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Abstract

Finite Gabor frames for C" have been extensively studied in the context of signal
processing, in particular, phase-retrieval in recent years. While the phase-retrieval
problem asks to distinguish the pure states from their quantum measurements with
a positive operator valued measure (POVM), the quantum detection problem asks to
distinguish all the states from their measurements. Inspired by some recent work on
the quantum detection problem by (discrete) frames and continuous frames, in this
paper we examine the quantum detection problem with multi-window Gabor frames.
We firstly obtain a necessary and sufficient condition in terms of the window vec-
tors for a multi-window Gabor frame to be quantum injective. This generalizes the
known result for the single-window case. As a consequence of this characterization,
the set of all the multi-window generators (¢, ..., @,) for injective Gabor frames
is Zariski dense in CN @ --- @ CV, and consequently every generic multi-window
Gabor frame is injective and the set of all the injective s-window Gabor frames is
stable under perturbation. In particular, we present a quantitative stability result for
one of the metrics. Some examples are also provided to demonstrate the necessity of
such a characterization for multi-window Gabor frames.
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1 Introduction

The problem of quantum detection is to uniquely determine a state p (a density oper-
ator, i.e., a positive trace-one operator) from quantum measurements described as
positive operator-valued measures (POVMs) acting on a state via {tr(V(E)p)} gcs,
where v is a POVM (from oc-algebra £ and taking value in the linear space of
bounded linear operators on some Hilbert space H). This problem was recently set-
tled in Botelho-Andrade et al. [2, 3] mainly for finite or infinite but discrete frames
and Han et al. [17] for continuous frames by constructing some kinds of frame
POVMs. The purpose of this paper is to investigate the quantum detection in finite
dimensional spaces by multi-window Gabor frames.

We firstly recall some background about the quantum detection problem and its
mathematical formulations. The quantum detection problem was originally from
quantum state tomography [20] which asks to recover a state from the probabil-
ity of observing outcomes from quantum measurements on this state. The central
issue is to find a specific POVM v that distinguishes states from their measurements,
i.e., for two given states p,, p,, tr(v(E)p,) = tr(v(E)p,) for every measurable set E
implies p; = p,. Such POVMs are often referred as informationally complete quan-
tum measurements [21]. In this paper, we focus on the POVMs that are induced by
Hilbert space frame theory [8, 10], and we directly call them frame POVMs [18].
The problem of characterizing the frames for quantum detections will be referred to
as the frame quantum detection problem.

Recall that the notation of (discrete) frames was first introduced by Duffin and
Shadffer [11], viewed as some kind of “overcomplete basis” as each element can
be represented via a frame but the representation might not be unique. The concept
was later generalized to the continuous frame, called frame associated with meas-
ure spaces, or generalized frame [1, 14]. The class of frames in finite dimensional
spaces, i.e., finite frames [10], is very important due to its significant relevance to
applications and suitability for computation. Moreover, frames with good structures
such as group representation frames [22] are of particular interests for both theo-
retical development and applications. Gabor frames, collections of modulations and
translations of a single vector or multiple vectors, is such a typical example that has
been extensively studied in Gabor analysis [16] and time-frequency analysis [13].
The focus of this paper is to examine the frame quantum detection problem using
multi-window generated Gabor frames.

As discussed in [2], the frame quantum detection problem actually asks whether
the phaselift operator associated with a frame POVM is injective on the quantum
state space. For a multi-window Gabor frame, by characterizing the kernel of the
phaselift operator we derive the necessary and sufficient condition for a multi-win-
dowed Gabor frame to be injective on the quantum state space. Due to the irreduc-
ibility of the Gabor representation, this happens to be equivalent to the injectivity on
the entire space M, (C) (Proposition 2.4). After defining a metric between frames,
we get that the injective full Gabor frames is stable under perturbation and for each
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s, the set of all the multi-window generators (¢, ..., @,) for injective Gabor frames
is Zariski dense in CN @ --- @ C¥ (s-copies), and so every generic multi-window
Gabor frame is injective.

The remainder of this paper is organized as follows: In Sect. 2, we introduce
some necessary notations and the frame quantum detection problem, and point out
that state-injectivity and M, (C)-injectivity are the same if a frame contains a tight
subframe. This clearly applies to finite Gabor frames since every single (nonzero)
window generated sequence is a tight frame. We characterize all the injective full
multi-widow Gabor frames, and show that the set of all such injective frames is open
and dense in Sect. 3. At the end of this paper, we provide a few examples to show
the existence of injective Gabor frames with window vectors ¢, ..., @, such that
every s — 1 of these window vectors do not generate an injective Gabor frame, and to
demonstrate that, even for the single-window case, it is much more effective to our
characterization than using some other known injectivity criterion or the definition
of injectivity.

2 Preliminary
2.1 Notations
We will be working in CV. Here is a list of notations that will be used in this paper.

e Vectors x € C" will be treated as column vectors and written as x = (x(i) f\i 61.
The inner product (for convenience, we always assume that the inner produce is
linear in the first place and conjugate linear in the second) between vectors x and
v is defined as

N-1

(xy) = ) xO)y().

i=0

° Mn,m(C)—the space of nXm complex matrices, abbreviated as M, ,
(My = My y(C©)). M, is a Hilbert space equipped with the Hilbert-Schmidt inner
product

N-1

(A.B)ys = tr(AB") = ) (Ac;, Be,),
i=0

where {ei}j\:]l is an orthonormal basis of CV.

o S(H)—the set of states or density operators on some Hilbert space H, i.e.,
{p: Pz 0,tr(p) = 1}. A rank-one state is called pure state.

® @ = ¢ v—the Nth root of unity.

o Zy={0,...,N -1}, the ring of integers mod N.
7y =ZyXZy={(k1:kleZy.

e For any set A, denote f{A as the order of the set.
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Following [18], we give the definition of operator-valued measures.

Definition 2.1 Let (Q, X) be a measurable space and H be a separable Hilbert space.
A map v : £ — B(H) is an operator-valued measure (OVM) if for all collections
{E} on € EWith E;NE; = @ fori # j we have

v( UEk> = z v(Ek).

keN keN

where the convergence on the right side of the equation above is with respect to the
weak operator topology of B(H). We say v is

1. bounded if sup{||v(E)|| : E € £} < oo.
2. self-adjoint if v(E)* = v(E), for all E € Z.
3. positive if v(E) € B(H),,forall E € .

In mathematical physics, v is call a positive operator-valued measure (POVM) if it is
positive and additionally v(€2) = id,,. We focus on the frame POVMs that are derived
from the Hilbert space frame theory [8, 10].

Recall that a sequence { f,»}l.e 7 in a finite or infinite dimensional Hilbert space H is
called a frame if there exists 0 < A < B < oo such that

2
Allxl? < Y\ || < Bllxll%, Vx e H.
ieJ

The constants A, B above are the lower and upper bounds of the frame, respec-
tively. The frame is called tight if A =B, and Parseval if A =B = 1. In finite-
dimensional space case, for example, complex N-dimensional Hilbert space CV, it
is conventional to deal with finite frames {fi}ﬁ‘i . which are exactly the span sets, i.e.,
span{fi}lz1 =CN.

If \fif,c; is a Parseval frame, we define the operator f;®f; on H by
(f ® flg () = (x.f)f» actually f; ® f; is fif;". Let T be the o-algebra of all subsets of J,
then definev : £ — B(H) by

WE) =Y fi®fi= D ff'. VEEX.

i€E i€E

It is easy to check that v is a POVM. In particularly, in finite-dimensional cases,
typical as CV, consider the POVM induced by finite frames {f,-}f.‘i . Since the cor-
responding c-algebra is just the set of all subsets of {1,2,...,M}, it is enough to
handle each singleton 1 < i < M, that is, f; ® f;, rather than all the elements in the ¢
-algebra when dealing with the POVM as defined above.

Let k € Zy,l € Z. The translation operator T and the modulation operator M, :
CV — CV are defined by

(Tx)(n) =x(n—k), Mpx)(n)= a)l”x(n).
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To avoid confusion, indexes always have to be assumed modulo N. We will use
n(k,l) to denote M,T,. Some useful facts are worth pointing out, such as the well-
known commutation relations between translations and modulations [12]

MT, = T M,  z(m,n)zk,l) = """ z(k, )(m,n). 1)
Then it follows that
a(m,n)x(k,l) = co_"kﬂ(m +k,n+1), V@mn),kl e 72,

which implies that z is a projective unltary representation of 22 with the multiplier
m((m, n), (k,1)) = w™"* [22]. Moreover, { \/_n(m ”)}(mn)e22 forms an orthonormal

basis of M as
<7F(m, n), w(k, l))Hs = Ném,kén,l' 2)

Furthermore, for every nonzero vector ¢ € CV,

Z (ﬂ(m,n)(p,x)r: Z |(7T(m,’1),x§0*>ﬁs|2

(mn)eZ? (mn)eZ?

= Nk I = (Nllgl® ) 11,

that is, the collection {7z (m, ”)(P}(m,n)ez§, is a tight frame with frame bound N||¢||?

hence spans CV, which implies the irreducibility of z. Such a frame is called a (sin-
gle-window) Gabor frame.

2.2 The frame quantum detection problem

As mentioned before, the quantum detection problem is to explore the existence of
the quantum measurement performed by a POVM v, which can distinguish states on
some Hilbert space H, that is, for p;, p, € S, if

tr(p, v(E)) = tr(p,v(E)), VE €Z,

it follows that p; = p,. Let B(Z, R) denote the set of bounded functions on . Then
the quantum detection problem asks if there exists a POVM v ensures the following
map

P :S(H) - B(Z,R) P(p)E) =tu(pv(E)), VEeEZX.

to be injective.

The frame method to quantum detection problem is to find a Parseval frame
which induces a frame POVM such that the corresponding map P is injective. We
consider the generalization of quantum detection problem, that is, we directly work
with general operators and frames may not be Parseval.
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In the finite dimensional cases, we will directljy work on CV, and assume that
{fi}?il is a finite frame in CV. Since T/ us = {Tfi-fi): the frame quantum detec-
tion problem is formulated as: under what properties of a frame {fi}?il is the fol-
lowing map

P:My—-C" T (TN, 3

injective? Clearly, such a property for a frame is preserved under a linear isomor-
phism [2], and it is a reasonable relaxation to work with a general frame as every
frame is similar to a Parseval frame [8, 10].

Definition 2.2 We say that a frame {f;},c; gives quantum injectivity (or is quan-
tum injective, simply as, injective, abbreviated by QI) if the map P associated with
{fi}ic7 is injective. Or, if

(If,.f) =0, VieJ

implies T = 0. Moreover, the P is called the phaselift operator.

Remark 2.3 (i) In the finite-dimensional complex Hilbert space case, a finite frame
{fi}?i | gives quantum injectivity if and only if the frame has the maximal span prop-
erty [6] in the sense that span{f;f;"} = My(C). Such a frame clearly distinguishes
pure states, which is often referred to as a phase-retrievable frame [5]. However, a
phase-retrievable frame does not necessarily give quantum injectivity.

(i1) Similarly, while a finite frame {fi}?i , that gives quantum injectivity also gives
state injectivity, i.e., distinguishes all the states in S(H), and the converse is not
true. However, the following proposition points out that if {fl-}?i , contains a tight
subframe, then these two injectivities are the same. This also explains why we can
directly work with general operators but not necessarily positive trace-one operators
as mentioned before since single-window Gabor frames are all tight.

Proposition 2.4 Let {f[}ﬁl be a frame for CN . If there exists a subset A of {1, ..., M}
such that {f;},c, is a tight frame for CN and {fl}f‘i | Is state-injective, then {fl}fi | has
the maximal span property, i.e., quantum-injective.

Proof LetT € My(C) be such that(T,fif) s = Ofor j=1,...,N. Write
T=T-T))+iT; -T,),

where T1+ s Tl‘ s T2+ and TZ‘ are positive operators. Then (7, f;ff) s = 0 implies that
(TL S s = (T fif Y us and (T fif Vs = Ty fif s for all i = 1, ..., m. Since
{fi}iea is a tight frame, Y .\ fif;" = a - id for some a > 0. Therefore

aTe(T)) = YATE S s = DTS s = aTe(T)

ieA ieA
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which implies that Tr(7}") = Tr(Tl‘l). Similarly, Tr(T}) = Tr(T; 1). Thus TS =Ty
_ _ M - o« e . . . . _ M

and T = T; since {f;}}/ is state-injective. This implies that 7 = 0, and so {f;}} is

quantum injective. O

3 Injectivity of full Gabor frames

1<r<s
(m,n)EA gen-
erated by s window vectors @, ..., ¢, with A C Z3. We always assume that all of
the window vectors are nonzero. Moreover, if A = ijv, it is called a full Gabor
frame. We have pointed out that {z(m,n)p : (m,n) € Zzzv} is a tight frame for
every nonzero window function @. Thus, by Proposition 2.4, the state-injectivity
of a full multi-window Gabor frame is the same as the quantum injectivity of the
frame.

Recall that a multi-window Gabor frame is a Gabor frame {n'(m, ne,

Lemma3.1 Let

B = w(ml—kn) .

(@™ On, v,
Then, for each submatrix B consisting of v columns of B, rank(B) = v. Particularly,
B is invertible.

Proof Denote that B - B* = (@ 4)(r.5))vxv- Then by a little arithmetic, we have

— (gk=pl) , (rl—sk)
Ypars) = Z @ w

0<k,I<N-1
- @(@=9k+p=n)

0<k,I<N-1
- Z @49k . Z PGl
0<k<N-1 0<IKN-1
=N?-8(g—s)-6(p—r).

Thus B - B* = N? - id,,, which implies that rank(B) = v. O
Remark 3.2 As is emerged in the proof above, B is unitary. Moreover, B> = N%idy, -

provided by the observation that B = B*.
The following characterizes all injective full multi-window Gabor frames.

Theorem 3.3 Let {ﬂ(m, ne, be a full multi-window Gabor frame gen-

}(m,n)EZ%, 1<r<s
erated by window vectors @, ..., @, with Z[zv. Then the following are equivalent.
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1. {n'(m, n)(p,}(m’n)ezi’ 1<res is quantum injective;
2. Yk, e Z%, (xk,Do,,¢,) #0forsomel <r<s.

Proof (1) = (2): Suppose that A(p,q) € Zi, such that (z(p, q)@,, p,) =0 for all
1<r<s.
Then, Eq. (1) implies that

(z(p, )7(m, n)@,, 7(m,n)@,)
= 0P~ (7t(m, n)z(p, @, t(m,n)@,)
= w(pn_qm)<”(p’ Q)(pr9 (pr>
=0

forall im,n) € Z3 and1 <r <.
Taking conjugation of both of the two sides of the equation, we have

(7(p, q)" x(m, M), m(m,n)@,) = 0.

Since 2z(p,q) = n(p,q) + #(p,q)* + #(p,q) — n(p,q)* # O, assume that
z(p,q) + n(p,q)* # 0, otherwise we can choose i(x(p, g) — z(p, q)*) for further dis-
cussion. Set T ==xz(p,q)+n(p,q)*. Then T #0 1is self-adjoint. But
(T - w(m,n)p,, x(m,n)p,) =0 for all (m,n) € Zzzv and 1 < r <5, which means that
{ﬂ(m, n)go,} (mnez?, 1<r<s is not injective, which leads to the contradiction.

(2) = (1): Recall that { ﬁﬂ(k, )

} forms an orthonormal basis of M.
0k /I<N-1

Thus, for all 7, we have

1
T=x" 0<k§V—l<T’ w(k, D)y - wk, D).

Thus, by Egs. (1) and (2) and a little arithmetic, we have

(Tr(m, n)@,, x(m, n)@,))n2y

=(<% > <T,n(k,z)>ys-n(k,l)~n<m,n)(p,.,n(m,n)(p,>>
N2x1

0<kI<N—1
1
= St D - wm.mg,. xmmo e o, - (T.xk D) gy
1 .
= N B - (diag (z(k, D@, @, NDn2seyz - (T 7wk, D) rs)vex
1

=5 B (nk, D@, @,) - (T, w(k, D)} ys)naxct»

where B = (@™ 7). o .
(m,n) (k,)

Then, for all1 < r < s, if we let (Tz(m, n)@,, 7(m, n)@,))y25; = 0, it means that
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(T7(0,0)p,, 7(0,0)p,)
(Tr(m, n)(pr., x(m,n)@,)

(T2(N = 1,N = Vg, xN = 1N = Dgy,) ) o

, 4
qo()?o ' 7?),0 )

1 L
[T]B (pk’l:',];c,l =0,

r
gDN—I,N—I ,];V—I,N—l N2x1

in which B = (@""")y2 o @), = (a(m,n)@,.,) and T, = (T, z(k, D)) .

(m,n) (k.l)
Furthermore, Eq. (4) can be rewritten as follows.

2okiaN-1 ? Tk =0
I—kn) _
oskien—1 O n)(Plr(,l,Z;c,l =0
N—1)—k(N—1 _
Loty @WK ))(Pi,szl =0

Since the system of equations consists of N? equations with no more than N?
variables, by Lemma 3.1, the system of equations is solvable, which means that
Ty = (T, n(k, D))y = 0 for those (k, I) such that (z(k, D@,, ®,) # 0.

Since V(k, 1) € 72, (n(k,D@,,p,) # 0 for some 1 < r < 5, we have

(T, m(k,D))yg =0

forall0 < k,I < N — 1, which implies that T = 0.
Therefore, {ﬂ(m, n)(p,} (mneZ?, 1<r<s is injective. O
Remark 3.4 (i) Recall from [21] that a POVM generated by a finite frame in CV is
called informationally complete if the corresponding rank-one matrices
{z(m,n)ep - (x(m, n)(p)*}(m,n)EZ?V form a basis of My(C), which coincides with the
definition of quantum injectivity. Different from the linear algebraic method, we can
deliver a more conceptual proof for Theorem 3.3 inspired by [15] based on the char-
acterization of the spectrum of Gramian matrices of the rank-one projectors
{mw(m,n)ep - (x(m, ”)(P)*}(m,n)ez§,- Firstly, for the single window case, denote a full
Gabor frame as {7 (m, ”)(/’}(m,n)ezi,- Then, the rank of the Gramian matrix

G, = ((am. e - (x(m. @) 2k, - (2. D@) Vps)

is the same with the dimension of Span, ez, {(x(m,n)@ - (w(m,n)p)*}. Thus it is
equivalent to prove that rank(G,) = N?. Goldberger et al. showed in [15] that the
Cl}lramian matrix G, is diagonalizable with eigenvalues {N|[(z(m,n)p, (p)lz}(m,,,)ezz,
then

% Birkhauser
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rank(G,) = #§{(m.n) € Z}, : (x(m,n)p, @) # 0},

which also leads to the conclusion. While for a multi-window Gabor frame
1<r<s 2 2 :

{m(m,n)e, ez Let V., be the N°XN° matrix whose columns are

w(m,n)@, - (x(m,n)@,)* written as vectors. Define

= [V, Vyoos Vil

1<r<s

(mmeZ? is quantum injective if and only if rank(V) = N2. To see

Then {z(m,n)e,
that, we have

rank(V) = rank(VV*) = rank< Z V,Vr*>.

1<r<s

Note that VIV, =G,, then the matrix V, V' has the same eigenvalues
{N[{z(m, n)qo,, o) }}(m mez2 as G . The matrices {V V*}<r<s have common diag-
onalizing basis {u(m n),;=6(—j— n)co Yommezz- Thus VV*is diagonalizable with

eigenvalues {N Y./~ I(ﬂ(m ne,, (Pr>| Yonmez:and

rank(V) = rank(VV*) = #{ on.m) € 22 = Y |(wm.m)ep,. @) #0 ),

1<r<s

which leads to the conclusion.

(i1) For the single window vector case, the above characterization has been known
and it has been generalized to any irreducible projective representation for finite
abelian groups [7, 9, 19]. It would be interesting to know if such a generalization
also applies to the multi-window case.

A conclusion given by [15] says that for arbitrary S C Z,, with #S > g, there
exists a unit vector g with supp(g) = S that gives quantum injectivity, which
immediately implies the existence of injective finite Gabor frames. Since the win-
dow vector ¢ = (@, ..., @,) that generates an injective Gabor frame is character-
ized by the zero sets of a finite collections of nonzero polynomials, we immedi-
ately get

Corollary 3.5 The Gabor frame {z(k, l)(p,.}(k,,)ezﬁ’ 1<r<s IS injective for every generic
window vector @ = (@y, ..., @,) in CN @ --- @ CV, and hence the set of all such win-

dow vectors is dense in CN @ --- @ CV.

Next we examine the stability of the injective property of Gabor frames under
small perturbations. For this purpose, a metric between frames is needed. There
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are various metrics defined in [4]. For the same reason as in Corollary 3.5, the
injective Gabor frames are preserved under small perturbation with respect to
the norm Y, [l¢; — w;l|? in CV @ --- @ CV. Here we will use the following met-
ric and present a quantitative version of the stability result with respect to this
metric.

1<r<s 1<r<s

Definition 3.6 Let | = {z(m,n)p, ez Fy = {z(m,n)y, (e

Gabor frames generated by s window vectors for each with Zi,. Let P be the set of
permutations of {1, ..., s}. The distance between F,, F, is defined by

be two full

s

G 7 =min (X lowy = wilF)

Let F, = {zn(m, n)(pr}(m,n)EZ,zv _1<r<s be an injective full Gabor frame for CV. Set
§' = ming pep2 { X0, (x(k, Do, @,)| } and

5 5
5=1| D le 2+ =] D lle, .
r=1 r=1

Proposition 3.7 Let F| = {z(m, n)(p,}(m,n)ezlzv’ 1<r<s be an injective full Gabor frame
for CN. Then every full multi-window Gabor frame F, = {z(m, ”)‘l/r}(m,n)ezg, l<r<s
satisfying the condition dg(JF, F,) < 6 is also injective.

1<r<s

Proof A slight variation of Theorem 3.3 shows that F; = {z(m, n)go,}( ez is
m,n N

injective if and only if for all (k, [) € Z2,
> Kzk. Do, 0,)| # 0.
r=1

Let o be the permutation on the index set of F| that attains the distance of F; and F,.
Then for each (k, [) € Z2, by Cauchy—Schwarz inequality and a little arithmetic, we
get that

% Birkhauser
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D xk, hy,p,)]
r=1

= D Kl DA, = @) + Do) W = Do) + @)

r=1

= 2 (150 Dys @) + 7 D, = 0¥, = 01
r=1
+ {7k, DWW, = o) Poiry) + (7K, D Py W, — (pg(,)>|)
s
Z Z <|<7C(k, l)(pg(r)’ q’a(r))l - |<7r(k’ l)(ll/r - (pg(r))3 Wr - (po'(r)>|
r=1

— 1 DO, = s @) = 12 D0 = D))

> 3 atk-0. )1 - ( 2 v, - )
=2( X 1900l - 1w, = 9 1)

r=1

> 3 ot D 001 Z v, = @01
r=1
_z((;u(pruz) (Zuwr ounl))

§ - dAF, Fy) - (Z ||(p,||2) dg(F . Fy)

r=1

>0,
which implies that
D (mk, Dy, y,) # 0, Y (k. D) € Z2.
r=1

Hence F, is injective. O

Remark 3.8 Since we have

(7(0,0), @) = ll@ll%
(m(k,Dp, @) = & - (x(N = k, N — Do, p)

for all ¢ €CY and (k,0) € lev and the assumption that all of the win-
dow vectors are nonzero, it is enough for us to only check for
k=0,1<I<%1<k<™,0<I<N—1and 22 <k<%,0<1< 7 when
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checking the needed conditions of injective Gabor frames. Therefore, the criterion
given in this paper is much more efficient than it appears.

Since {z(m,n)@ : (m,n) € Zzzv} is injective for every generic vector @, it raises
a natural question about the existence of injective multi-window Gabor frames
such that none of the full Gabor frames generated by proper subsets of the win-
dow vectors gives the injectivity, or, specifically, how many window vectors
(p,);_, are allowed so that the injective multi-window Gabor frames
{nm(k, l)(l’r}(k,l)ezfv, 1<r<, for CV is exact, where exact means that it fails to be injec-
tive when removing any single window Gabor frame {z(k, l)(Pr}(k,l)eZ}V . If we have
an exact s-window Gabor frame {¢, }’_, as desired, then each window vectors ¢,
must posses a pair (m, n) with @(m,n) := (x(m,n)@, ) # 0, which does not
appear in any other windows. To estimate s, we need some observations. Firstly,
due to the fact given in [15], for an arbitrary vector ¢ € CV \ {0}, we have

#H{(m,n) € Z}, = (m,n) #0} > N.

Meanwhile, by Remark 3.8, we have ¢(m, n) # 0 if and only if (N —m, N — n) # 0.
If N is odd, then we have one window ¢, with N pairs @(m,n) #0 and each
®;(2 <i<s) must add at least 2 new zero pairs, thus N +2(s — 1) < N2. While
when N is even, this is same except the pairs (0, N/2), (N/2, 0), (N/2, N/2) that may
appear alone as 3 new pairs for three windows, thus N +2(s — 1 — 3) + 3 < N2. To

conclude, if { z(k, l)(p,}(]if)’szsz is an exact injective s—window Gabor frame, as s is an
2 N

integer, then

N?—N
2

{ NN L1, ifNisodd
s < 2

+2, otherwise .

is necessary. However, we can still have several examples in dimension 2 and 3 as
follows.

Example Consider two window vectors with their frame matrices of single-window
Gabor frames with A = Z% and

Then we have

(7(0, Depy, @) = 0,
(m(1,0)¢p,, @) = esite s £0,
<7T(19 1)(01, (p1> = e%i - e—%i ;ﬁ 0

and
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(7(0, D)@y, @y) = 1,
(7[(1,0)(P2, @2) = O’
(z(1, )@y, @,) = 0.

Thus, by Theorem 3.3, neither the Gabor frame generated by ¢, nor ¢, is injective,
and clearly the bi-window Gabor frame generated by both of them is injective.

Next is an example with 3-window vectors.

Example Consider window vectors

1 1 e
qol = O ) (.02= 1 ) ¢3= e_fi .

If we compute (z(k, )@, @,) for (k,[) € Z2, then a bit arithmetic shows that:

o (z(k,D@,, ;) # 0only for (k,I) = (0, 1);
o (n(k,D)p,, @,) # 0 only for (k,[) = (1,0);
o (x(k,l)p5, @3) # 0 only for (k, 1) = (1,1);

which means that the full Gabor frame generated by any two of these window vec-
tors is not injective while the full triple-window Gabor frame is injective.
The following is an example for C* with s = 4

Example Consider window vectors

1 0]
@ = s =l egy=lo), @,=|1
1

@? 1

(=R

As an analogue of Example 3, we can compute (z(k, ¢, @,) for k=0, [ =1 and
k=1, 0 <1<2 provided by Remark 3.8. Then we can get the following results by
a little arithmetic.

(m(k, )@y, @) # 0 only for (k, 1) = (0, 1);
(m(k, )@,, @) # 0 only for (k, ) = (1,0);
(m(k, D@3, @3) # 0 only for (k, 1) = (1,1);
(m(k, D@y, @4) # 0 only for (k,1) = (1,2).

Therefore, it can be concluded by Theorem 3.3 that only all of the four vectors
{(pr} |<r<4 Can generate an injective full Gabor frame.

The final two examples demonstrate that, even for the single-window case, it is
much more effective to the characterization in Theorem 3.3 than using some other
known injectivity criterion or the definition of injectivity.
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€ C2. Then the full Gabor frame generated by the window

X x y y
y —yx —x /)’
If we set (z(k, )@, @) # 0 for all 0 < k,[ < 1, then we have

x>+ [y># 0 [xI> = |y> #0
YX+xy#0 yx—xy#0,

Example Let ¢ =

vector @ is given by

1.e.,

x>+ > #0 |x]>=y*#0
Re(®y) #0 Im(xy) # 0.

Recall that a characterization of injectivity obtained in [3] is as follows: Given
x=(x,...,x,) € C"and let

X

= (|x1|’2 ..., Re(%x,), Im(%x,), |x2|’2 —.»Re(%px,), Im(X,x, )5 ... s 1x, DT

Then {y, };_, is a injective frame for C" if and only if {J,} spans R™. Applying this
method to our frame, we can construct 4 vectors {vi};‘=1, if the frame is injective
hence {v; };‘zl spans R*, that is, {vi}?=1 is linearly independent and the determinant of
the matrix (v, ..., v,) is not 0. A direct computation show that

|(V1, s v4)| = —8(|x> + [y1) - (IxI> = IyI*) - Re(xy) - Im(xy).

While both ways can give the same condition for a frame in C? to be injective, the
Gabor frames method provides a much more efficient way to check its injectivity.

X

Example Let ¢ =| y | € C3. Then the full Gabor frame generated by the window
Z

vector ¢ is given by

X x X yy Yy z 2z 2

y wy 0¥y z w7 @’z x ox o’x |.

7 @’z w7 X 0*x wx y 0’y wy

If we set (n(k,Dp,p) #0fork=0,0<[<landk =1, 0 <[ <2, then we get
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X2+ Y2+ 122 #0 xp+yz+28#0
x> + oy + @?|z]* #0 @*x9+wyz+2zx #0
Xy + @*yZ + 7% # 0.

ade
Let T=|d b f | € M5(C). Then the condition (Trk, ), x(k, @) =0 for all
efc

0 < k,! < 2 are given by the following messy equations:

alx|* + bly|* + c|z|* + 2Re(dw'xy) + 2Re(fw'yz) + 2Re(ew'zx) = 0
blx|* + c|y|* + alz)* + 2Re(fw'xy) + 2Re(ew'yz) + 2Re(dw'zx) = 0
clx® + aly|® + b|z|* + 2Re(ew'xy) + 2Re(dw'yz) + 2Re(fw'zx) = 0,

where i = 0, 1, 2. Therefore, again it is truly complicated to check the injectivity of a
Gabor frame using the definition.
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