
uniform triangulation of domain Ω, on which, we introduce finite element spaces 𝑌𝑗ℎ, 𝑋𝑐ℎ and 𝑄𝑗ℎ with 𝑗 = 𝑐,𝑚.
Here we further assume the finite element spaces 𝑋𝑐ℎ and 𝑄𝑐ℎ satisfy an inf-sup condition for the divergence
operator in the following form: There exists a constant 𝐶 > 0 independent of ℎ such that the LBB condition

inf
0 ̸=𝑞ℎ

sup
0 ̸=𝑣ℎ

(∇ · 𝑣ℎ, 𝑞ℎ)

‖𝑣ℎ‖1

≥ 𝐶‖𝑞ℎ‖, ∀𝑞ℎ ∈ 𝑄𝑐ℎ,𝑣ℎ ∈ 𝑋𝑐ℎ

holds. Then, a fully discrete finite element method based on (3.4)–(3.10) and (3.37)–(3.42) is constructed as
follows:
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Step 1. Find (𝜑𝑛+1

𝑚ℎ , 𝑤
𝑛+1

𝑚ℎ ) ∈ 𝑌𝑚ℎ × 𝑌𝑚ℎ, such that

(︂
𝜑𝑛+1

𝑚ℎ − 𝜑𝑛
𝑚ℎ

Δ𝑡
, 𝜓ℎ

)︂
− (K∇𝑝𝑛

𝑚ℎ · ∇𝜑𝑛
𝑚ℎ, 𝜓ℎ) +

(︀
K𝑤𝑛+1

𝑚ℎ ∇𝜑𝑛
𝑚ℎ · ∇𝜑𝑛

𝑚ℎ, 𝜓ℎ

)︀

+
(︀
𝑀𝑚∇𝑤𝑛+1

𝑚ℎ ,∇𝜓ℎ

)︀
+ ⟨𝑀𝑐∇𝑤𝑛

𝑐ℎ · 𝑛𝑐, 𝜓ℎ⟩ + ⟨𝜑𝑛
𝑚ℎ − 𝜑𝑛

𝑐ℎ, 𝜓ℎ⟩ = 0, ∀𝜓ℎ ∈ 𝑌𝑚ℎ, (4.1)

(︀
𝑤𝑛+1

𝑚ℎ , 𝜔ℎ

)︀
− 𝛾𝜖

(︀
∇𝜑𝑛+1

𝑚ℎ ,∇𝜔ℎ

)︀
− 𝛾

𝜖
(𝑅𝑛

𝑚ℎ𝜑
𝑛
𝑚ℎ, 𝜔ℎ) − 𝑆𝛾

𝜖

(︀
𝜑𝑛+1

𝑚ℎ − 𝜑𝑛
𝑚ℎ, 𝜔ℎ

)︀

− 𝛾𝜖⟨∇𝜑𝑛
𝑐ℎ · 𝑛𝑐, 𝜔ℎ⟩ + ⟨𝑤𝑛

𝑚ℎ − 𝑤𝑛
𝑐ℎ, 𝜔ℎ⟩ = 0, ∀𝜔ℎ ∈ 𝑌𝑚ℎ. (4.2)

Step 2. Find 𝑝𝑛+1

𝑚ℎ ∈ 𝑄𝑚ℎ, such that

(︀
K∇𝑝𝑛+1

𝑚ℎ ,∇𝑞ℎ
)︀
−
(︀
K𝑤𝑛+1

𝑚ℎ ∇𝜑𝑛
𝑚ℎ,∇𝑞ℎ

)︀
− ⟨𝑢𝑛

𝑐ℎ · 𝑛𝑐, 𝑞ℎ⟩ + 𝛽Δ𝑡
(︀
∇𝑝𝑛+1

𝑚ℎ ,∇𝑞ℎ
)︀

= 0, ∀𝑞ℎ ∈ 𝑄𝑚ℎ. (4.3)

Step 3. Find
(︀
𝜑𝑛+1

𝑐ℎ , 𝑤𝑛+1

𝑐ℎ

)︀
∈ 𝑌𝑐ℎ × 𝑌𝑐ℎ, such that

(︂
𝜑𝑛+1

𝑐ℎ − 𝜑𝑛
𝑐ℎ

Δ𝑡
, 𝜓ℎ

)︂
+

(︂(︂
𝑢𝑛

𝑐ℎ +
1

𝜌𝑛
Δ𝑡𝑤𝑛+1

𝑐ℎ ∇𝜑𝑛
𝑐ℎ

)︂
· ∇𝜑𝑛

𝑐ℎ, 𝜓ℎ

)︂
+
(︀
𝑀𝑐∇𝑤𝑛+1

𝑐ℎ ,∇𝜓ℎ

)︀

+
⟨︀
𝑀𝑚∇𝑤𝑛+1

𝑚ℎ · 𝑛𝑚, 𝜓ℎ

⟩︀
+
⟨︀
𝜑𝑛+1

𝑐ℎ − 𝜑𝑛+1

𝑚ℎ , 𝜓ℎ

⟩︀
= 0, ∀𝜓ℎ ∈ 𝑌𝑐ℎ, (4.4)

(︀
𝑤𝑛+1

𝑐ℎ , 𝜔ℎ

)︀
− 𝛾𝜖

(︀
∇𝜑𝑛+1

𝑐ℎ ,∇𝜔ℎ

)︀
− 𝛾

𝜖
(𝑅𝑛

𝑐ℎ𝜑
𝑛
𝑐ℎ, 𝜔ℎ) − 𝑆𝛾

𝜖

(︀
𝜑𝑛+1

𝑐ℎ − 𝜑𝑛
𝑐ℎ, 𝜔ℎ

)︀

− 𝛾𝜖⟨∇𝜑𝑛
𝑚ℎ · 𝑛𝑚, 𝜔ℎ⟩ +

⟨︀
𝑤𝑛+1

𝑐ℎ − 𝑤𝑛+1

𝑚ℎ , 𝜔ℎ

⟩︀
= 0, ∀𝜔ℎ ∈ 𝑌𝑐ℎ. (4.5)

Step 4. Find 𝑢𝑛+1

𝑐ℎ ∈ 𝑋𝑐ℎ, such that

(︂
𝜌𝑛 𝑢𝑛+1

𝑐ℎ − 𝑢𝑛
𝑐ℎ

Δ𝑡
,𝑣ℎ

)︂
+
(︀
𝜌𝑛(𝑢𝑛

𝑐ℎ · ∇)𝑢𝑛+1

𝑐ℎ ,𝑣ℎ

)︀
+
(︀
2𝜈𝑛

D(𝑢𝑛+1

𝑐ℎ ),D(𝑣ℎ)
)︀
−
(︀
𝑤𝑛+1

𝑐ℎ ∇𝜑𝑛
𝑐ℎ,𝑣ℎ

)︀

−
(︀
𝑝𝑛

𝑐ℎ + 𝑠𝑛
ℎ − 𝑠𝑛−1

ℎ ,∇ · 𝑣ℎ

)︀
+

1

2

(︂
𝑢𝑛+1

𝑐ℎ

𝜌𝑛+1 − 𝜌𝑛

Δ𝑡
,𝑣ℎ

)︂
+

1

2

(︀
∇ · (𝜌𝑛𝑢𝑛

𝑐ℎ)𝑢𝑛+1

𝑐ℎ ,𝑣ℎ

)︀

+
𝜉

Δ𝑡

(︀
∇ · (𝑢𝑛+1

𝑐ℎ − 𝑢𝑛
𝑐ℎ),∇ · 𝑣ℎ

)︀
+
⟨︀
𝑝𝑛+1

𝑚ℎ ,𝑣ℎ · 𝑛𝑐

⟩︀
− 1

2

⟨︀
𝜌𝑛𝑢𝑛

𝑐ℎ · 𝑢𝑛+1

𝑐ℎ ,𝑣ℎ · 𝑛𝑐

⟩︀

+
𝛼
√
𝑑√︀

trace(
∏︀

)

⟨︀
𝜈𝑛𝑃𝜏𝑢𝑛+1

𝑐ℎ , 𝑃𝜏𝑣ℎ

⟩︀
= 0, ∀𝑣ℎ ∈ 𝑋𝑐ℎ. (4.6)

Step 5. Find 𝑠𝑛+1

ℎ ∈ 𝑄𝑐ℎ, such that

(︀
𝑠𝑛+1

ℎ − 𝑠𝑛
ℎ, 𝑧ℎ

)︀
= − 𝜁

Δ𝑡

(︀
∇ · 𝑢𝑛+1

𝑐ℎ , 𝑧ℎ

)︀
, ∀𝑧ℎ ∈ 𝑄𝑐ℎ, (4.7)

where 𝜁 = 1

2
min{𝜌1, 𝜌2}.

Step 6. Find 𝑟𝑛+1

ℎ ∈ 𝑄𝑐ℎ, such that

(︀
𝑟𝑛+1

ℎ − 𝑟𝑛
ℎ , 𝑞ℎ

)︀
= −

(︀
∇ · 𝑢𝑛+1

𝑐ℎ , 𝑞ℎ
)︀
, ∀𝑞ℎ ∈ 𝑄𝑐ℎ. (4.8)

Step 7. Compute 𝑝𝑛+1

𝑐ℎ ∈ 𝑄𝑐ℎ by

𝑝𝑛+1

𝑐ℎ = 𝑠𝑛+1

ℎ + 𝜈𝑟𝑛+1

ℎ , (4.9)

where 𝜈 = min{𝜈1, 𝜈2}.
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Step 8. Find 𝑅𝑛+1

𝑐ℎ ∈ 𝑌𝑐ℎ and 𝑅𝑛+1

𝑚ℎ ∈ 𝑌𝑚ℎ such that

(︂
𝑅𝑛+1

𝑐ℎ −𝑅𝑛
𝑐ℎ

Δ𝑡
, 𝜒ℎ

)︂
= 2

(︂
𝜑𝑛

𝑐ℎ

𝜑𝑛+1

𝑐ℎ − 𝜑𝑛
𝑐ℎ

Δ𝑡
, 𝜒ℎ

)︂
, ∀𝜒ℎ ∈ 𝑌𝑐ℎ, (4.10)

(︂
𝑅𝑛+1

𝑚ℎ −𝑅𝑛
𝑚ℎ

Δ𝑡
, 𝜒ℎ

)︂
= 2

(︂
𝜑𝑛

𝑚ℎ

𝜑𝑛+1

𝑚ℎ − 𝜑𝑛
𝑚ℎ

Δ𝑡
, 𝜒ℎ

)︂
, ∀𝜒ℎ ∈ 𝑌𝑚ℎ. (4.11)

Remark 4.1. Comparing the above totally decoupled numerical algorithm with the numerical scheme in [40],
the major differences include that (1) our method solves two separate Cahn–Hilliard equations in free fluid flow
and porous medium regions, respectively, while, in [40], the two Cahn–Hilliard equations are viewed as a single
Cahn–Hilliard on the whole domain. Thus, the treatment of interface conditions associated with phase function
are also different from those in [40]; (2) the strategy in dealing with the stiffness of nonlinear term 𝐹 (𝜑) is
different from those in [40], namely, the IEQ method is utilized to linearize the nonlinear system in this paper
while a stabilized semi-implicit strategy is exploited in [40]; (3) the rotational pressure projection and grad-div
stabilization are utilized to break the coupling of velocity and pressure for Navier–Stokes equation, while the
artificial compression method is employed to decouple the coupling in [40]. Therefore, the proposed scheme in
this paper is fully decoupled and more efficient, while the one in [40] is partially decoupled.

5. Numerical example

In this section, several numerical examples are presented to illustrate the properties of proposed CHNSD
model and developed numerical methods, such as the order of convergence, discrete energy decay law, and the
evolution of a droplet under the influence of discontinuous permeability field, curve interface and buoyancy forces.
In all examples, we employ the 𝑃 2–𝑃1 Taylor-Hood elements for the Navier–Stokes equation and quadratic
elements for the Darcy equation. We also utilize the quadratic elements for Cahn–Hilliard equation in both
subdomains, i.e., free flow region and porous medium, respectively.

Example 1 (Convergence and accuracy). Consider the CHNSD model problem without the inertial force on
the interface on the computational domain Ω = [0, 1] × [0, 2], Ω𝑚 = [0, 1] × [0, 1], Ω𝑐 = [0, 1] × [1, 2], and [0, 𝑇 ]
with terminal time 𝑇 = 5. Choose the parameters 𝜈1 = 1, 𝜈2 = 1.1, 𝜌1 = 1, 𝜌2 = 3, 𝑀𝑚 = 1, 𝛾 = 1, 𝜖 = 1,
𝑀𝑐 = 1, 𝜉 = 5, 𝑆 = 2, 𝛽 = 2 and K = I. The source terms in the model are chosen such that the following
functions are the solutions:

𝑝𝑚 = 𝜑𝑚 = 𝑤𝑚 = 𝑔(𝑥)𝑔𝑚(𝑦) cos(𝜋𝑡),

𝑢𝑐 =

[︂
𝑥2(𝑦 − 1)2 cos(𝜋𝑡),−2

3
𝑥(𝑦 − 1)3 cos(𝜋𝑡)

]︂𝑇

,

𝑝𝑐 = 𝜑𝑐 = 𝑤𝑐 = 𝑔(𝑥)𝑔𝑐(𝑦) cos(𝜋𝑡),

where 𝑔(𝑥) = 16𝑥2(𝑥− 1)2, 𝑔𝑚(𝑦) = 16𝑦2(𝑦 − 1)2, 𝑔𝑐(𝑦) = 16(𝑦 − 1)2(𝑦 − 2)2.
A uniform triangular mesh and a uniform time partition are used in this simulation. Numerical errors are

listed in Table 1 for the approximations to velocity and phase variable and pressure in fluid flow generated
by decoupled linearized numerical scheme at final time 𝑇 = 5 which is consistent with the expected optimal
convergence of this scheme.

Example 2 (Convergence for varying permeability). In order to validate the effects of proposed numerical
method for CHNSD model with varying permeability parameters, we take T(𝑢𝑐, 𝑝𝑐) = 𝜈∇𝑢𝑐 − 𝑝𝑐I and K = 𝑘I.
The exact solution is given by [71]

𝑝𝑚 =

(︂
1

𝑘

(︂
𝑥(1 − 𝑥)(𝑦 − 1) +

1

3
𝑦3 − 𝑦2 + 𝑦

)︂
+ 2𝑥

)︂
cos(𝑡),
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Table 1. Numerical errors at 𝑇 = 5 and convergence rates of fully decoupled numerical method
with Δ𝑡 = 0.01ℎ.

1/ℎ ‖𝑝𝑚ℎ − 𝑝𝑚‖1 Rate ‖𝜑𝑚ℎ − 𝜑𝑚‖1 Rate ‖𝑢𝑐ℎ − 𝑢𝑐‖1 Rate ‖𝑝𝑐ℎ − 𝑝𝑐‖ Rate ‖𝜑𝑐ℎ − 𝜑𝑐‖1 Rate

8 9.4997E−2 – 1.2595E−1 – 7.0137E−3 – 4.9277E−2 – 1.2657E−1 –
16 2.3888E−2 1.99 3.7769E−2 1.74 2.1984E−3 1.67 1.1511E−2 2.10 3.7611E−2 1.75
32 6.0304E−3 1.99 1.0360E−2 1.87 6.0892E−4 1.85 3.1161E−3 1.89 1.0292E−2 1.87
64 1.5175E−3 1.99 2.7024E−3 1.94 1.5991E−4 1.93 8.3672E−4 1.90 2.6828E−3 1.94
128 3.8098E−4 1.99 6.8521E−4 1.98 4.0829E−5 1.97 2.1568E−4 1.96 6.8135E−4 1.98

Table 2. Numerical relative errors at 𝑇 = 5 and convergence rates of fully decoupled numerical
method with 𝑘 = 0.1 and Δ𝑡 = 0.01ℎ.

1/ℎ ‖𝑝𝑚ℎ − 𝑝𝑚‖1 Rate ‖𝜑𝑚ℎ − 𝜑𝑚‖1 Rate ‖𝑢𝑐ℎ − 𝑢𝑐‖1 Rate ‖𝑝𝑐ℎ − 𝑝𝑐‖ Rate ‖𝜑𝑐ℎ − 𝜑𝑐‖1 Rate

8 3.4443E–2 – 6.9022E–2 – 1.1073E–2 – 3.4389E–3 – 1.7953E–3 –
16 9.4343E–3 1.87 2.0806E–2 1.73 3.8093E–3 1.54 1.0155E–3 1.76 5.4223E−4 1.73
32 2.4548E−3 1.94 5.6746E−3 1.87 1.0895E−3 1.81 2.6813E−4 1.92 1.4795E−4 1.87
64 6.2673E−4 1.97 1.4804E−3 1.94 2.9264E−4 1.90 6.9618E−5 1.95 3.8604E−5 1.94
128 1.5672E−4 2.00 3.7568E−4 1.98 7.5672E−5 1.95 1.7606E−5 1.98 9.8054E−6 1.98

Table 3. Numerical relative errors at 𝑇 = 5 and convergence rates of fully decoupled numerical
method with 𝑘 = 0.01 and Δ𝑡 = 0.01ℎ.

1/ℎ ‖𝑝𝑚ℎ − 𝑝𝑚‖1 Rate ‖𝜑𝑚ℎ − 𝜑𝑚‖1 Rate ‖𝑢𝑐ℎ − 𝑢𝑐‖1 Rate ‖𝑝𝑐ℎ − 𝑝𝑐‖ Rate ‖𝜑𝑐ℎ − 𝜑𝑐‖1 Rate

8 3.2912E−2 – 6.9013E−2 – 4.5422E−2 – 2.9849E−3 – 1.7960E−3 –
16 8.6221E−3 1.93 2.0802E−2 1.73 1.5414E−2 1.56 8.5388E−4 1.81 5.4218E−4 1.73
32 2.1857E−3 1.98 5.6737E−3 1.87 4.3813E−3 1.81 2.1099E−4 2.02 1.4794E−4 1.87
64 5.5052E−4 1.99 1.4802E−3 1.94 1.1657E−3 1.91 5.3591E−5 1.98 3.8601E−5 1.94
128 1.3823E−4 1.99 3.7694E−4 1.97 3.0353E−4 1.94 1.3569E−5 1.98 9.8387E−6 1.97

𝜑𝑚 = 𝑤𝑚 = 𝑔(𝑥)𝑔𝑚(𝑦) cos(𝑡),

𝑢𝑐 =
[︀(︀
𝑦2 − 2𝑦 + 1

)︀
cos(𝑡),

(︀
𝑥2 − 𝑥

)︀
cos(𝑡)

]︀𝑇
,

𝑝𝑐 =

(︂
2𝜈(𝑥+ 𝑦 − 1) +

1

3𝑘

)︂
cos(𝑡),

𝜑𝑐 = 𝑤𝑐 = 𝑔(𝑥)𝑔𝑐(𝑦) cos(𝑡),

where 𝑔(𝑥), 𝑔𝑚(𝑦) and 𝑔𝑐(𝑦) are defined in Example 1. The initial conditions and the souring terms are chosen
from this solution. The computational domain and parameters are taken as same as in Example 1 except 𝑘 = 0.1,
𝑘 = 0.01 and 𝑘 = 0.001.

The orders of magnitude for 𝑝𝑐 and 𝑝𝑚 increase as 𝑘 decreases, thus we report the relative errors instead
of absolute errors. The relative errors is defined by |𝑣𝑛

ℎ − 𝑣(𝑡𝑛)|/|𝑣(𝑡𝑛)| with respect to 𝐿2 norm ‖·‖ and 𝐻1

norm ‖·‖
1

for | · | between approximate solution 𝑣𝑛
ℎ and exact solution 𝑣(𝑡𝑛). Tables 2–4 exhibit the relative

errors of numerical approximations at 𝑇 = 5 with uniformly refined mesh ℎ = 1

8
, 1

16
, 1

32
, 1

64
, 1

128
corresponding

to 𝑘 = 0.1, 0.01, 0.001. From Tables 2 to 4, one can see that the error norms with respect to variables 𝑝𝑚, 𝜑𝑚,
𝑢𝑐, 𝑝𝑐, and 𝜑𝑐 have the satisfied order of convergence when the hydraulic conductivity K varies.

Example 3 (Shape relaxation and energy dissipation). In this example, we simulate the evolution of a initial
cross shape phase function in domain Ω = [0, 2] × [0, 1] with Ω𝑐 = [0, 1] × [0, 1], Ω𝑚 = [1, 2] × [0, 1], in order to
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Table 4. Numerical relative errors at 𝑇 = 5 and convergence rates of fully decoupled numerical
method with 𝑘 = 0.001 and Δ𝑡 = 0.005ℎ.

1/ℎ ‖𝑝𝑚ℎ − 𝑝𝑚‖1 Rate ‖𝜑𝑚ℎ − 𝜑𝑚‖1 Rate ‖𝑢𝑐ℎ − 𝑢𝑐‖1 Rate ‖𝑝𝑐ℎ − 𝑝𝑐‖ Rate ‖𝜑𝑐ℎ − 𝜑𝑐‖1 Rate

8 3.1854E−2 – 6.8971E−2 – 8.0329E−2 – 2.1749E−4 – 1.7954E−3 –
16 8.2001E−3 1.96 2.0795E−2 1.73 2.6697E−2 1.59 7.3593E−5 1.56 5.4205E−4 1.73
32 2.0548E−3 2.00 5.6729E−3 1.87 7.5638E−3 1.82 2.2554E−5 1.71 1.4793E−4 1.87
64 5.1474E−4 2.00 1.4801E−3 1.94 2.0301E−3 1.90 6.3718E−6 1.82 3.8601E−5 1.94
128 1.2885E−4 2.00 3.7696E−4 1.97 5.2568E−4 1.95 1.6136E−6 1.98 9.8701E−6 1.97

Figure 2. Contour plots of cross shape. (a) Initial phase function. (b) Initial adaptive mesh.

illustrate the shape relaxation based on the expected energy dissipation. Set parameters 𝛾 = 0.01, 𝜖 = 0.01, 𝜈 =
1, 𝑀𝑐 = 0.005, 𝑀𝑚 = 0.005 and K = 0.002I and take the initial velocity and pressure to be zero. We run the
simulation until 𝑇 = 20.

In the rest of the simulations, we shall use a spatial mesh adaptive strategy from [52] to improve the accuracy
for capturing the interface layer without increasing computational costs excessively. Specifically, based on the
observations in [56], adaptive mesh strategy uses at least four grid elements across the transition interface
between two-phase fluids. In our computations for the rest of the examples, the uniform fundamental mesh has
a mesh size of ℎ = 1

32
on which this mesh adaptive strategy related to the value of |∇𝜑| is applied around the

interface.
The initial shape and adaptive mesh of phase function are shown in a cross shape is depicted Figure 2.

Figure 3 shows the dynamical morphotype of the simulated phase function from the initial cross shape relaxing
to a circular shape under the effect of surface tension associated with the density ratio 𝜌1 : 𝜌2 = 1 : 5 and uniform
time partition Δ𝑡 = 0.005, which is in a good agreement with the benchmark study in [2,55]. The discrete mass
and energy of numerical results are plotted in Figure 4. It is clear that the discrete mass is conserved and the
discrete energy-decay property is observed. We would like to point out that an asymmetrical behavior of the
morphotype on the two sides of the sharp interface between the porous media and the free flow region. This
phenomenon shows that the relaxation in the free flow region is faster than that of the porous media region,
due to the faster flow speed of the free flow.

The adaptive mesh and phase variable on enlarged adaptive grid are illustrated in Figure 5. As shown in this
figure, the evolution of interface can be accurately captured under the adaptive strategy utilized in this paper.
And the adaptive meshes are well concentrated near the interface region between the binary phase fluids at each
time step.

Example 4 (Merging drops). In this section, the coalescence of four square droplets is simulated to investi-
gate the effect of surface tension and unconditionally energy stability of proposed numerical method. Choose
parameters 𝛾 = 0.01, 𝜖 = 0.01, 𝜈 = 1, 𝑀𝑐 = 0.005, 𝑀𝑚 = 0.005, K = 0.002I, 𝜌1 : 𝜌2 = 1 : 3, we set the initial
velocity and pressure to be zero on coupled free flow region [0, 1] × [0, 0.5] and porous medium [0, 1] × [0.5, 1].
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Figure 3. The dynamics of a cross shape bubble. All the sub-figures are indexed from left to
right row by row as follows: (a) 𝑡 = 2.0, (b) 𝑡 = 4.0, (c) 𝑡 = 6.0, (d) 𝑡 = 8.0, (e) 𝑡 = 10.0,
(f) 𝑡 = 12.0, (g) 𝑡 = 15.0, (h) 𝑡 = 20.0.

Figure 4. The evolution of discrete energy and mass conservation of cross shape.

The initial behavior of phase function 𝜑 is characterized by four independent square droplets with width equal
to 0.4. The terminal time is set to 𝑇 = 40.

As expected from the literature for this type of benchmark study [99], Figure 6a displays the discrete energy
and evolutions of phase variables under Δ𝑡 = 0.005. This figure clearly shows that the four individual square
droplets firstly evolve to four circle droplets, then start the coalescence, and finally merge into a single circle,
which remains unchanged over time. The discrete energy of numerical algorithms is plotted in Figure 6b asso-
ciated with different time step sizes. From Figure 6, the discrete energy-decay property is indeed satisfied and
the discrete energy achieves the minimum value. This observation numerically verifies theoretical results of the
unconditional stability of discrete energy. In fact, all the cases presented in Figure 6b relax the four separate
square shapes to the circular shape. Since the procedure is similar to Figure 6a, we omit the detailed pictures
here.

Example 5 (Discontinuous permeability field). In this example, we simulate a droplet being pushed by the
boundary-driven flow from the free flow region to the heterogeneous porous medium with discontinuous hydraulic
conductivity tensor K = 𝑘(𝑥, 𝑦)I. We take parameters 𝑀 = 0.01, 𝛾 = 0.01, 𝜖 = 0.01, 𝜈 = 1, 𝜌1 = 1, 𝜌2 = 5,
and Δ𝑡 = 0.001 on computing domain Ω = [0, 2] × [0, 1] with Ω𝑐 = [0, 1] × [0, 1] , Ω𝑚 = [1, 2] × [0, 1]. Imposing
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Figure 5. The adaptive mesh refinement and the enlarged adaptive mesh refinement. (a)
𝑡 = 2.0. (b) 𝑡 = 4.0. (c) 𝑡 = 10.0.

Figure 6. The evolution of discrete energy of merging drops. (a) Dynamic of phase variable.
(b) Energy evolution.

the parabolic velocity 𝑢𝑐 = −4𝑦(𝑦− 1) on the left boundary Γ𝑖𝑛 := {0}× [0, 1] and setting the pressure to be 0
on right boundary on Γ𝑜𝑢𝑡 := {2} × [0, 1], the initial condition for the phase function is given by the following
hyperbolic tangent function,

𝜑0 = − tanh
(︁(︁

0.15 −
√︀

(𝑥− 0.3)2 + (𝑦 − 0.5)2
)︁
/
(︁√

2𝜖
)︁)︁
. (5.1)

In order to investigate the influence of hydraulic conductivity tensor, we consider three different cases for
discontinuous permeability in porous medium shown in Figure 7 as follows:
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Figure 7. Discontinuous permeability field. (a) Trapezoid channel. (b) Two cracks. (c) Two
rocks.

Case I: the permeability is depicted by

𝑘(𝑥, 𝑦) = 0.501 − 0.5 tanh
(︁
max(|𝑥− 1.25| − 0.5, |𝑦 − 0.5| − 𝑥/3 + 0.25)/

(︁√
2𝜖
)︁)︁
, (5.2)

where a trapezoid channel with intrinsic permeability equal to I surrounded by a matrix with intrinsic
permeability equal to 10−3

I; four corner points are (𝑥𝑖, 0.75 − 𝑥𝑖/3), (𝑥𝑖, 0.25 + 𝑥𝑖/3) with 𝑥1 = 1, 𝑥2 = 1.75,
see Figure 7a;

Case II: the permeability is depicted by

𝑘(𝑥, 𝑦) = 0.501 + 0.5

(︃
1 −

2∑︁

𝑖=1

tanh
(︁
max(|𝑥− 𝑥𝑖| − 0.125, |𝑦 − 𝑦𝑖| − 0.025)/

(︁√
2𝜖
)︁)︁)︃

, (5.3)

where two horizontal cracks centered at (𝑥1, 𝑦1) = (1.125, 0.55) and (𝑥2, 𝑦2) = (1.125, 0.45), respectively;
their length and width equal to 0.25 and 0.05, respectively, see Figure 7b;

Case III: the permeability is depicted by

𝑘(𝑥, 𝑦) = 0.501 + 0.5

(︃
−1 +

2∑︁

𝑖=1

tanh
(︁
max(|𝑥− 𝑥𝑖| − 0.075, |𝑦 − 𝑦𝑖| − 0.2)/

(︁√
2𝜖
)︁)︁)︃

, (5.4)

where two vertical rectangular rocks centered at (𝑥1, 𝑦1) = (1.425, 0.8) and (𝑥2, 𝑦2) = (1.275, 0.2), respec-
tively; their height and width equal to 0.4 and 0.15, respectively, see Figure 7c.

Figures 8–10 show the snapshots of interfaces between binary fluids from left to right across the interface
𝑥 = 1. We clearly see that the mobile moves toward the center region with high hydraulic conductivity, for
example at times 𝑡 = 0.5 and 𝑡 = 0.6 for Case I depicted in Figure 8, and deforms into a flatter shape at the
front propagating in porous media. The mobile can seek pathways toward high permeability across the interface
𝑥 = 1 as expected due to the effect of hydraulic conductivity in porous media region for all three cases. After
the deformed droplet smoothly goes across the interface 𝑥 = 1, the droplet is further deformed in the porous
media and then reached the steady shape.

Figure 11 shows the streamline and the contours of norm of velocity with the brighter color indicating higher
speed of the flow. We observe that the velocity is larger inside the trapezoidal region of case I, inside the two
horizontal cracks of case II, and outside the two vertical rocks of case III, respectively. The fluid flows toward
the high permeability areas for all cases. The expected flow patterns are observed for different permeability
values.
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Figure 8. The evolution of droplet in a channel heterogeneous medium. All the subfigures
are indexed from left to right row by row as follows: 𝑡 = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2.

Figure 9. The evolution of droplet in porous medium with two cracks. All the subfigures are
indexed from left to right row by row as follows: 𝑡 = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.3.

Figure 10. The evolution of droplet in porous medium with two rocks. All the subfigures are
indexed from left to right row by row as follows: 𝑡 = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.35.
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Figure 11. Velocity and streamlines at 𝑡 = 0.5 for Example 3. (a) Trapezoid channel. (b) Two
cracks. (c) Two rocks.

Figure 12. The deformation of droplet falling across the straight interface. (a) 𝑡 = 2.0. (b)
𝑡 = 4.0. (c) 𝑡 = 4.5. (d) 𝑡 = 4.75. (e) 𝑡 = 5.0. (f) 𝑡 = 5.5. (g) 𝑡 = 6.0.

Example 6 (Falling droplet under gravity force). In this section, the drop falling surrounded by a less dense
medium is simulated and investigated in a vertical channel Ω = [0, 1] × [0, 2] composing of the porous media
region Ω𝑚 = [0, 1] × [1, 2] and free flow region Ω𝑐 = [0, 1] × [0, 1]. The parameters are 𝛾 = 0.01, 𝜖 = 0.01,
𝜈 = 1, 𝑀𝑐 = 0.01, 𝑀𝑚 = 0.01, K = 0.1I, 𝜌1 = 1, and 𝜌2 = 10. The pressure is set to zero on the top boundary
[0, 1] × {2}. We take the following initial position for phase function

𝜑0
𝑚(𝑥, 𝑦) = tanh

(︁(︁
0.2 −

√︀
(𝑥− 0.5)2 + (𝑦 − 1.3)2

)︁
/
(︁√

2𝜖
)︁)︁
. (5.5)

Figure 12 shows the dynamics of the droplet falling and turning into an ellipse in time under the effect of
gravity force and surface tension. Here the green line indicates the interface between two subdomains. The
droplet has a more pronounced deformation once it crosses the interface 𝑦 = 1 entering free flow region. We
also consider the curve interface between two subregions. Figure 13 describes the process of the droplet falling
across the curve interface. Comparing Figures 12 and 13, the interface morphology shows a significant effect on
the droplet deformation, which implies the importance of interface between free flow region and porous medium
to the evolution of droplet.

Example 7 (Buoyancy-driven flow). In this experiment, we further validate the applicability of proposed
numerical scheme by simulating a rising bubble in a heavier medium with respect to different density variations.
The computational domain is chosen as Ω = [0, 1]× [0, 2] associated with the interface boundary Γ = [0, 1]×{1}
between the porous media region Ω𝑚 = [0, 1] × [1, 2] and free flow region Ω𝑐 = [0, 1] × [0, 1]. Choose 𝛾 = 0.01,
𝜖 = 0.01, 𝜈 = 1, 𝑀𝑐 = 0.01, 𝑀𝑚 = 1, and K = 0.1I. The initial location for phase function is taken as

𝜑0
𝑐(𝑥, 𝑦) = tanh

(︁(︁
0.2 −

√︀
(𝑥− 0.5)2 + (𝑦 − 0.5)2

)︁
/
(︁√

2𝜖
)︁)︁
. (5.6)
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Figure 13. The deformation of droplet falling across the curve interface. (a) 𝑡 = 2.0. (b)
𝑡 = 4.0. (c) 𝑡 = 4.5. (d) 𝑡 = 4.75. (e) 𝑡 = 5.0. (f) 𝑡 = 5.5. (g) 𝑡 = 6.0.

Figure 14. The evolution of a arising bubble. (a) 𝑡 = 1.0. (b) 𝑡 = 1.5. (c) 𝑡 = 2.0. (d) 𝑡 = 2.5.
(e) 𝑡 = 3.0. (f) 𝑡 = 3.5. (g) 𝑡 = 4.0. (h) 𝑡 = 5.0.

Figure 14 shows the evolution of bubble from conduit to matrix across the interface for the density ratio
𝜌1 : 𝜌2 = 1 : 50, where 𝜑 = 1 (red color) represents the lighter fluid and 𝜑 = −1 (blue color) represents the
heavier fluid. We can clearly observe the deformation of the bubble under the effect of surface tension, the sharp
interface between the two subdomains, and the porous media. We can see that the numerical simulations are
consistent with the results in [27].

Furthermore, evolutions of two coaxial bubbles [13,85] are considered with the following initial condition

𝜑0
𝑐(𝑥, 𝑦) = 1 +

2∑︁

𝑖=1

tanh
(︁(︁

0.15 −
√︀

(𝑥− 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2
)︁
/
(︁√

2𝜖
)︁)︁
, (5.7)

where (𝑥1, 𝑦1) = (0.5, 0.25) and (𝑥2, 𝑦2) = (0.5, 0.6). The other parameters are same with the one bubble
rising case. The dynamics of rising bubbles are recorded in Figure 15 which demonstrates the coalescence and
ascension of two bubbles. It can be observed that the two merging droplets eventually evolute into the stable
shape. Similar numerical behaviour was reported in [23]. The reasonable results further validate the numerical
schemes.



1350 Y. GAO ET AL.

Figure 15. The evolution of vertical rising bubbles arising drop. (a) 𝑡 = 0.0. (b) 𝑡 = 1.0. (c)
𝑡 = 1.75. (d) 𝑡 = 2.0. (e) 𝑡 = 2.5. (f) 𝑡 = 3.0. (g) 𝑡 = 3.5. (h) 𝑡 = 5.0.

6. Conclusions

In this paper, a fully decoupled finite element scheme with discrete energy law is developed for two-phase
flows with different densities and viscosities in the free fluid region and porous media region, which are coupled
by suitable interface conditions. An energy law is derived for the novel weak formulation. The CHNS equation
and CHD equation on the two different subdomains are decomposed base on the seven interface conditions.
IEQ technique is utilized to deal with the stiffness of the phase function associated with the interfacial width
in the phase function. The application of these ideas result in a CHNS equation and a CHD equation that
can be resolved separately at each time step. We further decouple the CHNS equation into CH equation and
Navier–Stokes equation in conduit and decouple the CHD equation into CH equation and Darcy equation in the
matrix. Furthermore, the modified pressure correction and grad-div stabilization technique are utilized to deal
with the difficulties arising from the decoupling of velocity and pressure in Navier–Stokes equation. At the end,
the proposed fully-decoupled scheme only needs to solve a sequence of linear equations at each discrete time
level. The full discretization is constructed in the framework of the finite element method. The discrete energy
law is analyzed for the proposed method. The efficiency and unconditional stability of the proposed schemes
are verified by numerical simulations. We have also investigated the dynamic behavior of challenging model
scenarios to validate the mathematical model and numerical method.
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[20] A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow. J. Numer. Math. 16

(2008) 249–280.
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