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Abstract
Finite Gabor frames for ℂN have been extensively studied in the context of signal 
processing, in particular, phase-retrieval in recent years. While the phase-retrieval 
problem asks to distinguish the pure states from their quantum measurements with 
a positive operator valued measure (POVM), the quantum detection problem asks to 
distinguish all the states from their measurements. Inspired by some recent work on 
the quantum detection problem by (discrete) frames and continuous frames, in this 
paper we examine the quantum detection problem with multi-window Gabor frames. 
We firstly obtain a necessary and sufficient condition in terms of the window vec-
tors for a multi-window Gabor frame to be quantum injective. This generalizes the 
known result for the single-window case. As a consequence of this characterization, 
the set of all the multi-window generators (�1,… ,�

s
) for injective Gabor frames 

is Zariski dense in ℂN ⊕⋯⊕ ℂ
N , and consequently every generic multi-window 

Gabor frame is injective and the set of all the injective s-window Gabor frames is 
stable under perturbation. In particular, we present a quantitative stability result for 
one of the metrics. Some examples are also provided to demonstrate the necessity of 
such a characterization for multi-window Gabor frames.
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1  Introduction

The problem of quantum detection is to uniquely determine a state � (a density oper-
ator, i.e., a positive trace-one operator) from quantum measurements described as 
positive operator-valued measures (POVMs) acting on a state via {tr(�(E)�)}E∈Σ, 
where � is a POVM (from �-algebra Σ and taking value in the linear space of 
bounded linear operators on some Hilbert space H ). This problem was recently set-
tled in Botelho-Andrade et al. [2, 3] mainly for finite or infinite but discrete frames 
and Han et  al. [17] for continuous frames by constructing some kinds of frame 
POVMs. The purpose of this paper is to investigate the quantum detection in finite 
dimensional spaces by multi-window Gabor frames.

We firstly recall some background about the quantum detection problem and its 
mathematical formulations. The quantum detection problem was originally from 
quantum state tomography [20] which asks to recover a state from the probabil-
ity of observing outcomes from quantum measurements on this state. The central 
issue is to find a specific POVM � that distinguishes states from their measurements, 
i.e., for two given states �1, �2, tr(�(E)�1) = tr(�(E)�2) for every measurable set E 
implies �1 = �2. Such POVMs are often referred as informationally complete quan-
tum measurements [21]. In this paper, we focus on the POVMs that are induced by 
Hilbert space frame theory [8, 10], and we directly call them frame POVMs [18]. 
The problem of characterizing the frames for quantum detections will be referred to 
as the frame quantum detection problem.

Recall that the notation of (discrete) frames was first introduced by Duffin and 
Shadffer [11], viewed as some kind of “overcomplete basis” as each element can 
be represented via a frame but the representation might not be unique. The concept 
was later generalized to the continuous frame, called frame associated with meas-
ure spaces, or generalized frame [1, 14]. The class of frames in finite dimensional 
spaces, i.e., finite frames [10], is very important due to its significant relevance to 
applications and suitability for computation. Moreover, frames with good structures 
such as group representation frames [22] are of particular interests for both theo-
retical development and applications. Gabor frames, collections of modulations and 
translations of a single vector or multiple vectors, is such a typical example that has 
been extensively studied in Gabor analysis [16] and time-frequency analysis [13]. 
The focus of this paper is to examine the frame quantum detection problem using 
multi-window generated Gabor frames.

As discussed in [2], the frame quantum detection problem actually asks whether 
the phaselift operator associated with a frame POVM is injective on the quantum 
state space. For a multi-window Gabor frame, by characterizing the kernel of the 
phaselift operator we derive the necessary and sufficient condition for a multi-win-
dowed Gabor frame to be injective on the quantum state space. Due to the irreduc-
ibility of the Gabor representation, this happens to be equivalent to the injectivity on 
the entire space Mn(ℂ) (Proposition 2.4). After defining a metric between frames, 
we get that the injective full Gabor frames is stable under perturbation and for each 
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s,  the set of all the multi-window generators (�1,… ,�s) for injective Gabor frames 
is Zariski dense in ℂN ⊕⋯⊕ ℂ

N (s-copies), and so every generic multi-window 
Gabor frame is injective.

The remainder of this paper is organized as follows: In Sect.  2, we introduce 
some necessary notations and the frame quantum detection problem, and point out 
that state-injectivity and Mn(ℂ)-injectivity are the same if a frame contains a tight 
subframe. This clearly applies to finite Gabor frames since every single (nonzero) 
window generated sequence is a tight frame. We characterize all the injective full 
multi-widow Gabor frames, and show that the set of all such injective frames is open 
and dense in Sect. 3. At the end of this paper, we provide a few examples to show 
the existence of injective Gabor frames with window vectors �1,… ,�s such that 
every s − 1 of these window vectors do not generate an injective Gabor frame, and to 
demonstrate that, even for the single-window case, it is much more effective to our 
characterization than using some other known injectivity criterion or the definition 
of injectivity.

2 � Preliminary

2.1 � Notations

We will be working in ℂN . Here is a list of notations that will be used in this paper.

•	 Vectors x ∈ ℂ
n will be treated as column vectors and written as x = (x(i))N−1

i=0
. 

The inner product (for convenience, we always assume that the inner produce is 
linear in the first place and conjugate linear in the second) between vectors x and 
y is defined as 

•	 Mn,m(ℂ)—the space of n × m complex matrices, abbreviated as Mn,m 
( MN = MN,N(ℂ)). MN is a Hilbert space equipped with the Hilbert–Schmidt inner 
product 

 where 
{
ei
}N−1

i=0
 is an orthonormal basis of ℂN .

•	 S(H)—the set of states or density operators on some Hilbert space H, i.e., 
{� ∶ � ≥ 0, tr(�) = 1}. A rank-one state is called pure state.

•	 � = e
2�i

N —the Nth root of unity.
•	 ℤN = {0,… ,N − 1}, the ring of integers mod N. 

ℤ
2
N
= ℤN × ℤN = {(k, l) ∶ k, l ∈ ℤN}.

•	 For any set Λ, denote ♯Λ as the order of the set.

⟨x, y⟩ =
N−1�
i=0

x(i)y(i).

⟨A,B⟩HS = tr(AB∗) =

N−1�
i=0

⟨Aei,Bei⟩,
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Following [18], we give the definition of operator-valued measures.

Definition 2.1  Let (Ω,Σ) be a measurable space and H be a separable Hilbert space. 
A map � ∶ Σ → B(H) is an operator-valued measure (OVM) if for all collections {
Ek

}
k∈ℕ

⊆ Σ with Ei ∩ Ej = � for i ≠ j we have

where the convergence on the right side of the equation above is with respect to the 
weak operator topology of B(H). We say � is 

1.	 bounded if sup{‖𝜈(E)‖ ∶ E ∈ Σ} < ∞.

2.	 self-adjoint if �(E)∗ = �(E), for all E ∈ Σ.

3.	 positive if �(E) ∈ B(H)+, for all E ∈ Σ.

In mathematical physics, � is call a positive operator-valued measure (POVM) if it is 
positive and additionally �(Ω) = idH. We focus on the frame POVMs that are derived 
from the Hilbert space frame theory [8, 10].

Recall that a sequence 
{
fi
}
i∈J

 in a finite or infinite dimensional Hilbert space H is 
called a frame if there exists 0 < A ≤ B < ∞ such that

The constants A,  B above are the lower and upper bounds of the frame, respec-
tively. The frame is called tight if A = B, and Parseval if A = B = 1. In finite-
dimensional space case, for example, complex N-dimensional Hilbert space ℂN , it 
is conventional to deal with finite frames {fi}Mi=1 which are exactly the span sets, i.e., 
span

{
fi
}M

i=1
= ℂ

N .

If 
{
fi
}
i∈J

 is a Parseval frame, we define the operator fi ⊗ fi on H by �
fi ⊗ fi

�
(x) = ⟨x, fi⟩fi, actually fi ⊗ fi is fif ∗i . Let Σ be the �-algebra of all subsets of J, 

then define � ∶ Σ → B(H) by

It is easy to check that � is a POVM. In particularly, in finite-dimensional cases, 
typical as ℂN , consider the POVM induced by finite frames {fi}Mi=1. Since the cor-
responding �-algebra is just the set of all subsets of {1, 2,… ,M}, it is enough to 
handle each singleton 1 ≤ i ≤ M, that is, fi ⊗ fi, rather than all the elements in the �
-algebra when dealing with the POVM as defined above.

Let k ∈ ℤN , l ∈ ℤN . The translation operator Tk and the modulation operator Ml : 
ℂ

N
→ ℂ

N are defined by

�

(⋃
k∈ℕ

Ek

)
=
∑
k∈ℕ

�
(
Ek

)
.

A‖x‖2 ≤ �
i∈J

��⟨x, fi⟩��2 ≤ B‖x‖2, ∀x ∈ H.

𝜈(E) =
∑
i∈E

fi ⊗ fi =
∑
i∈E

fif
∗
i
, ∀E ∈ Σ.

(Tkx)(n) = x(n − k), (Mlx)(n) = �lnx(n).
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To avoid confusion, indexes always have to be assumed modulo N. We will use 
�(k, l) to denote MlTk. Some useful facts are worth pointing out, such as the well-
known commutation relations between translations and modulations [12]

Then it follows that

which implies that � is a projective unitary representation of ℤ2
N

 with the multiplier 
m((m, n), (k, l)) = �−nk [22]. Moreover, { 1√

N
�(m, n)}(m,n)∈ℤ2

N
 forms an orthonormal 

basis of MN as

Furthermore, for every nonzero vector � ∈ ℂ
N ,

that is, the collection {�(m, n)�}(m,n)∈ℤ2
N
 is a tight frame with frame bound N‖�‖2 

hence spans ℂN , which implies the irreducibility of �. Such a frame is called a (sin-
gle-window) Gabor frame.

2.2 � The frame quantum detection problem

As mentioned before, the quantum detection problem is to explore the existence of 
the quantum measurement performed by a POVM �, which can distinguish states on 
some Hilbert space H, that is, for �1, �2 ∈ S, if

it follows that �1 = �2. Let B(Σ,ℝ) denote the set of bounded functions on Σ. Then 
the quantum detection problem asks if there exists a POVM � ensures the following 
map

to be injective.
The frame method to quantum detection problem is to find a Parseval frame 

which induces a frame POVM such that the corresponding map P is injective. We 
consider the generalization of quantum detection problem, that is, we directly work 
with general operators and frames may not be Parseval.

(1)MlTk = �klTkMl, �(m, n)�(k, l) = �kn−ml�(k, l)�(m, n).

�(m, n)�(k, l) = �−nk�(m + k, n + l), ∀ (m, n), (k, l) ∈ ℤ
2
N
,

(2)⟨�(m, n),�(k, l)⟩HS = N�m,k�n,l.

�
(m,n)∈ℤ2

N

���⟨�(m, n)�, x⟩
���
2

=
�

(m,n)∈ℤ2
N

���⟨�(m, n), x�
∗⟩HS���

2

= N‖x�∗‖2
HS

=
�
N‖�‖2

�
‖x‖2,

tr(�1�(E)) = tr(�2�(E)), ∀E ∈ Σ,

P ∶ S(H) → B(Σ,ℝ) P(�)(E) = tr(��(E)), ∀E ∈ Σ.
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In the finite dimensional cases, we will directly work on ℂN , and assume that 
{fi}

M
i=1 is a finite frame in ℂN . Since ⟨T , fif ∗i ⟩HS = ⟨Tfi, fi⟩, the frame quantum detec-

tion problem is formulated as: under what properties of a frame {fi}Mi=1 is the fol-
lowing map

injective? Clearly, such a property for a frame is preserved under a linear isomor-
phism [2], and it is a reasonable relaxation to work with a general frame as every 
frame is similar to a Parseval frame [8, 10].

Definition 2.2  We say that a frame {fi}i∈J  gives quantum injectivity (or is quan-
tum injective, simply as, injective, abbreviated by QI) if the map P associated with 
{fi}i∈J  is injective. Or, if

implies T = 0. Moreover, the P is called the phaselift operator.

Remark 2.3  (i) In the finite-dimensional complex Hilbert space case, a finite frame 
{fi}

M
i=1

 gives quantum injectivity if and only if the frame has the maximal span prop-
erty [6] in the sense that span{fif ∗i } = MN(ℂ). Such a frame clearly distinguishes 
pure states, which is often referred to as a phase-retrievable frame [5]. However, a 
phase-retrievable frame does not necessarily give quantum injectivity.

(ii) Similarly, while a finite frame {fi}Mi=1 that gives quantum injectivity also gives 
state injectivity, i.e., distinguishes all the states in S(H), and the converse is not 
true. However, the following proposition points out that if {fi}Mi=1 contains a tight 
subframe, then these two injectivities are the same. This also explains why we can 
directly work with general operators but not necessarily positive trace-one operators 
as mentioned before since single-window Gabor frames are all tight.

Proposition 2.4  Let {fi}Mi=1 be a frame for ℂN . If there exists a subset Λ of {1,… ,M} 
such that {fi}i∈Λ is a tight frame for ℂN and {fi}Mi=1 is state-injective, then {fi}Mi=1 has 
the maximal span property, i.e., quantum-injective.

Proof  Let T ∈ MN(ℂ) be such that ⟨T , fif ∗i ⟩HS = 0 for j = 1,… ,N. Write

where T+
1
, T−

1
, T+

2
 and T−

2
 are positive operators. Then ⟨T , fif ∗i ⟩HS = 0 implies that 

⟨T+
1
, fif

∗
i
⟩HS = ⟨T−

1
, fif

∗
i
⟩HS and ⟨T+

2
, fif

∗
i
⟩HS = ⟨T−

2
, fif

∗
i
⟩HS for all i = 1,… ,m. Since 

{fi}i∈Λ is a tight frame, 
∑

i∈Λ fif
∗
i
= a ⋅ id for some a > 0. Therefore

(3)P ∶ MN → ℂ
M , T ↦ (⟨Tfi, fi⟩)M1=1

⟨Tfi, fi⟩ = 0, ∀i ∈ J

T = (T+
1
− T−

1
) + i(T+

2
− T−

2
),

aTr(T+
1
) =

�
i∈Λ

⟨T+
1
, fif

∗
i
⟩HS =

�
i∈Λ

⟨T−
1
, fif

∗
i
⟩HS = aTr(T−

1
)
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which implies that Tr(T+
1
) = Tr(T−1

1
). Similarly, Tr(T+

2
) = Tr(T−1

2
). Thus T+

1
= T−

1
 

and T+
2
= T−

2
 since {fi}Mi=1 is state-injective. This implies that T = 0, and so {fi}Mi=1 is 

quantum injective. 	�  ◻

3 � Injectivity of full Gabor frames

Recall that a multi-window Gabor frame is a Gabor frame 
{
�(m, n)�r

}1≤r≤s

(m,n)∈Λ
 gen-

erated by s window vectors �1,… ,�s with Λ ⊆ ℤ
2
N
. We always assume that all of 

the window vectors are nonzero. Moreover, if Λ = ℤ
2
N
, it is called a full Gabor 

frame. We have pointed out that {�(m, n)� ∶ (m, n) ∈ ℤ
2
N
} is a tight frame for 

every nonzero window function �. Thus, by Proposition 2.4, the state-injectivity 
of a full multi-window Gabor frame is the same as the quantum injectivity of the 
frame.

Lemma 3.1  Let

Then, for each submatrix B̃ consisting of v columns of B, rank(B̃) = v. Particularly, 
B is invertible.

Proof  Denote that B̃ ⋅ B̃∗ = (a(p,q)(r,s))v×v. Then by a little arithmetic, we have

Thus B̃ ⋅ B̃∗ = N2
⋅ idv×v, which implies that rank(B̃) = v. 	�  ◻

Remark 3.2  As is emerged in the proof above, B is unitary. Moreover, B2 = N2idN2×N2 
provided by the observation that B = B∗.

The following characterizes all injective full multi-window Gabor frames.

Theorem 3.3  Let 
{
�(m, n)�r

}
(m,n)∈ℤ2

N
, 1≤r≤s

 be a full multi-window Gabor frame gen-
erated by window vectors �1,… ,�s with ℤ2

N
. Then the following are equivalent. 

B = (�(ml−kn))N2
(m,n)

×N2
(k,l)
.

a(p,q)(r,s) =
∑

0≤k,l≤N−1

�(qk−pl)
⋅ �(rl−sk)

=
∑

0≤k,l≤N−1

�((q−s)k+(p−r)l)

=
∑

0≤k≤N−1

�(q−s)k
⋅

∑
0≤l≤N−1

�(p−r)l

= N2
⋅ �(q − s) ⋅ �(p − r).
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1.	
{
�(m, n)�r

}
(m,n)∈ℤ2

N
, 1≤r≤s

 is quantum injective;
2.	 ∀(k, l) ∈ ℤ

2
N
, ⟨�(k, l)�r,�r⟩ ≠ 0 for some 1 ≤ r ≤ s.

Proof  (1) ⇒ (2): Suppose that ∃(p, q) ∈ ℤ
2
N

 such that ⟨�(p, q)�r,�r⟩ = 0 for all 
1 ≤ r ≤ s.

Then, Eq. (1) implies that

for all (m, n) ∈ ℤ
2
N

 and 1 ≤ r ≤ s.

Taking conjugation of both of the two sides of the equation, we have

Since 2�(p, q) = �(p, q) + �(p, q)∗ + �(p, q) − �(p, q)∗ ≠ 0, assume that 
�(p, q) + �(p, q)∗ ≠ 0, otherwise we can choose i(�(p, q) − �(p, q)∗) for further dis-
cussion. Set T = �(p, q) + �(p, q)∗. Then T ≠ 0 is self-adjoint. But 
⟨T ⋅ �(m, n)�r,�(m, n)�r⟩ = 0 for all (m, n) ∈ ℤ

2
N

 and 1 ≤ r ≤ s, which means that {
�(m, n)�r

}
(m,n)∈ℤ2

N
, 1≤r≤s

 is not injective, which leads to the contradiction.

(2) ⇒ (1): Recall that 
�

1√
N
�(k, l)

�
0≤k,l≤N−1

 forms an orthonormal basis of MN . 

Thus, for all T,  we have

Thus, by Eqs. (1) and (2) and a little arithmetic, we have

where B = (�(ml−kn))N2
(m,n)

×N2
(k,l)
.

Then, for all 1 ≤ r ≤ s, if we let (⟨T�(m, n)�r,�(m, n)�r⟩)N2×1 = 0, it means that

⟨�(p, q)�(m, n)�r,�(m, n)�r⟩
= �(pn−qm)⟨�(m, n)�(p, q)�r,�(m, n)�r⟩
= �(pn−qm)⟨�(p, q)�r,�r⟩
= 0

⟨�(p, q)∗�(m, n)�r,�(m, n)�r⟩ = 0.

T =
1

N
⋅

�
0≤k,l≤N−1

⟨T ,�(k, l)⟩HS ⋅ �(k, l).

(⟨T�(m, n)�r,�(m, n)�r⟩)N2×1

=

��
1

N
⋅

�
0≤k,l≤N−1

⟨T ,�(k, l)⟩HS ⋅ �(k, l) ⋅ �(m, n)�r,�(m, n)�r

��

N2×1

=
1

N
(⟨�(k, l) ⋅ �(m, n)�r,�(m, n)�r⟩)N2

(m,n)
×N2

(k,l)
⋅ (⟨T ,�(k, l)⟩HS)N2×1

=
1

N
⋅ B ⋅ (diag ⟨�(k, l)�r,�r⟩)N2×N2 ⋅ (⟨T ,�(k, l)⟩HS)N2×1

=
1

N
⋅ B ⋅ (⟨�(k, l)�r,�r⟩ ⋅ ⟨T ,�(k, l)⟩HS)N2×1,
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in which B = (�(ml−kn))N2
(m,n)

×N2
(k,l)
, �r

m,n
= ⟨�(m, n)�r,�r⟩ and Tk,l = ⟨T ,�(k, l)⟩HS.

Furthermore, Eq. (4) can be rewritten as follows.

Since the system of equations consists of N2 equations with no more than N2 
variables, by Lemma  3.1, the system of equations is solvable, which means that 
Tk,l = ⟨T ,�(k, l)⟩HS = 0 for those (k, l) such that ⟨�(k, l)�r,�r⟩ ≠ 0.

Since ∀(k, l) ∈ ℤ
2
N
, ⟨�(k, l)�r,�r⟩ ≠ 0 for some 1 ≤ r ≤ s, we have

for all 0 ≤ k, l ≤ N − 1, which implies that T = 0.

Therefore, 
{
�(m, n)�r

}
(m,n)∈ℤ2

N
, 1≤r≤s

 is injective. 	�  ◻

Remark 3.4  (i) Recall from [21] that a POVM generated by a finite frame in ℂN is 
called informationally complete if the corresponding rank-one matrices 
{�(m, n)� ⋅ (�(m, n)�)∗}(m,n)∈ℤ2

N
 form a basis of MN(ℂ), which coincides with the 

definition of quantum injectivity. Different from the linear algebraic method, we can 
deliver a more conceptual proof for Theorem 3.3 inspired by [15] based on the char-
acterization of the spectrum of Gramian matrices of the rank-one projectors 
{�(m, n)� ⋅ (�(m, n)�)∗}(m,n)∈ℤ2

N
. Firstly, for the single window case, denote a full 

Gabor frame as {�(m, n)�}(m,n)∈ℤ2
N
. Then, the rank of the Gramian matrix

is the same with the dimension of span(m,n)∈ℤ2
N
{(�(m, n)� ⋅ (�(m, n)�)∗}. Thus it is 

equivalent to prove that rank(G�) = N2. Goldberger et  al. showed in [15] that the 
Gramian matrix G� is diagonalizable with eigenvalues {N�⟨�(m, n)�,�⟩�2}(m,n)∈ℤ2 , 
then

(4)

⎛
⎜⎜⎜⎜⎝

⟨T�(0, 0)�r,�(0, 0)�r⟩
⋮

⟨T�(m, n)�r,�(m, n)�r⟩
⋮

⟨T�(N − 1,N − 1)�r,�(N − 1,N − 1)�r⟩

⎞
⎟⎟⎟⎟⎠
N2×1

=
1

N
⋅ B ⋅

⎛
⎜⎜⎜⎜⎜⎝

�r
0,0

⋅ T0,0

⋮

�r
k,l
⋅ Tk,l

⋮

�r
N−1,N−1

⋅ TN−1,N−1

⎞
⎟⎟⎟⎟⎟⎠N2×1

= 0,

⎧
⎪⎪⎨⎪⎪⎩

∑
0≤k,l≤N−1 �

r
k,l
Tk,l = 0

⋮∑
0≤k,l≤N−1 �

(ml−kn)�r
k,l
Tk,l = 0

⋮∑
0≤k,l≤N−1 �

((N−1)l−k(N−1))�r
k,l
Tk,l = 0

⟨T ,�(k, l)⟩HS = 0

G� =
�
⟨�(m, n)� ⋅ (�(m, n)�)∗,�(k, l)� ⋅ (�(k, l)�)∗⟩HS

�
N2×N2
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which also leads to the conclusion. While for a multi-window Gabor frame 
{�(m, n)�r}

1≤r≤s

(m,n)∈ℤ2
. Let Vr be the N2 × N2 matrix whose columns are 

�(m, n)�r ⋅ (�(m, n)�r)
∗ written as vectors. Define

Then {�(m, n)�r}
1≤r≤s

(m,n)∈ℤ2
 is quantum injective if and only if rank(V) = N2. To see 

that, we have

Note that V∗
r
Vr = G�r

, then the matrix VrV
∗
r
 has the same eigenvalues 

{N�⟨�(m, n)�r,�r⟩�2}}(m,n)∈ℤ2 as G�r
. The matrices {VrV

∗
r
}1≤r≤s have common diag-

onalizing basis {u(m, n)i,j = �(i − j − n)�im}(m,n)∈ℤ2 . Thus VV∗ is diagonalizable with 
eigenvalues {N

∑r=s

r=1
�⟨�(m, n)�r,�r⟩�2}(m,n)∈ℤ2and

which leads to the conclusion.
(ii) For the single window vector case, the above characterization has been known 

and it has been generalized to any irreducible projective representation for finite 
abelian groups [7, 9, 19]. It would be interesting to know if such a generalization 
also applies to the multi-window case.

A conclusion given by [15] says that for arbitrary S ⊆ ZN with ♯S >
N

2
, there 

exists a unit vector g with supp(g) = S that gives quantum injectivity, which 
immediately implies the existence of injective finite Gabor frames. Since the win-
dow vector � = (�1,… ,�s) that generates an injective Gabor frame is character-
ized by the zero sets of a finite collections of nonzero polynomials, we immedi-
ately get

Corollary 3.5  The Gabor frame {�(k, l)�r}(k,l)∈ℤ2
N
, 1≤r≤s is injective for every generic 

window vector � = (�1,… ,�s) in ℂN ⊕⋯⊕ ℂ
N , and hence the set of all such win-

dow vectors is dense in ℂN ⊕⋯⊕ ℂ
N .

Next we examine the stability of the injective property of Gabor frames under 
small perturbations. For this purpose, a metric between frames is needed. There 

rank(G𝜑) = ♯
�
(m, n) ∈ ℤ

2
N
∶ ⟨𝜋(m, n)𝜑,𝜑⟩ ≠ 0

�
,

V = [V1 ⋯Vr ⋯Vs]N2×sN2 .

rank(V) = rank(VV∗) = rank
( ∑

1≤r≤s

VrV
∗
r

)
.

rank(V) = rank(VV∗) = ♯

�
(m, n) ∈ ℤ

2 ∶
�
1≤r≤s

�⟨𝜋(m, n)𝜑r,𝜑r⟩�2 ≠ 0
�
,
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are various metrics defined in [4]. For the same reason as in Corollary 3.5, the 
injective Gabor frames are preserved under small perturbation with respect to 
the norm 

∑s

i=1
‖�i − �i‖2 in ℂN ⊕⋯⊕ ℂ

N . Here we will use the following met-
ric and present a quantitative version of the stability result with respect to this 
metric.

Definition 3.6  Let F1 =
{
�(m, n)�r

}1≤r≤s

(m,n)∈ℤ2
N

, F2 =
{
�(m, n)�r

}1≤r≤s

(m,n)∈ℤ2
N

 be two full 
Gabor frames generated by s window vectors for each with ℤ2

N
. Let P be the set of 

permutations of {1,… , s}. The distance between F1, F2 is defined by

Let F1 = {�(m, n)�r}(m,n)∈ℤ2
N
, 1≤r≤s be an injective full Gabor frame for ℂN . Set 

�� = min(k,l)∈ℤ2
N

�∑s

r=1
�⟨�(k, l)�r,�r⟩�

�
 and

Proposition 3.7  Let F1 = {�(m, n)�r}(m,n)∈ℤ2
N
, 1≤r≤s be an injective full Gabor frame 

for ℂN . Then every full multi-window Gabor frame F2 = {�(m, n)�r}(m,n)∈ℤ2
N
, 1≤r≤s 

satisfying the condition dG(F1,F2) < 𝛿 is also injective.

Proof  A slight variation of Theorem  3.3 shows that F1 = {�(m, n)�r}
1≤r≤s

(m,n)∈ℤ2
N

 is 
injective if and only if for all (k, l) ∈ ℤ

2
N
,

Let � be the permutation on the index set of F1 that attains the distance of F1 and F2. 
Then for each (k, l) ∈ ℤ

2
N
, by Cauchy–Schwarz inequality and a little arithmetic, we 

get that

d2
G
(F1, F2) = min

�∈P

� s�
i=1

‖��(i) − �i‖2
�
.

� =

���� s�
r=1

‖�r‖2 + �� −

���� s�
r=1

‖�r‖2.

s�
r=1

�⟨�(k, l)�r,�r⟩� ≠ 0.
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which implies that

Hence F2 is injective. 	�  ◻

Remark 3.8  Since we have

for all � ∈ ℂ
N and (k, l) ∈ ℤ

2
N

 and the assumption that all of the win-
dow vectors are nonzero, it is enough for us to only check for 
k = 0, 1 ≤ l ≤

N

2
; 1 ≤ k ≤

N−1

2
, 0 ≤ l ≤ N − 1 and N−1

2
< k ≤

N

2
, 0 ≤ l ≤

N

2
 when 

s�
r=1

�⟨𝜋(k, l)𝜓r,𝜓r⟩�

=

s�
r=1

�⟨𝜋(k, l)((𝜓r − 𝜑𝜎(r)) + 𝜑𝜎(r)), (𝜓r − 𝜑𝜎(r)) + 𝜑𝜎(r)⟩�

=

s�
r=1

�
�⟨𝜋(k, l)𝜑𝜎(r),𝜑𝜎(r)⟩ + ⟨𝜋(k, l)(𝜓r − 𝜑𝜎(r)),𝜓r − 𝜑𝜎(r)⟩

+ ⟨𝜋(k, l)(𝜓r − 𝜑𝜎(r)),𝜑𝜎(r)⟩ + ⟨𝜋(k, l)𝜑𝜎(r),𝜓r − 𝜑𝜎(r)⟩�
�

≥

s�
r=1

�
�⟨𝜋(k, l)𝜑𝜎(r),𝜑𝜎(r)⟩� − �⟨𝜋(k, l)(𝜓r − 𝜑𝜎(r)),𝜓r − 𝜑𝜎(r)⟩�

− �⟨𝜋(k, l)(𝜓r − 𝜑𝜎(r)),𝜑𝜎(r)⟩� − �⟨𝜋(k, l)𝜑𝜎(r),𝜓r − 𝜑𝜎(r)⟩�
�

≥

s�
r=1

�⟨𝜋(k, l)𝜑r,𝜑r⟩� −
� s�

r=1

‖𝜓r − 𝜑𝜎(r)‖2
�

− 2
� s�

r=1

‖𝜑𝜎(r)‖ ⋅ ‖𝜓r − 𝜑𝜎(r)‖
�

≥

s�
r=1

�⟨𝜋(k, l)𝜑r,𝜑r⟩� −
� s�

r=1

‖𝜓r − 𝜑𝜎(r)‖2
�

− 2
�� s�

r=1

‖𝜑r‖2
� 1

2

⋅

� s�
r=1

‖𝜓r − 𝜑𝜎(r)‖2
� 1

2
�

≥ 𝛿� − d2
G
(F1,F2) − 2

� s�
r=1

‖𝜑r‖2
� 1

2

dG(F1,F2)

> 0,

s�
r=1

�⟨�(k, l)�r,�r⟩� ≠ 0, ∀ (k, l) ∈ ℤ
2
N
.

⟨�(0, 0)�,�⟩ = ‖�‖2,
⟨�(k, l)�,�⟩ = �kl

⋅ ⟨�(N − k,N − l)�,�⟩
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checking the needed conditions of injective Gabor frames. Therefore, the criterion 
given in this paper is much more efficient than it appears.

Since {�(m, n)� ∶ (m, n) ∈ ℤ
2
N
} is injective for every generic vector �, it raises 

a natural question about the existence of injective multi-window Gabor frames 
such that none of the full Gabor frames generated by proper subsets of the win-
dow vectors gives the injectivity, or, specifically, how many window vectors 
(�r)

s
r=1

 are allowed so that the injective multi-window Gabor frames 
{�(k, l)�r}(k,l)∈ℤ2

N
, 1≤r≤s for ℂN is exact, where exact means that it fails to be injec-

tive when removing any single window Gabor frame {�(k, l)�r}(k,l)∈ℤ2
N
. If we have 

an exact s-window Gabor frame {�r}
s
r=1

 as desired, then each window vectors �r 
must posses a pair (m,  n) with �(m, n) ∶= ⟨�(m, n)�,�⟩ ≠ 0, which does not 
appear in any other windows. To estimate s,  we need some observations. Firstly, 
due to the fact given in [15], for an arbitrary vector � ∈ ℂ

N ⧵ {0}, we have

Meanwhile, by Remark 3.8, we have �(m, n) ≠ 0 if and only if �(N − m,N − n) ≠ 0. 
If N is odd, then we have one window �1 with N pairs �(m, n) ≠ 0 and each 
�i(2 ≤ i ≤ s) must add at least 2 new zero pairs, thus N + 2(s − 1) ≤ N2. While 
when N is even, this is same except the pairs (0, N/2), (N/2, 0), (N/2, N/2) that may 
appear alone as 3 new pairs for three windows, thus N + 2(s − 1 − 3) + 3 ≤ N2. To 
conclude, if {�(k, l)�r}

1≤r≤s

(k,l)∈ℤ2
N

 is an exact injective s−window Gabor frame, as s is an 
integer, then

is necessary. However, we can still have several examples in dimension 2 and 3 as 
follows.

Example  Consider two window vectors with their frame matrices of single-window 
Gabor frames with Λ = ℤ

2
2
 and

Then we have

and

♯
{
(m, n) ∈ ℤ

2
N
∶ 𝜑(m, n) ≠ 0

}
≥ N.

s ≤

{
N2−N

2
+ 1, if N is odd

N2−N

2
+ 2, otherwise .

�1 =

[
e

�

3
i

e
�

2
i

]
, �2 =

[
1

0

]
.

⟨�(0, 1)�1,�1⟩ = 0,

⟨�(1, 0)�1,�1⟩ = e
�

6
i + e

−
�

6
i
≠ 0,

⟨�(1, 1)�1,�1⟩ = e
�

6
i − e

−
�

6
i
≠ 0
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Thus, by Theorem 3.3, neither the Gabor frame generated by �1 nor �2 is injective, 
and clearly the bi-window Gabor frame generated by both of them is injective.

Next is an example with 3-window vectors.

Example  Consider window vectors

If we compute ⟨�(k, l)�r,�r⟩ for (k, l) ∈ ℤ
2
2
, then a bit arithmetic shows that:

•	 ⟨�(k, l)�1,�1⟩ ≠ 0 only for (k, l) = (0, 1);
•	 ⟨�(k, l)�2,�2⟩ ≠ 0 only for (k, l) = (1, 0);
•	 ⟨�(k, l)�3,�3⟩ ≠ 0 only for (k, l) = (1, 1);

which means that the full Gabor frame generated by any two of these window vec-
tors is not injective while the full triple-window Gabor frame is injective.

The following is an example for ℂ3 with s = 4

Example  Consider window vectors

As an analogue of Example 3, we can compute ⟨�(k, l)�r,�r⟩ for k = 0, l = 1 and 
k = 1, 0 ≤ l ≤ 2 provided by Remark 3.8. Then we can get the following results by 
a little arithmetic.

•	 ⟨�(k, l)�1,�1⟩ ≠ 0 only for (k, l) = (0, 1);
•	 ⟨�(k, l)�2,�2⟩ ≠ 0 only for (k, l) = (1, 0);
•	 ⟨�(k, l)�3,�3⟩ ≠ 0 only for (k, l) = (1, 1);
•	 ⟨�(k, l)�4,�4⟩ ≠ 0 only for (k, l) = (1, 2).

Therefore, it can be concluded by Theorem  3.3 that only all of the four vectors {
�r

}
1≤r≤4

 can generate an injective full Gabor frame.
The final two examples demonstrate that, even for the single-window case, it is 

much more effective to the characterization in Theorem 3.3 than using some other 
known injectivity criterion or the definition of injectivity.

⟨�(0, 1)�2,�2⟩ = 1,

⟨�(1, 0)�2,�2⟩ = 0,

⟨�(1, 1)�2,�2⟩ = 0.

�1 =

[
1

0

]
, �2 =

[
1

1

]
, �3 =

[
e

�

4
i

e
−

�

4
i

]
.

�1 =

⎡⎢⎢⎣

1

0

0

⎤⎥⎥⎦
, �2 =

⎡⎢⎢⎣

1

�

�2

⎤⎥⎥⎦
, �3 =

⎡⎢⎢⎣

�

�

1

⎤⎥⎥⎦
, �4 =

⎡⎢⎢⎣

�

1

1

⎤⎥⎥⎦
.
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Example  Let � =

[
x

y

]
∈ ℂ

2. Then the full Gabor frame generated by the window 

vector � is given by

If we set ⟨�(k, l)�,�⟩ ≠ 0 for all 0 ≤ k, l ≤ 1, then we have

i.e.,

Recall that a characterization of injectivity obtained in [3] is as follows: Given 
x = (x1,… , xn) ∈ ℂ

n and let

Then {yk}mk=1 is a injective frame for ℂn if and only if {ỹk} spans ℝn2 . Applying this 
method to our frame, we can construct 4 vectors {vi}4i=1, if the frame is injective 
hence {vi}4i=1 spans ℝ4, that is, {vi}4i=1 is linearly independent and the determinant of 
the matrix (v1,… , v4) is not 0. A direct computation show that

While both ways can give the same condition for a frame in ℂ2 to be injective, the 
Gabor frames method provides a much more efficient way to check its injectivity.

Example  Let � =

⎡⎢⎢⎣

x

y

z

⎤⎥⎥⎦
∈ ℂ

3. Then the full Gabor frame generated by the window 

vector � is given by

If we set ⟨�(k, l)�,�⟩ ≠ 0 for k = 0, 0 ≤ l ≤ 1 and k = 1, 0 ≤ l ≤ 2, then we get

(
x x y y

y − y x − x

)
.

|x|2 + |y|2 ≠ 0 |x|2 − |y|2 ≠ 0

yx̄ + xȳ ≠ 0 yx̄ − xȳ ≠ 0,

|x|2 + |y|2 ≠ 0 |x|2 − |y|2 ≠ 0

Re(x̄y) ≠ 0 Im(x̄y) ≠ 0.

x̃

= (||x1||2, … , Re
(
x̄1xn

)
, Im

(
x̄1xn

)
, ||x2||2, … , Re

(
x̄2xn

)
, Im

(
x̄2xn

)
;… ;|xn|2)T.

|||(v1,… , v4)
||| = −8

(|x|2 + |y|2) ⋅ (|x|2 − |y|2) ⋅ Re(x̄y) ⋅ Im(x̄y).

⎛⎜⎜⎝

x x x y y y z z z

y �y �2y z �z �2z x �x �2x

z �2z �z x �2x �x y �2y �y

⎞⎟⎟⎠
.
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Let T =

⎡
⎢⎢⎣

a d e

d̄ b f

ē f̄ c

⎤
⎥⎥⎦
∈ M3(ℂ). Then the condition ⟨T�(k, l)�,�(k, l)�⟩ = 0 for all 

0 ≤ k, l ≤ 2 are given by the following messy equations:

where i = 0, 1, 2. Therefore, again it is truly complicated to check the injectivity of a 
Gabor frame using the definition.
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