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ABSTRACT

Antenna arrays with a large number of sensors are becoming increas-
ingly common in radio astronomy. This has motivated the develop-
ment of array signal processing tools for high-resolution imaging
that exploit source signal properties such as sparsity and spectral or
temporal variability. We propose a new multi-frequency covariance
matrix model for radio astronomical imaging that exploits spectral
variability of the astronomical sources. We show that tensor decom-
position methods can be used to compute high-resolution images of
astronomical scenes that comprise ) point sources. In this context,
tensor decomposition can reduce the problem to simpler single-point
source imaging problems. We also explain how canonical correla-
tion analysis can be used to mitigate or even altogether remove the
effect of (unknown) narrowband interference sources, which is a key
challenge in this context.

Index Terms— Radio astronomy, interference excision, ten-
sor decomposition, canonical correlation analysis.

1. INTRODUCTION

Traditional radio-astronomical imaging is non-parametric, using
spatial matched filtering to generate a blurred (“dirty”’) image of the
sky which is subsequently processed by deconvolution algorithms to
mitigate severe blurring and noise effects. More modern array signal
processing tools have also been used to obtain higher-resolution
radio astronomical images of the sky [1]. In particular, covariance
matrix based methods have been considered, which exploit that the
sources are (approximately) uncorrelated and that the astronomi-
cal scene is often sparse so that it can be modeled as a sum of
point-sources [2, 3, 4]. More recently, the time variation of radio
astronomical signals due to the earth’s rotation has been exploited
as a source of signal diversity [5]. In this paper we will consider
source signals that exhibit spectral variation, and examine how this
property can be exploited. Specifically, we show that by exploiting
spectral variability of the sources, it is possible to reduce a Q-point
source model into a set of decoupled simpler single-point source
models. We also show that the spectral variability enables us, in
a relatively simple way, to mitigate or even altogether remove the
effect of narrowband interference signals.

The contributions of the paper can be summarized as follows.
First, a new multi-frequency based covariance matrix based imaging
model that can exploit spectral profile variability of the sources is
propsed. Second, a constrained tensor decomposition based frame-
work for computing radio astronomical images that can reduce a
Q-point source model into a set of decoupled single-point source
models is developed. Third, we explain that Generalized Canoni-
cal Correlation Analysis (GCCA) can be used to mitigate or even
remove the effect of narrowband interference sources.
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2. RADIO-ASTRONOMY IMAGING DATA MODEL

2.1. Review of classical covariance matrix model

The starting point of our work is the covariance matrix model for
radio-astronomical imaging discussed in [2, 3, 4] and reviewed
next. Consider a radio telescope comprising I sensors, observing )
point-sources (stars). Let sq(¢, f) denote the signal from the g-th
source at time-instant ¢ and frequency f. Under the standard nar-
rowband and far-field assumptions, the output of the ¢-th sensor at
frequency f at the n-th time sample can be expressed as z;(n, f) =
S aig(n, f)sq(n, f), where aiq(n, f) = e 27 /PI=0/e in
which i = +/=1, p; = [xs,:]" denotes the location of the i-th
Sensor, zg, = [cos(fq,n)sin(@gn),sin(0qn)sin(¢q,n)] is the
directional vector in which 6,,, and ¢,,, denote the azimuth and
elevation angles associated with the g-th point-source, and c is the
speed of propagation; see [2, 3, 4] for details. Stacking yields

X(n7f) = A(nv f)s(n, f)» (D

where x(n, f) = [21(n, f),....w1(n, )T € €', s(n,f) =
[s1(n, f),...,50(n, f)]Y € C2, and antenna response matrix
A, f) = lai(n, f),-.. a0, f)] € €9 with ag(n, f) =
[a1,4(n, f),...,arq(n, f)]F € C'. We assume that x(n, f) is
short-term stationary over a period of N samples. Note that due
to earth’s rotation, the directional vector is slowly changing over
time. For simplicity, we also assume that the directional vector z,
is evolving sufficiently slow so that z; := z41 = -+ = 24,y and
A(f) := A(1,f) = --- = A(N, f) is a reasonable assumption.
Assume also that the sources have zero mean and are uncorrelated,
ie., E[s(n, f)s(n, f)™] is diagonal, where E[ | denotes expecta-
tion and ‘' denotes conjugate-transpose. Under the mentioned
assumptions, the covariance matrix of the observed signals is given
by

R(f) = Elx(n, f)x(n, /)] = A(B(HA)", @

where B(f) = E[s(n, f)s(n, /)] = diag(o(f),...,05(f)) is
the source covariance matrix with positive diagonal elements. The
entries of R(f) are equal to (R(f)):;; = 222:1 If(zq)e_i“iTJ'zq,
where u;; = (27 f/c)(p: — p;) and

S 2

Ij(z) = ) 05()d(z —2q) ©)

q=1
is the brightness image, where §( ) denotes the Kronecker delta func-
tion. In radio astronomy the goal is to find the brightness image
I4(z). Note that it is parameterized by the source intensities {02 (f)}
and the directional vectors {z}.

2.2. A new multi-frequency covariance matrix model
In contrast to the classical covariance matrix model, it is now as-
sumed that we measure the incoming signals at X' > 2 neighbouring
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frequencies, fi,...
of (2):
R(fr) := A(fr)B(fr)A(fx)",

Again we assume that the sources are uncorrelated so that B(fx) =
E[s(n, fr)s(n, fx)7] = diag(o7 (fx), . .., 08 (fx)) is a positive di-
agonal matrix. The key assumption and main idea of this work is to
select frequencies so that |fx, — fi,| is small relative to the cen-
ter frequency (e.g., 10 MHz versus several GHz) for all ki, k2 €
{1,..., K'}. This implies
A=A(fr)=---

, fx, so that we obtain the following extension

ke{l,...,K}. (@

~ A(fK). ®

The key observation is that by inserting (5) into (4) we obtain the
tensor decomposition
R(fr) = AB(fi)A" = ADy(B)A" ke {1,.... K}, (6)

where B € R¥*? is a nonnegative matrix with entries (B)x, =
o2(fx) and Dy (B) denotes the diagonal matrix that holds the k-
th row of B on its diagonal. When K > 2, then (6) corresponds
to a constrained version of the Canonical Polyadic Decomposition
(CPD) [6, 7] that under mild conditions is unique up to column scal-
ing (and irrelevant permutation) ambiguities; see [8] and references
therein for details. This implies that the model parameters {6, ¢4}
and {2 (f)} can be computed via (6), as will be discussed next.

3. CONSTRAINED TENSOR DECOMPOSITION BASED
RADIO-ASTRONOMY IMAGING

Based on the proposed multi-frequency covariance matrix model,
we will now develop a tensor decomposition based three-step pro-
cedure for computing the model parameters needed to construct the
brightness image I7(z) given by (3). The core idea of the tensor de-
composition based method is to reduce a (Q-point source model into
a set of single-point source models. In short, first we compute the
factor matrices A and B in (6). Next, we extract the directional pa-
rameters {04} and {¢4} via the columns of A. Finally, we compute
the source intensities {o_ (f%)} from {R(fx)}, given {04} and {¢q}.

3.1. Step 1: Source separation based on constrained CPD
Stacking yields

R = [vec(R(f1)),...,vec(R(fx))] = (A* @A)BT, @)

where vec(R(fx)) € C’ * denotes the vectorized version of the ma-
trix R(fx) € CT*I, “*> denotes conjugation, and ‘®’ denotes the
Khatri-Rao (columnwise Kronecker) product. In practice, we com-
pute A and B by solving the constrained optimization problem
min  |R—-(A*®A)B"|%, (8)
AeCI*xQ B>0
where | | 7 denotes the Frobenius norm. By ignoring the partial Her-
mitian symmetry in (8), a simple alternating least squares method
can be used to compute A and B. However, more sophisticated op-
timization based methods can be derived. More precisely, we can
write (8) as an unconstrained Nonlinear Least Squares (NLS) mini-
mization problem

. ) ) T2
AreI,nAan,C HRre - (Are @ Are + Azm @ AlM)(C * C) ”F
+HRzm - (AinL @ A'r'e + AinL @ A'r'e)(c * C)TH%W (9)

where R,. and R;,, denote the real and imaginary parts of R,
A.. and A;,, denote the real and imaginary parts of A, and B =
C * C for some real matrix C € RE*? and where ‘*’ denotes
the Hadamard (elementwise) product. The minimizer of (9) can be
computed using standard optimization methods.

The Constant Modulus (CM) property of A can be taken into
account by adding the term |A,ec * Are + Aim % Aim — 171 15”%
to the cost function (9), where 1,, € R™ denotes an all-ones vector.
Overall, we obtain the unconstrained NLS minimization problem

(A're @ A're + Azm @ Azm)(c * C)T”%‘

min _|Rre —

Are,Aim,C
+|Rim — (Aim O Are + Aim O Are)(C % C) |7
+HA're * A're + A'Lm * Azm - IIIEH%‘ (10)

An added benefit of taking the CM property into account is that if
B = C x C has nearly colinear columns or gets close to a rank-
one matrix, the CM constrained CPD of R can still be unique. We
compute A,., A;m and C by solving (10) using the limited memory
BFGS method in Pytorch [9]. Typically the limited memory BFGS
method is randomly initialized, or using the best of, say 10 random
intializations. However, when A or B has full column rank, then
algebraic initialization methods can be used. In short, if A or B
has full column rank, then the CPD factor matrices in (7) can in the
exact case be computed via an eigenvalue decomposition; see e.g.,
[10, 11, 12, 8, 13, 14] for details. This can be used to initialize A
and A, in the proposed optimization based method. Matrix C can

s . . 1
be initialized by computing the elementwise square root B2, where
B is the matrix obtained by solving (8) conditioned on the initial
estimate of A, which is a standard quadratic programming problem.

3.2. Step 2: Extraction of directional vectors via NLS

Once A has been computed we can extract the directional vectors
274 = [cos(8y) sin(¢g), sin(fy,) sin(¢y)]”* from its columns. Let a,,

denote the g-th column of A and let a4(0q, ¢q) = ei2m P zq
denote the elementwise exponential function, in which P =
[P1,...,pr] and we recall that p; denotes the location of the i-
th sensor. We will compute z, via the NLS cost function
. ~ 2

eqeng,gégd,,aqec lag — aqaq(bq, dq)ll5 (11D
where || ||2 denotes the Euclidean norm, and €2 and €2, denote the
ranges of 6, and ¢4 (e.g., Qo = [0,7] and Qy = [—7/2,7/2]).
Minimizing (11) is equivalent to maximizing the cost function

A H_ 2
gqeﬂlglzfeﬂ¢|aq(9qv¢q) a| 12)

with ag = ag(0g, ¢q)Haq/(aq(9qa (z’q)Haq (0q, #q)). An initial es-
timate of 6, and ¢4 can now be obtained by a two-dimensional grid
search in the area Q29 x (4. The estimate obtained using grid search
can be refined utilizing an optimization-based method. More pre-
cisely, the cost function (12) can be expressed as
oy o (00, 60)” + (00, 60)°, (13)
where b(0q, ¢q) = agw,reaq,m(eqad)q) + agimaq,iM(eqv(ﬁq) and
c(bq, ) = ag:reaq,im(oqa(bq) - agimaq,m(eq’%)’ in which
ag,re and agim denote the real and imaginary part of a4, re-
spectively, and the elementwise cosine function &g rc(0q, ¢q) =
cos(27 fPTz,) and the elementwise sine function &g i (0, dq) =
sin(27 fPT'z,) denote the real and imaginary part of a,(0y, ¢,),
respectively. Due to the Cauchy-Schwartz inequality and the CM
property of a4 (04, dq), maximizing (13) is equivalent to minimizing
Ming,e0q,64e0, 1 - Haqu — b(0q, 6q)* — (64, b4)*. In prac-
tice, we relax the constraints on 6, and ¢, and instead solve the
unconstrained minimization problem
min[RI- Haqng - b(9q7¢q)2 -

0q,¢q€

(04, ¢q)°. (14)
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We compute 6, and ¢4 by solving (14) using the gradient descent
method in Pytorch [9] that in turn is initialized by the aforemen-
tioned two-dimensional grid-search procedure.

3.3. Step 3: Estimation of source intensities using NNLS

Once the angles {04} and {¢4} have been obtained, the source in-
tensities {B(f)} can be obtained by solving the following standard
NonNegative Least Squares (NNLS) problems [15]:

Vec(Rre7k) _ Are,k @ A're,k +Azm,k @ Aim,k B
vec(Rim, k) k

Are,k @ Aim,k _Aim,k @ Are,k
for every k € {1,..., K}, where by, denotes the k-th row of B,
R,k and Ry, i denote the real and imaginary parts of R( f), and
A, and A, ; denote the real and imaginary parts of A(fx) =

[aq(fr,01,01),...,a4(fr,0Q, dq)], in which {04} and {¢4} are
obtained in the previous step.

min

by, >0

2

4. MITIGATION OF NARROWBAND INTERFERENCE

Assume now that narrowband interference signals are present so that
the observation model (1) admits the decomposition

x(n, fi) = A(n, fr)s(n, fr), ~ keQ,
 fr A(n, fo)s(n, fr) + A(n, £)8(n, fr), ke Q°,
5)

where $(n, fr) = [51(n, fi),---,30, (1, fx)]” denotes the n-th
sample of the narrowband interference signals associated with fre-
quency f and A(n, fr) = [A1(n, fx),...,aL, (n, fr)] denotes the
associated antenna response matrix, {2 denotes the set of indices as-
sociated with frequencies not affected by narrowband interference
terms and Q° = {1,..., K}\Q. Assume that all the signals are un-
correlated and have zero mean. Then the covariance matrix (6) now
admits the decomposition

R(f) = {ADk(B)AH, keQ,

1
ke Q°, (16)

AD,(B)A + AD,(B)A",

where again we used the assumption that A = K( fi)y = =
A(fx) and B € R¥*% is a nonnegative matrix with entries
(B)x = &2(fx), in which 32(f) denotes the intensity of the
I-th interference term at frequency f%, and Dy, (]~3) =0ifke Q.

In this section we will discuss two ways GCCA can be used to
mitigate the impact of the interference signals when K > 2 fre-
quencies are considered. For simplicity, we consider the case where
rank([ADy(B), ADy(B)]) = Q + Ly forall k € {1,...,K}
(necessitating @@ + Li < I). This implies that, under certain condi-
tions [16], we can obtain range(A) via ();_, range(R.(fx)), where
range(A) denotes the span of A. Specifically, we will present a
method for computing range(A) that can deal with interference
terms. Let P{ = I — U,U¥, where U}, € CIx(Q+Zk) jg o
columnwise orthonormal matrix (UZ U}, = I) with Z, > L. It
can be shown that, under certain conditions [16], if range(Uy) =
range(R(fx)), then

K

ﬂ range(R(fx)) = range Z ker(Py)), (17)

k=1 k=1

range(A

where ker(Pﬁ) denotes the kernel of Pﬁ; see [16, 17] for details.
Perhaps more interesting, even if range(A) < range(Uy) and
Zy, > Ly, then relation (17) can still hold; see [16] for details. This
can be useful when Ly is not known in advance. To summarize,
when K > 2, we can (under certain conditions) obtain a basis for

range(A) by (i) first computing the SVDs R(fx) = UrZpVH,
(ii) next computing Py = I — Ui(;,1 : Q + Zx)Ui(;,1

Q + Zk)H with Z, > Ly, k € {1,..., K}, (iii) computing the
SVD Zszl Pﬁ = UunZsam VI, and (iv) finally constructing
U = Vaun(:, I — @ : I) which ideally has range(U) = range(A).
Here Matlab array indexing notation was used. Alternatively, by
computing the SVD [U(:,1: Q+ Z1),...,Up(:,1: Q+Zk)] =
Ultacked Bstacked V 2 eq» @ basis for range(A) can be obtained by con-
structing U = Usuckea(:, 1 : Q) which ideally has the property
range(U) = range(A). Finally, we note that () can be determined

as the dimension of (=, range(R(f)).

4.1. Approach 1: Detection of corrupt channels

In the special case where only a few of the frequency channels are
corrupted by narrowband interference signals, the knowledge of
range(A) can be used to determine the index set . In short, let
P! = I — UU¥ denote the orthogonal projector onto range(A)L,
where ‘*’ denotes the orthogonal complement and U € C/*€ is
the matrix obtained via the earlier described SVD procedure. Then

P'A =0and P*A # 0. Consequently,

0 keQ
P'R(fL) =1{ oixe, e ’ 18
(fr) {PLAR(fk)AH, ke Qe (18)
From (18) we can determine 2. By only considering the matrices
R(fx), k € Q, we can now proceed as in Section 3. We also mention
that in [18] a joint tensor factorization and corrupt slab suppression
method has been proposed that can also be used to find €2.

4.2. Approach 2: Constrained signal subspace fitting

Let us now consider the more general case where ) = (¥ is per-
mitted. By exploiting that A is CM constrained, we can recover it
from range(U) using variants of “ACMA” [19], where U € C'*¢
is the matrix obtained via the earlier described SVD procedure. We
mention that the combination of CCA where K = 2 and ACMA
has been considered in [20] and for more general cases K > 1 in
[13]. However, we propose a new optimization method for comput-
ing A via range(U). Since range(U) = range(A) there exists a
nonsingular matrix F € C®*< such that

A =UF. (19)

Since A is CM constrained, it must satisfy the relations a;kl q@itg —

af ,@inq = 0,1 < i1 < iz < I. This property combined with (19)
(I+1) xQ?

yields the relation C(F* ©F) = 0, where the rows of C
are of the form (ej, U*) ® (e], U) — (e],U*) ® (ef, U) in which
e; € R denotes a unit vector with unit entry at position ¢ and zero
elsewhere. It can be shown that under certain conditions C has the
property rank(C) = Q(Q — 1); see [13] for details. Consequently,
when rank(C) = Q(Q — 1), then we can from the SVD of C com-
pute a (columnwise orthonormal) matrix N € €@ with property
range(IN) = ker(C) and factorization

N = (F*OF)G’, (20)

where G € C?*% s nonsingular; see again [13] for details. We
now recognize that the factorization (20) corresponds to a CPD, im-
plying that F' can be obtained via CPD computation. Once F has
be obtained, then, due to relation (19) and the column scaling am-
biguity of the CPD, we obtain AD = UF, where D is a diago-
nal nonsingular matrix. We can obtain A = [ai,...,ag] by col-
umn scaling a, < +/((aq *aq)717)/((aq * a;) = (aq * a5))aq,
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g € {1,...,Q}. Finally, we also compute F = U” A. An advan-
tage of this approach is that it works even in the presence of strong
interfering signals since they are not involved in the expression (19).
Compared the above CPD based approach of computing A via
(19) and (20), a more direct way of computing A will now be put
forward. More precisely, we propose here to compute A in (19) by

min |U — AH|r + |A* + A — 1,15 F, (21)

where ideally H = F~! € C¥*@, Relation (21) can be written as

Il’lil’l HUre - AreH'r'e + AZmHlmHF+
Are,AjmHre, Hip,

HUzm - AreHim - AiereHF+
HAre * A-’V‘E + Azm * Azm - ]-IlgHF, (22)

where U,.. and Uj;,, denote the real and imaginary parts of U, A .
and A;,, denote the real and imaginary parts of A, and H,. and
H,;,,, denote the real and imaginary parts of H. Again, the limited
memory BFGS method in Pytorch [9] can be used to solve the mini-
mization problem (22). Note that A and H = F~! can be initialized
by the previously discussed CPD based approach.

4.3. Recovery of source intensities when L, = 1

So far we have not discussed how to recover Dy (B) when k € Q°.
For simplicity, let us consider the case where L, = 1. In this case
the problem of estimating A can be reduced to a single isolated-
source estimation problem. Indeed, if A has already been computed
by for instance solving (21), then PTR(fx) = PLa52(fy)a
with PY = T — A(A¥A)"'A¥. Then, as explained in Sec-
tion 3.2, the directional vector z associated with the interfer-
ence term can now be determined by solving the NLS problem
maxe, oy oqe0r, [PTRfE)A(fr, 0, 0)|°, where &(fr,0,¢) de-
notes the antenna response vector associated with the interference
signal and parameterized by the angles (6, ¢). Once A(fx,0, @)
has been obtained, the source intensities for the frequency channel
affected by the interfering narrowband signal can be determined
by solving the NNLS problem ming, -, [vec(R(fx)) — [A* ©

A, 5* ®5]BkH2’ where f)k = [O’%(fk), ey O’%(fk),&%(fk)]T

5. NUMERICAL EXPERIMENTS

Consider an array composed of I = 20 sensors randomly placed in
the [0,20A] x [0, 20)] plane, where A = 37, is the “half wave-
length” and f. is the center frequency. We set Q = 3, K = 21,
f€{0.999990- f.,0.999991- f, ..., 1.000009- f.,1.000010- f.},
N = 200.000 and randomly draw the real and imaginary parts of
sq(n, f) and S4(n, f) from a normal distribution with zero mean
and unit variance. Each signal s, (n, f) and 54(n, f) is scaled by a
factor drawn from uniform distribution with support [0, 1].

5.1. Case 1: Closely spaced (and weak) sources

In this experiment we will demonstrate the potential of the dis-
cussed tensor method for detecting closely spaced points in the
sky. The azimuth and elevation angles of the point-sources are
listed in the first column of Table 1. The image obtained using
a Delay-And-Sum (DAS) beamformer [1, 21, 22], denoted by
1(0,¢) = a(8,$)"R(f.)a(d,¢) and with discretization steps
Af = 0.00628 and A¢ = 0.00628, in which a(6, ) is an an-
tenna response vector characterized by the pair (0, ¢), can be seen
in Figure la. By inspection of the image it is difficult to distin-
guish sources one and two apart and detecting weak third source.

(radians)
¢ (radians)

25 30 25 80

’ l9” (r;:ﬁarﬁ;\ ’ ‘(3 (ra‘zi'\ar;’;]
(a) Case 1. (b) Case 2.
Fig. 1: DAS beamformer images.
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L x  Interference o

o True
Estimated
Interference

¢ (radians)
¢ (radians)

o )
0 (radians)

(a) Proposed method. (b) OMP.
Fig. 2: Performance of proposed method and OMP method.

s )
0 (radians)

A classical technique to resolve closely spaced sources is the Or-
thogonal Matching Pursuit (OMP) method [23, 24, 25]. In short, it
tries to solve the sparse regression problem min, |[Re(vecR(f:)) —
Re(D)y2 + [Im(vecR(f.)) — Im(D)y|2 subject to Jylo < Q.
where D is a user-defined dictionary matrix and |7y|lo = >, [v: # 0]
in which [ | denotes the Iverson bracket. We consider an OMP us-
ing a dictionary of size (400 x 10.000) with columns of the form
a(0,¢9)* ® a(d, ¢) in which a(f, ¢) is an antenna response vector
characterized by the pair (6, ¢). The discretization steps used in the
construction of D are Af = 0.031415 and A¢ = 0.031415. In
Table 1 we compare the performance of the proposed and the OMP
methods. We observe that the proposed method does a better job.

Angles True Proposed OMP

(61,¢1) | (1.25879,—0.57380) | (1.256637,—0.57176) | (1.25663, —0.62831)
(62, ¢2) | (1.26000,—0.58500) | (1.26292,—0.58433) | (1.25663, —0.56548)
(03, ¢3) (0.26360, 1.33558) (0.26389,1.33831) (1.22522, —0.53407)

Table 1: True and estimated angles obtained when the proposed
method and OMP are used.

5.2. Case 2: Narrowband interference term

Consider a similar set-up as before, but now a single frequency chan-
nel f. is perturbed by a single interference signal (Ly, = 1). The
image obtained using a DAS beamformer can be seen in Figure 2b.
The true interference signal locations and true and estimated source
locations obtained using the proposed and OMP methods can be seen
in Figure 2. We observe that a single-channel DAS beamformer or
OMP method cannot directly identify the narrowband interference
term while the proposed method based on the approach discussed in
Section 4.2 was able to identify the location of the sources.

6. CONCLUSION

We have proposed a multi-frequency based covariance matrix model
for radio astronomical imaging that is suitable for cases where the
spectral profiles of the sources are varying. Based on the proposed
model, we developed a tensor decomposition framework that can
reduce a Q-point source model of the sky into a set of simpler single-
source point models. We also explained that the proposed model
enables GCCA to handle narrowband interference signals.
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