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OPTIMAL DATA-DRIVEN
DIFFERENCE-INVERSION-BASED ITERATIVE
CONTROL: HIGH-SPEED NANOPOSITIONING

TRACKING EXAMPLE
Zezhou Zhang, Qingze Zou

Abstract— In this paper, an optimal data-driven
difference-inversion-based iterative control (ODDD-IIC)
method is proposed for high-speed precision tracking
in the presence of dynamics changes and random
disturbances. Iterative learning control (ILC) has been
shown advantageous over feedback and feedforward
control for repetitive operations. Challenges, however,
still exist to achieve high accuracy and fast convergence
in ILCs as the bandwidth, i.e., the frequency range for
guaranteed convergence, can be limited by adverse effects
of modeling error and random disturbances. The aim of
the proposed method is to compensate for these adverse
effects through a data-driven approach without modeling
process. A frequency- and iteration- dependent iteration
gain is introduced in the control law to enhance both the
tracking performance and the robustness. The technique
is illustrated in the experiment on output tracking of a
piezoelectric actuator, with comparison to two existing ILC
methods.

Index Terms— data-driven, iterative learning control, sys-
tem inversion, nanopositioning control

I. INTRODUCTION

H IGH-SPEED precision output tracking has been increas-
ingly needed in various control applications, ranging

from semiconductor manufacturing [1], nanopositioning [2],
3D-printing [3], to robot manipulation [4]. In these applica-
tions, precision tracking of the desired trajectory (contour)
in repetitive operations at high-speed is critical, even in the
presence of system dynamics changes and model uncertainties.
Compared to feedback control where fundamental constraints
are imposed by non-minimum phase zeros [5] and bandwidth
robustness trade-off [6], and feedforward control that can be
sensitive to model uncertainties and external disturbances [7],
iterative learning control (ILC) provides an effective avenue
to fully exploit both the repetition, the knowledge of system
dynamics [8], [9], and the input-output data [10], [11] for
output tracking. Limitations, however, exist in current ILC
techniques in modeling, robustness against dynamics changes,

This work was supported by NSF grants CMMI-1660355, CMMI-
1851097 and IIBR-1952823.

Z.Zhang and Q.Zou are with the Department of Mechan-
ical and Aerospace Engineering, Rutgers, The State University
of New Jersey, Piscataway, New Jersy, 08854 USA (e-mail:
zz389@scarletmail.rutgers.edu; qzzou@soe.rutgers.edu).

and implementation efficiency (e.g., convergence rate). In this
paper, we propose a data-driven ILC technique to tackle these
limitations.

It is challenging to achieve high-speed precision tracking
efficiently in the presence of dynamics changes. For example,
knowledge of system dynamics has been exploited in the
ILC framework [12]–[14] for high precision output tracking.
Compared to conventional constant-gain ILCs (e.g., P-type or
PD-type) [15], [16], these model-based ILCs improved the
convergence rate and tracking performance at high speed.
However, robustness against dynamics changes has not yet
been accounted for. This robustness issue might be accounted
for by designing an iteration-varying gain [17]. However,
the disturbances are assumed to approach a periodic sig-
nal with the iterations—-their randomness nature was not
considered, nor was the convergence rate. Moreover, state-
space modeling of the system dynamics is needed to design
the iteration gain [17]. The need for a parameterized model
can be alleviated through the development of the constrained
data-driven optimal iterative learning control method [18],
where the input-output data is used to tune the iteration gain
to minimize the next-step error. However, the changes in
the system dynamics are not considered in the convergence
analysis, and between-iteration variations are not accounted
for. Although the between-iteration uncertainties might be
accounted for through an extended contraction mapping-based
approach [19], a modeling process is still needed, and the
convergence is slow (e.g., hundreds of iterations) for practice
uses. Therefore, efforts are needed to achieve, in the ILC
framework, high-performance and robustness, both efficiently
(e.g., rapid convergence, and no need of the modeling process)
and effectively (e.g., high-precision tracking at high-speed).

Recently, data-driven ILCs have been proposed to overcome
the above limitations for high-speed precision tracking and
robustness. Instead of using a fixed dynamics model or not
using a model at all, in the data-driven ILCs [20]–[22], the
dynamics model of the system is constructed and updated by
using the input-output data along with the iteration process.
Not only is the modeling process eliminated/avoided, but
also the changes of the system dynamics are automatically
accounted for [10], [11]. For example, a modeling-free ILC
technique has been demonstrated for rapid convergence (e.g., a
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handful iterations) and high-speed precision tracking in various
applications [23], [24]. Alternatively, the input-output data
has also been exploited to construct a finite-impulse-response
(FIR)-based filter directly in the ILC algorithm [21], [25],
or to adaptively tune the output-dependent control parameters
to mitigate error propagation [20]. This data-driven idea has
been extended to use the gradient of the input-output data
[10] to further improve the tracking performance of systems
with both hysteresis and dynamics effects. Therefore, the data-
driven approach to ILC is promising to achieve high-speed
precision tracking under adverse effects of dynamics variations
and random disturbances.

In this paper, a data-driven nonlinear, time-varying ILC
approach is developed. Based on the modeling-free difference-
inversion-based iterative control technique [10], we propose to
adjust the frequency-dependent iteration gain in each iteration.
It is shown that by using the system frequency responses
and the output noise acquired a priori, along with the input-
output data measured during the iteration, the iteration gain
can be adjusted to enhance both the robustness and the
tracking performance: Not only is random noise of a larger size
allowed, but also convergence in a large frequency is attained.
Moreover, the performance of the proposed data-driven ILC
can be further enhanced by optimizing the iteration gain. The
proposed method is successfully implemented in a nanopo-
sitioning control experiment on a piezoelectric actuator. The
experimental results demonstrate the efficacy of the proposed
approach over two previous inversion-based ILC methods [10],
[11].

II. DATA-DRIVEN ITERATIVE OPTIMAL
DIFFERENCE-INVERSION-BASED ITERATIVE

CONTROL

In this section, we start with a brief review of the modeling-
free difference-inversion-based iterative control (MFDIIC) al-
gorithm [10], then propose the optimal data-driven difference-
inversion-based iterative control (ODDD-IIC) technique.

We consider, as depicted in Fig. 1, that the system is a
linear time invariant (LTI) system, and the system output in
the presence of output disturbance/measurement noise is given
as

y(jω) = y`(jω) + yn(jω) = G(jω)u(jω) + yn(jω), (1)

where, respectively, y`(jω) denotes the output of the LTI
system, G(jω) = y`(jω)/u(jω) is the system frequency
response (i.e., transfer function), and yn(jω) is the random
output disturbance (or measurement noise, see Fig. 1). We
assume that:

Assumption 1: For any given desired trajectory yd(jω),
there exists a set of frequencies (called the tractable frequency
set below) St, such that for any ω ∈ St, the noise to signal
ratio (NSR) is bounded above by a less-than-one constant εn,

|yn,k(jω)|
|yd(jω)|

≤ εn < 1, ∀k. (2)

ku System

ky

MFDIIC/ODDD-IIC

+

,k ny
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Storage
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, 1u kI − , 1y kI − 1ke −

Fig. 1. The control scheme of the MFDIIC and the ODDD-IIC al-
gorithms, where yk,n is the measurement (output) noise in the kth
iteration, uk is the control input for the kth iteration, calculated offline by
using the input-output data obtained in the (k− 1)th iteration , Iu,k−1

and Iy,k−1, respectively.

A. ODDD-IIC TECHNIQUE

The proposed ODDD-IIC method is presented in the fre-
quency domain as follows, for any given frequency ω ∈ St:
• Initially, set

u0(jω) = α× yd(jω), k = 0,

u1(jω) =
u0(jω)

y0(jω)
× yd(jω), k = 1,

(3)

• From the 2nd iteration, set

uk+1(jω) =


uk(jω) + ρk(ω)

Iu,k(jω)

Iy,k(jω)
× ek(jω),

when |ℵk(jω)| ≤ η < 1,

uk(jω), otherwise,
(4)

for any k ≥ 1, where

Iu,k(jω) = uk(jω)− uk−1(jω),

Iy,k(jω) = yk(jω)− yk−1(jω),

ek(jω) = yd(jω)− yk(jω).

(5)

In Eq. (4), η is a pre-chosen constant arbitrarily close to 1,
and |ℵk(jω)| is the noise to output difference ratio (NODR)
given by

|ℵk(jω)| =
∣∣∣∣δyn,k(jω)

Iy`,k(jω)

∣∣∣∣ =

∣∣∣∣ δyn,k(jω)

GIu,k(jω)

∣∣∣∣ , ∀k ≥ 1, (6)

where

δyn,k(jω) = yn,k(jω)− yn,k−1(jω), ∀k ≥ 1, (7)

and

Iy`,k(jω) = y`,k(jω)− y`,k−1(jω), (8)

is the difference of the linear dynamics response part of the
output in the kth iteration (see Eq. (1)).

This article has been accepted for publication in IEEE Transactions on Control Systems Technology. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TCST.2022.3168496

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

1) CONVERGENCE ANALYSIS:
Lemma 1: At any given frequency ω at which ODDD-IIC

is applied, the next-iteration tracking error ek+1(jω) (k ≥ 1)
(1) satisfies the following recursive formula,

ek+1(jω) = Dk(jω)ek(jω)− δyn,k+1(jω), (9)

where, respectively,

Dk(jω) = 1− ρk(ω)G(jω)
Iu,k(jω)

Iy,k(jω)
, (10)

and yn,k(jω) is the output disturbance in the kth iteration.
(2) is related to the initial tracking error and the disturbance

via

ek+1(jω) =
k∏
i=1

Dk+1−i(jω)e1(jω)− ξk(jω)

− δyn,k+1(jω),

(11)

where

ξk(jω) =


0, k = 1,

k−1∑
j=1

(

j∏
i=1

Dk+1−i(jω))δyn,k+1−j(jω), k ≥ 2,

(12)
Proof: The results can be shown via algebraic operation

to obtain the recursive formula in Eqs. (9), and then, Eq. (11)
by induction.

Next we discuss the convergence of the ODDD-IIC algo-
rithm for the finite iteration case, i.e., |ℵk(jω)| ≤ η for any
1 ≤ k < k∗, and |ℵk(jω)| > η for k ≥ k∗. Such a scenario
occurs when the ODDD-IIC is convergent and the iterative
control input becomes close to each other, i.e., Iu,k(jω) in
Eq. (6) becomes small enough to render |ℵk(jω)| > η when
k ≥ k∗. Thus, we show the convergence by quantifying the
upper bound of the relative tracking error given by

Er,k+1(jω) =

∣∣∣∣ek+1(jω)

yd(jω)

∣∣∣∣ , for ∀ k ≥ k∗, (13)

when finite iterations occurs at k∗.
Theorem 1: For any given frequency ω ∈ St and any

(k+ 1)th iteration (k ≥ 1), let the iterative coefficient needed
ρk(jω) be chosen as:

0 < ρmin ≤ ρk(ω) ≤ ρmax < 2 + 2Re(ℵk(jω)), (14)

where Re(z) denotes the real part of the complex number
z ∈ C (C: the set of complex numbers), then when finite
iteration stops at any given number k∗, the relative tracking
error is bounded as

Er,k+1(jω) ≤
[∣∣∣∣ e1(jω)

yd(jω)

∣∣∣∣ τk∗
+

1− τk∗

1− τ
2εn

]
,

, Er,1(jω)τk
∗

+ Ek∗

τ , Ek∗

r,τ ,

(15)

for any k ≥ k∗, where

Ek∗

τ =
1− τk∗

1− τ
2εn, (16)

and τ ∈ [0, 1) is given by

τ =
√

1 + max
1≤k≤k∗

{H[ρk(ω)]}, (17)

with H[ρk(ω)] defined as

H[ρk(ω)] =
ρk(ω)[ρk(ω)− 2[1 +Re(ℵk(jω))]]

(1 + η)2
. (18)

Proof:
By Lemma 1 (Eqs. (9, 10)), the convergence is reached if

and only if |Dk(jω)| < 1 for all k ≥ 1, i.e.,

|Dk(jω)|2 =

∣∣∣∣∣∣1− ρk(ω)
1

Iy,k(jω)
G(jω)Iu,k(jω)

∣∣∣∣∣∣
2

=

∣∣∣∣1 + ℵk(jω)− ρk(ω)

1 + ℵk(jω)

∣∣∣∣2
=

(1 + |ℵk(jω)| cos∠ℵk(jω)− ρk(ω))2

|1 + ℵk(jω)|2

+
(|ℵk(jω)| sin∠ℵk(jω))2

|1 + ℵk(jω)|2

= 1 +
ρk(ω)(ρk(ω)− 2(1 +Re(ℵk(jω)))

|1 + ℵk(jω)|2

, 1 +R(ρk(ω),ℵk(jω)) < 1.

(19)

The above condition holds if ρk(ω) can be chosen such that

−1 < R(ρk(ω),ℵk(jω)) < 0, (20)

or equivalently,

ρk(ω)(ρk(ω)− 2(1 +Re(ℵk(jω))) < 0, and

|ρk(ω)(ρk(ω)− 2(1 +Re(ℵk(jω)))| < |1 + ℵk(jω)|2.
(21)

Solving the above inequality for ρk(jω) leads to the range of
ρk(jω) in Eq. (14) under the condition that |ℵk(jω)| ≤ η < 1
for all k ≥ 1.

Thus, if finite iterations occur at k∗, then there exists a
constant τ specified by Eqs. (17-18), such that

|Dk(jω)|2 ≤ τ2 < 1 for 1 ≤ k ≤ k∗, (22)

where τ ∈ [0, 1) is guaranteed since H[ρk(ω)] ∈ [−1, 0) for
all 1 ≤ k ≤ k∗. This follows by noting that H[ρk(ω)] as
a quadratic polynomial of ρ has its minimal greater than or
equaling to -1, and its value is always less than zero for any
ρk(jω) ∈ [ρmin, ρmax].

By Lemma 1 and the triangle inequality, at any k ≥ k∗, the
tracking error can be bounded from Eq. (19), (22) as

|ek+1| =

∣∣∣∣∣
k∏
i=1

Dk+1−i(jω)e1(jω)− ξk(jω)− δyn,k+1(jω)

∣∣∣∣∣
≤

∣∣∣∣∣
k∏
i=1

Dk+1−i(jω)e1(jω)

∣∣∣∣∣+ |ξk(jω)|+ |δyn,k+1(jω)|.

(23)

Then the bound of the relative error in Eq. (15) follows
directly by applying Assumption 1 and the summation of a
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geometry series to the above Eq. (23). This completes the
proof.

Remark 1 (Geometry Interpretation): The convergence
condition given by Eq. (19) can be represented by 2-D vector
operations as shown in Fig. 2: by Eq. (19) (second “=”),
for ρk(ω) > 0 the convergence is guaranteed if the length
of vector

−→
OA = |1 + ℵk(ω) − ρk(ω)| is less than that of

vector
−−→
OB = |1 + ℵk(ω)|, i.e., the vector

−→
OA falls into the

triangle of FOB specified by
−−→
OB and its y-axis symmetry−−→

OF . Thus, the length of |
−−→
BF | = 2 + 2Re(ℵk(jω)) is the

range of ρk(ω) > 0 that guarantees the convergence—exactly
the same as given by Eq. (14).

1

1+

1+           

2+2Re(           )

Re

Im

O

sinθ|          |

θ

(
)

jω ( )jω

A B

CD

EF

( )ρ ω−

( )ρ ω−

(
)

jω

( )jω

( )jω

Fig. 2. The geometry interpretation of Theorem 1 and Corollary 1,
where the symbols denote the vectors represented by the corresponding
arrowed lines, and

−→
OF denotes the y-axis symmetric vector of

−→
OB, i.e.,

|
−→
OF | = |

−→
OB| = |

−−−−→
1 + ℵk|.

Theorem 1 shows the residual error (i.e., the radius of
the neighborhood) depends on the range of the iterative
coefficients ρk(jω)s used in the iterations (i.e., the maximum
and the minimum of ρk(jω), see Eq. (14)). In particular, when
a fixed iterative coefficient is chosen in all the iterations, the
residual error agrees with that quantified in [11].

Alternatively, an optimal iterative coefficients can be sought
to minimize the residual error, as shown below. The conver-
gence range of the iterative coefficient varies along with the
iterations (see Eq. (14)): In general, the variation is small
initially (so ρk(jω) can be chosen in an interval closely around
(0, 2)) then increases with the iterations (k is large).

2) Estimation of the Noise to Output Difference Ratio:
Next we discuss how to estimate the NODR |ℵk(jω)| in
practice—as needed in determining the range of the iteration
gain ρk(jω) (see Eq. (14)). As the exact dynamics, G(jω),
in general, is unknown, uncertainty in the dynamics modeling
shall be accounted for when quantifying the NODR. Thus, we
first represent the NODR, |ℵk(jω)|, using measured frequency

response as

|ℵk(jω)| =

∣∣∣∣∣ Ĝ(jω)

G(jω)

δyn,k(jω)

Ĝ(jω)Iu,k(jω)

∣∣∣∣∣ , ∣∣∣∆G(jω)ℵ̂k(jω)
∣∣∣

=

∣∣∣∣∣∆G(jω)

(
Iy,k(jω)

Ĝ(jω)Iu,k(jω)
− 1

)∣∣∣∣∣ ≤ η < 1,

(24)

where Ĝ(jω) denotes the measured frequency response—
∆G is the relative difference between the measured and
the true frequency response of the system, and ℵ̂k(jω) is
the estimated NODR, respectively. ∆G(jω), although still
unknown in general, can be estimated by the upper/lower
bounds of the differences between the frequency responses
measured under different conditions [26], i.e.,

∆G(jω) = ∆r(ω) · ej∆θ(ω), with
0 < ∆rmin(ω) ≤ ∆r(ω) ≤ ∆rmax(ω),

∆θmin(ω) ≤ ∆θ(ω) ≤ ∆θmax(ω),

(25)

where, respectively,

∆rmax(ω) = max
i,j

∣∣∣∣∣ Ĝi(jω)

Ĝj(jω)

∣∣∣∣∣ ,
∆θmax(jω) = max

i,j

{
∠Ĝi(jω)− ∠Ĝj(jω)

}
,

(26)

Ĝi(jω)(i = 1, 2, · · · ) denotes the ith frequency response
measured in the experiment, and ∆rmin(ω) and ∆θmin(jω)
are defined similarly. Hence, the magnitude and phase of the
NODR can be bounded as

∆rmin(ω)|ℵ̂k(jω)| ≤ |ℵk(jω)| ≤ ∆rmax(ω)|ℵ̂k(jω)|, (27)

and

∠ℵ̂k(jω) + ∆θmin(ω) ≤ ∠ℵk(jω)

≤ ∠ℵ̂k(jω) + ∆θmax(ω).
(28)

Thus, NODR can be quantified in terms of the measured
dynamics difference and the measured NODR ℵ̂k(jω)—by
using the measured frequency responses (see Eqs. (25), (26))
along with the measured input-output data in each iteration,
Iy,k(jω) and Iu,k(jω). Using the estimated NODR, the con-
vergence of the ODDD-IIC algorithm can be presented for
practical implementation via the following Corollary.

Corollary 1: At any given frequency ω, let the conditions
in Theorem 1 be hold, and the measured phase difference of
the system dynamics be less than π/2,

0 ≤ |∆θmax(jω)−∆θmin(jω)| < π

2
, (29)

then the ODDD-IIC law converges if in each (k+1)th iteration
(k =1, 2, · · · ), the iterative coefficient ρk(ω) is chosen from

0 < ρk(ω) < 2 + 2ν∗k , (30)
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where

ν∗k =



|ℵ⊥k (jω)| cos∠ℵ>k (jω),

if ∠ℵ⊥k (jω),∠ℵ>k (jω) ∈ (0,
π

2
];

|ℵ>k (jω)| cos∠ℵ>k (jω),

if ∠ℵ>k (jω) ∈ (
π

2
, π);

− |ℵ>k (jω)|,

if ∠ℵ⊥k (jω) ∈ (
π

2
, π), ∠ℵ>k (jω) ∈ [π,

3π

2
);

|ℵ>k (jω)| cos∠ℵ⊥k (jω),

if ∠ℵ⊥k (jω) ∈ (π,
3π

2
];

|ℵ⊥k (jω)| cos∠ℵ⊥k (jω),

if ∠ℵ⊥k (jω),∠ℵ>k (jω) ∈ (
3π

2
, 2π];

|ℵ⊥k (jω)|min{cos∠ℵ⊥k (jω), cos∠ℵ>k (jω)},

if ∠ℵ⊥k (jω) ∈ (
3π

2
, 2π], ∠ℵ>k (jω) ∈ (2π,

5π

2
].

(31)
where, respectively, |ℵ>k (jω)|, |ℵ⊥k (jω)|, ∠ℵ>k (jω), and
∠ℵ⊥k (jω) are given by

|ℵ>k (jω)| = ∆rmax(ω)|ℵ̂k(jω)|
|ℵ⊥k (jω)| = ∆rmin(ω)|ℵ̂k(jω)|
∠ℵ⊥k (jω) = ∠ℵ̂k(jω) + ∆θmin(ω)

∠ℵ>k (jω) = ∠ℵ̂k(jω) + ∆θmax(ω)

(32)

Proof: The proof is similar to that of Theorem 1, by
replacing NODR |ℵk(jω)| with its bounds in amplitude and
phase as given by Eq. (24), (27) and (28), respectively. Then
the range of the iterative coefficient ρk(ω) for convergence can
be represented by the bounds of NODR, as given in Eqs. (30)
and (31), respectively.

Remark 2: The upper bound of the iterative coefficient
ρk(jω) is well defined, as before every kth iteration, all the
terms in the bound are already known, and thereby can be used
to quantify the value of ρk(jω) used in the next kth iteration.

3) OPTIMAL ITERATION GAIN:
Theorem 2: At any given frequency ω, let the conditions in

Corollary 1 be satisfied, then with the following choice of the
iterative gain, ρ∗k(ω),

ρ∗k(ω) = 1 + |ℵk(jω)| cos∠ℵk(jω), (33)

(1) the convergence rate is maximized, i.e., for any k ≥ 2,
|Dk(jω)| is maximum at ρk(ω) = ρ∗k(ω).

(2) the upper bound of the residual tacking error is mini-
mized, i.e.,

Er,k(jω) , Ek∗

r,η < Ek∗

r,τ , (34)

where Ek∗

r,η has the same expression as Ek∗

r,τ given in
Eq. (15) with τ replaced by η, and

Ek∗

η =
1− ηk∗

1− η
2εn < Ek∗

τ , (35)

(3) the use of the ODDD-IIC consistently improves the
tracking at frequency ω, i.e.,

Er,k(jω) < 1, for 2 ≤ k ≤ k∗, (36)

if for any given NSR less than 0.5, i.e., εn < 0.5, the
NODR is bounded above by η < η∗ < 1 with

η∗ =
1

2Er,1(jω)

[
Er,1(jω) + 1−

√
Êr,1(jω)

]
,

where

Êr,1(jω) ,(Er,1(jω) + 1)2 − 4Er,1(jω)(1− 2εn).
(37)

Proof: By Eq. (23), the value of ρk(ω) that minimizes
the upper bound of |Dk(ρk(ω))| minimizes and maximizes
the upper bound of the residual error and the convergence
rate, respectively. Being quadratic in ρk(ω), |Dk(ρk(ω))|2
is minimized when ρk(ω) is chosen as in Eq. (33), i.e., at
ρk(ω) = ρ∗k(ω),

|D∗k(jω)|2 =

∣∣∣∣1 + ℵk(jω)− 1− |ℵk(jω)| cos∠ℵk(jω)

1 + ℵk(jω)

∣∣∣∣2
=

(|ℵk(jω)| sin∠ℵk(jω))2

|1 + ℵk(jω)|2
<|Dk(jω)|2, (for ρk(ω) 6= ρ∗k(ω))

(38)

therefore

sup
ℵk
|D∗k(jω)| =η < sup

ℵk
|Dk(jω)| = τ < 1. (39)

And by lemma 1 (Eqs. (9-11)) and the triangle inequality,
the relative error is also minimized by setting ρk(ω) = ρ∗k(ω)
the relative error is also minimized as given in Eq. (34).

Finally, to find the upper bound of NODR, η, for improv-
ing the tracking consistently, we note that with the optimal
iterative gain ρ∗k(ω), by Eq. (34),

Er,k(jω) <

[
Er,1(jω)η +

1

1− η
2εn

]
< 1, (40)

for ∀k ≥ k∗. Solving the above inequality for the upper bound
of η leads to η∗ given in Eq. (37), and it can be verified that
for εn ∈ (0, 1/2), η∗ < 1. This completes the proof.

Remark 3 (Geometry Interpretation): As shown in Fig. 2,
the length of the vector

−→
OA equals to its minima,

−−→
OE,

when ρk(ω) = 1 + Re(ℵk), so is |Dk(jω)| = |D∗k(jω)| =

|
−−→
OE|/|

−−→
OB|, and the convergence rate is maximized. Mean-

while, the upper bound of the residual error is inversely
proportional to the upper bound of |Dk(jω)| (see Eq. (23)).
Therefore, when ρk(ω) = 1 + Re(ℵk), both minimal upper
bound of the residual error and maximal convergence rate are
reached simultaneously.

Remark 4: In practice, the optimal iteration gain ρ∗k(ω) can
be approximated by using an estimated NODR. For example,
the NODR can be estimated by using the averaged value of
the frequency responses obtained in multiple measurements to
replace the true value of the frequency response in Eq. (24),
and the estimated NODR is then used to compute the optimal
gain via Eq. (33).
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Remark 5: For guaranteed consistent tracking improve-
ment, the allowed NSR εn < 1/2 is larger than that for
the modeling-free inversion-based iterative control (MIIC) at
(1 −

√
2/2) ≈ 0.3 [11]. Also, the allowable NODR η∗

quantified above is quite large. For example, when εn < 3/16
and Er,1(jω) < 1/2, as large as η∗ = 1/2 is allowed.

B. ROBUSTNESS AND PERFORMANCE
IMPROVEMENT OVER MFDIIC

Next, we discuss the improvement of the proposed ODDD-
IIC over the previously proposed constant-gain MFDIIC algo-
rithm [10] in both performance and robustness, where

uk+1(jω) = uk(jω) + ρ
Iu,k(jω)

Iy,k(jω)
× ek(jω), k ≥ 1, (41)

where u0(jω) and u1(jω) are the same as given in Eq. (3)
respectively. First, we can show similarly as Theorem 1 the
convergence of MFDIIC as stated below

Theorem 3: At any frequency ω, let the NODR be less than
1/2, i.e.,

|ℵk(jω)| =
∣∣∣∣ Iy,k(jω)

GIu,k(jω)
− 1

∣∣∣∣ ≤ ηM <
1

2
, k ≥ 1, (42)

then with ρ = 1, the MFDIIC converges and the relative
tracking error is bounded as

Er,k+1 ≤
(

ηM
1− ηM

)k∗
Er,1 +

2− 2ηM
1− 2ηM

εn (43)

for any k ≥ k∗.
The proof is similar to Theorem 1 and is omitted. The above

Theorem 3 shows that the proposed ODDD-IIC, by employing
a frequency and iteration dependent coefficient ρk(ω), allows
a larger NODR than the constant-coefficient MFDIIC does,
resulting in an improvement in both robustness and perfor-
mance (from a larger frequency range of convergence). More
specifically, we have the following Theorem.

Theorem 4: Let the conditions in Theorem 1 be satisfied at
frequency ω, then
(1) By choosing the iteration gain ρk(ω) as

1− 2|ℵ>k (jω)| < ρk(ω) < 1, if ∠ℵk(jω) ∈ (
π

2
,

3π

2
),

or

1 ≤ ρk(ω) < 1 + 2|ℵ⊥k (jω)|, otherwise,
(44)

the ODDD-IIC converges faster than or at least not slower
than that of MFDIIC, i.e.,

|Dk(jω)| ≤ |Ek(jω)| < 1, (45)

where Dk(jω) is as in Eq. (10), and Ek(jω) given by

Ek(jω) = 1−G(jω)
Iu,k(jω)

Iy,k(jω)
, k ≥ 1, (46)

is as Dk(jω) in Eq. (9) when the ODDD-IIC is replaced
with the MFDIIC law.

(2) For frequencies ωd ∈ Sk, where

Sk =

{
ωd

∣∣∣∣|ℵk(ωd)| ∈ (
1

2
, 1)

}
, (47)

the convergence of the ODDD-IIC algorithm is guaran-
teed by choosing ρk(ωd) as

0 < ρk(ωd) < 2− 2|ℵ>k (jωd)|, (48)

whereas the convergence of MFDIIC is not guaranteed.
Proof: By algebraic operation, it can be verified that

showing the ODDD-IIC converges faster than that MFDIIC
amounts to showing that∣∣∣∣1− ρk(ω)G

Iu,k(jω)

Iy,k(jω)

∣∣∣∣ ≤ ∣∣∣∣1−G
Iu,k(jω)

Iy,k(jω)

∣∣∣∣ . (49)

Or equivalently,

[ρk(ω)− (1 + |ℵk| cos∠ℵk(jω))]2 ≤ |ℵk|2 cos2 ∠ℵk(jω).
(50)

By considering the sign of cos∠ℵk(jω), it can be verified
that the above inequality (50) holds by choosing ρk(ω) as in
Eq. (44).

To show Statement 2, it can be verified that for ωd ∈ Sk, by
choosing ρk(ωd) as in Eq. (48) we have |Dk(jωd)| < 1, and
thereby, ODDD-IIC converges. However, for ωd ∈ Sk, when
the phase of NODR, ∠ℵk(jωd), falls into the range of

π − arccos(
1

2|ℵ⊥k (jωd)|
) < ∠ℵk(ωd)

< π + arccos(
1

2|ℵ⊥k (jωd)|
),

(51)

we have

1 + 2|ℵk(jωd)| cos∠ℵk(jωd) < 0. (52)

Or, equivalently ∣∣∣∣ ℵk(jωd)

1 + ℵk(jωd)

∣∣∣∣ > 1, (53)

and thereby

|Ek(jωd)| =
∣∣∣∣1−G

Iu,k(jωd)

Iy,k(jωd)

∣∣∣∣
=

∣∣∣∣1− 1

1 + ℵk(jωd)

∣∣∣∣ > 1.

(54)

The disturbance, δyn,k(jωd), being random implies that
the NODR, ℵk(jωd), is also random in each iteration. Thus,
there exist iterations during which Eq. (50) holds, and thereby
|Ek(jωd)| > 1. The randomness nature of NODR also implies
that |Ek(jωd)| > 1 occurs during the entire process, and no
asymptotic convergence can be guaranteed. This completes the
proof.

Remark 6: The condition of Eq. (44) is well-defined: Al-
though the NODR, ℵk(jω), is random, after each iteration
its angle and phase in that iteration are determined and
known, thereby, can be used to check and design ρk(ω). In
practice, the phase condition of ∠ℵk(jω) can be estimated
by using ∠ℵ̂k(jω) as in Corollary 1. Therefore, Theorem 4
characterizes the improvements the proposed ODDD-IIC over
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the constant-gain MFDIIC algorithm in both performance and
robustness.

As a summary, we describe the implementation of the
proposed ODDD-IIC algorithm in the following Algorithm.

Algorithm 1: Implementation of the ODDD-IIC

1 Measure the noise level of the system, yn(jω), and the
frequency responses of the system, Ĝ(jω), under
different conditions.

2 Estimate the range of magnitude and phase variations
by Eqs. (25), (26).

3 Estimate the NSR via Eqs. (2) and determine the
frequency range within which the algorithm is
applied.

4 Obtain an initial input u0(jω) by choosing a constant
α in Eq. (1) (e.g. DC gain of the system).

5 Apply u0(jω) to the system, acquire the output
y0(jω).

6 Substitute u0(jω) and y0(jω) into Eq. (2) to obtain
u1(jω). if iteration numbers k ≥ 1 then

(1) Apply uk(jω) to the system and acquire yk(jω),
ek(jω).

(2) Estimate the NODR ℵk(jω) by Eq. (24), and use it
determine ρ∗k(jω) via Eq. (33).

(3) Determine uk+1(jω) using Eq. (5) from uk(jω),
uk−1(jω), yk−1(jω), yk(jω) and ρk(jω).

(4) Set k ← k + 1, repeat from (1) to (3) until the
convergence is reached.

III. EXPERIMENTAL EXAMPLE

In this section, we implemented the ODDD-IIC method in
output tracking of a piezoelectric actuator.

A. EXPERIMENTAL SETUP

The piezoactuator was employed for the positioning and
actuation in an atomic force microscope (AFM) system (Di-
mension ICON, Bruker-Nano Inc.). All control algorithms and
inputs were coded and generated in the MATLAB XPC-target
environment (Mathworks Inc.). The PID controller of the
AFM system had been bypassed when external control inputs
were applied. The sampling rate was set at 40 KHz. Triangle
signals at four different rates (100 Hz, 200 Hz, 320 Hz, and
400 Hz) and the following multi-sine wave signal, yd,ms(t),
were chosen as the desired trajectories,

yd,ms(t) =
35∑
k=1

ak sin(ωkt), (55)

with ak ∈ (0, 1), ω1 = 13, ω2 = 38, and ωk = 38 + 30(k −
2) for 3 ≤ k ≤ 35, respectively. The hysteresis effect was
suppressed by keeping the amplitude of the desired signals
less than 9% of the total displacement range of the piezo-
actuator.

B. IMPLEMENTATION OF THE ODDD-IIC TECHNIQUE

We started the implementation by quantifying the modeling
uncertainty of the system, ∆rmax(ω) and ∆rmin(ω), to de-
termine the range of the iterative gain ρk(jω) (see Eq. (30)).
The modeling uncertainty was estimated by measuring the
frequency responses (FR) with a band-limited white-noise
input at ten different amplitudes. The maximum, minimum,
and averaged values of the measured magnitudes and phases
are shown in Fig. 2, and the upper and lower bound of the
magnitude and the phase differences, are shown in Fig. 4,
respectively. The resonance of and the open-loop bandwidth of
the system were at 780 Hz and 1.39 KHz, respectively, and the
relative magnitude and phase variation around the resonance
was at 11.2% and 280%, respectively.
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Fig. 3. The averaged measured frequency response ( ), the upper
bound ( ) and the lower bound ( ), respectively.
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Fig. 4. The upper and lower bound of the magnitude uncertainty
(∆rmax(ω) and ∆rmin(ω), respectively) and phase uncertainty
(∆θmax(ω) and θmin(ω), respectively).

The implementation was shown in Algorithm 1, which
shows that only the frequency response need to be measured
a priori, the optimal iteration gain given by Eq. (33) was
updated in each iteration at frequencies where the convergence
conditions in Eqs. (2), (6) held, and set to zero otherwise.
For comparison, the MFDIIC [10] and the IIC [12] were
also implemented. A unit iterative coefficient was chosen
(ρk(ω) = 1 ∀k) in the MFDIIC and IIC, and the inverse of
the averaged frequency response was used in the IIC algorithm
[12]. Moreover, to examine the improvement of the proposed

This article has been accepted for publication in IEEE Transactions on Control Systems Technology. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TCST.2022.3168496

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

0    0.0125 0.025 0.0375
Time[s]

-5

0

5

D
is

pl
ac

em
en

t[
m

]
[a]

[b]
0 0.0125 0.025 0.0375

Time[s]

-10

0

10
D

is
pl

ac
em

en
t[

m
]

0

0.2

0.4

0.6

Po
w

er
[d

B]

0 200 400 600 800 1000 1200 1400
Frequency[Hz]

[c]

Fig. 5. [a]: the multi-sine wave, [b]: the filtered multi-sine wave trajectory,
and [c]: comparison of the power spectrum of the multi-sine wave
( ) and and the filtered multi-sine wave ( ), respectively, where the
frequencies in the dashed box appeared only in the original multi-sine
wave.

ODDD-IIC over the constant-gain MFDIIC algorithm (see
Theorem 4), the multi-sinewave signal was passed through a
fourth-order Butterworth bandpass filter to remove the eight
frequency components around the resonant peak of the system
at which the convergence condition for the MFDIIC did not
hold: 638 Hz, 668 Hz, 698 Hz, 728 Hz, 758 Hz, 788 Hz,
818 Hz and 848 Hz. The original and the filtered multisine
waves and their power spectrum are compared in Fig. 5.
The filtered signal was tracked by using both the ODDD-
IIC and the MFDIIC. In this experiment, the iterations of all
the ODDD-IIC/MFDIIC/IIC were terminated when the relative
two-norm output error E2(%) and the relative maximum
tracking error Emax(%) could not be further reduced, where
E2(%) and Emax(%) are defined below, respectively,

E2(%) =
‖ yd(·)− y(·) ‖2
‖ yd(·) ‖2

× 100%, (56)

Emax(%) =
‖ yd(·)− y(·) ‖∞
‖ yd(·) ‖∞

× 100%. (57)

IV. TRACKING RESULTS AND DISCUSSION

A. TRACKING RESULTS

The tracking results of the triangle trajectories at four
different rates obtained by using the three methods are com-
pared in Fig. 6 and Fig. 7, with the corresponding tracking
errors compared in Fig. 8, respectively. The overall relative
two-norm, E2(%), and maximum tacking errors, Emax(%),
are presented in Fig. 9, and the convergence of E2(%) and
Emax(%) along with the iterations are shown in Fig. 10 for
the 400 Hz triangle tracking, respectively.

The output tracking and the tracking error of the original and
the filtered multi-sine wave trajectories obtained by using the
ODDD-IIC and the MFDIIC technique are shown in Fig. 11
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(a1) to (b2), respectively. The tracking error is analyzed and
compared in Fig. 12 and 13, respectively.
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B. DISCUSSION
1) TRIANGLE TRAJECTORY TRACKING: The experimen-

tal results showed that by using the proposed ODDD-IIC
technique, the tracking performance can be further improved
over the MFDIIC and the IIC techniques— two highly efficient
ILC techniques already demonstrated in various applications
[10], [26], [27]. At the relatively low triangle rate of 100 Hz,
precision tracking was achieved by all the three methods, with
the tracking error (in both the relative 2-norm and maximum

This article has been accepted for publication in IEEE Transactions on Control Systems Technology. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TCST.2022.3168496

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

MFDIIC ODDD-IC

Multi-sine Filtered multi-sine
Trajectory

0

5

10

15

20

25

30
E 2[%

]

Multi-sine Filtered multi-sine
Trajectory

0

2.5

5

7.5

10

12.5

15

E m
ax

[%
]

Fig. 13. Comparison of (left) the relieve 2-norm and (right) the relative
maximum tracking error of the MFDIIC and the ODDD-IIC when tracking
the original and the filtered multi-sine wave tracking results, respectively.

101 102 103

Frequency[Hz]

0.2

0.6

1.0

M
ag

ni
tu

de

101 102 103

Frequency[Hz]

0.2

1.1

2.0

M
ag

ni
tu

de

0.5

Fig. 14. |ℵ̂5(jω)| (top) and ρ5(ω) (bottom) when tracking the original
multi sine wave. The value of 0.5 ( ) is plotted in the top figure.

error) all below 1% and 1.5%, respectively (see Fig. 6 (a1),
(b1), Fig. 8 (a1), and Fig. 9). Such a precision tracking was
maintained when the triangle rate was increased to 200 Hz.
Compared to the IIC method, however, the proposed technique
was still able to further reduce the tracking error by over
30% (see Fig. 6 (a2), (b2), Fig. 8 (a2) and Fig. 9). As
the rate was further increased to 320 Hz and 400 Hz, the
tracking error of the IIC became pronouncedly larger than
that of both the MFDIIC and the ODDD-IIC techniques (See
Fig. 7, and Fig. 8 (a3), (a4)), with the relative 2-norm and
maximum error over 2 and 3 times larger than that of both the
MFDIIC and the ODDD-IIC, respectively (see Fig. 9). Such an
improvement in tracking precision manifested the advantages
of data-driven ILCs: By updating the dynamics “model”—
instead of using a fixed model—in each iteration, modeling
error was eliminated, including that caused by the hysteresis
effect of the piezo actuator (albeit small in this experiment).
Moreover, dynamics changes of the piezo actuator were also
accounted for without trade-off to the tracking performance.
Whereas in the IIC method, to account for the quasi-static
changes of the system dynamics (before the operation or
between iterations), the frequency range for convergence was
reduced, resulting in larger tracking error at high-speed. By
adjusting the iteration gain at each frequency and in each
iteration accordingly (see Corollary 1), the proposed ODDD-
IIC exploited the benefits of data-driven for enlarging the

convergence frequency range, thereby, further improving the
tracking precision: At the triangle rate of 400 Hz, the relative
2-norm and maximum tracking error of the ODDD-IIC were
only at 0.75% and 2.5%, respectively, 56% and 55% smaller
than those of the MFDIIC, respectively. Moreover, such a
precision tracking was attained rather quickly —As shown
in Fig. 10, the ODDD-IIC algorithm converged rapidly and
reached the limit in only 7 to 8 iterations. As the major
frequency components of 400 Hz triangle wave were already
higher than the first resonance of the piezo actuator around
780 Hz (see Fig. 3), such a tracking precision—obtained after
only 7 or 8 iterations without prior modeling—spoke to the
efficacy and efficiency of the proposed technique in high-speed
tracking.

2) MULTI-SINE SIGNAL TRACKING: The experimental re-
sults on the multi-sine wave tracking results further demon-
strated the improvements of the proposed approach in ro-
bustness and performance over the constant-gain MFDIIC
method. Compared to the triangle wave, the multi-sine wave
contained many more high frequency components with larger
amplitude (whereas the amplitude of the high-order harmonics
of triangle waves dropped rapidly), thereby, was more difficult
track. By using the proposed ODDD-IIC technique, precision
tracking was still achieved, with both the relative 2-norm and
maximum tracking error below 5% (See Fig. 11 (a1), (b1)
and Fig. 13). In contrast, when using the MFDIIC method,
the 2-norm and maximum tracking errors were 5 and 3 times
larger, respectively. Comparison of the tracking error in power
spectrum shows this difference in tracking performance was
mainly due to the inability of the MFDIIC to track those
frequencies around the resonant frequency—those for which
the convergence condition of the MFDIIC did not hold (see
Fig. 12 top). The comparison of the filtered multi-sine wave
tracking further confirmed this observation: After removing
these convergence-violation frequencies, the tracking precision
of the MFDIIC technique was restored and close to that of the
ODDD-IIC technique (see Figs. 11, 12,and 13), with the track-
ing of the ODDD-IIC still slightly better, particularly around
those difficult-to-track frequencies (see Fig. 12 bottom).

Such a difference in the tracking performance, indeed,
demonstrated the improvement in robustness/performance
through the proposed ODDD-IIC technique: As can be seen
from the power spectrum of the NODR in the fifth iteration,
|ℵ̂5(jω)|, the eight filtered frequency components (see Fig. 14)
were all in the frequency range where the NODR exceeded
0.5–the threshold for guaranteeing the convergence of MFDIIC
(see Theorem 3). Thus, a larger tracking error occurred when
these frequencies were included in the desired trajectory.
Whereas, by employing a frequency- and iteration- dependent
gain, the proposed technique was able to track these frequency
components accurately: As shown in Fig. 14, the iteration
gain was reduced when the measured NODR became larger.
Therefore, the experimental results showed that the proposed
approach provided an effective and efficient means to exploit
input-output data while accounting for dynamics variations and
external disturbance.
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V. CONCLUSION

This paper proposed an optimal data-driven difference
inversion-based iterative control (ODDD-IIC) method for
high-speed tracking in the presence of dynamics changes and
random disturbances. The iteration gain was chosen to be
frequency- and iteration- dependent, and the convergence of
the proposed method under the effect of random disturbance
was analyzed. The optimal iteration gain that minimizes the
residual tracking error and maximizes the convergence rate
was also obtained. It was shown that the proposed ODDD-IIC
method improved both robustness and tracking performance
over the previous constant-gain MFDIIC method. The exper-
imental implementation on a piezoactuator demonstrated that
the proposed ODDD-IIC method achieved superior tracking
performance and enhanced robustness over the IIC and the
MFDIIC techniques.For the future work, the technique might
be extended to more general systems such as Hammerstein
system with nonlinear hysteresis behaviors [28], and to MIMO
systems [29].
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