ISPRS Open Journal of Photogrammetry and Remote Sensing 7 (2023) 100028

Contents lists available at ScienceDirect

ISPRS Open Journal of Photogrammetry
and Remote Sensing

journal homepage: www.journals.elsevier.com/isprs-open-journal-of-photogrammetry-and-remote-
sensing

RAMMETRY
AND REMOTE SENSING

FELSEVIER

m |
Check for |
updates

Estimation of lidar-based gridded DEM uncertainty with varying terrain
roughness and point density

Luyen K. Bui ™" , Craig L. Glennie”

* Department of Civil and Envi I Engincering, University of Houston, Houston, TX, 77386, United States
® Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, Hanoi, Viet Nam

ARTICLE INFO ABSTRACT

Keywords: Light detection and ranging (lidar) scanning systems can be used to provide a point cloud with high quality and
LIDAR point density. Gridded digital elevation models (DEMs) interpolated from laser scanning point clouds are widely
TN . used due to their convenience, however, DEM uncertainty is rarely provided. This paper proposes an end-to-end
Smt;n w ez workflow to quantify the uncertainty (i.e., standard deviation) of a gridded lidar-derived DEM. A benefit of the
Tt mugir:ei:g proposed approach is that it does not require independent validation data measured by alternative means. The
Point density input point cloud requires per point uncertainty which is derived from lidar system observational uncertainty.

The propagated uncertainty caused by interpolation is then derived by the general law of propagation of vari-
ances (GLOPOV) with simultaneous consideration of both horizontal and vertical point cloud uncertainties.
Finally, the interpolated uncertainty is then scaled by point density and a measure of terrain roughness to arrive
at the final gridded DEM uncertainty. The proposed approach is tested with two lidar datasets measured in
Waikoloa, Hawaii, and Sitka, Alaska. Triangulated irregular network (TIN) interpolation is chosen as the
representative gridding approach. The results indicate estimated terrain roughness/point density scale factors
ranging between 1 (in flat areas) and 7.6 (in high roughness areas), with a mean value of 2.3 for the Waikoloa
dataset and between 1 and 9.2 with a mean value of 1.2 for the Sitka dataset. As a result, the final gridded DEM
uncertainties are estimated between 0.059 m and 0.677 m with a mean value of 0.164 m for the Waikoloa dataset
and between 0.059 m and 1.723 m with a mean value of 0.097 m for the Sitka dataset.

1. Iniroduction points, e.g., Root Mean Square Error (RMSE) (Aguilar et al., 2010; Su

and Bork, 2006; Spaete et al., 2011; Wechsler and Iroll, 2006), or

Digital elevation models (DEMs) are representations of the Earth’s
surface, and are used for a wide range of applications including hy-
drology, geomorphology, and environmental modeling (Wechsler and
Iroll, 2006). DEMs can be generated by various methods, such as laser
scanning (Liu, 2008), Interferometric Synthetic Aperture Radar (InSAR)
(Rabus et al., 2002), global navigation satellite system (GNSS) (Abd Aziz
et al., 2009), photogrammetry (Ouedraogo et al., 2014), and total sta-
tions (Fuller et al., 2003). In all cases measurement errors influence the
DEMs’ quality, which can be assessed by comparison with an indepen-
dent reference surface (Brasington et al., 2000, 2003). However, a
reference swrface is not always available and therefore an alternative
approach is to use independently measured data or diagnostic surface
visualization (Heritage et al., 2009). By using independently measured
data, DEM accuracy can be represented by statistical quantities of the
difference between the DEM and independent measurements at discrete

standard deviation (STD) (Carlisle, 2005; Wechsler and Kroll, 2006).
Independent samples not used for DEM construction can be used for
assessing interpolation errors rather than for absolute DEM accuracy.
However, this requires measurements made by a method other than that
used in DEM generation, e.g., GNSS, total station, or leveling. Moreover,
these data should be of higher accuracy and do not normally have the
same characteristics as those of the DEM in terms of spatial density and
coverage.

Airborne laser scanning (ALS) is a method that has been widely
applied as topographic measurements to generate DEMs. ALS has the
advantages of high accuracy and density with no dependence on solar
illumination (Glennie et al., 2013). Uncertainty of the light detection
and ranging (lidar) point cloud can also be estimated without the
requirement for high quality independent measurements, based on er-
rors from GNSS-based positioning, Inertial Measurement Unit (IMU)
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Fig. 1. Workflow of the proposed approach used to estimate gridded DEM uncertainty from lidar-derived point cloud uncertainty.

attitude, laser angular measurements, boresight angles, and lever-arm
offsets (Glennie, 2007). Though a dense and irregular dense and irreg-
ular point cloud is one of the benefits of laser scanning, a gridded DEM is
frequently utilized (Glennie et al., 2013), which is generated by inter-
polation by, e.g., nearest neighbor (Kidner, 2003), triangulated irregular
network (TIN) (Fan et al., 2014), linear (Kyrialddis and Goodchild,
2006), high-order polynomials (Shi et al., 2005), inverse distance
weighted (IDW) (Azuilar et al., 2010), and Kriging (Rees. 2000); among
which, TIN is the most popular. Therefore, a gridded DEM's uncertainty
is composed of 1) lidar point uncertainty, 2) uncertainty propagated
through interpolation, and is influenced by 3) the density of the obser-
vations and 4) the roughness of the observed surface (Agiiera-Vega etal.,
2020; Aguilar et al., 2010; Heritage et al., 2009; Liu et al., 2007).

A realistic uncertainty propagation is crucial to quantify the preci-
sion of a DEM derived from ALS. Additionally, the propagated uncer-
tainty of an airborne lidar-derived DEM is needed for estimating
confidence in derived products, e.g., snow volume measured from
change detection (Hartzell et al., 2015). The estimation of lidar point
uncertainty (i.e., per point error, PPE) has been studied in the literature.
However, most previous studies were based on reference points
measured by a method other than laser scanning (Hodgson and Bres-
nahan, 2004), except for a few studies that relied on raw lidar obser-
vations (Glennie, 2007; Hartzell et al., 2015). The propagation of
uncertainty from the point cloud to a gridded DEM has been studied by a
number of published works. However, the majority of these studies
accounted for PPE vertical error only (e.g., Aguilar et al., 2010; Kyr-
iakidis and Goodehild, 2006; Shi et al., 2005; Zhu et al., 2005), or both
the horizontal and vertical components separately (e.g., Fan et al.
2014). Little work has considered the two components simultaneously
(Bui et al., 2022; Skaloud and Schaer, 2012), and in all cases terrain
roughness and point density were not considered in the propagation of
uncertainty to the final DEM.

The influence of terrain roughness and the density and distribution of
data points on the resultant DEM errors have been previously reported,
but most of the studies used validation data measured independently by
other methods (e.g., Aguilar et al., 2010; Smith et al., 2006; Su and Bork,
2006), except for a few studies which are based on the lidar data itself
(Heritage et al., 2009; Milan et al., 2011). In Heritage et al. (2009),
various gridded DEMs were generated in the same area by interpolation
from terrestrial laser scanning (TLS), EDM theodolite, and aerial lidar

simulated datasets, by which “interpolated” errors were estimated as the
difference between each generated DEM and the TLS-based DEM.
Averaged “interpolated” error and local terrain roughness, defined by
the standard deviation of elevations of all points included, were then
calculated on a 0.1-m grid. The “interpolated” errors in this approach
included both errors caused by interpolation and measurement error
from the TLS and other methods (i.e., EDM theodolite or ALS simula-
tion). In addition, this approach utilized averaged “interpolated” errors
rather than their standard deviation, which is more useful in comparison
with other studies. The measurement error was also not considered.

To overcome the drawbacks of the method proposed by Heritage
et al. (2009), Milan et al. (2011) introduced a method that relies on the
relationship between the standard deviation of interpolation errors and
local terrain roughness. A linear interpolation was applied to the point
cloud dataset by which the “interpolated” error was estimated as the
difference between measured and interpolated elevations. At the same
time, a 1-m moving window was applied to 0.1-m grids to collect all
included points, and local terrain roughness was estimated as the stan-
dard deviation of the collected points’ elevations. The local terrain
roughness at each cloud point was then extracted from these 0.1-m grids.
The relationship between the standard deviation of “interpolated” errors
and local terrain roughness was established by linear regression for each
class of terrain roughness. Finally, at each gridded point, this relation-
ship was applied to estimate its uncertainty. The “interpolated” errors
estimated in this approach, and thus their standard deviation, however,
includes not only the error caused by interpolation but also the mea-
surement error. This aggregation of measurement and interpolation
error does not allow an independent assessment of their individual ef-
fects on final DEM accuracy. Additionally, the point density was not
considered.

This study proposes a complete approach to estimate laser scanning
gridded DEM’s uncertainty (i.e., standard deviation), with the objective
to derive a reliable uncertainty estimate for gridded DEMs generated by
interpolation from AlLS-derived point clouds, with no requirement for
independent validation measurements. This is a full workflow starting
from ALS measurements uncertainties, then considering different error
sources caused by interpolation model (TIN in this study) and local in-
fluences of terrain roughness and point density. Specifically, this
approach is based on: 1) estimated PPE as deseribed by Glennie (2007)
and Hartzell et al. (2015), 2) gridded points’ interpolated errors
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Fig. 2. Topographic heights of the Waikoloa (left) and Sitka (right) point cloud datasets.

propagated from ALS point cloud uncertainty relying on both the hori-
zontal and vertical error components simultaneously developed by Bui
et al. (2022), with consideration of both 3) terrain roughness and 4)
point density by an improved method based on the initial works in
Heritage et al. (2009) and Milan et al. (2011); 1) and 2) have been
studied and presented previously while 3) and 4) are presented for the
first time; all are incorporated in a unified workflow in this study. TIN
interpolation is chosen as the candidate model in this study since it is
one of the most widely-used methods, but the proposed approach can be
easily modified to work with other interpolation methods (e.g., nearest
neighbor, IDW, linear or high-order polynomials).

Unlike Heritage et al. (2009) and Milan et al. (2011) which define
local terrain roughness by the standard deviation of elevation for points
within a 1-m moving window, in the approach developed here, a local
plane is formed by fitting points included in the moving window; local
terrain roughness is then estimated as the standard deviation of residuals
between points and that plane. This is better because, in TIN interpo-
lation, an interpolation error, and thus its uncertainty, is dependent on
how far the interpolated point is away from the plane formed by the
three selected points of the TIN triangle, i.e., the distance or height re-
sidual between the interpolated point and the terrain surface. Addi-
tionally, point density is implicitly dealt with by survey strategy in
Heritage et al. (2009); Milan et al. (201 1). Here, itis explicitly accounted
for by recording the number of points within the moving window. The
method developed in this study is tested with ALS datasets, but can also
be applied to TLS data as well as 3D data from other methods.

The remainder of the study is organized as follows: the model is
introduced in Section 2, the study area and test datasets are given in
Section 2. In Section 4, the experimental results are discussed, and
Section 5 provides study conclusions.

2. Model development

The quality of a DEM is influenced by various sources, e.g., the ac-
curacy of source data (i.e., lidar measurement errors in this study), er-
rors caused by the interpolation method that is used, and those caused
by filtering objects to derive a bare Earth’s surface (Fan et al., 2014; shi
et al., 2005; Zhu et al., 2005). In the current study, the vertical uncer-
tainty of a laser scanning-derived gridded DEM is estimated following
the steps shown by the workflow in Fiz. 1. The uncertainty used
throughout this study is the standard deviation (), except for the var-
iance/covariance of cloud points estimated by Step 1.

In Step 1, PPE is estimated for the entire point cloud dataset, based
on uncertainties in GNSS-derived position, IMU-based attitude, laser
scanner range and angular measurements, boresight angles, and lever-
arm offsets (Glennie, 2007; Hartzell et al., 2015). Given that for an

ALS based system, ground coordinates (T"L) can be estimated using the
laser scanner target coordinate equation (Glennie, 2007), which is given
as:

—l —

T =Toys +RIRT — Tb] (&)

where, 7Icmss is the GNSS location of the navigation system in the local-
level (1) frame, Ri, is the inertial navigation system (INS) rotation matrix
from body frame (b) to [ frame given by the rotation angles , ¢, &, R? is
the rotation of the scanner (s) frame to the INS b frame (also referred to
as the boresight matrix, given by angles dw, dg, dc), T  are the co-
ordinates of the ground point in the laser scanner coordinate frame and
Ty is the offset from the navigation system origin to the scanner origin
(lever-arm).

All parameters on the right hand side of Equation (1) are observed,
and therefore contain errors. We can examine the effects of these errors
by truncating a Taylor Series expansion of Equation (1) after the first
term:

sx1' [sx] 5w sdw & ]° 5l,
5y | = |ar +A|6p | +B|8dp | +C| oy, | +D| sl ®)
Z|, |6Z]) s L% bdic 5z, al,

where the matrices A, B, C and D are the Jacobians of the transformation
and contain partial derivatives of the ground coordinates with respect to

the unknown coordinates as:
—ud ! ! ! ! !
%= [5’_&&& B= [W_aﬁ_aﬁ’_a

50 op ok ddw odp bdx
[ﬁra 5T 6T ] [5?2 5T 5?’;] @)
&, oy, oz 8L, 8l &l

Using Equation (2), we can input estimated errors for the GNSS/INS
navigation system, laser scanner assembly and platform calibration and
estimate uncertainty in the resultant laser scanning ground point co-
ordinates. For additional details the reader is referred to Glennie (2007)
or Schaer et al. (2007).

The propagated uncertainty for the gridded DEM due to interpola-
tion is then estimated from the point cloud uncertainty in Step 2. Here,
the general law of propagation of variances (GLOPOV) is adopted with
both horizontal and vertical components of point cloud uncertainty
considered simultaneously, together with their correlation. The propa-
gated uncertainty 6y, of a gridded point P with coordinates x;, ¥p, 2,
can be estimated as (Bul et al.. 2022):
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where %, %’E—, and % (i=1,2,3) are the partial derivatives of z, w.r.t
the coordinates of the corresponding triangle’s vertices, 63, o3., and o7,
are the variances of the uncertainty in the coordinates of the triangle’s
Vertices, Gyy,, Oz, Oy (1 =1,2,3), and B> Oxyyye Oxizys Oypyya Oyezys Oniays (i,
j=1, 2, 3;i# ) are the corresponding covariances. The variances/co-
variances of the cloud points are computed in Step 1, and the partial

derivatives %, %, and % can be computed as in Bui et al. (2022):
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because interpolation error is dependent on how far away the interpo-
lated point is from the plane formed by the three points of the TIN tri-
angle. Therefore, in the case of a steep surface, a high o, will exist but a
smaller interpolated error may be computed if the interpolated point is
close to the TIN triangle; giving a smaller 64.

The entire point cloud dataset is split into interpolated and remain-
ing datasets; we generated 1-m regular grids, then an interpolated
dataset is formed by selecting only cloud points closest to the 1-m grid
intersections. For each interpolated point in the interpolated dataset, a
moving window is then centered at the point, and the &, of all points
from the remaining dataset located within the moving window is
calculated. For the planar estimate of terrain roughness, a least squares
planar fit of the remaining points within the moving window is formed,
the residuals of the points (z;) with respect to the best-fit plane are
estimated, by which the standard deviation of the residuals (s5) is
computed. Simultaneously, point density (p) is also estimated by
dividing the number of remaining cloud points within the moving
widow by the area of the window, and used to compute terrain rough-
ness/point density (6;/p and o, /p). TIN interpolation is then used to

% = %{(}’3 — 2 )xpA + (¥3 — ¥2)¥,B + (v3 — y2)E + [(z2 — z3)¥p + (¥223 — ¥322)[F}
%’; = %{(}’I —ya)xA 4 (v1 — ¥3)¥,B + (1 — y3)E + [(z3 — 21)¥p + (¥321 — »123)]F}
9z

%,
v
9z
dy2

Y% — %[()’2 - yj)xp + (x3 —xz)y,, + (x23 —Is}’z)]
= = %[()'3 = 1)x + (x1 — x3)yp + (x3y1 — x133)]

23 = %[()'1 — 2% + (2 — x1)¥p + (2132 — 2201)]

where A, B, C, and E are the coefficients for TIN interpolation, which are:

A = Y123 — Y122 + Y221 — Y223 + Y322 — Yz

B =x152 — X123 + X223 — 081 + X321 — X3%2 ©)
E = xyz3 — x1¥322 +X2¥321 — X123 + X312z — X3yaZ)

F =x1¥2 — X1¥3 + X2¥3 — X)) + X3¥1 — X3)2

In Step 3, the relationship between point cloud uncertainty, terrain
roughness, and point density is established. Terrain roughness is ex-
pected to affect interpolation errors, and thus uncertainty, in such a way
that higher terrain roughness will result in higher interpolation un-
certainties (Heritage et al., 2009; Milan et al., 2011; Wheaton et al.,
2010). Conversely, higher point density is expected to result in lower
interpolated uncertainties (Liu et al., 2007). Here, two estimates of
terrain roughness are computed and compared. The first is based on the
approach presented in Heritage et al. (2009) and Milan et al. (2011),
which is defined by local surface variability represented by the standard
deviation of point heights (s;) located within a moving window. The
second is defined by the standard deviation of point residual deviations
with respect to a least squares planar fit of points within a moving
window (o,,). This second measure of terrain roughness is proposed

o %{(}’2 = y1)x5A + (y2 = 31)3pB + (2 = M)E + [(z1 — 22)3p + (122 — y221) |F}
— = %{(xz —x3)xpA + (x2 — x3)¥pB + (x2 —x3)E + [(23 — 22)%p + (3322 — x223)|F }
— = %{(Is —x1)x5A + (x3 — x)y,B + (x3 —x1)E + [(z1 — z3)x, + (x123 — x321)[F} (5)

- = %{(II —x2)xpA + (x1 — x2)¥pB + (x1 —x2) E + [(22 — 21)%p + (1221 — 1122)|F}

compute the heights of points in the interpolated dataset from the
remaining dataset and “interpolation” errors (A;) are computed as the
difference between the interpolated and measured heights. The rela-
tionship between the standard deviation of interpolation error (s4) and
terrain roughness/point density is established; 6:/p and o /p are binned
into regular groups. In each group, all interpolation points with /p and
o, /p lying within a pre-determined range are gathered. Then, 6, and the
mean o,/p and o, /p are computed for each bin. Results for these cal-
culations are provided in Sections 4.1-4.2.

The uncertainty propagation with TIN interpolation in Step 2 is
based on the assumption that the surface represented by the three points
used to form a TIN triangle is a plane. However, in practice, this may not
be the case, and deviation from planar is dependent on both terrain
roughness and sample point density. Therefore, the relationship be-
tween point cloud uncertainty and both terrain roughness and point
density derived from Step 3 is used in Step 4 to scale the GLOPOV
propagated uncertainty estimated in Step 2. In this way, the final un-
certainty of the gridded DEM is calculated. A linear relationship between
terrain roughness/point density and the standard deviation of interpo-
lated errors found in Step 3 is anticipated as:
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Table 1
Statistics of point cloud uncertainty (unit: m?).
Variance/Covariance g2 o Oy FPE Oxx, FFE 8? rrE Cyz,PPE °f,pm
Waikoloa
Minimum 0.003 —0.004 —0.003 0.003 —0.004 0.010
Maximum 0.009 0.001 0.002 0.012 0.003 0.013
Mean 0.003 (V] 1] 0.003 (V] 0.010
Sitka
Minimum 0.006 —0.005 —0.003 0.005 —0.003 0.010
Maximum 0.016 0 0.003 0.015 0.003 0.013
Mean 0.010 —0.001 0 0.010 (4] 0.011
.
or=b+n= )]
P

where b is the y-intercept and n is the slope. Actually, b is close, but not
exactly the standard deviation of interpolated errors at zero terrain
roughness/point density ¢3. Therefore, we modify the relationship
shown in Equation (7] by replacing b by ¢4 so that we have:
oA oz
FA =1+ m? (8)
where m = ai; is the slope/y-intercept fraction. The relationship shown
in Equation (2) is of a modified linear format developed in such a way to
guarantee that, if the fraction = equals zero (i.e., no terrain roughness)
then the estimation of 5, is exactly the zero-roughness uncertainty o3.
Equation () is applied to oa and the mean % found in Step 3 to
estimate m, which can be applied to scale the gridded propagated un-
certainty estimated in Step 2. To this end, the fraction “—P‘T- at each gridded
point is needed. A 1-m moving window is applied to compute terrain
roughness (o5 ) and point density (p) using all cloud points within the
window. The fraction %= is then calculated and the scale factors can be
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estimated for all gridded points as:
scale =1+ m%’ (9)

The final gridded DEM uncertainty is then calculated as:

GDEM = Gprp % Scale (10)

where 6, is the propagated uncertainty of the gridded DEM found in
Step 2 (Equation (4)).

3. Study areas and test datasets

Two lidar datasets at Waikoloa, Hawaii and Sitka, Alaska are used in
this study to test the full workflow proposed in Fig. 1. The former is an
airborne lidar dataset collected by an uncrewed aerial vehicle near
Waikoloa, Hawaii, U.S in September 2019 over volcanic lava fields. The
measurements were made with a Riegl VUX-1UAV laser scanner
mounted on a Riegl RiCopter operating at approximately 50 m above
ground level. The horizontal datum is NADS3(PA11) Hawaii State Plane
Coordinate System Zone 1; the elevations are ellipsoidal. The geographic
location and distribution of the dataset is shown in Fig. 2 (left). A total of
399,179 points are included in the dataset covering an area of ~ 35,
000 m?, with topographic heights of the points ranging between ~ 125
m and ~ 138 m, with a mean value of ~ 132 m. The terrain consists of
complex pahoehoe lava flow formations with scattered low vegetation.

The propagated uncertainty (i.e., per point error; PPE) of the point
cloud dataset was estimated using the approach described in Glennie
(2007) and Hartzell et al. (2075) (Step 1 in Fig. 1). This is calculated
from known lidar ervor sources, including uncertainties from
GNSS-based position, IMU-derived attitude, laser scanner’s range and
angular measurements, boresight angles, and lever-arm offsets. A sum-
mary of point cloud uncertainty statistics is shown in Table |
(maximum, minimum, and mean values); these include the uncertainty
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dataset. Terrain roughness is defined as the standard deviation of height (top panel) and standard deviation of planar residual (bottom panel).

in both horizontal and vertical components and their correlation at each
cloud point. We note that the uncertainty correlation in the X, Y, Z co-
ordinate components is computed for each point, but the correlation
between points is not available.

The second dataset is a helicopter-based lidar collection over a high-
relief terrain area near Sitka, Alaska in May 2016. The measurements
were made by a system combining a Riegl V(Q-480i laser scanner with a
iXBlue ATLANS-C inertial measurement unit, mounted on a Robinson
R44 Raven II helicopter flying at roughly 500 m above ground level. The
reference coordinate system is NADS3(2011) epoch 2010.00; the ele-
vations are ellipsoidal heights with respect to WGS84 (World Geodetic
System 1984) (DMA, 1937, 1991). The geographic location and distri-
bution of the dataset is shown in Fig. 2 (right). A total of 2,550,894
points are included in the dataset covering an area of 1 km?, with
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topographical heights of the points ranging between ~ 0 m and ~ 278 m
with a mean value of ~ 38 m. A summary of point cloud uncertainty
statistics is shown in Table | (maximum, minimum, and mean values);
these include the uncertainty in the horizontal and vertical components
and their correlation at each cloud point. Like the Waikoloa dataset, the
uncertainty correlation in the X, Y, Z coordinate components is
computed for each point, but the correlation between points is not
available.

4, Results and discussion
4.1. Influence of terrain roughness on TIN interpolated errors

The influence of terrain roughness on TIN interpolation is assessed in
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Fig. 5. Relationship between point density and interpolation error (left panel) and the standard deviation of interpolation error (right panel) for the Waikeo-

loa dataset.
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this section with a moving window of different sizes from 1 m to 10 m to
determine the best window size. Interpolation error versus terrain
roughness with a 1-m moving window is shown in Fig. 3 (top-left) and
the relationship between binned s, and o, is shown in Fig. 3 (top-right).
Regression is then applied to evaluate the linear relationship between o
and o,, with a coefficient of determination (R?) of 0.9398. A good cor-
relation between s and o is displayed in Fig. 3 (top-right). However,
more precisely, interpolation error is dependent on how far away the
interpolated point is from the plane formed by the three points of the
TIN triangle. Therefore, in the case of a steep surface, a high o, will exist
but a smaller A; may be computed if the interpolated point is close to the
TIN triangle; giving a smaller . In this case, o, is expected to be a
better representation of terrain roughness.

The relationship between A; and o, is shown in Fig. 3 (bottom-left)
for the same dataset, and unsurprisingly the range of o, is smaller than
that of ¢, (cf. top-left panel of Fiz. 3). Fig. 3 (bottom-right) shows the
relationship between binned o and o, . Linear regression is applied to
the relationship between o, and o, with a higher coefficient of deter-
mination (0.9960). With the consideration of the combined influence of
terrain roughness and point density, a comparison of the influence of
terrain roughness with different moving windows is not shown here.
Rather, a detailed comparison will be provided in Section 4.2.

The same approach was tested with the Sitka dataset. The results
derived from moving windows with sizes from 1 m to 10 m are analyzed.
The comparison between interpolation error and terrain roughness
defined by o, and o3, for the 1-m moving window are shown in Fig. 4
(left), from which the relationship between the standard deviation of
interpolation error (s4) with o, and o, is established (Fig. 4, right).
Regression is then applied to evaluate how o, is linearly associated with
both o, and ¢;,. Like the Waikoloa data, coefficients of determination
(R?) are higher for &, (0.9463) than s, (0.9396), while the range of
terrain roughness is larger in the o, case (up to 4 m) than the o, case
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and the standard deviation of interpolation error (right panel) for the Sitka dataset.

(around 0.6 m). While the fits in Figs. 3 and 4 show high coefficients of
determination, the slopes and intercepts for the lines are not the same for
each dataset. The differences are primarily due to the different point
densities of the datasets, which will be addressed in Section 4.3.

4.2. Influence of point density on TIN interpolated errors

In this section, the influence of point density on TIN interpolation
errors is investigated. The relationship between interpolation error and
point density (p) is examined by using a moving window of different
sizes from 1 m to 10 m. Changes in point density are examined by re-
selecting the remaining points closest to varying grids of 0.5 x 0.5,
0.75 x 0.75, and 1.0 x 1.0 m, together with the original remaining point
cloud dataset. For each case, the interpolated heights are calculated
from the re-selected dataset to calculate interpolation errors, and point
densities are then re-estimated. The relationship between A, and p is
shown in Fig. 5 (left) for the Waikoloa dataset. The point density is then
binned into 1-pt/m? steps and s, is computed for each bin. The rela-
tionship between p and o4 for the 1-m window case is shown in Fig. 5
(right).

Generally, higher point density corresponds to lower interpolation
uncertainties as shown in Fig. 5. The relationship holds for a point
density range between 1 and 8 points/m> (see Fig. 5, right). Beyond this
range, the uncertainty slightly increases with an increase in point den-
sity; this is likely caused by a number of reasons. The first is the varying
effects of horizontal uncertainty. In the case of a high point density (i.e.,
more than 8 points/m? in this experiment), the surface represented by
the TIN triangles can be much steeper than in the case of lower point
density (i.e., fewer than 8 points/mz). Therefore, the influence of point
cloud horizontal uncertainties is more significant. We note here that the
uncertainty of a point interpolated from a point cloud using a TIN is
dependent on the uncertainty of the point cloud, the location of the
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Fig. 7. GLOPOV propagated uncertainty for the gridded DEM: (left) Waikoloa and (right) Sitka. Gaps in Sitka are caused by dense vegetation.
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Table 2
Statistics of GLOPOV propagated uncertainty (6,,,) for the gridded DEM (units:
).

Dataset Minimum Maximum Mean
Waikoloa 0.059 0.122 0.072
Sitka 0.059 0.301 0.079

interpolated point within the selected triangle, and the slope of the tri-
angle (Bui et al., 2022). Both the horizontal and vertical uncertainties
are almost identical between cloud points (see Table 1), so the first in-
fluence is almost equivalent regardless of which points are selected to
form the TIN triangle. The second influence alters the magnitude of
uncertainty at the interpolated point, which is bounded between 1/3
and 1 of the vertical uncertainty (Bui et al., 2022). The influence of point
cloud horizontal uncertainty is very high for high-slope surfaces, and
thus can be dominant for high point density. Additionally, terrain
roughness may also influence the results shown in Fig. 5.

The same approach was applied to the Sitka dataset. The relationship
between p and A, for a 1-m moving window is shown in Fig. & (left) and
between p and op is shown in Fig. 6 (right). A similar result to the
Waikoloa data is presented; higher point density corresponds to lower
uncertainties. In particular, 6, reduces quickly with the increase of p
from 1 |;)0i.1'1t/n12 (~0.183 m) to 20 poi.nt/rn2 (~ 0.064 m). Again, a
comparison of the influence of point density with different moving
windows is not shown here. Instead, a detailed comparison of the
combined influence of terrain roughness and point density (o, /p) will
be given in Section 4.3 for varied window sizes.
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4.3. Uncertainty of a gridded DEM considering both terrain roughness
and point density

The workflow presented in Fig. | is employed to derive the uncer-
tainty of gridded DEMs. Point cloud uncertainties were estimated in Step
1 as shown in Section 3 (Table 1). In Step 2, gridded point propagated
uncertainty (6prop) at 1-m spacing was estimated from point uncertainty
and their correlation from Step 1 by Equation (4) (see Table 1). Fig. 7
shows this propagated uncertainty for both datasets with their statistics
(maximum, minimum, and mean values) given in Table 2. Although
point cloud uncertainty is approximately identical between points (see
Table 1), the propagated uncertainty at the gridded points varies with a
mean value of 0.072 m (Waikoloa) and 0.079 m (Sitka) and a maximum
value of 0.122 m (Waikoloa) and 0.301 m (Sitka). This wide range in the
resultant propagated uncertainty is attributed to the varying influence of
point cloud horizontal uncertainty on gridded point propagated uncer-
tainty, which varies according to the magnitude of the slope of the TIN
triangle (Fan et al.. 2014; Hodgson and Bresnahan, 2004) (Further de-
tails on this ean be found from Bui et al. (2022)).

The individual influences of o5 and p on point cloud uncertainty
have been evaluated in Sections 4.1—4.2. In this section, their combined
influence is investigated and applied to the propagated gridded DEM
uncertainty. The same methods and datasets in Sections 4.1-4.2 are used
here. The fraction 2= is computed for all points in the interpolated
dataset, and a plot showing its relationship with TIN interpolation error
corresponding to the 1-m moving window is shown in Fig. 5 (left). The
results are then binned into regular groups of = In each bin, a standard
deviation of interpolation error and the mean terrain roughness,/point
density are computed with the results shown in Fig. 5 (right). A linear-fit
is then applied to estimate the slope with estimated coefficients of
determination of 0.9822 (Waikoloa) and 0.9596 (Sitka).

The y-intercepts of the linear-fit regressions shown in Fig. & (right)
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Fig. 10. Relationship between terrain roughness/point density and the standard deviation of interpolation error for the Waikoloa dataset for varied moving win-

dow sizes.

reflect the uncertainty with zero terrain roughness, and the slopes reflect
the added uncertainty caused by nonzero terrain roughness/point den-
sity. Ideally, the slope of the line should be dataset independent. As
shown in previous studies (Bui et al.. 2022; Fan et al., 2014; Hu et al..
2009), with a horizontal TIN face and without considering terrain
roughness/point density, the propagated error variance of interpolated
points is expected to be bounded within one-third and one PPE error

variance (6Zppg in Table 1), depending on the location of the interpo-
lated point with respect to the TIN vertices. As a result, the corre-
sponding expected range of the standard deviation of interpolation
errors is between 0.058 m and 0.100 m. The zero terrain rough-
ness/point density uncertainty estimates shown in Fig. S (right) are
0.044 m with the Waikoloa dataset and 0.048 m with the Sitka dataset,
which appear to be underestimated compared to the expected range.
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Fig. 11. Relationship between terrain roughness/point density and the standard deviation of interpolation error for the Sitka dataset for varied moving window sizes.

This is due to the fact that, by definition, the uncertainty is the standard
deviation of the interpolation errors—the differences between the
interpolated heights and the true or the most probable values (Ghilan:
and Wolf, 20710), which was used in PPE uncertainty estimation using
expected uncertainties of lidar measurements (Table 1). However, the
true or the most probable heights are not available with the cloud points,
and the “interpolation” errors were computed as the differences between
interpolated and measured heights (Fiz. 2). We note that these estimated
nonzero terrain roughness/point density uncertainties are not directly
applied in the proposed workflow. Instead, the relationship between
nonzero and zero terrain roughness/point density uncertainties shown
in Equation (8) is applied, which is assumed to be consistent between the
two approaches.

In this study, terrain roughness and point density are defined as the
standard deviation of residual height and the number of points located
within a moving window. Here, we examine these same quantities with
moving windows of different sizes from 1 m to 10 m. The results indicate
that, in general, a larger moving window leads to a higher estimate of
terrain roughness. In contrast, because of the spatially-regular sampling
by airborne lidar, only small changes in the point density are observed
for varied window sizes. As a result, the fraction terrain roughness,/point
density increases with an increase in window size. Fig. 9 shows the mean
terrain roughness/point density computed for varied moving window
sizes. The results show an increase in the mean terrain roughness/point
density from 0.006 mg/pt (Waikoloa) and 0.001 n13/pt (Sitka) fora 1-m

moving window to 0.019 m3/pt (Waikoloa) and 0.018 n13/pt (Sitka) for
a 10-m moving window.

Fig. 10 shows the relationship between terrain roughness/point
density and the standard deviation of interpolation error for moving
window sizes from 2 m to 10 m, for the Waikoloa dataset. In comparison
with Fig. & (top-right) that shows a linear relationship with a high cor-
relation coefficient, Fig. 10 does not show as good a linear correlation,
particularly for windows larger than 3 m. This is likely due to a decor-
relation between terrain roughness estimated using large windows and
TIN interpolation error; a larger window results in higher terrain
roughness/point density (see Fig. 9), but no change in interpolation
error. For TIN interpolation, the height of a point is interpolated from a
triangle generated using three surrounding points, and the ‘interpolation
error’ is the vertical distance between the actual point measured on the
surface and that projected from the point to the plane formed by the TIN
triangle. Therefore, the uncertainty of a point is dependent on the ‘local’
roughness, i.e., the roughness defined by near points rather than far
ones. With the current dataset, a 1-m moving window appears most
appropriate and is thus chosen for further examination.

Fig. 11 shows the relationship between terrain roughness/point
density and the standard deviation of interpolation error with different
moving window sizes for the Sitka dataset. By comparing Fig. & (bottom-
right) and Fig. 11, it can be seen that the 1-m moving window has the
highest R? (0.9596). Therefore, a 1-m moving window was selected for
further analysis. A clear nonlinear trend can be found in moving
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Table 3
Statistics of scale, propagated and final uncertainty.
Waikoloa Sitka
Statistics scale Corop F scale Borop [
[m] [m] [m] [m]

Minimum 1.0 0.059 0.059 1.0 0.059 0.059
Maximum 7.6 0.122 0.677 9.2 0.301 1.723
Mean 23 0.072 0.164 1.2 0.079 0.097

windows of 5-m or larger. In agreement with the moving window result
from the Waikoloa dataset, it is suggested that a moving window with
the smallest possible size should be considered. However, it must be
large enough to ensure a sufficient number of points within the window
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to estimate terrain roughness (a minimum of 8 points/samples is
adopted in this study following Milan et al. (2011)). Additionally, this
may also be dependent on the interpolation method that is used, because
some methods such as inverse distance weighting use more cloud points
rather than just the three nearest points, which is the case for TIN
interpolation. Therefore, trials should also be conducted to choose the
best window size (R> was used as the selection eriteria in this study but
other criteria, e.g., correlation coefficient, can also be tested) for the
interpolation method used.

As previously presented, a relationship between zero-roughness and
nonzero-roughness uncertainties is needed. Therefore, the relative
standard deviation of interpolation error is estimated by dividing the
standard deviation of interpolation error by the first value, i.e., that at 0
m?>/pt, with the results shown in Fig. 12. Equation (0) is then used to
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estimate the slope/y-intercept fraction (m) of 226.8411 (Waikoloa) and
203.0414 (Sitka) with coefficients of determination of 0.9822 (Waiko-
loa) and 0.9596 (Sitka).

The fraction 2= is computed for all gridded points using a 1-m moving
window, and then Equation (9) is used to estimate the scale factors. The
resultant scale factors range between 1 (in flat areas) and 7.6 (Waikoloa)
and 9.2 (Sitka) (in high roughness areas), with mean values of 2.3
(Waikoloa) and 1.2 (Sitka) (see Table 3). The final gridded DEM un-
certainty (opgyy) is then estimated using Equation (10) with propagated
gridded uncertainty and scale factors; the results are shown in Fig. 13
with their statistics given in Table 3.

The estimated uncertainty based on the proposed workflow in this
study was then compared with that computed using the approach pre-
sented in Heritage et al. (2009) and Milan et al. (2011), with the results
shown in Fig. 14. With the previous approach, the linear relationships
between terrain roughness/point density and standard deviation of
interpolation error as in Fig. & (right) are used to estimate gridded un-
certainty by applying the estimated 2= This indicates that only terrain
roughness and point density are considered; as a result, the estimated
gridded DEM uncertainty shows a linear behavior (see blue dots in
Fig. 14). By contrast, in the current study, we have shown that, together
with terrain roughness and point density, the estimated uncertainty of a
gridded DEM is also dependent on the horizontal and vertical un-
certainties of the cloud points, the inclination of the TIN triangles, and
the locations of the gridded points relative to the TIN triangle vertices
(see Bui et al. (2022) for more details); as a result, the uncertainty
estimated herein shows variation about a linear trend. These varied
ranges are indicated by the red vertical bars in Fig. 14 that are also
changed according to the increase in terrain roughness,/point density.

5. Conclusions

A realistic uncertainty propagation is crucial for airborne lidar so
that the uncertainty of derived DEMs and derivative products, e.g., snow
volume measured from change detection, can be accurately quantified.
This paper proposed an end-to-end approach to quantify the uncertainty
of gridded DEMs that are derived by interpolation from lidar-based point
clouds using TIN interpolation.

The proposed approach can be utilized to quantify gridded DEM
uncertainty without requiring independently validated data measured
from a method other than the lidar data itself. In addition, both the
horizontal and vertical point cloud uncertainties are dealt with simul-
taneously in the propagated and gridded uncertainty. This is important
because the influence of horizontal uncertainty has been shown to be
significant in steep terrain (i.e., surfaces with high slope angles) and
cannot be neglected; consideration of only cloud point vertical uncer-
tainty significantly underestimates propagated gridded point
uncertainty.

The proposed approach has been applied to two airborne lidar
datasets at Waikoloa, Hawaii and Sitka, Alaska to derive gridded DEM
uncertainties by TIN interpolation. The candidate interpolation model
tested in this study is TIN, but the proposed workflow can be easily
extended to other models, such as nearest neighbor, IDW, linear or high-
order polynomials. The uncertainties derived from this study are useful
not only to show the confidence level of the derived DEM but also for
uncertainty assessment in derivative products such as change maps or
volumetric computations.
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