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voice-controlled interfaces) compared to websites and apps.

This potentially makes them subject to existing dark patterns,

as well as new ones that depend on the new modalities.

(2) How do dark patterns in IoT devices relate to device type, man-

ufacturer, modality, and the context in which interactions were

performed? IoT devices exhibit diversity along several dimen-

sions, including interaction methods and o�ered functional-

ity. Understanding the relationship between such diversity

and dark patterns can help predict the presence of dark pat-

terns based on IoT device characteristics.

(3) What are the implications of observed IoT dark patterns? Given

the observed IoT dark patterns, we posit why certain dark

patterns manifest in the IoT environment, and note key chal-

lenges and identify trends that can guide further investiga-

tion into IoT dark patterns.

To answer these questions, we address key methodological chal-

lenges for studying dark patterns in the IoT environment, including

how to select a reasonable set of devices to test from the wide range

of device types and manufacturers on the market, how to conduct

rigorous testing across such devices with a tractable amount of ef-

fort and time, and how to collect reproducible and reusable datasets

from experiments with these devices. We build a codebook that

expands upon prior taxonomies [26, 42] with 12 new patterns that

we discovered during our pilot experiments, organize our codebook

by interaction context to facilitate human annotation and capture

which contexts carry higher dark pattern risk, and tackle strate-

gies for labeling dark pattern co-occurrences. This results in a set

of scripted interactions with IoT devices recorded on video, with

annotations that include timestamps when dark patterns occurred

and their position in a video frame.

We present an analysis of the dark patterns identi�ed in our

experiments. On average we found 10–11 unique dark patterns

per device, and noted between 3–90 total patterns (accounting for

multiple instances of patterns) per device.We �nd that pre-selection

and visual preference patterns are most common adopted, as well

as patterns related to account creation, consent/permissions, and

account deletion. We �nd crdi�more dark patterns in always-on

devices like cameras, doorbells, and speakers than in other types.

We �nd that Amazon and Google devices tend to contain more dark

patterns. Our results do not point to one single factor as the primary

driver of dark patterns; rather, our �ndings highlight the necessity

of multi-factor analysis for dark patterns. We also discuss how

nontransparent designs in IoT devices may exacerbate �nancial and

privacy harms, as well as other risks from the IoT context.

Finally, we discuss the implications of our �ndings, focusing

on key aspects of the IoT environment that give rise to observed

behaviors, challenges for future research on IoT dark patterns, and

interesting trends identi�ed in our dataset. We suggest potential

mitigations for design practitioners and regulators, noting strategies

to minimize darkness and improve transparency.

2 BACKGROUND

We begin by reviewing related work on dark patterns in general,

and IoT risks, harms, and user experience (UX) in particular. We

contextualize and motivate this study within this broader scope of

existing scholarship.

2.1 Dark Patterns

Dark patterns [20] are user interface designs that trick users into un-

wanted or unintentional behavior, typically against users’ best inter-

ests. Conceptually, dark patterns relate to malicious interfaces [25],

online manipulation [93], nudges [94], and UX design [47]. Dark

patterns have received public attention in the press [58, 73, 84],

scholarly and regulatory workshops [21, 59, 79], and government

reports [24, 33, 34]. Commensurate with this increasing awareness,

dark patterns are now regulated in some contexts such as consent

interactions [4, 6, 51].

Academics have developed robust taxonomies of dark patterns

based on their underlying mechanisms or tactics, both from a de-

sign perspective [39, 67] and with a privacy lens [19]. Following

these taxonomies, observational and measurement studies iden-

tify and enumerate dark patterns in app [26, 37, 39, 42] and web-

site [39, 42, 67] modalities. These studies demonstrate dark pattern

pervasiveness and the diversity of designs across various user inter-

actions, platforms, and modalities. Other work delves into speci�c

contexts, providing detailed insight into certain dark pattern or

interaction types. These contexts include e-commerce [67], consent

interactions and cookie banners [40, 41, 44, 45, 52, 61, 78, 92], ac-

count deletion interactions [56, 89], online addictions [3, 72], and

speci�c online services [56, 71]. The level of detail explored in these

studies provides evidence for regulatory responses. For example,

Gray et al. [40] analyzed dark pattern use in the non-compliance

of consent management providers (CMPs) to the GDPR consent

requirements; such evidence can a�rm consumer complaints in

enforcement actions [1, 76]. A key open question, which we discuss

below, is the extent to which prior work on other modalities and

contexts apply to the IoT environment.

Scholars taxonomized the range of poor outcomes and consumer

harms dark patterns may cause [43, 47, 68, 75, 91]. User studies

capture consumer reactions to dark patterns [18, 26, 60, 80, 89]

and �nd that people do feel manipulated or disadvantaged by dark

patterns [38, 71], but that people vary in how they perceive dark

patterns and their theorized harms (e.g., some are surprised by

certain dark patterns, while others are unsurprised but resigned).

Researchers are beginning to grapple with the role that context

plays with respect to dark patterns. For example, work focusing on

Roach Motels [20, 39] (i.e., designs that make it easy to get into a sit-

uation such as a subscription, but hard to get out of) frame dark pat-

terns as socio-technological phenomena, largely dependent on how

they are interacted with rather than how they are presented [16].

Gray et al. [40] stress an “n-dimensional” approach for research-

ing dark patterns that incorporates factors like time, interaction,

design, psychology, and law via multi-disciplinary analysis. Work

by Gunawan et al. [42] embraces this approach by comparing dark

patterns across thematic UX categories, while work by Mathur et al.

[68] critiques dark patterns through a variety of disciplinary lenses.

Our study aims to continue this line of scholarship by investigating

dark patterns in previously unexplored contexts and interaction

modalities with multi-factor analyses.

2.2 IoT Contexts and Emerging Modalities

Context is critical when considering dark patterns in IoT devices

that may serve vastly di�erent purposes. They can access intimate
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spaces (e.g., bedrooms or bathrooms), collect highly speci�c data

through sensors, and be perpetually on or listening (e.g., micro-

phones in voice assistants), with device hardware that may not pro-

vide feedback to users (e.g., not indicating when a device is record-

ing video). These qualities present unique and additional challenges

for user privacy, security, and safety (as demonstrated by extensive

scholarship on IoT privacy and security issues [7, 9, 10, 12, 13, 17,

23, 27, 30, 31, 49, 53, 62–65, 69, 69, 74, 81, 85, 88, 95, 97, 99, 101])

relative to websites and apps.

Dark designs may exacerbate these safety and security concerns.

Limited surfaces for interaction on IoT devices, or complex con-

trol schemes involving companion apps, may o�er opportunities

for designers to obfuscate, discourage the use of, or even omit

privacy-critical functionality. Recent work has begun to measure

users’ interactions and perceptions of settings interfaces in IoT

devices [15, 66], providing early indicators of “good” UX in IoT

devices. Owens et al. [80] investigated non-visual interfaces like

voice assistants through speculative design �ction exercises and

user surveys, identifying that while participants found intention-

ally deceptive scenarios to be more problematic than those that

were not, overall the participants did not show much concern over

deceptive scenarios.

IoT devices may use the same platform as mobile phones (e.g.,

using Android variants such as Android Auto, Android TV, and

Android Wear). An open question, then, is whether such devices

exhibit similar dark patterns as those found in mobile apps that run

on the same OS foundation [26, 42]. While this might be the case

for some devices, several factors may alter the frequency or types

of dark patterns adopted in IoT devices when compared to mobile

apps. For example, when an IoT device utilizes a commodity OS like

Android, the user interface and interaction modalities may di�er

from smartphone Android (e.g., a remote for Android TV rather

than a touchscreen). Furthermore, many IoT devices run bespoke

or uncommon OSes (e.g., Tizen from Samsung or Fuschia from

Google), or include sensors that are not present on smartphones

(e.g., always-on cameras).

2.3 Building On Prior Dark Patterns Work

Our work lies at the intersection of dark patterns and IoT. Our

codebook for identifying dark patterns (see subsection 3.3) draws on

taxonomies and harm frameworks from prior work [19, 42, 67, 68],

and contributes to early explorations on darkness in emerging

modalities [80].

Like prior measurement work, we manually interact with de-

vices, look for dark patterns, and link dark patterns to potential

harms.We draw on approaches [26, 42] and design perspectives [15]

from prior work to inform our process for interacting with IoT de-

vices and labeling dark patterns (see subsection 3.2). We expand

upon existing measurements by collecting frequencies of repeated

dark pattern encounters. Further, we directly compare our IoT dark

pattern measurements to prior manual studies [26, 42] (see subsub-

section 4.1.4).

Previous work primarily focused on visual modalities like apps

and websites [26, 42, 67]. In contrast, we holistically examine de-

vice experiences multimodally, through direct interaction with

the devices, voice interactions, and interactions with companion

apps. Prior manual studies conducted uniform time-bound actions

per app or service [26, 42], which were naturally constrained by

each modality’s a�ordances (e.g., all observed apps or mobile sites

were interacted with via touchscreen [26, 42] or desktop sites were

viewed on a computer). To understand a device’ experience across

o�ered modalities and robustly explore available features or nec-

essary con�guration, our methods necessitated unrestricted inter-

action durations and �exible interaction scripts. As such, we do

not conduct disparate, per-modality interactions nor draw apples-

to-apples comparisons between the modalities inspected. Speci�c

to smart devices, we depart from recent design �ction and user

study [80] approaches for exploring dark patterns in voice inter-

face, instead using manual testing methods on real device interfaces

and examining modalities beyond voice alone.

3 METHODS

We now describe the methods used in our study. This section covers

preliminary experiments, then describes how we arrived at the �nal

number of devices examined, how we inspected and interacted with

each device, and how we annotated dark patterns per IoT modality.

We also present validation of our annotation process.

3.1 Lab Environment and Devices

Our study was conducted on devices purchased between 2017–2022

in the United States and primarily housedwithin a single, controlled-

access lab environment. This lab environment resembles a studio

apartment, with devices installed in the manner they might be in a

typical home. Two TV devices were hosted o�-site by a trusted third-

party. Including these two TVs, we studied 57 devices spanning

nine broad types: home automation, home appliance, health, smart

hub, camera, doorbell, television, media device, and speaker devices

as listed in Table 1. Although additional devices were available in

our lab environment, we excluded devices that were model-year

iterations of the same device (e.g., of our available Echo Dots, we

included only the most recent 4th Gen Echo Dot) and devices with

dysfunctional factory-reset capability. We list excluded devices in

the Appendix (Table 6).

In general, IoT devices o�er multiple interaction modalities, in-

cluding on-device buttons, touch screens, remotes, voice commands,

or even no on-device interface at all. For devices in the last category,

the only available modality was a companion app installed on a

smartphone. To operate these devices, we primarily used Android

phones with relevant companion apps installed, with exceptions

for HomePods, which we paired with an iPhone.

3.2 Pilot Experiment

Two key challenges for identifying dark patterns in IoT devices are:

(1) Existing interactions scripts that stipulate how tomanually ex-

ercise and record interactions with websites and apps [26, 42]

are unlikely to be su�cient for exercising the full functional-

ity of IoT devices, given di�erences in modality a�ordances.

(2) Existing codebooks for annotating dark patterns [26, 39, 42]

may not be su�ciently illustrative when applied to IoT or

multimodal device experiences.

To address these issues we conducted an exploratory pilot experi-

ment to identify any necessary adjustments to prior methods for
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Device Type Device Name Ecosystem App Name (If Used) App Dependency Video Duration

Home Automation

Amazon Smart Plug Amazon Amazon Alexa All interactions 0:11:13
Jinvoo Smart Bulb Jinvoo Smart All interactions 0:19:22
Gosund Smart Light Bulb Gosund All interactions 0:12:30
Govee LED Light Bulb Govee Home All interactions 0:15:41
Magichome Strip Magic Home Pro All interactions 0:09:24
Meross Door Opener meross All interactions 0:12:17

Nest Thermostat∗ Google Nest All interactions 0:26:27
Ring Chime Amazon Ring All interactions 0:19:50
Smartlife LED Bulb Smartlife Smart Life All interactions 0:18:27
WeMo Plug Wemo All interactions 0:13:14
Thermopro TP90 ThermoPro Home Smart interactions 0:06:59
TP-Link Bulb Kasa Kasa Smart All interactions 0:14:03
TP-Link Plug Kasa Kasa Smart All interactions 0:14:23

Camera

Amcrest Cam Amcrest View Pro All interactions 0:11:45
Arlo Q Cam Arlo Arlo Secure: Home Security All interactions 0:19:24
D-Link Cam mydlink All interactions 0:13:15
Lefun Cam MIPC All interactions 0:11:31
Nest Camera Google Google Home All interactions 0:13:13
Ring Camera Amazon Ring All interactions 0:22:42
Ring Camera (Indoor) Amazon Ring All interactions 0:16:04
Tuya Smart Camera Tuya Smart All interactions 0:17:00
Wyze Cam Wyze All interactions 0:23:47
Yi Home Camera Yi Home All interactions 0:11:08

Media Device

Apple TV∗ Apple No interactions 0:17:33

Chromecast w/ Google TV∗ Google No interactions 0:31:36

Facebook Portal Mini∗ No interactions 0:34:33

Fire TV∗ Amazon No interactions 0:51:49

Nintendo Switch∗ No interactions 0:38:28

Roku TV∗ No interactions 0:25:20

TiVo Stream∗ No interactions 0:39:37

Smart Hub

Aqara Hub Aqara Home All interactions 0:19:37
Sengled Smart Hub Sengled Home All interactions 0:12:12
SmartThings Hub Samsung SmartThings All interactions 0:34:43
Switchbot Hub SwitchBot All interactions 0:10:47
Philips Hue Bridge Philips Hue All interactions 0:13:23

Doorbell

Arlo Doorbell Arlo Arlo Secure: Home Security All interactions 0:13:19
Nest Doorbell Google Google Home All interactions 0:16:33
Ring Doorbell Amazon Ring All interactions 0:15:21
Ring Doorbell (’21, Wired) Amazon Ring All interactions 0:28:07

Speaker

Echo Dot (4th Gen) Amazon Amazon Alexa† Setup interactions only 0:48:00

Echo Show 5∗ Amazon Amazon Alexa† Smart interactions 0:44:09
Home Mini Google Google Home† Setup interactions only 0:18:37
Nest Mini Google Google Home† Setup interactions only 0:45:15
Homepod Apple Home (iPhone)† Setup interactions only 0:21:56
Homepod Mini Apple Home (iPhone)† Setup interactions only 0:31:12

Nest Hub Max∗ Google Google Home† Setup interactions only 0:41:19

Home Appliance
Samsung Fridge∗ Samsung No interactions 0:46:25
GE Microwave SmartHQ Smart interactions 0:20:33

TV

LG TV∗ No interactions 0:27:51

Samsung TV∗ Samsung No interactions 0:22:42

Sony TV∗ Sony No interactions 0:30:00

Vizio TV∗ Vizio No interactions 0:21:49

Health

Oxylink Oxygen Monitor ViHealth All interactions 0:12:27
Renpho Smart Scale Renpho Smart interactions 0:18:54
Withings BPM Connect Withings Withings Health Mate All interactions 0:24:49
Withings Sleep Withings Withings Health Mate All interactions 0:09:15
Withings Thermo Withings Thermo All interactions 0:10:20

Table 1: The 57 devices used in this study. Device names marked with asterisks (*) contained navigable screens in the device

hardware. App names marked with daggers (†) denote devices for which we annotated and discovered dark patterns in both the

device and the app. We collected approximately 20 hours of recordings in total. Refer to Table 5 in the Appendix A for device

�rmware or app software information.
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Figure 1: Flowchart detailing our manual analysis procedures, from pilot experiments to methods adjustments and �nal

annotations. Note that we added 13 more devices a few months after performing the preliminary interaction recording, bring

the total from N=71 to N=84 devices.

our �nal set of experiments, as well as identify novel dark pat-

terns for our codebook. Figure 1 presents a �owchart of our pilot

experiments.

The �rst author interacted with all devices housed in the lab

during August–October 2021 (N=71), using a Google Pixel 3 phone

or iPhone 6 to control devices with an available companion app.

Screen recordings were taken for companion app interactions, and

video recordings were taken for physical device interactions. All

phones and devices were connected to the local lab network while

each device was examined, and were logged-in to pre-existing lab

user accounts per-device. These user accounts varied in age as they

were created as needed over several years. As such, many devices

contained existing usage data. Each device was used as intended

(e.g., the fridge was used to store food, light bulbs were turned

on and o�, cameras took or displayed footage) and we explored

all navigation options provided by a device (e.g., menus in visual

interfaces like apps or physical touchscreens, and queries in voice

interfaces). For each device we sought to examine every navigable

feature or area in the interface, and followed navigation to the

depth of any end-node pages or frames. We did not attempt to

interact with every possible button or toggle provided by end pages

or frames (either on the device itself or in its companion app).

The �rst author then reviewed each video (either a screen record-

ing or external footage) and labeled dark patterns in two iterations.

First, we labeled unique dark patterns according to the �ve main

categories in the Gray et al. [39] taxonomy and kept written descrip-

tions of encountered patterns. These labels were discussed with

two co-authors to achieve alignment on dark pattern identi�cation.

Second, the �rst author labeled each video according to a codebook

based on speci�c dark pattern instances from Di Geronimo et al.

[26] and Gunawan et al. [42], noting dark behaviors that had not

been explicitly described in prior work. These notes were reviewed

and discussed with the second author and resulted in the addition

of new labels for novel dark pattern cases.

Asmanual annotations are subject to individual bias, the �rst two

authors independently annotated a subset of these device recordings

(at least one device per type, plus an additional speaker with a

touchscreen; N=8 devices). The two authors then compared labels

for validation. Disagreements were discussed and corrected towards

an agreed-upon understanding of each pattern, generally defaulting

to the �rst author’s labels.

3.3 Methods Development

Next we re�ned our interaction scripts and codebooks for the �-

nal round of device interactions, data collection, and subsequent

annotations. Figure 1 shows the output of this process: a general

interaction script used for non-voice controlled IoT devices and

companion apps, an interaction script for voice-controlled devices,

and an expanded codebook for labeling dark patterns.

3.3.1 Environment Isolation. Compared to a neatly isolated envi-

ronment for testing websites and apps, the single-network, live lab

environment presented unique challenges for IoT data collection.

Pilot study interactions revealed the potential in�uence of interac-

tion history or pre-existing data, and logged-in devices prevented

insight into device and account setup experiences. With all devices

on the same network, some devices and apps could communicate

with each other (e.g., light bulbs connected to several smart hub

apps, or Amazon devices connected to the same app). This blurred

distinctions between similar devices: in some cases, we received

noti�cations from devices we were not intending to interact with if

that device shared the same app as the device we were inspecting.

To mitigate these issues during our �nal data collection, we

factory reset each device and—like prior work [26, 42]—created a

fresh user account for each device as needed.1 We also provisioned

a separate, isolated network solely for this study, such that only

one controller phone and the currently-examined device would be

connected to the network at the same time (all other lab devices

remained on the original network).

3.3.2 Embedded Browsers and OS Interfaces. Some devices and

companion apps loaded web pages using built-in browsers. Unlike

prior work [42], we included dark patterns discovered in such web

pages if these (1) transmitted login information or (2) delivered in-

formation promised by previous device/app menus or features, but

did not count dark patterns in embedded pages that served tertiary

purposes. For example, the Google Nest Mini app contains menu

items that lead to a logged-in shopping web page hosted by Google

that allows users to purchase other Google Home products. In this

case, we inspected web pages relevant to the shopping task, but

did not visit Google Account pages or other product pages hyper-

linked from the same page. This restriction avoids incorporating the

1For Google or iPhone devices using OS-level apps like Google Home or Apple Home, fresh user

accounts were used for smartphone login.
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entirety of vendor websites into our analysis of speci�c IoT prod-

ucts. Similarly, some devices and controlling smartphones share the

same manufacturer (e.g., HomePod and iPhone; Google Home with

Android devices) and leverage both OS-level and companion-app-

level interfaces to control the smart device. Thus, we retained dark

patterns found in the OS in our dataset if they were encountered

naturally within our interaction script and did not explore other

OS interfaces beyond those relevant to IoT interactions.

3.3.3 Speaker Interactions. In the pilot study, we asked our speak-

ers a small set of common queries, suggested verbatim by device

documentation and lists from popular consumer electronics web-

sites [36, 50, 83]. These lists, however, tended to mention highly

speci�c one-o� use cases like shopping for an item, playing music,

or inquiring about the weather. Other desired interactions, like

navigating settings or account deletion, were not as readily found.

To keep our speaker interactions as consistent as possible with

physical devices and companion apps, we constructed our own

list of commands that would exercise the sample commands listed

above, as well as attempt to navigate settings and conduct exit

interactions (e.g., delete the associated account). We conducted

smaller tests of these commands across all three speaker ecosystems

in our study to identify ecosystem-speci�c functionality (like the

presence of a guest mode, or the ability to mute the mic by voice

command) and test the limits of available voice-controlled actions.

Account and device setup interactions were omitted from this list,

as we discovered that all speakers in our tests required companion-

app-based setup prior to use.

3.3.4 Novel Dark Pa�erns. Based on the results of the pilot experi-

ment we added 12 new dark patterns to our codebook. Throughout

the pilot experiments, the authors noted all unlabeled device and

companion-app behaviors that �t within one or more broad clas-

si�cations of dark patterns [39, 67]. The authors discussed these

behaviors while co-annotating recordings, comparing independent

annotations, and when reviewing intermediary analyses. The au-

thors agreed that these behaviors fell within high-level dark pattern

categorizations and traits, but were not speci�cally captured by

prior codebooks used during the pilot experiment [26, 42]. We

present novel dark patterns in bold in Table 2. We discuss these

novel patterns and their implications in subsection 4.2.

3.4 Final Dataset Production

We now describe our �nal device interaction, interaction recording,

and video annotation procedure, which took place October 2021–

June 2022. We examined the 57 devices shown in Table 1.

3.4.1 Navigating Interfaces. Our approach to interactions relied

on interaction scripts drawn from prior work [26, 42] with modi-

�cations stated in subsection 3.3. Our script was designed to un-

cover and explore as many possible features—including settings

categories—a�orded by each smart device across companion apps

and device hardware (which included voice-controlled and visual

interfaces). We conducted device and account setup, traversed avail-

able features and settings, and performed exit interactions (e.g.,

logout, device disassociation, data or account deletion, etc.) where

possible for each device. When setting up an account we agreed to

all options that were preselected or preferred in visual hierarchies.

In cases where dark patterns did not steer us towards particular

choices we chose the �rst available option, from top to bottom

and from left to right. We focused on traversing as many main

features or options as were intuitively provided within the compan-

ion app or device interface. Likewise, we conducted a best-e�ort

approach to visit all available settings, subject to limitations where

a device’s settings navigation would require an unusually long time

to traverse (e.g., each setting was individually paginated, requiring

multiple page loads to traverse). In these cases we visited a subset

of settings for reasonable coverage.

3.4.2 Device Interactions. We factory-reset each device, connected

them to the isolated network, con�gured devices using a unique

e-mail address for registration if required, and used factory-reset

Google Pixel 3 and iPhone 6 phones for any app-based interactions.

We recorded companion app interactions using screen recording

software and took video footage of device interactions using a

smartphone camera on a tripod.

Each IoT device test began with an attempt to interact with the

physical device. When prompted by the device or when apparent

that the device required a companion app for smart features, we in-

stalled the relevant app on a compatible smartphone, began screen

recording, and interacted with the device through the app. We fol-

lowed device or app guidance when determining which modality to

use and traversed any remaining features or device-speci�c settings

in the device or app after completing as many available actions as

possible for the primary purpose(s) of the device. Following our

traversal, we examined any available app-level or physical-device

settings and attempted any available exit interactions.

3.4.3 Companion App Interactions. To preserve ecological validity,

we sought to interact with IoT devices as directly as possible, as

an average user might. Thus we refrained from using companion

apps unless it was the only way to control a device or the device

required us to. Of our 57 devices, only 12 could be fully interacted

without a companion app: the media devices (e.g., Apple TV and

Roku TV), the TVs, and the fridge. If a device prompted login but

did not require the companion app, we used a desktop browser for

account registration.

We identi�ed cases where the same companion app controlled

multiple devices in our tests, which allowed us to save time with-

out loss of coverage by interacting in full only once for all its

corresponding devices. For example, both Alexa speakers and the

Amazon Plug use the Amazon Alexa app; the Ring Camera, Ring

Chime, and Ring Doorbell all share the Ring app; all three Google

speakers and the Chromecast use Google Home, etc. In these cases

we fully traversed each app only once, and otherwise only inter-

acted with the app as necessary per-device, on demand—typically

for fresh account or device setup, or managing relevant settings.

3.4.4 Annotation Procedure and Validation. We manually anno-

tated the video recordings produced by our device and companion

app interactions for dark patterns using the codebook in Table 2.

Prior studies using similar methods operationalized dark patterns

as binary variables that were either present or not present in each

sample [26, 42]. In contrast, Mathur et al. [67] counted the number

of each type of dark pattern that appeared on each website and

web page during automated crawls. We use both approaches in
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Context Category Dark Pattern Description Mapping to Prior Taxonomies Potential Harms

Registration
Account required to use service Forced Registration [19], Forced Action [26, 39] Privacy [68]
Account required to set up device Forced Registration [19], Forced Action [26, 39] Privacy [68]

Engagement

Gami�cation Gami�cation [26, 39] Cognitive [68]
Extraneous noti�cation badges Aesthetic Manipulation [26, 39] Cognitive [68]
Extraneous message centers Nagging [26, 39] Cognitive [68]
Extraneous social media features Nagging [26, 39] Cognitive [68]

Consent and Permissions

No Terms of Service/Privacy Policy Privacy Zuckering [19, 20, 26, 39] Privacy, Autonomy [68]
No link to Terms of Service/Privacy Policy Hidden Legalese Stipulations [19], Hidden Information [26, 39] Privacy, Autonomy [68]
No consent checkbox for Terms of Service/Privacy Policy Privacy Zuckering [19, 20, 26, 39] Privacy, Autonomy [68]
Consent checkbox is preselected Bad Defaults [19], Preselection [26, 39] Privacy, Autonomy [68]
Consent notice includes email subscription Bad Defaults [19], Preselection [26, 39] Autonomy [68]
Preselected email subsciption checkbox Bad Defaults [19], Preselection [26, 39] Autonomy [68]
Permission requested without explanation Hidden Legalese Stipulations [19], Hidden Information [26, 39] Privacy, Autonomy [68]
Permission pops up unprompted Nagging [26, 39] Cognitive, Privacy [68]
Device sensed without permissions Privacy Zuckering [19, 20, 26, 39] Privacy, Autonomy [68]
Nonpermanent opt out Trick Question [20, 26, 39] Autonomy [68]

Ads

Native ads Disguised Ads [20, 26, 39] Cognitive [68]
Hard to close ads Aesthetic Manipulation [26, 39] Cognitive [68]
Inconsistent close buttons Aesthetic Manipulation [26, 39] Cognitive [68]
Interact with ads to unlock a feature Forced Action [26, 39] Cognitive, Autonomy [68]
Pay to avoid ads Hidden Information [26, 39] Financial [68]

Money

Pay for �ctional currency Intermediate Currency [26, 39] Financial [68]
Pay for badges Intermediate Currency [26, 39] Financial [68]
Unsolicited free trial Forced Continuity [20, 26, 39] Autonomy [68]
Free trial requires payment method Forced Continuity [20, 26, 39] Financial [68]
Pay for long term use Forced Continuity [20, 26, 39] Financial [68]
Feature seems free but is not Disguised Ads [20, 26, 39] Financial [68]
Feature seems premium but is not Hidden Information [26, 39] Financial [68]
Cannot sort free from premium content Aesthetic Manipulation [26, 39] Cognitive [68]

Shopping

Suggests preferred items False Hierarchy [26, 39] Autonomy [68]
Sneaking items into basket Sneak Into Basket [26, 39] Financial, Autonomy [68]
Optional items are preselected Sneaking [26, 39] Financial, Autonomy [68]
Shaming language when opting out Privacy Zuckering [19], Toying with Emotion [26, 39] Autonomy [68]
Item has a di�erent price Bait and Switch [20, 26, 39] Financial [68]
Surpise fees Hidden Information [26, 39] Financial [68]
Countdown timer Toying with Emotion [26, 39] Financial, Autonomy [68]
Social proof Toying with Emotion [26, 39] Financial, Autonomy [68]

Seen in Settings

No bulk options for settings Privacy Zuckering [19], Aesthetic Manipulation [26, 39] Cognitive [68]
No noti�cation settings Bad Defaults [19], Forced Action [26, 39] Cognitive, Autonomy [68]
No privacy settings Bad Defaults [19], Forced Action [26, 39] Privacy, Autonomy [68]
Noti�cation settings preselected Bad Defaults [19], Preselection [26, 39] Cognitive, Autonomy [68]
Privacy settings preselected Bad Defaults [19], Preselection [26, 39] Privacy, Autonomy [68]
Hard to navigate settings Privacy Zuckering [19], Aesthetic Manipulation [26, 39] Cognitive [68]
Inconsistent Settings UI Privacy Zuckering [19], Aesthetic Manipulation [26, 39] Cognitive [68]
Settings detour to a di�erent modality Privacy Zuckering [19], Forced Action [26, 39] Cognitive [68]

Leaving

No logout Immortal Accounts [19], Roach Motel [20, 26, 39] Autonomy [68]
No account deletion Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy, Autonomy [68]
Unclear deletion options Privacy Zuckering [19], Roach Motel [20, 26, 39] Privacy, Autonomy [68]
Time delayed deletion Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy [68]
Cannot remove device Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy [68]
Cannot delete data from device Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy [68]
No local subscription cancellation Immortal Accounts [19], Roach Motel [20, 26, 39] Financial [68]

Interface Interference

General preselection Preselection [26, 39] Autonomy [68]
Visual preference False Hierarchy [26, 39] Autonomy [68]
Confusing text Trick Question [20, 26, 39] Autonomy [68]
Con�rmshaming Toying with Emotion [26, 39] Autonomy [68]
Forced action Forced Action [26, 39] Autonomy [68]

Subverting Expectations

Hidden information Hidden Information [26, 39] Autonomy [68]
Hidden feature behavior Aesthetic Manipulation [26, 39] Cognitive, Financial, Autonomy [68]
Nagging - General Nagging [26, 39] Cognitive [68]
Popup nag Nagging [26, 39] Cognitive [68]
Feature detours to a di�erent modality Forced Action [26, 39] Cognitive [68]
Unprompted suggestions Nagging [26, 39] Cognitive, Autonomy [68]
Nagging self-promotional content Nagging [26, 39] Cognitive, Autonomy [68]

Table 2: Final codebook of dark patterns we used to annotate recordings of interactions with IoT devices and companion apps.

We group the dark patterns into ten context categories, and map each dark pattern to associated traits, strategies, and harms

drawn from prior work. Novel dark patterns are shown in bold. Patterns with parenthetical traits or strategies constitute

deceptive or unfair behaviors that employ similar strategies to the maximize privacy dark strategy [19] but applied to �nancial

or engagement contexts.
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this study. To achieve this, we used a video annotation software

that facilitated observation and coding for compound or multiple

instances of dark patterns, and additionally supported timestamps

and image coordinates for each label [28, 29]. When encountering

multiple dark patterns on the same screen or video frame, we ex-

amine the presented interface elements holistically and consider

whether the dark patterns appear to be deployed towards a shared

immediate purpose. If so, we select relevant designs in a frame and

annotate the selection with multiple dark patterns.

All recordings were annotated by the �rst author. In cases where

the �rst author felt a label was uncertain, the second author was

consulted to achieve consensus.

We validated our device annotations by assessing inter-coder

reliability between the �rst two authors. Speci�cally, the two au-

thors independently annotated the recordings of one device per

type and we compute Cohen’s ċ to assess agreement. Both authors

annotated 585 labels, with 75 and 80 positive unique (binary) labels,

and 510 and 505 negative unique labels. For total instance counts,

the authors note 169 and 161 positive frequency labels, respectively,

and 416 and 424 negative labels per-pattern. For the �nal dataset,

we use the �rst author’s labels by default to maintain consistency

across all device annotations.

Table 3 presents theċ agreement statistics with respect to unique

and total dark patterns. Across all 52 patterns in our study, we

note ċ=0.56 and ċ=0.42 for unique and total dark pattern counts

respectively, both of which are in the moderate agreement range

(0.41 < ċ < 0.60) [54]. Given the comparatively large size of our

codebook and high granularity of individual dark pattern cases, we

also grouped our inter-rater labels according to the context cate-

gories in our codebook (adapted from Gunawan et al. [42]) and the

16 dark pattern types from Di Geronimo et al. [26].2 We observe

improvements when calculating ċ for each grouped categorization:

unique-count ċ=0.60 (mildly signi�cant [54]) for our context cate-

gories and ċ=0.67 (signi�cant [54]) for the Di Geronimo et al. [26]

categories.3 These results demonstrate more agreement between

our labelers at the granularity of categories than at the granularity

of speci�c dark patterns.

In the context of our codebook size, manual methods, video

length, and corpus-to-validation sample diversity, we consider our

agreement consistent with similar studies’ measures [26, 42] and

therefore su�cient to proceed with as a reasonable approximation

of overall agreement to popular taxonomies. However, as human

measurement remains a challenging part of dark patterns study, we

further discuss limitations of such methods in subsection 5.4.

4 ANALYSIS

We now analyze our dataset of annotations for all devices included

in our experiments. We identify 1,255 total unique instances of dark

patterns drawing from 52 distinct patterns. We then compare our

results to those from prior measurement studies of dark patterns

on the web and in apps.

2These patterns are used in Di Geronimo et al. [26] and Gunawan et al. [42] to group dark pattern

cases to the popular Gray et al. [39] taxonomy.
3Whether moderate or signi�cant ċ measures are interpreted as acceptable depends on discipline.

Within HCI, the adoption of inter-rater reliability measures his somewhat rare [70].

4.1 Dark Patterns Across All Devices

4.1.1 Dark Pa�ern Popularity. We �rst count unique dark patterns

and per-pattern frequency for all patterns in our codebook across

all devices, to broadly quantify dark patterns in IoT experiences.

The cumulative distributive function (CDF) of unique and total

dark patterns per device in Figure 2 shows disparity between bi-

nary, unique presence counts (whether a dark pattern is found in a

device interaction or not) and total frequency counts (how many

dark patterns appear in a device interaction, including multiple

instances of the same pattern). The x-axis denotes how many dark

patterns were discovered (unique count in blue, total in orange).

The y-axis represents the percentage of the 57 devices in our study

that contained that number of dark patterns for either count. We

discovered at least three unique dark patterns in all 57 devices.4 On

average, devices contained 9 unique dark patterns, and all devices

contained < 25 unique patterns.5

If the devices in our corpus included only one instance of each

unique dark pattern, then the two distributions would be identical

and overlaid atop each other. However, beyond the 40th percentile

the distributions diverge, with the highest number of total dark

patterns (90, Table 4c) being more than triple the maximum number

of unique dark patterns (25, Table 4a). Thus, many devices not only

exhibit dark patterns multiple times, but do so in large numbers.

Table 4 highlights the top ten devices in our corpus by highest

and lowest counts of unique and total dark patterns. Both lowest-

count tables (Table 4b and Table 4d) share eight out of ten devices.

However, the highest-count tables (Table 4a and Table 4c) share only

six devices, suggesting variance between top-o�ending devices’

propensity to deploy dark patterns multiple times.

Figure 3 presents the percentage of devices with at least one in-

stance of each dark pattern in our codebook, color-coded by context

category. Overall, patterns in the Interface Interference, Consent and

Permissions, Registration, Seen in Settings, and Leaving categories

were most frequently adopted.

4.1.2 High Total Counts and Potential Design Templating. As shown

in Figure 3, two Interface Interference patterns appeared most fre-

quently by total count. A closer look reveals that on average, the

visual preference pattern appears 6 times per device (the highest

average value across all dark patterns), with general preselection (the

second highest average) appearing only around twice per device—

this is visualized in Figure 17 in the Appendix, while Figure 18 strat-

i�es the total count averages per device category to demonstrate

that speakers, doorbells, and cameras contained the highest frequen-

cies of these two patterns. We hypothesize that the high adoption

rate of these patterns may be due to design templates and/or auto-

mated design deployment methods, as opposed to unique, conscious

decisions by designers. For example, a UX design tool may have

checkbox elements set to have preselected defaults, or binary choice

buttons that privilege one button over the other even before button

text is added. Context-speci�c versions of these patterns (e.g., pres-

elected consent checkboxes or settings) were also fairly common

in our dataset.

4This aligns with prior manual studies’ �ndings of dark patterns in 95% of studied apps [26] and

100% of studied web services [42].
5For comparison, prior manual studies note upper-bound counts of 19 unique dark patterns in web

services [42] and 23 in apps [26], and average unique counts between 7–8 in both studies.
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option, with one being an a�rmative ‘yes’ and the other being some

variation of ‘not now,’ ‘later,’ or ‘skip.’ Users are not provided options

like ‘no’ or ‘never.’ Such designs are transparent that the question

will be asked again in the future, but do not give users a way to

e�ectively avoid this query or noti�cation and thus accentuates

nagging behavior. We label such cases when an interface fails to

provide permanent negative options, and do not label cases when

users are provided some sort of ‘do not ask again’ choice.

4.2.7 Hidden Feature Behavior. Figure 11 provides an example of

hidden feature behavior, a sub-case of hidden information. We sepa-

rate this case from the parent dark pattern category for its implica-

tions in the IoT context: designs that initially imply that features are

inherently provided but later reveal additional conditions for use

are thus labeled under this dark pattern. This behavior obfuscates

the true value of an IoT service and may deceive consumers into

perceiving a product as more robust (sans additional caveats) than

it truly is. This pattern is similar in method to feature-relatedMoney

patterns, which hide the true cost of a feature from the user.

4.2.8 No Local Unsubscribe Options. We added this case following

our pilot experiment to investigate whether services with subscrip-

tion models o�ered users the ability to cancel subscriptions within

the device experience (i.e., without having to head to a website in

a browser or otherwise contact the manufacturer). The instances

in which this pattern came up were complex: we initially anno-

tated the Ring app as having this pattern as pertaining to the Ring

Doorbells and Cameras but not the Ring Chime due to helper text

provided to us during attempts to delete devices from the Ring

App. Interfaces originally prompting these annotations are shown

in Figure 12a and Figure 12b for the Chime and Indoor Camera,

respectively. In Figure 12b, the warning message indicates that the

subscription-based Ring Protect Plan must be canceled at ring.com,

thus prompting a no local unsubscription option dark pattern. Con-

versely, the Chime does not include any reference to the Protect

Plan and thus we did not mark this dark pattern. However, when

we later attempted to delete the entire Ring account via the app,

we were presented with the warning message in Figure 12, which

explains that any subscriptions on the account will be canceled

with account deletion. Due to this technically local unsubscription

option, we removed our previous annotations and found no other

instances in other devices (seeing as most devices did not mandate

or o�er subscription models), but retain the dark pattern in our

codebook and provide these examples to demonstrate the poten-

tial for this behavior in other apps or web services as subscription

models are not unique to IoT.

4.3 Dark Patterns by App and Device Modalities

Unlike websites and apps, IoT device experiences span di�erent

modalities. Some devices rely on a companion app; others provide

direct avenues for interaction via buttons, voice interfaces, and

embedded touchscreens. Table 1 presents the companion app de-

pendencies, if any, of the devices in our sample. 72% of the devices

in our sample required the use of a companion app, which was

surprising for devices like speakers (especially the Nest Hub Max,

which has an embedded screen) that provide robust interaction

methods, and allow many settings to be adjusted sans app.

To examine how dark pattern adoption varies across app-driven

and device-driven modalities, we stratify our sample into (a) “App-

Only” devices that must be controlled with a companion app at

all times (Ċ = 36), (b) “Both, For Setup” devices that required an

app but only during device setup (Ċ = 7), (c) “Both, Non-Setup”

devices that required us to use an app after setup to access relevant

functionality (Ċ = 3), and (d) “Devices Only” devices for which

an app is not required and we were never mandated to use an

app (Ċ = 12). All six devices that required an app for setup were

speakers. The four devices that prompted app use for non-setup

reasons were the Thermopro TP90, the GE Microwave, Renpho

Smart Scale, and the Amazon Echo Show 5, and were operational

for their primary function prior to our companion app use.

Figure 13 presents the percentage of devices per-modality that

included dark patterns, broken down by our dark pattern context

categories. Over 60% of devices within all four modalities contained

Consent and Permissions, Seen in Settings, and Subverting Expecta-

tions dark patterns, making them the most common categories of

patterns overall. Leaving and Interface Interference dark patterns

also appeared in over 60% of devices in three modalities and half

of the four “Both, Non-setup” devices. The relative popularity of

dark patterns in these contexts, even across modalities, speaks to

their universal applicability. For example, since these devices are all

internet-enabled, consent dialogs are very common, as are settings

dialogs that include privacy-sensitive choices.

Dark patterns in the Registration category were widely adopted

by companion apps, which were used in all categories except “De-

vices Only”. In particular, we observed that the account required for

use pattern, which was found to be widely adopted by websites and

apps in prior work [42], was widely adopted by IoT devices that

required at least some use of a companion app. However, speak-

ers (overlapping with the “Both, For Setup” category) revealed an

ecosystem-related quirk: because we used a Google Pixel to manage

the Google speakers and an iPhone to control HomePod devices, we

were already “logged in” to their respective apps and thus were able

to use these devices without needing to create another account.8

In contrast, devices that did not require or prompt app use (mostly

TVs, home appliances, and media devices) treated account creation

as optional, i.e., we could use these devices to at least some extent

before being asked to create an account.

More rarely adopted categories include Engagement, Ads,Money,

and Shopping. Of these, adoption of patterns from the Engage-

ment category was somewhat consistent, present in around 40%

of devices in three modalities. Interpreting the Ads category re-

quires understanding our codebook: we generally annotated pro-

motions for third-party content as advertisements, while promo-

tions for �rst-party, device manufacturer content were considered

self-promotional nags in the Subverting Expectations category. We

encountered several self-promotional nags across all modalities,

but we only observed native banner ad designs in TVs and media

devices e.g., the FireTV and LGTV. Dark patterns in theMoney cate-

gory were also more prevalent in media devices due to requests for

streaming subscriptions and dark patterns that made distinguishing

free versus premium content di�cult. Adoption of patterns from

8Due to this quirk, we did not mark these as requiring account creation speci�cally for the IoT context.
Seamless login behavior like this warrants future scholarship on dark designs within ecosystems or

platforms, particularly when single login is used across a manufacturer’s other applications.
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and all interactions with these devices in our study were exclusively

conducted through companion apps.

The home automation and health device categories are both

highly diverse: home automation devices ranged from light bulbs

to thermometers and thermostats, while health devices included

various monitors to track metrics like sleep quality or blood oxygen.

Despite this diversity we �nd relatively high dark pattern overlap,

possibly because devices in both types depended exclusively on

companion app interaction. Additionally, such devices are typically

engineered for a single purpose (e.g., a blood pressure sleeve only

o�ers features related to blood pressure measurements, while a

lightbulb only o�ers features related to managing light production),

o�ering little opportunity for other features that give rise to unique

dark patterns. However, speakers exhibited the highest overlap with

all other device types (all Ć > 0.5, Į̄ = 0.52). This occurs because

speakers had the most unique dark patterns overall, thus creating

the greatest opportunities for overlap.

Finally, the top �ve unique dark patterns across all devices per

type (listed in Table 7 in the Appendix) tended to be similar across

device types, which may account for the lowest overlap in Fig-

ure 16a stopping at Ć = 0.27. In particular, visual preference, prese-

lection, account requirements, and consent- or permissions-related

patterns appear most frequently across device types.

4.5 Dark Patterns by Manufacturer

The IoT market involves a few key manufacturers that produce pop-

ular smart devices in contained ecosystems. These include Amazon,

Google, Samsung, and Apple, who produce a variety of device

types, as well as companies like Withings, who are better known

for narrow categories of consumer electronics. 25 devices in our

corpus were produced by these �ve manufacturers, each of whom

have three or more devices in our sample (no other manufacturer

produced > 2 devices in our corpus and 26 produced one).

Figure 14b presents the distributions of unique and total dark pat-

terns per manufacturer. The median device in our sample contains

15 total dark patterns: Amazon and Google, who produce many

cameras, doorbells, speakers, and media device devices fall far above

the study median (total count medians of 58 and 33 dark patterns,

respectively), while other manufacturers fall below it. Figure 16b

presents a heatmap of Jaccard indices computed over the sets of

dark patterns adopted by pairs of manufacturers and indicates less

than 50% overlap between almost all manufacturer pairs, with the

exception of Amazon–Google and Amazon–Samsung, i.e., the three

most proli�c dark pattern adopters in our sample.

Overall, we do not �nd clear correlations between company size

and dark pattern adoption. Amazon, Apple, Google, and Samsung

are some of the largest corporations on earth, yet they do not appear

to adopt dark patterns into their products at similar rates. While

Amazon products appear the “darkest” in our sample, followed by

Google, we caution that our corpus contains fewer samples of de-

vices and di�erent device types from the other three manufacturers.

Furthermore, these �ve manufacturers produce a wide range of

device types in our study, which makes it somewhat di�cult to

conduct apples-to-apples comparisons of dark pattern adoption and

frequency for this work.

5 DISCUSSION

In this study, we investigated dark patterns in 57 IoT devices across

nine device types by interacting with each device via controlled,

scripted experiments. We now discuss our �ndings and explore

our study’s implications for future work and potential dark pattern

mitigations.

5.1 How Do IoT Modalities Change Our
Understanding of Dark Patterns?

The diversity in IoT devices and their vast applicability to increasing

areas of daily life provide an interesting framing for dark patterns

measurement. This work demonstrates the multi-factor nature of

dark pattern prevalence, and illuminates complexities in the e�ort to

deliver robust IoT services beyond device hardware while managing

user expectations for consumer electronics.

5.1.1 Multi-factor Considerations for Dark Pa�ern Adoption. In this

work we examine several potential factors that could in�uence dark

pattern adoption in IoT experiences: interaction context, modality,

device type, and manufacturer. We found that visual, screen-based

interfaces (e.g., on-device touchscreens and TV screens) drove dark

pattern prevalence, rather than companion apps exclusively, non-

screen physical device interfaces (e.g., a blood pressure sleeve or

lightbulb), or voicemodalities (see Figure 13 and Figure 14a).9 For ex-

ample, the Amazon Fire TV contained the largest number of unique

dark patterns in our study, but is interacted with only via remote

control. Similarly, the fridge, televisions, other media devices, and

some smart speakers were fully usable without apps and contained

many dark patterns from our codebook. Furthermore, with respect

to manufacturers, Amazon and Google adopted more dark patterns

among devices in our sample, even when compared to other large

manufacturers like Samsung and Apple (see Figure 14b). Overall,

however, we found no singular factor that conclusively predicted

the presence or lack thereof of dark patterns in IoT devices.

5.1.2 Design (In)Consistencies and Subverted Expectations. In sub-

subsection 4.1.2 we note how high dark pattern frequencies may

suggest the use of design templates, which can help make UX de-

ployments more e�cient at-scale and keep designs consistent (and

thus more usable) across a service. This repetition leads users to ex-

pect similar behaviors whenever the same design appears. However,

this expectation can be subverted to users’ disadvantage. We noted

a peculiar example in the SmartThings app; visually consistent

designs were used in wildly di�erent manners that made it di�cult

to determine what features were actually available to us or not out-

of-the-box, and to what extent (Figure 11). We considered this to

be hidden feature behavior as the initial designs o�ered little trans-

parency into additional requirements or “strings attached.” Such

patterns risk deceiving users, particularly for integrations-oriented

devices like smart hubs, as users might not fully understand the

limitations of a device’s o�ering at the time of device purchase. Fu-

ture research on hidden information-related patterns could further

explore how devices or services communicate or promise value to

9In this study, we found voice modalities to be only a minor contributor to dark patterns in our
devices when compared to visual modalities, but expect that this is partially due to speaker devices
representing a limited portion of our study in device number and methodological focus. Future work
should explore voice-controlled interfaces more intently towards uncovering voice dark patterns

and prevalence.
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end users in their marketing or sales material, towards a goal of

improving consumer protections and disclosures.

5.1.3 Add-Ons for Limited Interfaces as Opportunities for Dark

Pa�ern Adoption. Some device types (see subsection 4.4) in our

corpus serve single or limited sets of functions but nudge users

towards integrations with third-party services. Integrations are

also available in app or web services, but one explanation for the

increased prevalence of integrations in IoT devices is that doing

so can increase the value or functionality of an otherwise purpose-

limited device, e.g., by sharing data gathered from device sensors

that are not available in other modalities like smartphones. The

SmartThings example described in subsubsection 5.1.2 notes how

hidden feature behavior might obfuscate real device value to cost

users time and money. However, multiple patterns may be involved

in nudging users; the Withings app delivered nagging, advertis-

ing, and hidden information-related patterns to promote third-party

integrations and dedicated an entire page in their app to exter-

nal health-related subscription services as “Programs” for users to

join. We also observe similar behavior from devices produced by

large manufacturers (e.g., promoting the manufacturer’s internal

services or third-party integrations). Such pattern types were sim-

ilarly prevalent in prior app studies as demonstrated in Figure 5,

especially nagging patterns, which were found in over half of apps

in both Di Geronimo et al. [26] and Gunawan et al. [42].

Collaborative partnerships can add value to a service. However,

failing to disclose whether a feature is included with the price of

the device up front may be deceptive. Third-party integrations

also raise privacy concerns, especially when the sensitivity of data

collected by IoT device sensors is higher than the data accessible to

apps and websites.

5.2 Harms Implications from the IoT Context

In addition to harms previously identi�ed in prior work, this study

contributes to an understanding of the relationship between device

dependencies and darkness. In particular, IoT dark patterns have

unique implications for users’ �nances, autonomy, and privacy.

5.2.1 Perceived Device Value and Financial Harms. Compared to

web- or app-only services, IoT devices necessitate purchase or other

means of device ownership, and in some cases require subscriptions

in order to ensure continued functionality as described in subsec-

tion 4.2. IoT experiences may also attempt to deliver additional

services or features to consumers through third-party integrations,

some of whichmay require payment. This complicates user decision

making at time of device purchase by obfuscating the true out-of-

the-box value of the device, raising �nancial and autonomy harms

for consumers who make purchases with incomplete or incorrect

understandings.

5.2.2 Flawed Privacy Controls. IoT devices can change ownership

through re-selling or secondhand gifting, exacerbating the IoT pri-

vacy and security issues noted in section 2. Dark patterns further

add to this problem by interfering with user behavior for important

privacy controls. For example, around 60% of devices did not o�er

account deletion within the visited modalities as demonstrated by

Figure 3. With other Leaving patterns (e.g., the inability to delete

device data or remove a device from an account) as well as the

device reset issues we encountered in subsection 3.1, these dark pat-

terns constitute privacy and autonomy harms by denying users the

ability to e�ectively manage their privacy while using the device

and after relinquishing it.

5.2.3 More Roaches in this Motel? Nags for user interaction are

not exclusive to the IoT modality, but the increased consumer risks

highlighted above may be worsened by nagging behavior. We found

such patterns in many of our devices as demonstrated by Figure 3,

particularly non-permanent opt-out (> 60% of devices), extrane-

ous noti�cation badges (> 40% of devices), nagging self-promotion

(> 40% of devices), with other nagging patterns discovered across

multiple context categories. Amazon and Google devices often

containing multiple instances of these patterns as noted in the Ap-

pendix, Table 8. In light of the vast data collection capabilities of

both large manufacturers and their devices, high rates of nagging

patterns may in�uence user behavior towards trackable engage-

ment that leads to further �nancial or privacy harms. Emergent

scholarship is beginning to explore the e�ect of nags or similar

attentional dark patterns on user outcomes [72, 77], though more

research is needed to measure dark patterns in attention ecosystems

and their impact on other consumer harms.

5.3 Potential Mitigations

Nowwe explore potential mitigations for the dark patterns �ndings

identi�ed in this work.

5.3.1 Minimize Darkness while Maximizing Value with Design “Ap-

propriateness.” Our work highlights the need for mitigations that

minimize dark patterns relative to feature richness, as more com-

plex devices should not be synonymous with more dark patterns.

Design practitioners might review design templates and their use to

identify possible risks of abusive, deceptive, or unfair applications

of those templates. This may help reduce the frequency of designs

like those in Figure 11 or popular dark patterns like non-permanent

opt-out and other interface interference patterns including visual

preference and general preselection, which were not only the two

most prevalent patterns in our study overall (see Figure 3) but were

frequently in the top dark patterns per factor examined in this study

(see subsection A.2 for more detail).

One regulatory mitigation of IoT dark patterns could be the

idea of “design loyalty” rules [48], which borrow from the law of

�duciary responsibility to prohibit companies from designing their

devices, interfaces, and services in a way that con�icts with the best

interests of people who use IoT devices. Such rules have already

been imposed in California for designs impacting children [90] and

proposed in the bipartisan American Data Privacy and Protection

Act [2]. One of the signi�cant bene�ts of loyalty rules is that they

can be enforced without requiring strict evidentiary proof of emo-

tional, repetitional, or �nancial harm. Such harm requirements are a

poor �t for dark patterns because of the dispersed, incremental, and

often immaterial nature of autonomy and attention-related dangers.

Another advantage of loyalty rules is that they direct enforcement

agencies to evaluate the relative bene�t that �ows to companies as

well as risks to users. When bene�ts of a particular design asymmet-

rically �ow toward manufacturers and risks are largely borne by

users, the design is disloyal and, thus, dark. Loyalty rules therefore
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provide a more structured approach to help lawmakers, companies,

and even users identify key choice architectures and understand

when design is dark and untrustworthy.

Legislators could additionally borrow “appropriateness” quali-

ties from privacy law’s data minimization principle, which holds

that companies should collect, store, and use only data that is ade-

quate, relevant, and limited to what is necessary for a pre-stated

purpose [82]. For interactions that are especially important for

user controls and autonomy, like consent �ows, settings manage-

ment, or opt-out mechanisms, rules that enforce adequacy and

relevancy may improve problems like the use of detour patterns or

cross-modality equity issues (subsubsection 4.2.4). Design appro-

priateness perspectives may also address the popularity of nagging

or engagement-related dark patterns like extraneous engagement

features (subsubsection 4.2.1), though more research is needed to

better understand resulting harms prior to formal regulation of

attentional dark patterns.

5.3.2 Build Templates for Desired Design Pa�erns. Standardization

e�orts can potentiallymitigate dark patterns by providing templates

for acceptable design patterns that promote autonomy and trans-

parency, countering the e�ect of templates that lead to consumer

harms. One approach is industry standards, inspired by e�orts like

the Manufacturer Usage Description (MUD) IETF standard [55] that

de�nes the expected behavior of an IoT device and that permits

automated compliance tests in deployment [46]. Another approach

is to formalize design standards through regulatory rules, similar to

the FTC’s .com disclosures [35], the CCPA’s opt-out icon [5], Cali-

fornia’s recently enacted Age-Appropriate Design Code Act [90],

which provide guidance for avoiding common dark patterns as well

as mandates for compliance.

5.3.3 Increase Transparency at Key Interaction Points. Mitigations

for dark patterns in the IoT context should also promote improved

transparency—particularly at crucial interaction points like account

registration and setup—where users are presented with consequen-

tial requests (e.g., for account information, permissions, third-party

integrations, and other options). Facilitating informed decision-

making at the time of device or account con�guration can help

reduce future privacy or �nancial risks to the consumer.

Both design and disclosures should o�er transparency to con-

sumers, especially so in IoT/consumer electronics experiences as

real money and highly sensitive data are at risk. With Registra-

tion and Consent and Permissions dark patterns in > 50% of our

devices writ-large (Figure 3) and Consent and Permissions issues

in > 60% of all devices when strati�ed by modality (see subsec-

tion 4.3 and Figure 13), there is ample room for improvement in

transparency surrounding privacy harms. Users must be able to ex-

pect that device, feature, or interface functionality corresponds with

what they can reasonably infer given the designs or templates they

are exposed to. Increasing transparency in feature design can help

mitigate consumer harms from issues discussed in subsection 5.1.

Lawmakers might consider mandated transparency mechanisms

like data protection and design impact assessments, just-in-time

disclosure rules, and privacy labeling requirements [4, 35, 82, 90].

5.4 Limitations and Future Work

The methods we used to interact with IoT devices were speci�cally

designed to enable us to explore more design surfaces than an

average user might during normal device use, and to do so under

carefully controlled, reproducible conditions. Our interaction script

does not necessarily re�ect the interactions average people would

have with IoT devices, and it is not designed to elicit the day-to-day

dark patterns they encounter. Under real-world conditions, devices

might be moved room-to-room, taken outside the home, linked

to other IoT devices, or connected to additional apps to facilitate

complex use-cases. Our tests did not include interactions outside of

our simulated home environment or between multiple devices and

apps concurrently. Further, by creating unique accounts per-device,

our study may not re�ect the home setup of a person who owns

multiple, interconnected IoT devices.

Given these limitations, our measurements should be interpreted

as lower-bound estimates of dark pattern prevalence in the IoT

devices we tested, and should not be construed as ecologically-valid

representations of the types or frequencies of dark patterns that

real people might encounter when using IoT devices. Future work

could expand our knowledge by taking in-situ measurements of

people’s interactions with IoT devices under real-world conditions.

We studied each device during only a single, small window of

time. Thus, our interaction approach misses dark patterns that

appear only after using a product repeatedly or for extended periods

of time. Furthermore, device and companion app behavior may

change over time due to �rmware and software updates. Future

studies may consider taking a longitudinal approach to dark pattern

measurements, e.g., to see if experiences get “darker” over time.

Though this studymeasures dark pattern presence and frequency,

it does not discern between higher or lower “darkness” e�ects be-

tween patterns. As such, our results should not be taken as de�nitive

representations of harms severity across devices, but rather as an

account of dark design capacity in IoT experiences. The ability to

weigh di�erent dark patterns for a more precise measure of dark

pattern outcomes is an important area for future research; in partic-

ular, scaled measures of dark patterns are necessary for articulating

harms towards regulatory thresholds or evidentiary requirements.

Our study is constrained to the devices we had in our possession.

While these devices cover many device types and manufacturers,

they do not cover them all. Missing device types include: smart

watches, rings, and other wearables; cars; and industrial IoT devices.

It is unclear whether our results generalize to these other device

types or manufacturers.

As discussed in subsubsection 3.4.4 and subsubsection 4.1.4, as

well as in prior work [19, 26, 39, 42, 67, 68, 89], manual labeling

approaches have weaknesses when attempting to generalizing dark

patterns research. This can be due to di�erences in taxonomical

interpretation and subjectivity in the concept of ‘darkness.’ User

studies similarly demonstrate variance in how participants per-

ceive dark designs. Narrower scopes [19, 26, 67, 89] may yield more

clarity but for limited context or for fewer patterns, while broader

scopes [39, 68] trade speci�city for holistic, dimensional understand-

ings of dark patterns. Our study inspects multifactor, contextual

situated IoT devices and thus necessitates a broad approach with a

large codebook. Therefore, the generality of our �ndings is limited
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by the same challenges as in other broadly-scoped studies. Future

measurement work could delve into speci�c IoT device types or

manufacturers in isolation to trade o� breadth for depth, and possi-

ble yield more consistent measurements of dark patterns.
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A APPENDIX

This appendix provides additional �gures, tables, and analysis that

supplement the main body of work in this paper.

A.1 Supplementary Device Information
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Device Type Device Name Device Firmware Version App Name App Version

Home Automation

Amazon Smart Plug Up to date (11/5/21) Amazon Alexa 2.2.432925.0
Jinvoo Smart Bulb Up to date (6/10/22) Jinvoo Smart 2.0.9
Gosund Smart Light Bulb V3.3.35 Gosund 4.5.0
Govee LED Light Bulb Up to date (11/8/21) Govee Home 4.5.5
Magichome Strip 1.8.1 Magic Home Pro 33.v4.17.6445-A
Meross Door Opener 3.2.5 meross 2.32.4

Nest Thermostat∗ 6.2-22 Nest 5.67.0.6
Ring Chime Up to date (11/5/2021) Ring 3.45.1
Smartlife LED Bulb 3.32.5 Smart Life 2.3.0
WeMo Plug Up to date (11/4/21) Wemo 1.29.1
Thermopro TP90 Up to date (11/4/21) ThermoPro Home 1.0.4
TP-Link Bulb 1.8.11 Kasa Smart 2.35.0.1021
TP-Link Plug 1.2.6 Kasa Smart 2.35.0.1021

Camera

Amcrest Cam V2.400.AC02.15.R Amcrest View Pro 4.2.015
Arlo Q Cam Up to date (6/10/22) Arlo Secure: Home Security Ver Jun 6 2022
D-Link Cam 2.06.03(3.5.18-b01) mydlink 2.6.1
Lefun Cam Up to date (11/01/21) MIPC v8.9.3.2109291620
Nest Camera Up to date (6/13/22) Google Home Ver Jun 8 2022
Ring Camera Up to date (12/13/2021) Ring 3.46.0
Ring Camera (Indoor) Up to date (6/10/22) Ring Ver Jun 8 2022
Tuya Smart Camera V5.2.7 (Main Module) V5.2.7 (MCU Module) Tuya Smart 3.32.5
Wyze Cam 4.36.6.17 Wyze 2.25.31
Yi Home Camera 2.1.0.0E_201809191630 Yi Home 5.1.4_20211020

Media Device

Apple TV∗ tvOS 15.0 (19J346)

Chromecast w/ Google TV∗ 4.9.180 (Kernel version) 10 (Android TV OS version) QTS1.210311.008.7350836 (Android TV OS Build)

Facebook Portal Mini∗ 1.28.1 (Software version)

Fire TV∗ Fire OS 5.2.8.4(672751320) (Software Version) 6330056.1 (Fire TV Home Version)

Nintendo Switch∗ 13.1.0

Roku TV∗ 10.0.0 (Software version) 4209 (Build)

TiVo Stream∗ 9 (OS version) 1.0.902-53 (App version) 1.4.191 (TiVo+ version)

Smart Hub

Aqara Hub 3.3.2_0010.0610 Aqara Home 2.3.17
Sengled Smart Hub Up to date (11/23/21) Sengled Home 2.1.9
SmartThings Hub 000.039.00006 SmartThings 1.7.73.22
Switchbot Hub Up to date (11/3/21) SwitchBot 5.4.0.8
Philips Hue Bridge 1.47.1947108030 (Software) Philips Hue 4.7.0

Doorbell

Arlo Doorbell Up to date (6/10/22) Arlo Secure: Home Security Ver Jun 6 2022
Nest Doorbell Up to date (6/13/22) Google Home Ver Jun 8 2022
Ring Doorbell Up to date (11/2/2021) Ring 3.45.1
Ring Doorbell (’21, Wired) Up to date (6/13/22) Ring Ver Jun 8 2022

Speaker

Echo Dot (4th Gen) 5805755780 (Software version) Amazon Alexa† 2.2.432925.0

Echo Show 5∗ 5805754756 (Software version) Amazon Alexa† 2.2.432925.0
Home Mini Up to date (11/10/21) Google Home† 2.45.1.8
Nest Mini Up to date (11/10/21) Google Home† 2.45.1.8
Homepod 15.0 (Software version) Home (iPhone)† Not available
Homepod Mini 15.0 (Software version) Home (iPhone)† Not available

Nest Hub Max∗ 43.2.26.392523459 (Software Version) 1.56.265669 (Cast Firmware Version) Google Home† 2.45.1.8

Home Appliance
Samsung Fridge∗ TIZEN 6.0 (AFH-US-KTM-21-XXXXMU 20210813_055302 2.45.1.8
GE Microwave Up to date (11/5/21) SmartHQ 1.0.0.101.11

TV

LG TV∗ 06.00.25 (Software Version) [LG] webOS TV UJ7700 (TV Information)

Samsung TV∗ 1290 (Software version)

Sony TV∗

Vizio TV∗

Health

Oxylink Oxygen Monitor Up to date (11/11/21) ViHealth 2.72.0
Renpho Smart Scale Up to date (11/8/21) Renpho 3.11.3
Withings BPM Connect Up to date (11/2/21) Withings Health Mate 5.6.4
Withings Sleep Up to date (11/3/21) Withings Health Mate 5.6.4
Withings Thermo Up to date (11/2/21) Thermo 2.0.0

Table 5: The 57 devices used in this study, with device �rmware and app software versions. This table supplements Table 1. App

names and versions are left blank in cases where the device did not necessitate the use of a companion app.

Table 5 provides device �rmware and app software version numbers

where available. Devices that did not provide accessible version

information are annotated with their recording date to best approx-

imate the version used, as we factory-reset all devices and freshly

installed all apps prior to video recording. This table is a supplement

to Table 1.

Device Exclusions as User-Disadvantageous Designs The de-

vices in Table 6 were removed from the study due to reasons artic-

ulated in subsection 3.1 and subsection 3.4. The behaviors causing

these exclusions carry implications for user harm and poor out-

comes, particularly considering that IoT devices may be resold after

being used. Two notable cases were requirements for payment

information and inability to factory-reset devices.

For the former, we found that mandatory payment information

for account registration—which also prevented prior studies from

investigating certain apps or services [26, 42]—can be a dark pattern.

The Wink Smart Hub, for example, required credit card informa-

tion for a paid subscription service when creating a mandatory

account via the companion app. This device required app use for
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Device Type Device Name Ecosystem Companion App Name App Dependency Reason for Exclusion

Home Automation
SmartLife Remote Smart Life Smart interactions Setup Issues
KEYCO Air KeyCo Air All interactions Reset Issues
D-Link Mov D-Link mydylink Home All interactions Setup Issues

Camera Microseven Camera Microseven All interactions Reset Issues
Wansview Camera Wansview Setup interactions Other Issues

Smart Hub
Wink Hub 2 Wink All interactions Payment Required
IKEA Hub 2 IKEA Home Smart All interactions Setup Issues

Doorbell iCSee Doorbell iCSee All interactions Setup Issues

Speaker

Echo Spot Amazon Amazon Alexa Setup interactions only Redundant Model
Echo Dot (two devices) Amazon Amazon Alexa Setup interactions only Redundant Model
Echo Dot 3 (three devices) Amazon Amazon Alexa Setup interactions only Redundant Model
Echo Flex (two devices) Amazon Amazon Alexa Setup interactions only Redundant Model
Echo Plus Amazon Amazon Alexa Setup interactions only Redundant Model

Home Appliance

iKettle Smarter 3.0 Smart interactions Other Setup Issues
Behmor Brewer Behmor Smart interactions Account Registration Issues
BlueAir Puri�er BlueAir Smart interactions Reset & Setup Issues
Smart Washer Samsung SmartThings Smart interactions Reset & Setup Issues
Smart Dryer Samsung SmartThings Smart interactions Reset Issues

Table 6: Devices excluded from our study. Reset issues denote problems with e�ectively factory resetting the device to a fresh

state, while setup issues (including account registration problems and payment requirements) prevented us from interacting

with newly-reset devices. Devices with both reset and setup issues initially appeared to be correctly wiped and allowed for

fresh registration, but otherwise indicated signs of incomplete or faulty factory resets. Redundant models were excluded to

reduce duplicate interactions within this study.

all interactions, thus obstructing us from even setting up the device

prior to selecting a subscription model. Upon further inspection,

we learned that the subscription requirement was a recent update;

prior to July 2020, Wink Hubs were at least partially free to use [96].

Requiring a paid subscription to support data storage and cloud

functions is not concerning by itself, but requiring payment infor-

mation at registration, prior to any device interactions, may prevent

consumers from making informed decisions on whether to opt in to

a longer-term �nancial relationship with the manufacturer or not.

As such, these issues risk user exposure to �nancial and autonomy

harms. In such cases, darkness may depend on appropriate disclo-

sure: up-front transparency on long-term �nancial requirements

may reduce darkness and deception.

With respect to resetting devices, we followed user-manual in-

structions for factory-resetting devices, taking cues from documen-

tation to indicate “successful” reset (one device, the Microseven

Camera, lacked a reset button and could not be reset via meth-

ods from product documentation). However, following reset, some

companion-app-dependent devices could not be set up with fresh

accounts due to issues like failed QR code scans or unexpected of-

�ine status. Worse, other devices like the Smart Washer and BlueAir

Puri�er appeared successfully reset (and therefore, wiped of user

data), but displayed pre-reset data or otherwise indicated reset fail-

ure when connected to a fresh account or when re-connected to

the established lab account in follow-up tests. We were forced to

omit over 10% of all available devices in our lab from our study

due to problems with reset and setup, as detailed in the Appendix

(Table 6). These issues highlight how bugs in IoT devices may leave

users with hardware that is inoperable or cannot safely be resold

without sharing personal data with strangers. These outcomes re-

late to dark patterns like the roach motel and forced action/disclosure

(users are trapped with poor options to escape, or forced to dis-

close information), as well as dark pattern categories like subverting

expectations.

A.2 Supplementary Tables

These tables provide further detail and context to other �gures in

section 4.

Top Dark Patterns Tables. To supplement subsection 4.4, we

include Table 7, which lists the top �ve most commonly found

unique dark patterns that we documented across all devices per type.

We observe that the most common dark patterns in IoT interactions

tend to be similar across types, which helps explain why the lowest

overlap we observe in Figure 16a is Ć = 0.27.

Manufacturer Tables. We present the top �ve most popular

unique dark patterns per manufacturer in Table 8. In general, the

devices produced by each manufacturer were relatively consistent

in the sense that they tended to incorporate all or most of the most

frequent patterns within their cohort.

Modality Tables. Table 9 supplements the modality-based anal-

ysis in subsection 4.3 and Figure 13 and presents the top dark pat-

terns by number of devices the pattern appeared in, broken down

by devices’ degree of app dependency for our interactions.

A.3 Supplementary Figures

Figures that help provide context for other analyses, but may not

be as independently illuminative as other �gures in the paper.
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Dark Pattern Total№

Visual preference 122
Nagging self-promo 41
Nonperm opt-out 32
No checkbox for ToS/PP 28
Preselection - general 23

Dark Pattern Total№

Hidden feature behaviors 8
Preselection - general 6
Popup nag 6
Notifs preselected 5
Extra notif badge 4

Dark Pattern Total№

Visual preference 9
Nagging self-promo 5
Nonperm opt-out 4
Unprompted suggestions 4
Preselection - general 4

(a) Amazon (N=9) (b) Samsung (N=3) (c) Apple (N=3)

Dark Pattern Total№

Visual preference 102
Preselection - general 35
Nonperm opt-out 34
Notifs preselected 14
Feature detour 11

Dark Pattern Total№

Native ads 5
No explanation of perm. 4
Acc’t required 3
Extra notif badge 3
Nagging - general 3

Dark Pattern Total№

Visual preference 5
Acc’t required 2
Priv settings preselected 2
Email sub. preselected 2
No account deletion 2

(d) Google (N=7) (e) Withings Devices (N=3) (f) Kasa Devices (N=2)

Dark Pattern Total№

Visual preference 8
Notifs preselected 3
Acc’t required 2
No checkbox for ToS/PP 2
Email sub. preselected 2

(g) Arlo Devices (N=2)

Table 8: Top �ve dark patterns sorted by total frequency of each pattern across all our devices for that manufacturer. We include

less-represented manufacturers Kasa and Arlo in these tables for illustrative purposes in section 5, but do not include these

small manufacturers in subsection 4.5 �gures due to small sample size.

Dark Pattern Total№

Visual preference 26
Acc’t required 25
Notifs preselected 20
No explanation of perm. 18
Preselection - general 18
No checkbox for ToS/PP 17
No account deletion 16
Nonperm opt-out 16
Extra notif badge 15
Priv settings preselected 12

Dark Pattern Total№

Visual preference 7
Nonperm opt-out 6
Feature detour 6
Preselection - general 6
Nagging - general 5
No account deletion 5
Nagging self-promo 5
Unprompted suggestions 5
No checkbox for ToS/PP 4
Popup nag 4

Dark Pattern Total№

Popup nag 3
No explanation of perm. 3
Acc’t required 2
Notifs preselected 2
Nonperm opt-out 1
Nagging - general 1
Hidden info 1
Visual preference 1
Preselection - general 1
No account deletion 1

Dark Pattern Total№

Preselection - general 10
Visual preference 9
No account deletion 8
Nonperm opt-out 8
Nagging self-promo 7
Nagging - general 6
Priv settings preselected 6
Feature detour 5
Extra notif badge 5
No notif settings 5

(a) App Only (Ċ = 35) (b) Both, For Setup (Ċ = 7) (c) Both, Non-setup (Ċ = 3) (d) Device Only (Ċ = 12)

Table 9: Top ten dark patterns for IoT devices that (1) must be controlled by a companion app, (b) require an app during setup,

(c) only require an app for optional functionality, and (d) never prompted us for an app at all. Ċ = 45 devices mandate some

form of app use.
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