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ABSTRACT

Internet-of-Things (IoT) devices are ubiquitous, but little atten-
tion has been paid to how they may incorporate dark patterns
despite consumer protections and privacy concerns arising from
their unique access to intimate spaces and always-on capabilities.
This paper conducts a systematic investigation of dark patterns in 57
popular, diverse smart home devices. We update manual interaction
and annotation methods for the IoT context, then analyze dark pat-
tern frequency across device types, manufacturers, and interaction
modalities. We find that dark patterns are pervasive in IoT experi-
ences, but manifest in diverse ways across device traits. Speakers,
doorbells, and camera devices contain the most dark patterns, with
manufacturers of such devices (Amazon and Google) having the
most dark patterns compared to other vendors. We investigate how
this distribution impacts the potential for consumer exposure to
dark patterns, discuss broader implications for key stakeholders
like designers and regulators, and identify opportunities for future
dark patterns study.
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1 INTRODUCTION

Internet-of-Things (IoT) devices have become ubiquitous, offer-
ing a wide range of functionality including home automation,
voice assistance, media playback, video surveillance, appliances,
and health monitoring. Despite extensive prior work on the secu-
rity [11, 32, 57, 86, 87, 98, 100] and privacy [14, 22, 23, 27, 62-65, 85]
implications of these purpose-built hardware devices, little atten-
tion has been paid to how the the unique experiences such devices
present may incorporate potentially deceptive and harmful designs.

Such designs are often called “dark patterns,” which interfere
with user behavior to capture people’s attention, extract people’s
consent to boilerplate contracts, goad people into financial trans-
actions, and nudge people into exposing or sharing personal in-
formation, among myriad other unintended or negative outcomes.
Scholars have systematically identified and measured dark patterns
in primarily visual modalities like apps and websites, demonstrat-
ing their wide prevalence and potential harms to user privacy,
autonomy;, finances, and cognitive resources. These studies provide
taxonomies of dark patterns that align patterns to different traits,
e.g., user outcome attributes [68], design approaches [26, 39], and
interaction context [42]. With access to sensitive information (e.g.,
health data, video feeds, sensor data), always-on capabilities, and ex-
periences that span hardware and software, IoT device experiences
may exacerbate harms or include previously undocumented dark
pattern instances. For example, the detour dark patterns observed
in this study unexpectedly direct users outside of the immediate
modality (e.g., companion app or on-device interface), which inter-
rupts or obstructs the user’s intended behavior and can risk privacy
and autonomy harms.

In this paper, we conduct a systematic study of IoT-device dark
patterns across multiple device types. We investigate a diverse set of
57 popular IoT devices spanning nine categories, three interaction
methods (app, voice, and direct device control), and six manufac-
turers. IoT devices offer unique lenses through which to study dark
patterns because the devices offer a wide range of functionality, cut
across diverse real-world contexts, have unchangeable physical-
world interfaces (e.g., buttons, voice, and screens), and intersect
with app-based modalities when companion apps are required. Our
study seeks to answer the following questions:

(1) To what extent do dark patterns observed in other modalities
apply to IoT? Do IoT modalities change our understanding of
dark patterns and give rise to new dark patterns? IoT devices
offer new interaction methods (e.g., physical and primarily
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voice-controlled interfaces) compared to websites and apps.
This potentially makes them subject to existing dark patterns,
as well as new ones that depend on the new modalities.

(2) How do dark patterns in IoT devices relate to device type, man-
ufacturer, modality, and the context in which interactions were
performed? 10T devices exhibit diversity along several dimen-
sions, including interaction methods and offered functional-
ity. Understanding the relationship between such diversity
and dark patterns can help predict the presence of dark pat-
terns based on IoT device characteristics.

(3) What are the implications of observed IoT dark patterns? Given
the observed IoT dark patterns, we posit why certain dark
patterns manifest in the IoT environment, and note key chal-
lenges and identify trends that can guide further investiga-
tion into IoT dark patterns.

To answer these questions, we address key methodological chal-
lenges for studying dark patterns in the IoT environment, including
how to select a reasonable set of devices to test from the wide range
of device types and manufacturers on the market, how to conduct
rigorous testing across such devices with a tractable amount of ef-
fort and time, and how to collect reproducible and reusable datasets
from experiments with these devices. We build a codebook that
expands upon prior taxonomies [26, 42] with 12 new patterns that
we discovered during our pilot experiments, organize our codebook
by interaction context to facilitate human annotation and capture
which contexts carry higher dark pattern risk, and tackle strate-
gies for labeling dark pattern co-occurrences. This results in a set
of scripted interactions with IoT devices recorded on video, with
annotations that include timestamps when dark patterns occurred
and their position in a video frame.

We present an analysis of the dark patterns identified in our
experiments. On average we found 10-11 unique dark patterns
per device, and noted between 3-90 total patterns (accounting for
multiple instances of patterns) per device. We find that pre-selection
and visual preference patterns are most common adopted, as well
as patterns related to account creation, consent/permissions, and
account deletion. We find crdiffmore dark patterns in always-on
devices like cameras, doorbells, and speakers than in other types.
We find that Amazon and Google devices tend to contain more dark
patterns. Our results do not point to one single factor as the primary
driver of dark patterns; rather, our findings highlight the necessity
of multi-factor analysis for dark patterns. We also discuss how
nontransparent designs in IoT devices may exacerbate financial and
privacy harms, as well as other risks from the IoT context.

Finally, we discuss the implications of our findings, focusing
on key aspects of the IoT environment that give rise to observed
behaviors, challenges for future research on IoT dark patterns, and
interesting trends identified in our dataset. We suggest potential
mitigations for design practitioners and regulators, noting strategies
to minimize darkness and improve transparency.

2 BACKGROUND

We begin by reviewing related work on dark patterns in general,
and IoT risks, harms, and user experience (UX) in particular. We
contextualize and motivate this study within this broader scope of
existing scholarship.
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2.1 Dark Patterns

Dark patterns [20] are user interface designs that trick users into un-
wanted or unintentional behavior, typically against users’ best inter-
ests. Conceptually, dark patterns relate to malicious interfaces [25],
online manipulation [93], nudges [94], and UX design [47]. Dark
patterns have received public attention in the press [58, 73, 84],
scholarly and regulatory workshops [21, 59, 79], and government
reports [24, 33, 34]. Commensurate with this increasing awareness,
dark patterns are now regulated in some contexts such as consent
interactions [4, 6, 51].

Academics have developed robust taxonomies of dark patterns
based on their underlying mechanisms or tactics, both from a de-
sign perspective [39, 67] and with a privacy lens [19]. Following
these taxonomies, observational and measurement studies iden-
tify and enumerate dark patterns in app [26, 37, 39, 42] and web-
site [39, 42, 67] modalities. These studies demonstrate dark pattern
pervasiveness and the diversity of designs across various user inter-
actions, platforms, and modalities. Other work delves into specific
contexts, providing detailed insight into certain dark pattern or
interaction types. These contexts include e-commerce [67], consent
interactions and cookie banners [40, 41, 44, 45, 52, 61, 78, 92], ac-
count deletion interactions [56, 89], online addictions [3, 72], and
specific online services [56, 71]. The level of detail explored in these
studies provides evidence for regulatory responses. For example,
Gray et al. [40] analyzed dark pattern use in the non-compliance
of consent management providers (CMPs) to the GDPR consent
requirements; such evidence can affirm consumer complaints in
enforcement actions [1, 76]. A key open question, which we discuss
below, is the extent to which prior work on other modalities and
contexts apply to the IoT environment.

Scholars taxonomized the range of poor outcomes and consumer
harms dark patterns may cause [43, 47, 68, 75, 91]. User studies
capture consumer reactions to dark patterns [18, 26, 60, 80, 89]
and find that people do feel manipulated or disadvantaged by dark
patterns [38, 71], but that people vary in how they perceive dark
patterns and their theorized harms (e.g., some are surprised by
certain dark patterns, while others are unsurprised but resigned).

Researchers are beginning to grapple with the role that context
plays with respect to dark patterns. For example, work focusing on
Roach Motels [20, 39] (i.e., designs that make it easy to get into a sit-
uation such as a subscription, but hard to get out of) frame dark pat-
terns as socio-technological phenomena, largely dependent on how
they are interacted with rather than how they are presented [16].
Gray et al. [40] stress an “n-dimensional” approach for research-
ing dark patterns that incorporates factors like time, interaction,
design, psychology, and law via multi-disciplinary analysis. Work
by Gunawan et al. [42] embraces this approach by comparing dark
patterns across thematic UX categories, while work by Mathur et al.
[68] critiques dark patterns through a variety of disciplinary lenses.
Our study aims to continue this line of scholarship by investigating
dark patterns in previously unexplored contexts and interaction
modalities with multi-factor analyses.

2.2 IoT Contexts and Emerging Modalities

Context is critical when considering dark patterns in IoT devices
that may serve vastly different purposes. They can access intimate
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spaces (e.g., bedrooms or bathrooms), collect highly specific data
through sensors, and be perpetually on or listening (e.g., micro-
phones in voice assistants), with device hardware that may not pro-
vide feedback to users (e.g., not indicating when a device is record-
ing video). These qualities present unique and additional challenges
for user privacy, security, and safety (as demonstrated by extensive
scholarship on IoT privacy and security issues [7, 9, 10, 12, 13, 17,
23, 27, 30, 31, 49, 53, 62-65, 69, 69, 74, 81, 85, 88, 95, 97, 99, 101])
relative to websites and apps.

Dark designs may exacerbate these safety and security concerns.
Limited surfaces for interaction on IoT devices, or complex con-
trol schemes involving companion apps, may offer opportunities
for designers to obfuscate, discourage the use of, or even omit
privacy-critical functionality. Recent work has begun to measure
users’ interactions and perceptions of settings interfaces in IoT
devices [15, 66], providing early indicators of “good” UX in IoT
devices. Owens et al. [80] investigated non-visual interfaces like
voice assistants through speculative design fiction exercises and
user surveys, identifying that while participants found intention-
ally deceptive scenarios to be more problematic than those that
were not, overall the participants did not show much concern over
deceptive scenarios.

IoT devices may use the same platform as mobile phones (e.g.,
using Android variants such as Android Auto, Android TV, and
Android Wear). An open question, then, is whether such devices
exhibit similar dark patterns as those found in mobile apps that run
on the same OS foundation [26, 42]. While this might be the case
for some devices, several factors may alter the frequency or types
of dark patterns adopted in IoT devices when compared to mobile
apps. For example, when an IoT device utilizes a commodity OS like
Android, the user interface and interaction modalities may differ
from smartphone Android (e.g., a remote for Android TV rather
than a touchscreen). Furthermore, many IoT devices run bespoke
or uncommon OSes (e.g., Tizen from Samsung or Fuschia from
Google), or include sensors that are not present on smartphones
(e.g., always-on cameras).

2.3 Building On Prior Dark Patterns Work

Our work lies at the intersection of dark patterns and IoT. Our
codebook for identifying dark patterns (see subsection 3.3) draws on
taxonomies and harm frameworks from prior work [19, 42, 67, 68],
and contributes to early explorations on darkness in emerging
modalities [80].

Like prior measurement work, we manually interact with de-
vices, look for dark patterns, and link dark patterns to potential
harms. We draw on approaches [26, 42] and design perspectives [15]
from prior work to inform our process for interacting with IoT de-
vices and labeling dark patterns (see subsection 3.2). We expand
upon existing measurements by collecting frequencies of repeated
dark pattern encounters. Further, we directly compare our IoT dark
pattern measurements to prior manual studies [26, 42] (see subsub-
section 4.1.4).

Previous work primarily focused on visual modalities like apps
and websites [26, 42, 67]. In contrast, we holistically examine de-
vice experiences multimodally, through direct interaction with
the devices, voice interactions, and interactions with companion
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apps. Prior manual studies conducted uniform time-bound actions
per app or service [26, 42], which were naturally constrained by
each modality’s affordances (e.g., all observed apps or mobile sites
were interacted with via touchscreen [26, 42] or desktop sites were
viewed on a computer). To understand a device’ experience across
offered modalities and robustly explore available features or nec-
essary configuration, our methods necessitated unrestricted inter-
action durations and flexible interaction scripts. As such, we do
not conduct disparate, per-modality interactions nor draw apples-
to-apples comparisons between the modalities inspected. Specific
to smart devices, we depart from recent design fiction and user
study [80] approaches for exploring dark patterns in voice inter-
face, instead using manual testing methods on real device interfaces
and examining modalities beyond voice alone.

3 METHODS

We now describe the methods used in our study. This section covers
preliminary experiments, then describes how we arrived at the final
number of devices examined, how we inspected and interacted with
each device, and how we annotated dark patterns per IoT modality.
We also present validation of our annotation process.

3.1 Lab Environment and Devices

Our study was conducted on devices purchased between 2017-2022
in the United States and primarily housed within a single, controlled-
access lab environment. This lab environment resembles a studio
apartment, with devices installed in the manner they might be in a
typical home. Two TV devices were hosted off-site by a trusted third-
party. Including these two TVs, we studied 57 devices spanning
nine broad types: home automation, home appliance, health, smart
hub, camera, doorbell, television, media device, and speaker devices
as listed in Table 1. Although additional devices were available in
our lab environment, we excluded devices that were model-year
iterations of the same device (e.g., of our available Echo Dots, we
included only the most recent 4 Gen Echo Dot) and devices with
dysfunctional factory-reset capability. We list excluded devices in
the Appendix (Table 6).

In general, IoT devices offer multiple interaction modalities, in-
cluding on-device buttons, touch screens, remotes, voice commands,
or even no on-device interface at all. For devices in the last category,
the only available modality was a companion app installed on a
smartphone. To operate these devices, we primarily used Android
phones with relevant companion apps installed, with exceptions
for HomePods, which we paired with an iPhone.

3.2 Pilot Experiment
Two key challenges for identifying dark patterns in IoT devices are:
(1) Existing interactions scripts that stipulate how to manually ex-
ercise and record interactions with websites and apps [26, 42]
are unlikely to be sufficient for exercising the full functional-
ity of IoT devices, given differences in modality affordances.
(2) Existing codebooks for annotating dark patterns [26, 39, 42]
may not be sufficiently illustrative when applied to IoT or
multimodal device experiences.

To address these issues we conducted an exploratory pilot experi-
ment to identify any necessary adjustments to prior methods for
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Device Type Device Name Ecosystem App Name (If Used) App Dependency Video Duration
Amazon Smart Plug Amazon Amazon Alexa All interactions 0:11:13
Jinvoo Smart Bulb Jinvoo Smart All interactions 0:19:22
Gosund Smart Light Bulb Gosund All interactions 0:12:30
Govee LED Light Bulb Govee Home All interactions 0:15:41
Magichome Strip Magic Home Pro All interactions 0:09:24
Meross Door Opener meross All interactions 0:12:17
Home Automation Nest Thermostat™ Google Nest All interactions 0:26:27
Ring Chime Amazon Ring All interactions 0:19:50
Smartlife LED Bulb Smartlife Smart Life All interactions 0:18:27
WeMo Plug Wemo All interactions 0:13:14
Thermopro TP90 ThermoPro Home Smart interactions 0:06:59
TP-Link Bulb Kasa Kasa Smart All interactions 0:14:03
TP-Link Plug Kasa Kasa Smart All interactions 0:14:23
Amcrest Cam Amcrest View Pro All interactions 0:11:45
Arlo Q Cam Arlo Arlo Secure: Home Security All interactions 0:19:24
D-Link Cam mydlink All interactions 0:13:15
Lefun Cam MIPC All interactions 0:11:31
Camera Nest Camera Google Google Home All interactions 0:13:13
Ring Camera Amazon Ring All interactions 0:22:42
Ring Camera (Indoor) Amazon Ring All interactions 0:16:04
Tuya Smart Camera Tuya Smart All interactions 0:17:00
Wyze Cam Wyze All interactions 0:23:47
Yi Home Camera Yi Home All interactions 0:11:08
Apple TV* Apple No interactions 0:17:33
Chromecast w/ Google TV* Google No interactions 0:31:36
Facebook Portal Mini* No interactions 0:34:33
Media Device Fire TV* Amazon No interactions 0:51:49
Nintendo Switch® No interactions 0:38:28
Roku TV* No interactions 0:25:20
TiVo Stream™ No interactions 0:39:37
Agara Hub Aqara Home All interactions 0:19:37
Sengled Smart Hub Sengled Home All interactions 0:12:12
Smart Hub SmartThings Hub Samsung SmartThings All interactions 0:34:43
Switchbot Hub SwitchBot All interactions 0:10:47
Philips Hue Bridge Philips Hue All interactions 0:13:23
Arlo Doorbell Arlo Arlo Secure: Home Security All interactions 0:13:19
Doorbell Nest Doorbell Google Google Home All interactions 0:16:33
Ring Doorbell Amazon Ring All interactions 0:15:21
Ring Doorbell ('21, Wired) Amazon Ring All interactions 0:28:07
Echo Dot (4th Gen) Amazon Amazon Alexat Setup interactions only 0:48:00
Echo Show 5* Amazon Amazon Alexat Smart interactions 0:44:09
Home Mini Google Google Home Setup interactions only 0:18:37
Speaker Nest Mini Google Google Home Setup interactions only 0:45:15
Homepod Apple Home (iPhone) Setup interactions only 0:21:56
Homepod Mini Apple Home (iPhone)t Setup interactions only 0:31:12
Nest Hub Max™ Google Google Home Setup interactions only 0:41:19
Home Appliance Samsung Flridge”< Samsung No interactions 0:46:25
GE Microwave SmartHQ Smart interactions 0:20:33
LG TV* No interactions 0:27:51
v Samsung v* Samsung No interactions 0:22:42
Sony ™v* Sony No interactions 0:30:00
Vizio TV* Vizio No interactions 0:21:49
Oxylink Oxygen Monitor ViHealth All interactions 0:12:27
Renpho Smart Scale Renpho Smart interactions 0:18:54
Health Withings BPM Connect Withings Withings Health Mate All interactions 0:24:49
Withings Sleep Withings Withings Health Mate All interactions 0:09:15
Withings Thermo Withings Thermo All interactions 0:10:20

Gunawan et al.

Table 1: The 57 devices used in this study. Device names marked with asterisks (*) contained navigable screens in the device
hardware. App names marked with daggers (f) denote devices for which we annotated and discovered dark patterns in both the
device and the app. We collected approximately 20 hours of recordings in total. Refer to Table 5 in the Appendix A for device
firmware or app software information.
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Figure 1: Flowchart detailing our manual analysis procedures, from pilot experiments to methods adjustments and final
annotations. Note that we added 13 more devices a few months after performing the preliminary interaction recording, bring

the total from N=71 to N=84 devices.

our final set of experiments, as well as identify novel dark pat-
terns for our codebook. Figure 1 presents a flowchart of our pilot
experiments.

The first author interacted with all devices housed in the lab
during August—October 2021 (N=71), using a Google Pixel 3 phone
or iPhone 6 to control devices with an available companion app.
Screen recordings were taken for companion app interactions, and
video recordings were taken for physical device interactions. All
phones and devices were connected to the local lab network while
each device was examined, and were logged-in to pre-existing lab
user accounts per-device. These user accounts varied in age as they
were created as needed over several years. As such, many devices
contained existing usage data. Each device was used as intended
(e.g., the fridge was used to store food, light bulbs were turned
on and off, cameras took or displayed footage) and we explored
all navigation options provided by a device (e.g., menus in visual
interfaces like apps or physical touchscreens, and queries in voice
interfaces). For each device we sought to examine every navigable
feature or area in the interface, and followed navigation to the
depth of any end-node pages or frames. We did not attempt to
interact with every possible button or toggle provided by end pages
or frames (either on the device itself or in its companion app).

The first author then reviewed each video (either a screen record-
ing or external footage) and labeled dark patterns in two iterations.
First, we labeled unique dark patterns according to the five main
categories in the Gray et al. [39] taxonomy and kept written descrip-
tions of encountered patterns. These labels were discussed with
two co-authors to achieve alignment on dark pattern identification.
Second, the first author labeled each video according to a codebook
based on specific dark pattern instances from Di Geronimo et al.
[26] and Gunawan et al. [42], noting dark behaviors that had not
been explicitly described in prior work. These notes were reviewed
and discussed with the second author and resulted in the addition
of new labels for novel dark pattern cases.

As manual annotations are subject to individual bias, the first two
authors independently annotated a subset of these device recordings
(at least one device per type, plus an additional speaker with a
touchscreen; N=8 devices). The two authors then compared labels
for validation. Disagreements were discussed and corrected towards
an agreed-upon understanding of each pattern, generally defaulting
to the first author’s labels.

3.3 Methods Development

Next we refined our interaction scripts and codebooks for the fi-
nal round of device interactions, data collection, and subsequent
annotations. Figure 1 shows the output of this process: a general
interaction script used for non-voice controlled IoT devices and
companion apps, an interaction script for voice-controlled devices,
and an expanded codebook for labeling dark patterns.

3.3.1 Environment Isolation. Compared to a neatly isolated envi-
ronment for testing websites and apps, the single-network, live lab
environment presented unique challenges for IoT data collection.
Pilot study interactions revealed the potential influence of interac-
tion history or pre-existing data, and logged-in devices prevented
insight into device and account setup experiences. With all devices
on the same network, some devices and apps could communicate
with each other (e.g., light bulbs connected to several smart hub
apps, or Amazon devices connected to the same app). This blurred
distinctions between similar devices: in some cases, we received
notifications from devices we were not intending to interact with if
that device shared the same app as the device we were inspecting.

To mitigate these issues during our final data collection, we
factory reset each device and—like prior work [26, 42]—created a
fresh user account for each device as needed.! We also provisioned
a separate, isolated network solely for this study, such that only
one controller phone and the currently-examined device would be
connected to the network at the same time (all other lab devices
remained on the original network).

3.3.2 Embedded Browsers and OS Interfaces. Some devices and
companion apps loaded web pages using built-in browsers. Unlike
prior work [42], we included dark patterns discovered in such web
pages if these (1) transmitted login information or (2) delivered in-
formation promised by previous device/app menus or features, but
did not count dark patterns in embedded pages that served tertiary
purposes. For example, the Google Nest Mini app contains menu
items that lead to a logged-in shopping web page hosted by Google
that allows users to purchase other Google Home products. In this
case, we inspected web pages relevant to the shopping task, but
did not visit Google Account pages or other product pages hyper-
linked from the same page. This restriction avoids incorporating the

IFor Google or iPhone devices using OS-level apps like Google Home or Apple Home, fresh user
accounts were used for smartphone login.
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entirety of vendor websites into our analysis of specific IoT prod-
ucts. Similarly, some devices and controlling smartphones share the
same manufacturer (e.g., HomePod and iPhone; Google Home with
Android devices) and leverage both OS-level and companion-app-
level interfaces to control the smart device. Thus, we retained dark
patterns found in the OS in our dataset if they were encountered
naturally within our interaction script and did not explore other
OS interfaces beyond those relevant to IoT interactions.

3.3.3  Speaker Interactions. In the pilot study, we asked our speak-
ers a small set of common queries, suggested verbatim by device
documentation and lists from popular consumer electronics web-
sites [36, 50, 83]. These lists, however, tended to mention highly
specific one-off use cases like shopping for an item, playing music,
or inquiring about the weather. Other desired interactions, like
navigating settings or account deletion, were not as readily found.

To keep our speaker interactions as consistent as possible with
physical devices and companion apps, we constructed our own
list of commands that would exercise the sample commands listed
above, as well as attempt to navigate settings and conduct exit
interactions (e.g., delete the associated account). We conducted
smaller tests of these commands across all three speaker ecosystems
in our study to identify ecosystem-specific functionality (like the
presence of a guest mode, or the ability to mute the mic by voice
command) and test the limits of available voice-controlled actions.
Account and device setup interactions were omitted from this list,
as we discovered that all speakers in our tests required companion-
app-based setup prior to use.

3.3.4 Novel Dark Patterns. Based on the results of the pilot experi-
ment we added 12 new dark patterns to our codebook. Throughout
the pilot experiments, the authors noted all unlabeled device and
companion-app behaviors that fit within one or more broad clas-
sifications of dark patterns [39, 67]. The authors discussed these
behaviors while co-annotating recordings, comparing independent
annotations, and when reviewing intermediary analyses. The au-
thors agreed that these behaviors fell within high-level dark pattern
categorizations and traits, but were not specifically captured by
prior codebooks used during the pilot experiment [26, 42]. We
present novel dark patterns in bold in Table 2. We discuss these
novel patterns and their implications in subsection 4.2.

3.4 Final Dataset Production

We now describe our final device interaction, interaction recording,
and video annotation procedure, which took place October 2021-
June 2022. We examined the 57 devices shown in Table 1.

3.4.1 Navigating Interfaces. Our approach to interactions relied
on interaction scripts drawn from prior work [26, 42] with modi-
fications stated in subsection 3.3. Our script was designed to un-
cover and explore as many possible features—including settings
categories—afforded by each smart device across companion apps
and device hardware (which included voice-controlled and visual
interfaces). We conducted device and account setup, traversed avail-
able features and settings, and performed exit interactions (e.g.,
logout, device disassociation, data or account deletion, etc.) where
possible for each device. When setting up an account we agreed to
all options that were preselected or preferred in visual hierarchies.

Gunawan et al.

In cases where dark patterns did not steer us towards particular
choices we chose the first available option, from top to bottom
and from left to right. We focused on traversing as many main
features or options as were intuitively provided within the compan-
ion app or device interface. Likewise, we conducted a best-effort
approach to visit all available settings, subject to limitations where
a device’s settings navigation would require an unusually long time
to traverse (e.g., each setting was individually paginated, requiring
multiple page loads to traverse). In these cases we visited a subset
of settings for reasonable coverage.

3.4.2 Device Interactions. We factory-reset each device, connected
them to the isolated network, configured devices using a unique
e-mail address for registration if required, and used factory-reset
Google Pixel 3 and iPhone 6 phones for any app-based interactions.
We recorded companion app interactions using screen recording
software and took video footage of device interactions using a
smartphone camera on a tripod.

Each IoT device test began with an attempt to interact with the
physical device. When prompted by the device or when apparent
that the device required a companion app for smart features, we in-
stalled the relevant app on a compatible smartphone, began screen
recording, and interacted with the device through the app. We fol-
lowed device or app guidance when determining which modality to
use and traversed any remaining features or device-specific settings
in the device or app after completing as many available actions as
possible for the primary purpose(s) of the device. Following our
traversal, we examined any available app-level or physical-device
settings and attempted any available exit interactions.

3.4.3 Companion App Interactions. To preserve ecological validity,
we sought to interact with IoT devices as directly as possible, as
an average user might. Thus we refrained from using companion
apps unless it was the only way to control a device or the device
required us to. Of our 57 devices, only 12 could be fully interacted
without a companion app: the media devices (e.g., Apple TV and
Roku TV), the TVs, and the fridge. If a device prompted login but
did not require the companion app, we used a desktop browser for
account registration.

We identified cases where the same companion app controlled
multiple devices in our tests, which allowed us to save time with-
out loss of coverage by interacting in full only once for all its
corresponding devices. For example, both Alexa speakers and the
Amazon Plug use the Amazon Alexa app; the Ring Camera, Ring
Chime, and Ring Doorbell all share the Ring app; all three Google
speakers and the Chromecast use Google Home, etc. In these cases
we fully traversed each app only once, and otherwise only inter-
acted with the app as necessary per-device, on demand—typically
for fresh account or device setup, or managing relevant settings.

3.4.4 Annotation Procedure and Validation. We manually anno-
tated the video recordings produced by our device and companion
app interactions for dark patterns using the codebook in Table 2.
Prior studies using similar methods operationalized dark patterns
as binary variables that were either present or not present in each
sample [26, 42]. In contrast, Mathur et al. [67] counted the number
of each type of dark pattern that appeared on each website and
web page during automated crawls. We use both approaches in



Understanding Dark Patterns in Home loT Devices CHI "23, April 23-28, 2023, Hamburg, Germany

Context Category Dark Pattern Description Mapping to Prior Taxonomies Potential Harms

Resistration Account required to use service Forced Registration [19], Forced Action [26, 39] Privacy [68]
& Account required to set up device Forced Registration [19], Forced Action [26, 39] Privacy [68]
Gamification Gamification [26, 39] Cognitive [68]
Extraneous notification badges Aesthetic Manipulation [26, 39] Cognitive [68]
Engagement

Extraneous message centers
Extraneous social media features

Nagging [26, 39]
Nagging [26, 39]

Cognitive [68]
Cognitive [68]

No Terms of Service/Privacy Policy Privacy Zuckering [19, 20, 26, 39] Privacy, Autonomy [68]
No link to Terms of Service/Privacy Policy Hidden Legalese Stipulations [19], Hidden Information [26, 39] Privacy, Autonomy [68]
No consent checkbox for Terms of Service/Privacy Policy Privacy Zuckering [19, 20, 26, 39] Privacy, Autonomy [68]
Consent checkbox is preselected Bad Defaults [19], Preselection [26, 39] Privacy, Autonomy [68]
Consent notice includes email subscription Bad Defaults [19], Preselection [26, 39] Autonomy [68]

Preselected email subsciption checkbox Bad Defaults [19], Preselection [26, 39] Autonomy [68]

Permission requested without explanation Hidden Legalese Stipulations [19], Hidden Information [26, 39] Privacy, Autonomy [68]
Permission pops up unprompted Nagging [26, 39] Cognitive, Privacy [68]
Device sensed without permissions Privacy Zuckering [19, 20, 26, 39] Privacy, Autonomy [68]

Consent and Permissions

Ads

Money

Shopping

Seen in Settings

Nonpermanent opt out

Native ads

Hard to close ads

Inconsistent close buttons

Interact with ads to unlock a feature
Pay to avoid ads

Pay for fictional currency

Pay for badges

Unsolicited free trial

Free trial requires payment method
Pay for long term use

Feature seems free but is not

Feature seems premium but is not
Cannot sort free from premium content

Suggests preferred items

Sneaking items into basket
Optional items are preselected
Shaming language when opting out
Item has a different price

Surpise fees

Countdown timer

Social proof

No bulk options for settings

No notification settings

No privacy settings

Notification settings preselected
Privacy settings preselected

Trick Question [20, 26, 39]

Disguised Ads [20, 26, 39]
Aesthetic Manipulation [26, 39]
Aesthetic Manipulation [26, 39]
Forced Action [26, 39]

Hidden Information [26, 39]

Intermediate Currency [26, 39]
Intermediate Currency [26, 39]
Forced Continuity [20, 26, 39]
Forced Continuity [20, 26, 39]
Forced Continuity [20, 26, 39]
Disguised Ads [20, 26, 39]
Hidden Information [26, 39]
Aesthetic Manipulation [26, 39]

False Hierarchy [26, 39]
Sneak Into Basket [26, 39]
Sneaking [26, 39]

Privacy Zuckering [19], Toying with Emotion [26, 39]

Bait and Switch [20, 26, 39]
Hidden Information [26, 39]
Toying with Emotion [26, 39]
Toying with Emotion [26, 39]

Privacy Zuckering [19], Aesthetic Manipulation [26, 39]

Bad Defaults [19], Forced Action [26, 39]
Bad Defaults [19], Forced Action [26, 39]
Bad Defaults [19], Preselection [26, 39]
Bad Defaults [19], Preselection [26, 39]

Autonomy [68]

Cognitive [68]
Cognitive [68]
Cognitive [68]
Cognitive, Autonomy [68]
Financial [68]

Financial [68]
Financial [68]
Autonomy [68]
Financial [68]
Financial [68]
Financial [68]
Financial [68]
Cognitive [68]

Autonomy [68]
Financial, Autonomy [68]
Financial, Autonomy [68]
Autonomy [68]

Financial [68]

Financial [68]

Financial, Autonomy [68]
Financial, Autonomy [68]

Cognitive [68]

Cognitive, Autonomy [68]
Privacy, Autonomy [68]
Cognitive, Autonomy [68]
Privacy, Autonomy [68]

Hard to navigate settings
Inconsistent Settings Ul
Settings detour to a different modality

Privacy Zuckering [19], Aesthetic Manipulation [26, 39]
Privacy Zuckering [19], Aesthetic Manipulation [26, 39]
Privacy Zuckering [19], Forced Action [26, 39]

Cognitive [68]
Cognitive [68]
Cognitive [68]

No logout Immortal Accounts [19], Roach Motel [20, 26, 39]
No account deletion Immortal Accounts [19], Roach Motel [20, 26, 39]
Unclear deletion options Privacy Zuckering [19], Roach Motel [20, 26, 39]

Autonomy [68]
Privacy, Autonomy [68]
Privacy, Autonomy [68]

Leaving Time delayed deletion Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy [68]
Cannot remove device Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy [68]
Cannot delete data from device Immortal Accounts [19], Roach Motel [20, 26, 39] Privacy [68]
No local subscription cancellation Immortal Accounts [19], Roach Motel [20, 26, 39] Financial [68]

General preselection
Visual preference
Confusing text
Confirmshaming
Forced action

Preselection [26, 39]

False Hierarchy [26, 39]
Trick Question [20, 26, 39]
Toying with Emotion [26, 39]
Forced Action [26, 39]

Autonomy [68]
Autonomy [68]
Autonomy [68]
Autonomy [68]
Autonomy [68]

Interface Interference

Hidden information
Hidden feature behavior
Nagging - General
Subverting Expectations Popup nag
Feature detours to a different modality
Unprompted suggestions
Nagging self-promotional content

Hidden Information [26, 39]
Aesthetic Manipulation [26, 39]
Nagging [26, 39]

Nagging [26, 39]

Forced Action [26, 39]

Nagging [26, 39]

Nagging [26, 39]

Autonomy [68]

Cognitive, Financial, Autonomy [68]
Cognitive [68]

Cognitive [68]

Cognitive [68]

Cognitive, Autonomy [68]
Cognitive, Autonomy [68]

Table 2: Final codebook of dark patterns we used to annotate recordings of interactions with IoT devices and companion apps.
We group the dark patterns into ten context categories, and map each dark pattern to associated traits, strategies, and harms
drawn from prior work. Novel dark patterns are shown in bold. Patterns with parenthetical traits or strategies constitute
deceptive or unfair behaviors that employ similar strategies to the maximize privacy dark strategy [19] but applied to financial
or engagement contexts.
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this study. To achieve this, we used a video annotation software
that facilitated observation and coding for compound or multiple
instances of dark patterns, and additionally supported timestamps
and image coordinates for each label [28, 29]. When encountering
multiple dark patterns on the same screen or video frame, we ex-
amine the presented interface elements holistically and consider
whether the dark patterns appear to be deployed towards a shared
immediate purpose. If so, we select relevant designs in a frame and
annotate the selection with multiple dark patterns.

All recordings were annotated by the first author. In cases where
the first author felt a label was uncertain, the second author was
consulted to achieve consensus.

We validated our device annotations by assessing inter-coder
reliability between the first two authors. Specifically, the two au-
thors independently annotated the recordings of one device per
type and we compute Cohen’s k to assess agreement. Both authors
annotated 585 labels, with 75 and 80 positive unique (binary) labels,
and 510 and 505 negative unique labels. For total instance counts,
the authors note 169 and 161 positive frequency labels, respectively,
and 416 and 424 negative labels per-pattern. For the final dataset,
we use the first author’s labels by default to maintain consistency
across all device annotations.

Table 3 presents the k agreement statistics with respect to unique
and total dark patterns. Across all 52 patterns in our study, we
note k=0.56 and k=0.42 for unique and total dark pattern counts
respectively, both of which are in the moderate agreement range
(0.41 < k < 0.60) [54]. Given the comparatively large size of our
codebook and high granularity of individual dark pattern cases, we
also grouped our inter-rater labels according to the context cate-
gories in our codebook (adapted from Gunawan et al. [42]) and the
16 dark pattern types from Di Geronimo et al. [26].2 We observe
improvements when calculating k for each grouped categorization:
unique-count k=0.60 (mildly significant [54]) for our context cate-
gories and k=0.67 (significant [54]) for the Di Geronimo et al. [26]
categories.? These results demonstrate more agreement between
our labelers at the granularity of categories than at the granularity
of specific dark patterns.

In the context of our codebook size, manual methods, video
length, and corpus-to-validation sample diversity, we consider our
agreement consistent with similar studies’ measures [26, 42] and
therefore sufficient to proceed with as a reasonable approximation
of overall agreement to popular taxonomies. However, as human
measurement remains a challenging part of dark patterns study, we
further discuss limitations of such methods in subsection 5.4.

4 ANALYSIS

We now analyze our dataset of annotations for all devices included
in our experiments. We identify 1,255 total unique instances of dark
patterns drawing from 52 distinct patterns. We then compare our
results to those from prior measurement studies of dark patterns
on the web and in apps.

2These patterns are used in Di Geronimo et al. [26] and Gunawan et al. [42] to group dark pattern
cases to the popular Gray et al. [39] taxonomy.

3Whether moderate or significant k measures are interpreted as acceptable depends on discipline.
Within HCI, the adoption of inter-rater reliability measures his somewhat rare [70].

Gunawan et al.

4.1 Dark Patterns Across All Devices

4.1.1  Dark Pattern Popularity. We first count unique dark patterns
and per-pattern frequency for all patterns in our codebook across
all devices, to broadly quantify dark patterns in IoT experiences.

The cumulative distributive function (CDF) of unique and total
dark patterns per device in Figure 2 shows disparity between bi-
nary, unique presence counts (whether a dark pattern is found in a
device interaction or not) and total frequency counts (how many
dark patterns appear in a device interaction, including multiple
instances of the same pattern). The x-axis denotes how many dark
patterns were discovered (unique count in blue, total in orange).
The y-axis represents the percentage of the 57 devices in our study
that contained that number of dark patterns for either count. We
discovered at least three unique dark patterns in all 57 devices.* On
average, devices contained 9 unique dark patterns, and all devices
contained < 25 unique patterns.’

If the devices in our corpus included only one instance of each
unique dark pattern, then the two distributions would be identical
and overlaid atop each other. However, beyond the 40" percentile
the distributions diverge, with the highest number of total dark
patterns (90, Table 4c) being more than triple the maximum number
of unique dark patterns (25, Table 4a). Thus, many devices not only
exhibit dark patterns multiple times, but do so in large numbers.
Table 4 highlights the top ten devices in our corpus by highest
and lowest counts of unique and total dark patterns. Both lowest-
count tables (Table 4b and Table 4d) share eight out of ten devices.
However, the highest-count tables (Table 4a and Table 4c) share only
six devices, suggesting variance between top-offending devices’
propensity to deploy dark patterns multiple times.

Figure 3 presents the percentage of devices with at least one in-
stance of each dark pattern in our codebook, color-coded by context
category. Overall, patterns in the Interface Interference, Consent and
Permissions, Registration, Seen in Settings, and Leaving categories
were most frequently adopted.

4.1.2  High Total Counts and Potential Design Templating. As shown
in Figure 3, two Interface Interference patterns appeared most fre-
quently by total count. A closer look reveals that on average, the
visual preference pattern appears 6 times per device (the highest
average value across all dark patterns), with general preselection (the
second highest average) appearing only around twice per device—
this is visualized in Figure 17 in the Appendix, while Figure 18 strat-
ifies the total count averages per device category to demonstrate
that speakers, doorbells, and cameras contained the highest frequen-
cies of these two patterns. We hypothesize that the high adoption
rate of these patterns may be due to design templates and/or auto-
mated design deployment methods, as opposed to unique, conscious
decisions by designers. For example, a UX design tool may have
checkbox elements set to have preselected defaults, or binary choice
buttons that privilege one button over the other even before button
text is added. Context-specific versions of these patterns (e.g., pres-
elected consent checkboxes or settings) were also fairly common
in our dataset.

4This aligns with prior manual studies’ findings of dark patterns in 95% of studied apps [26] and
100% of studied web services [42].

5For comparison, prior manual studies note upper-bound counts of 19 unique dark patterns in web
services [42] and 23 in apps [26], and average unique counts between 7-8 in both studies.
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Cohen’s
Stratification Unique DPs  Total DPs
Per Pattern x=0.561 k=0.421
Per Context Category x=0.6 k=0.407
Per DiGeronimo [26] Type  «=0.679 k=0.535

Table 3: Inter-rater reliability measures computed between
the first two authors for unique and total dark patterns, orga-
nized per pattern, per context category, and by the 16 types
from Di Geronimo et al. [26].
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Figure 2: CDFs of unique and total dark patterns per device.

Device Uniq. Ne Device Uniq. Ne Device Total Ne Device Total Ne
Fire TV 25 Apple TV 3 Ring Doorbell ('21, Wired) 90 Oxylink Oxygen Monitor 3
Echo Show 5 20 Sengled Smart Hub 3 Fire TV 79 Sengled Smart Hub 3
Withings BPM Connect 19 Oxylink Oxygen Monitor 3 Echo Show 5 75 Withings Sleep 4
Ring Doorbell ('21, Wired) 19 Philips Hue Bridge 3 Nest Mini 69 Amcrest Cam 5
Wyze Cam 18 Withings Sleep 3 Nest Hub Max 57 Homepod Mini 5
Nest Mini 16 Amcrest Cam 4 Ring Camera (Indoor) 55 Thermopro TP90 6
Ring Camera (Indoor) 16 Smartlife LED Bulb 4 Ring Camera 48 GE Microwave 6
Ring Chime 16 Homepod Mini 4 Echo Dot (4th Gen) 38 Smartlife LED Bulb 7
Ring Camera 16 Roku TV 5 Home Mini 38 Roku TV 7
Homepod 15 GE Microwave 6 Nest Doorbell 33 Philips Hue Bridge 8
(a) Highest Unique DPs (b) Lowest Unique DPs (c) Highest Total DPs (d) Lowest Total DPs

Table 4: Top ten IoT devices sorted by those with the (a) highest unique, (b) lowest unique, (c) highest total, and (d) lowest total
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Figure 3: Percentage of devices containing each dark pattern, with each pattern colored according to our context categories.

4.1.3 Impact of Interaction Duration. To explore the disparity be-
tween unique and total counts, we consider the amount of time we
spent interacting with each device as a form of robustness check
on our methodology: would the disparities disappear if we simply
spent more time with each device?

In our interactions, we noticed that device experiences could vary
greatly in interface “richness”—an informal measure of available
interaction avenues within the experience. This includes feature
offerings (e.g., platforms for third-party skills or apps, third-party
integrations, built-in analytics or reporting, etc.), device capabilities
(e.g., whether a lightbulb is able to control light color or brightness
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Figure 4: Scatter plots comparing video recording duration to total and unique dark patterns we annotated in each recording.
Points are jittered to improve readability. Frequency histograms in both dimensions are shown, as well as a linear regression

best-fit with confidence intervals.

instead of just on or off modes), level of detail in options, and design
complexity. We posit that interface richness is positively correlated
with the number of observed dark patterns: the patterns are design
components, so an interface that provides more design surfaces
may have greater potential to deploy more dark patterns compared
to aleaner interface. Richer interfaces should take longer to traverse
experimentally, thus we use device interaction length (represented
by video recording length in Table 1) as a proxy measure.

We calculate both Pearson’s and Spearman’s correlation coef-
ficient (r) for recording duration against the number of unique
and total dark patterns instances for all devices to find positive
and significant correlations® between recording length and dark
pattern count: Pearson’s r = 0.510 and Spearman’s r = 0.474 for
unique counts, then Pearson’s r = 0.591 and Spearman’s r = 0.552
for total counts, with all p < 0.001. Figure 4 presents scatter plots
of recording duration (x-axis) against total (Figure 4a) or unique
(Figure 4b) dark patterns counts (y-axis), with frequency histograms
and a linear regression line of best-fit with confidence intervals.
For total dark pattern counts, we see tighter clustering around
lower counts and outlier behavior (long tails) for high counts, as
compared to looser distribution for unique counts. This echoes the
two measures’ divergence in Figure 2. However, more research is
needed to better understand the relationship between interaction
richness and dark pattern deployment, including using models with
more robust controls.

4.1.4 Comparison to Prior Measurement Work. Prior modality-
specific work measured the presence of unique dark patterns in
mobile apps: Di Geronimo et al. [26] investigated 240 apps and

OInterpretation ranges for both measures depend on the discipline in question; our measures are
considered ‘fair’ in medicine, ‘strong’ in political science, and ‘moderate’ in psychology [8]. We
characterize our measures as ‘moderate’ as they fall roughly halfway between no correlation and
perfect correlation.

Gunawan et al. [42] inspected 105. Figure 5 compares our find-
ings against these studies, mapped to the context categories from
Di Geronimo et al. [26] to provide an apples-to-apples compari-
son.” Like Gunawan et al. [42], we caution that distributions heavily
depend on corpus and codebook construction (which we discuss
further in subsection 5.4). Additionally, our interaction methodol-
ogy departs from both studies’ time-bound interactions, which may
impact the discoverability of dark patterns across all these studies.

Our findings generally agree with those from prior work, with
some exceptions. Our corpus size is smaller than those in Di Geron-
imo et al. [26] and Gunawan et al. [42], in part due to IoT companion
apps being a strict subset of apps in general, which may explain
why we do not observe dark patterns in every Di Geronimo et al.
[26] category (e.g., Hidden Costs, Sneaking, and Bait & Switch). We
do observe more Nagging in our study, potentially because the IoT
context presents more opportunities for manufacturers to encour-
age optional behaviors like linking IoT devices to apps and to each
other, or signing-up for optional services. Our study additionally
includes more Hidden Information and Trick Questions patterns com-
pared to Gunawan et al. [42], who only correlate these DiGeronimo
categories with one dark pattern each.

4.2 Novel Dark Patterns

In this section we describe newly added dark pattern instances
in our codebook (see Table 2) during our pilot experiment and
annotation procedures (see section 3), and situate these within
extant taxonomies, traits, and strategies.

Some of these novel patterns pertain only to IoT contexts, in-
cluding: device sensed without permissions, cannot delete data from
device, and cannot remove device. Relatedly, we discovered settings or

7We flatten our findings to one modality in Figure 5 to see how holistic [T experiences compare to
mobile apps, and because the majority of device experiences involved apps or touchscreens.
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Figure 5: Percentage of devices or app services containing categorized dark patterns, broken down into the Di Geronimo et al.
[26] categories and compared against app measurements from prior modality-based studies [42].

features detour to a different modality dark patterns when expected
capabilities were not included for a device modality. Prior work
generally examined self-contained “experiences” (e.g., websites in a
browser or apps on a phone) in isolation rather than as multimodal
experiences with configurative dependencies, which may explain
why such dark patterns were not previously observed.

Other novel patterns that we identified—such as subscription
models or permissions requests—could feasibly be deployed in non-
IoT experiences. While permissions- or financial-related dark pat-
terns are not IoT-specific, the additional configuration requirements
in IoT devices highlighted novel patterns like pay for long term use
and nonpermanent opt-out.

4.2.1 More Ways to Nag. Nagging [39] patterns manifest in myriad
ways, spanning ad-related nags [26] to spammy behavior [20] to
extraneous cues [42, 67]. In this study we add two new cases of
such patterns, finding extraneous social media features and nagging
self-promotional content in some device experiences.

We considered social media features to be extraneous when they
deviated from the primary purpose of a device and were promoted
to the user in spammy, aggressive, or otherwise obtrusive manners.
Figure 6 presents an example of this pattern that we observed in
the Govee Home app for the Govee LED Light Bulb device.

We distinguish nagging self-promotional content from native
advertising- or shopping-related dark patterns by identifying cases
when device experiences or manufacturers presented nags to en-
dorse their own services or content outside of traditional or ex-
pected ad placements. These were especially perplexing in the
Fire TV as shown in Figure 7: while scrolling for content on a
non-Prime user account, we overwhelmingly encountered Prime
content carousels with varying promotional labels, and were un-
able to avoid these carousels. Of the Prime-promoting carousels,

some were labeled as ‘sponsored, but the nature of these spon-
sorships was unclear. Such internal promotions may skirt formal
requirements of advertising and disclosure law or guidance. Future
research is needed to understand the effect of technically legal but
potentially disadvantageous or annoying promotions.

4.2.2  Financial Dark Patterns. The ‘0T’ part of a smart device is
intended to offer consumers value beyond the analog limitations of
the device. This presents additional opportunities for manufacturers
to apply the financial models from web modalities, like long-term
financial relationships via subscription models or tiered access
to features. We relate our new case pay for long term use to the
Hidden Subscription [67], Bait and Switch [20], and Obfuscation
dark patterns categories, which we added after being alerted by
the Amazon Ring app that certain features were inaccessible due
to expired subscriptions during our pilot experiment. Similarly,
during our pilot interactions with the Govee app, some features
were labeled as exclusive for “Savvy” membership users, but were
otherwise accessible to us without signing up for membership,
leading to our inclusion of the feature seems premium but is not
pattern as a counter-case to the previously identified feature seems
free but is not. We consider these patterns deceptive when they
obfuscate key information about device limitations out-of-the-box
or upon initial setup, as not all IoT device users may have made the
original device purchase.

4.2.3  Settings Inconsistencies. We noted that navigating settings
on some devices was particularly challenging or confusing, marking
such designs as inconsistent settings user interfaces. This falls under
Aesthetic Manipulation, with particular regards to the ways in which
these dark patterns obscure [19], restrict [68], or otherwise interfere
with user access to important controls. Figure 8 provides an example
from the Agara Home app, which concurrently shows preselected
notification settings and no bulk toggle. Such designs force users to



CHI 23, April 23-28, 2023, Hamburg, Germany

1112 @GR P ]

Creations
Official

Roadmap

Posts involved &)

Govee Fan Festival 2021
-~ Celeb g with our 8 million fa
Nov4 -Nov 11

o~  GOVEE

=4 Fan Festival Starts Now! Let's Take a Look
Back

o~ GOVEE

L~

Paint-Like Effects for Your Home

T
UL Ll
- .

Figure 6: Screenshot of the extraneous social media fea-
tures pattern in the Govee Home app, for the Govee LED
Light Bulb device. Prior to this screenshot, the globe menu
icon for this page was presented with an extraneous noti-
fication badge to call user attention to this set of features.
The gamut of social media features include user profiles
for posting content and interacting with other users, fo-
rums, quizzes, gamification, and more.

put in unnecessary additional labor, time, and effort into managing
relevant controls, while inconsistencies in the interface potentially
prevent users from accessing or understanding available settings.

4.2.4 Detours to Different Modalities. While attempting to use cer-
tain settings or features in a device experience, we were sometimes
instructed to open an app or visit a website to access that feature.
We call these detours to describe the manner in which the inter-
face redirected our interactions away from the currently-in-use
modality and towards another, with an example of a settings detour
in Figure 9. Not all features may be feasibly delivered across all
modalities in a given service, so we mark this pattern when we are
given no notice (prior to attempting to access the setting or feature)
that the content is locally unavailable when it should otherwise be
reasonable to expect it in the current modality. This dark pattern
relates to feature parity issues that have previously been observed
across modalities of a singular web service [42], which not only

Gunawan et al.
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Figure 7: Cropped photographs demonstrating nagging
self-promotional content in the Amazon Fire TV while
users browse for media in a list of thumbnail carousels,
and the inconsistent headers found per-carousel. We ob-
served these (among additional instances of this pattern)
within seconds of each other, and we were not able to
avoid scrolling through Prime-labeled rows while search-
ing for free content.

increase time and labor burdens for users but risk inequitable ex-
periences. Prior work did not assign a label to this behavior; we
thus relate detour patterns to the restrict and obscure dark pattern
strategies [68].

4.2.5 Device Roach Motels. Prior work [26, 42] articulated several
Roach Motel [20] cases. We separately define three new device-
specific cases (device sensed without permissions, cannot remove
device, and cannot delete data from device) to this set of Roach Motel
patterns in order to investigate the range of possible traps users
may encounter in IoT interactions. We noted devices sensed with-
out permissions if the app or device itself detected other devices
without our active intent to search for other devices within the
experiment LAN. One example was the Amazon Alexa app detect-
ing the Amazon Smart Plug device and prompting setup after we
removed the previously configured device from the app. The latter
two patterns are device-specific versions of the no account deletion
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System Notifications ( /

Figure 8: A screenshot of the push notification settings
within the Aqara Home app for the Aqara Hub device.
These preselected, default-on settings involve both tog-
gles and submenus that have binary on/off indicators,
which hinders managing settings in bulk.
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Figure 9: A photograph of the settings detour to a different
modality pattern from the Fire TV interface. We found
this especially interesting as we were prompted to register
for Prime earlier in our device interactions.
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Figure 10: A photograph of the nonpermanent opt-out
pattern from the AppleTV interface that appears during
setup.

e
> SmartThings Cooking > T

Answer a few questions about your food preferences
to get personalized recipe recommendations
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(a) The smart lock feature tile in the Smart- (b) The smart lock feature tile in the Smart- (c) The cooking feature tile in the SmartThings
Things app, prior to user interaction. Things app, after interaction. app.

Figure 11: Screenshots demonstrating hidden feature behavior in the Samsung SmartThings companion app, and inconsistencies
across similarly-presented designs. The tile in (a) shows no indication that the feature must be downloaded, with (b) showing
the download behavior that is triggered by pressing on the tile. The tile in (c) is found below the smart lock feature shown in (a)
and (b). Pressing tile (c) triggers a download, then leads to an embedded browser that prompts Samsung account login and
integration to a third-party service. The tile’s text offers no indication that additional integrations are required.

or no logout patterns identified in prior work on websites and apps.
These patterns help capture different applications of Roach Motels
within a single device experience, each with varying degrees of
potential impact on user privacy or autonomy. For example, the
inability to remove a device from a user account or to delete user
data from a device makes it difficult to safely re-sell or gift used

devices. Similarly, devices that are detected by apps prior to users
providing specific permissions to the app raise privacy concerns.

4.2.6 Opt-Out Traps. We liken nonpermanent opt-out behavior
(shown in Figure 10) to Trick Questions in that such designs can
manipulate user interaction towards unintended answers [20]. This
dark pattern commonly provides users with binary choices for an
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option, with one being an affirmative ‘yes’ and the other being some
variation of ‘not now, ‘later, or ‘skip. Users are not provided options
like ‘no’ or ‘never. Such designs are transparent that the question
will be asked again in the future, but do not give users a way to
effectively avoid this query or notification and thus accentuates
nagging behavior. We label such cases when an interface fails to
provide permanent negative options, and do not label cases when
users are provided some sort of ‘do not ask again’ choice.

4.2.7 Hidden Feature Behavior. Figure 11 provides an example of
hidden feature behavior, a sub-case of hidden information. We sepa-
rate this case from the parent dark pattern category for its implica-
tions in the IoT context: designs that initially imply that features are
inherently provided but later reveal additional conditions for use
are thus labeled under this dark pattern. This behavior obfuscates
the true value of an IoT service and may deceive consumers into
perceiving a product as more robust (sans additional caveats) than
it truly is. This pattern is similar in method to feature-related Money
patterns, which hide the true cost of a feature from the user.

4.2.8 No Local Unsubscribe Options. We added this case following
our pilot experiment to investigate whether services with subscrip-
tion models offered users the ability to cancel subscriptions within
the device experience (i.e., without having to head to a website in
a browser or otherwise contact the manufacturer). The instances
in which this pattern came up were complex: we initially anno-
tated the Ring app as having this pattern as pertaining to the Ring
Doorbells and Cameras but not the Ring Chime due to helper text
provided to us during attempts to delete devices from the Ring
App. Interfaces originally prompting these annotations are shown
in Figure 12a and Figure 12b for the Chime and Indoor Camera,
respectively. In Figure 12b, the warning message indicates that the
subscription-based Ring Protect Plan must be canceled at ring. com,
thus prompting a no local unsubscription option dark pattern. Con-
versely, the Chime does not include any reference to the Protect
Plan and thus we did not mark this dark pattern. However, when
we later attempted to delete the entire Ring account via the app,
we were presented with the warning message in Figure 12, which
explains that any subscriptions on the account will be canceled
with account deletion. Due to this technically local unsubscription
option, we removed our previous annotations and found no other
instances in other devices (seeing as most devices did not mandate
or offer subscription models), but retain the dark pattern in our
codebook and provide these examples to demonstrate the poten-
tial for this behavior in other apps or web services as subscription
models are not unique to IoT.

4.3 Dark Patterns by App and Device Modalities

Unlike websites and apps, IoT device experiences span different
modalities. Some devices rely on a companion app; others provide
direct avenues for interaction via buttons, voice interfaces, and
embedded touchscreens. Table 1 presents the companion app de-
pendencies, if any, of the devices in our sample. 72% of the devices
in our sample required the use of a companion app, which was
surprising for devices like speakers (especially the Nest Hub Max,
which has an embedded screen) that provide robust interaction
methods, and allow many settings to be adjusted sans app.
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To examine how dark pattern adoption varies across app-driven
and device-driven modalities, we stratify our sample into (a) “App-
Only” devices that must be controlled with a companion app at
all times (N = 36), (b) “Both, For Setup” devices that required an
app but only during device setup (N = 7), (c) “Both, Non-Setup”
devices that required us to use an app after setup to access relevant
functionality (N = 3), and (d) “Devices Only” devices for which
an app is not required and we were never mandated to use an
app (N = 12). All six devices that required an app for setup were
speakers. The four devices that prompted app use for non-setup
reasons were the Thermopro TP90, the GE Microwave, Renpho
Smart Scale, and the Amazon Echo Show 5, and were operational
for their primary function prior to our companion app use.

Figure 13 presents the percentage of devices per-modality that
included dark patterns, broken down by our dark pattern context
categories. Over 60% of devices within all four modalities contained
Consent and Permissions, Seen in Settings, and Subverting Expecta-
tions dark patterns, making them the most common categories of
patterns overall. Leaving and Interface Interference dark patterns
also appeared in over 60% of devices in three modalities and half
of the four “Both, Non-setup” devices. The relative popularity of
dark patterns in these contexts, even across modalities, speaks to
their universal applicability. For example, since these devices are all
internet-enabled, consent dialogs are very common, as are settings
dialogs that include privacy-sensitive choices.

Dark patterns in the Registration category were widely adopted
by companion apps, which were used in all categories except “De-
vices Only”. In particular, we observed that the account required for
use pattern, which was found to be widely adopted by websites and
apps in prior work [42], was widely adopted by IoT devices that
required at least some use of a companion app. However, speak-
ers (overlapping with the “Both, For Setup” category) revealed an
ecosystem-related quirk: because we used a Google Pixel to manage
the Google speakers and an iPhone to control HomePod devices, we
were already “logged in” to their respective apps and thus were able
to use these devices without needing to create another account.?
In contrast, devices that did not require or prompt app use (mostly
TVs, home appliances, and media devices) treated account creation
as optional, i.e., we could use these devices to at least some extent
before being asked to create an account.

More rarely adopted categories include Engagement, Ads, Money,
and Shopping. Of these, adoption of patterns from the Engage-
ment category was somewhat consistent, present in around 40%
of devices in three modalities. Interpreting the Ads category re-
quires understanding our codebook: we generally annotated pro-
motions for third-party content as advertisements, while promo-
tions for first-party, device manufacturer content were considered
self-promotional nags in the Subverting Expectations category. We
encountered several self-promotional nags across all modalities,
but we only observed native banner ad designs in TVs and media
devices e.g., the FireTV and LGTV. Dark patterns in the Money cate-
gory were also more prevalent in media devices due to requests for
streaming subscriptions and dark patterns that made distinguishing
free versus premium content difficult. Adoption of patterns from

8Due to this quirk, we did not mark these as requiring account creation specifically for the IoT context.
Seamless login behavior like this warrants future scholarship on dark designs within ecosystems or
platforms, particularly when single login is used across a manufacturer’s other applications.
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Are you sure you want to remove this
Chime?

This will delete all of its settings. Only do this if
you're selling or gifting this device

To set this device up at a new location, just
change your address in Settings.

(a) The device removal warning message
during our Ring Chime device interactions.

]

Are you sure you want to remove this
device?

This will delete all of its data, including videos
Only do this if you're selling or gifting this

device. To cancel a Protect Plan that covers it,
log in to your account at ring.com

To set this device up at a new location, just
change your address in Settings

To bring this device back online after a
problem, reconnect it

(b) The device removal warning message
during our Ring Indoor Camera device in-
teractions. The subscription-based Protect
Plan must be canceled on the ring.com web-
site, thus not offering local unsubscription.
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T\

Are you sure you want to delete your
personal data?

This will delete your Ring account and videos, end all
of your Ring subscriptions, and cause your Ring
products and services to stop working

This action cannot be undone

(c) The personal data deletion warning mes-
sage during our Ring Indoor Camera de-
vice interactions. Subscriptions are can-
celed when the local opt-out is confirmed.

Figure 12: Screenshots from the Ring App, from separate interactions for the (a) Ring Chime and (b,c) Ring Indoor Camera
devices. Images (a) and (b) were taken from attempts to remove the device from the Ring App, while (c) was from our attempt

to delete the entire Ring account.
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Figure 13: Bar chart showing the percentage of devices containing dark patterns per interaction modality, grouped by dark
pattern context category. “App Only” devices could only be controlled by companion apps, while we never used apps to interact
with “Device Only” devices. We interacted with ten devices via their physical interface and an app—six out of the seven speakers
required the companion app only for device setup, while one speaker and three other devices directed us to the app later to

access other features.

the Shopping category was generally low, and we caution against
over-interpreting the “Both, For Setup” category in this case due to
its small sample size. However, our Shopping results align with prior
work that also focused on non-shopping centric services [26, 42].

Some IoT experiences are multimodal: device interactions may
encompass device hardware, visual displays, and sometimes voice.
Speakers, in particular the Amazon Echo Show and Google Nest
Hub Max, offer all three modalities as part of one experience: app,
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Figure 14: Box plots of unique and total dark pattern instances.

on-device touchscreen, and voice. Every speaker in our test set ex-
cept the Echo Show 5 required the companion app for setup actions;
this was expected for the five speakers without visual interfaces,
but surprising for the Google Nest Hub Max, which still mandated
the user to install and use respective companion apps despite hav-
ing a touchscreen that is larger than our Google Pixel smartphone.
This constitutes a forced action just to use the device at all, and is
peculiar for devices that are technologically capable of allowing
users to type in registration information on the physical device
itself. This behavior also exemplifies our detour dark patterns by
requiring users to operate multiple modalities for specific needs
when the hardware should otherwise afford certain actions. Unlike
the Nest Hub Max, the Echo Show 5 (an otherwise functionally
similar device), was placed in the“Both, Non-Setup” category. We
were able to begin setup without the companion app, but during
setup tasks, Alexa automatically "checked our app for login’ with
alternative options in the device interface. After some time, a skip
button unexpectedly appeared. As the device began sensing for
the Alexa app without our input and did not provide opt-outs in a
timely or transparent fashion, this behavior is reminiscent of hidden
information, forced action, and bad default patterns, thus we high-
light the differences between these two devices as a demonstration
of potentially dark multimodal behavior that researchers might
investigate in future work.

4.4 Dark Patterns by Device Type

We now investigate whether dark pattern adoption varies in relation
to IoT device type.

Figure 14a presents the distributions of unique and total dark
patterns per device type. Three types—cameras, doorbells, and speak-
ers—contained significantly more total dark patterns than other
types. The top outlier among cameras was the Wansview Cam,
containing 61 total dark patterns, while the top outlier among door-
bells was the Ring Doorbell ('21, Wired), containing 90 total dark
patterns (the highest count of any device in our sample). Speakers

(representing half of the top ten highest total count devices in Ta-
ble 4c) yielded the most total dark patterns across device types, with
a median of 38 dark patterns. This may be due, in part, to speakers
offering at least two interaction modalities (voice and companion
app; three in the case of speakers with touchscreens) and requiring
longer interactions on our part (four of the top six longest video
recordings are speakers).

Among the remaining device types, the majority of devices had
< 20 unique or total dark patterns. One outlier among media devices
is Amazon’s Fire TV, which had the highest number of unique
dark patterns in our study (25) and 79 total dark pattern instances.
Relatedly, while some device types contain more heterogeneous
devices than others (e.g., home appliances type includes a fridge
and a microwave), the Fire TV is one of five relatively fungible
streaming devices in the media devices type, yet the other four
streaming devices’ dark pattern counts do not come close to the
Fire TV’s. This disparity is potentially manufacturer-related (see
subsection 4.5). Then, compared to the four types with higher counts
or extreme outliers, the health, home appliance, home automation,
smart hub, and television types notably contain fewer Amazon,
Google, or Apple devices (these manufacturers are not represented
at all in home appliances, smart hubs, or TVs).

Figure 15 presents the percentage of devices per type with at
least one dark pattern, grouped by our context categories (Table 2).
Five categories are thoroughly adopted: there are at least 40% of
devices in each device type that contained Consent and Permis-
sion, Seen in Settings, Leaving, Interface Interference, and Subverting
Expectations dark patterns. Registration and Engagement patterns
are the runner-ups, but they are adopted less frequently overall
than the top five categories and they are not adopted at all by TVs.
The TVs in our sample did not require account registration. Ads,
Money, and Shopping patterns were adopted relatively infrequently
and inconsistently across device types. This reveals heterogeneity
across the IoT ecosystem: perhaps encouragingly, some manufac-
turers did not insert monetizable content or services into their
devices.
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Figure 15: Percentage of devices per type that contain > 1 instance of a dark pattern, grouped by dark pattern context category.
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Figure 16: Set overlap of dark patterns. 1 indicates perfect overlap, 0 indicates no overlap.

Though Figure 14a shows that device types were relatively simi-
lar in unique dark pattern count across types compared to frequency
count, this does not reveal whether the specific unique patterns
present among each group of devices overlap. To investigate this,
we construct the set of dark patterns found across all devices within
each device type, then calculate the Jaccard similarity index between
each pair of types, defined as J(TypeX, TypeY) = [sxNsy|/|sx Usy|-

Figure 16a provides the resultant heatmap of these indices, showing
generally moderate to low overlap.

The three device-type pairs with the highest overlap are camera—
doorbell (J = 0.62), home automation—health (J = 0.6), and speaker—
media device (J = 0.57). The relatively high camera—doorbell overlap
may be explained by the fact that both device types offer similar
functionality: all of the doorbells in our study included a camera,
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and all interactions with these devices in our study were exclusively
conducted through companion apps.

The home automation and health device categories are both
highly diverse: home automation devices ranged from light bulbs
to thermometers and thermostats, while health devices included
various monitors to track metrics like sleep quality or blood oxygen.
Despite this diversity we find relatively high dark pattern overlap,
possibly because devices in both types depended exclusively on
companion app interaction. Additionally, such devices are typically
engineered for a single purpose (e.g., a blood pressure sleeve only
offers features related to blood pressure measurements, while a
lightbulb only offers features related to managing light production),
offering little opportunity for other features that give rise to unique
dark patterns. However, speakers exhibited the highest overlap with
all other device types (all J > 0.5, % = 0.52). This occurs because
speakers had the most unique dark patterns overall, thus creating
the greatest opportunities for overlap.

Finally, the top five unique dark patterns across all devices per
type (listed in Table 7 in the Appendix) tended to be similar across
device types, which may account for the lowest overlap in Fig-
ure 16a stopping at J = 0.27. In particular, visual preference, prese-
lection, account requirements, and consent- or permissions-related
patterns appear most frequently across device types.

4.5 Dark Patterns by Manufacturer

The IoT market involves a few key manufacturers that produce pop-
ular smart devices in contained ecosystems. These include Amazon,
Google, Samsung, and Apple, who produce a variety of device
types, as well as companies like Withings, who are better known
for narrow categories of consumer electronics. 25 devices in our
corpus were produced by these five manufacturers, each of whom
have three or more devices in our sample (no other manufacturer
produced > 2 devices in our corpus and 26 produced one).

Figure 14b presents the distributions of unique and total dark pat-
terns per manufacturer. The median device in our sample contains
15 total dark patterns: Amazon and Google, who produce many
cameras, doorbells, speakers, and media device devices fall far above
the study median (total count medians of 58 and 33 dark patterns,
respectively), while other manufacturers fall below it. Figure 16b
presents a heatmap of Jaccard indices computed over the sets of
dark patterns adopted by pairs of manufacturers and indicates less
than 50% overlap between almost all manufacturer pairs, with the
exception of Amazon-Google and Amazon—Samsung, i.e., the three
most prolific dark pattern adopters in our sample.

Overall, we do not find clear correlations between company size
and dark pattern adoption. Amazon, Apple, Google, and Samsung
are some of the largest corporations on earth, yet they do not appear
to adopt dark patterns into their products at similar rates. While
Amazon products appear the “darkest” in our sample, followed by
Google, we caution that our corpus contains fewer samples of de-
vices and different device types from the other three manufacturers.
Furthermore, these five manufacturers produce a wide range of
device types in our study, which makes it somewhat difficult to
conduct apples-to-apples comparisons of dark pattern adoption and
frequency for this work.
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5 DISCUSSION

In this study, we investigated dark patterns in 57 IoT devices across
nine device types by interacting with each device via controlled,
scripted experiments. We now discuss our findings and explore
our study’s implications for future work and potential dark pattern
mitigations.

5.1 How Do IoT Modalities Change Our
Understanding of Dark Patterns?

The diversity in IoT devices and their vast applicability to increasing
areas of daily life provide an interesting framing for dark patterns
measurement. This work demonstrates the multi-factor nature of
dark pattern prevalence, and illuminates complexities in the effort to
deliver robust IoT services beyond device hardware while managing
user expectations for consumer electronics.

5.1.1  Multi-factor Considerations for Dark Pattern Adoption. In this
work we examine several potential factors that could influence dark
pattern adoption in IoT experiences: interaction context, modality,
device type, and manufacturer. We found that visual, screen-based
interfaces (e.g., on-device touchscreens and TV screens) drove dark
pattern prevalence, rather than companion apps exclusively, non-
screen physical device interfaces (e.g., a blood pressure sleeve or
lightbulb), or voice modalities (see Figure 13 and Figure 14a).” For ex-
ample, the Amazon Fire TV contained the largest number of unique
dark patterns in our study, but is interacted with only via remote
control. Similarly, the fridge, televisions, other media devices, and
some smart speakers were fully usable without apps and contained
many dark patterns from our codebook. Furthermore, with respect
to manufacturers, Amazon and Google adopted more dark patterns
among devices in our sample, even when compared to other large
manufacturers like Samsung and Apple (see Figure 14b). Overall,
however, we found no singular factor that conclusively predicted
the presence or lack thereof of dark patterns in IoT devices.

5.1.2  Design (In)Consistencies and Subverted Expectations. In sub-
subsection 4.1.2 we note how high dark pattern frequencies may
suggest the use of design templates, which can help make UX de-
ployments more efficient at-scale and keep designs consistent (and
thus more usable) across a service. This repetition leads users to ex-
pect similar behaviors whenever the same design appears. However,
this expectation can be subverted to users’ disadvantage. We noted
a peculiar example in the SmartThings app; visually consistent
designs were used in wildly different manners that made it difficult
to determine what features were actually available to us or not out-
of-the-box, and to what extent (Figure 11). We considered this to
be hidden feature behavior as the initial designs offered little trans-
parency into additional requirements or “strings attached.” Such
patterns risk deceiving users, particularly for integrations-oriented
devices like smart hubs, as users might not fully understand the
limitations of a device’s offering at the time of device purchase. Fu-
ture research on hidden information-related patterns could further
explore how devices or services communicate or promise value to

°In this study, we found voice modalities to be only a minor contributor to dark patterns in our
devices when compared to visual modalities, but expect that this is partially due to speaker devices
representing a limited portion of our study in device number and methodological focus. Future work
should explore voice-controlled interfaces more intently towards uncovering voice dark patterns
and prevalence.
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end users in their marketing or sales material, towards a goal of
improving consumer protections and disclosures.

5.1.3 Add-Ons for Limited Interfaces as Opportunities for Dark
Pattern Adoption. Some device types (see subsection 4.4) in our
corpus serve single or limited sets of functions but nudge users
towards integrations with third-party services. Integrations are
also available in app or web services, but one explanation for the
increased prevalence of integrations in IoT devices is that doing
so can increase the value or functionality of an otherwise purpose-
limited device, e.g., by sharing data gathered from device sensors
that are not available in other modalities like smartphones. The
SmartThings example described in subsubsection 5.1.2 notes how
hidden feature behavior might obfuscate real device value to cost
users time and money. However, multiple patterns may be involved
in nudging users; the Withings app delivered nagging, advertis-
ing, and hidden information-related patterns to promote third-party
integrations and dedicated an entire page in their app to exter-
nal health-related subscription services as “Programs” for users to
join. We also observe similar behavior from devices produced by
large manufacturers (e.g., promoting the manufacturer’s internal
services or third-party integrations). Such pattern types were sim-
ilarly prevalent in prior app studies as demonstrated in Figure 5,
especially nagging patterns, which were found in over half of apps
in both Di Geronimo et al. [26] and Gunawan et al. [42].

Collaborative partnerships can add value to a service. However,
failing to disclose whether a feature is included with the price of
the device up front may be deceptive. Third-party integrations
also raise privacy concerns, especially when the sensitivity of data
collected by IoT device sensors is higher than the data accessible to
apps and websites.

5.2 Harms Implications from the IoT Context

In addition to harms previously identified in prior work, this study
contributes to an understanding of the relationship between device
dependencies and darkness. In particular, IoT dark patterns have
unique implications for users’ finances, autonomy, and privacy.

5.2.1 Perceived Device Value and Financial Harms. Compared to
web- or app-only services, [oT devices necessitate purchase or other
means of device ownership, and in some cases require subscriptions
in order to ensure continued functionality as described in subsec-
tion 4.2. IoT experiences may also attempt to deliver additional
services or features to consumers through third-party integrations,
some of which may require payment. This complicates user decision
making at time of device purchase by obfuscating the true out-of-
the-box value of the device, raising financial and autonomy harms
for consumers who make purchases with incomplete or incorrect
understandings.

5.2.2  Flawed Privacy Controls. 10T devices can change ownership
through re-selling or secondhand gifting, exacerbating the IoT pri-
vacy and security issues noted in section 2. Dark patterns further
add to this problem by interfering with user behavior for important
privacy controls. For example, around 60% of devices did not offer
account deletion within the visited modalities as demonstrated by
Figure 3. With other Leaving patterns (e.g., the inability to delete
device data or remove a device from an account) as well as the
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device reset issues we encountered in subsection 3.1, these dark pat-
terns constitute privacy and autonomy harms by denying users the
ability to effectively manage their privacy while using the device
and after relinquishing it.

5.2.3  More Roaches in this Motel? Nags for user interaction are
not exclusive to the IoT modality, but the increased consumer risks
highlighted above may be worsened by nagging behavior. We found
such patterns in many of our devices as demonstrated by Figure 3,
particularly non-permanent opt-out (> 60% of devices), extrane-
ous notification badges (> 40% of devices), nagging self-promotion
(> 40% of devices), with other nagging patterns discovered across
multiple context categories. Amazon and Google devices often
containing multiple instances of these patterns as noted in the Ap-
pendix, Table 8. In light of the vast data collection capabilities of
both large manufacturers and their devices, high rates of nagging
patterns may influence user behavior towards trackable engage-
ment that leads to further financial or privacy harms. Emergent
scholarship is beginning to explore the effect of nags or similar
attentional dark patterns on user outcomes [72, 77], though more
research is needed to measure dark patterns in attention ecosystems
and their impact on other consumer harms.

5.3 Potential Mitigations

Now we explore potential mitigations for the dark patterns findings
identified in this work.

5.3.1 Minimize Darkness while Maximizing Value with Design “Ap-
propriateness.” Our work highlights the need for mitigations that
minimize dark patterns relative to feature richness, as more com-
plex devices should not be synonymous with more dark patterns.
Design practitioners might review design templates and their use to
identify possible risks of abusive, deceptive, or unfair applications
of those templates. This may help reduce the frequency of designs
like those in Figure 11 or popular dark patterns like non-permanent
opt-out and other interface interference patterns including visual
preference and general preselection, which were not only the two
most prevalent patterns in our study overall (see Figure 3) but were
frequently in the top dark patterns per factor examined in this study
(see subsection A.2 for more detail).

One regulatory mitigation of IoT dark patterns could be the
idea of “design loyalty” rules [48], which borrow from the law of
fiduciary responsibility to prohibit companies from designing their
devices, interfaces, and services in a way that conflicts with the best
interests of people who use IoT devices. Such rules have already
been imposed in California for designs impacting children [90] and
proposed in the bipartisan American Data Privacy and Protection
Act [2]. One of the significant benefits of loyalty rules is that they
can be enforced without requiring strict evidentiary proof of emo-
tional, repetitional, or financial harm. Such harm requirements are a
poor fit for dark patterns because of the dispersed, incremental, and
often immaterial nature of autonomy and attention-related dangers.
Another advantage of loyalty rules is that they direct enforcement
agencies to evaluate the relative benefit that flows to companies as
well as risks to users. When benefits of a particular design asymmet-
rically flow toward manufacturers and risks are largely borne by
users, the design is disloyal and, thus, dark. Loyalty rules therefore
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provide a more structured approach to help lawmakers, companies,
and even users identify key choice architectures and understand
when design is dark and untrustworthy.

Legislators could additionally borrow “appropriateness” quali-
ties from privacy law’s data minimization principle, which holds
that companies should collect, store, and use only data that is ade-
quate, relevant, and limited to what is necessary for a pre-stated
purpose [82]. For interactions that are especially important for
user controls and autonomy, like consent flows, settings manage-
ment, or opt-out mechanisms, rules that enforce adequacy and
relevancy may improve problems like the use of detour patterns or
cross-modality equity issues (subsubsection 4.2.4). Design appro-
priateness perspectives may also address the popularity of nagging
or engagement-related dark patterns like extraneous engagement
features (subsubsection 4.2.1), though more research is needed to
better understand resulting harms prior to formal regulation of
attentional dark patterns.

5.3.2  Build Templates for Desired Design Patterns. Standardization
efforts can potentially mitigate dark patterns by providing templates
for acceptable design patterns that promote autonomy and trans-
parency, countering the effect of templates that lead to consumer
harms. One approach is industry standards, inspired by efforts like
the Manufacturer Usage Description (MUD) IETF standard [55] that
defines the expected behavior of an IoT device and that permits
automated compliance tests in deployment [46]. Another approach
is to formalize design standards through regulatory rules, similar to
the FTC’s . com disclosures [35], the CCPA’s opt-out icon [5], Cali-
fornia’s recently enacted Age-Appropriate Design Code Act [90],
which provide guidance for avoiding common dark patterns as well
as mandates for compliance.

5.3.3 Increase Transparency at Key Interaction Points. Mitigations
for dark patterns in the IoT context should also promote improved
transparency—particularly at crucial interaction points like account
registration and setup—where users are presented with consequen-
tial requests (e.g., for account information, permissions, third-party
integrations, and other options). Facilitating informed decision-
making at the time of device or account configuration can help
reduce future privacy or financial risks to the consumer.

Both design and disclosures should offer transparency to con-
sumers, especially so in IoT/consumer electronics experiences as
real money and highly sensitive data are at risk. With Registra-
tion and Consent and Permissions dark patterns in > 50% of our
devices writ-large (Figure 3) and Consent and Permissions issues
in > 60% of all devices when stratified by modality (see subsec-
tion 4.3 and Figure 13), there is ample room for improvement in
transparency surrounding privacy harms. Users must be able to ex-
pect that device, feature, or interface functionality corresponds with
what they can reasonably infer given the designs or templates they
are exposed to. Increasing transparency in feature design can help
mitigate consumer harms from issues discussed in subsection 5.1.
Lawmakers might consider mandated transparency mechanisms
like data protection and design impact assessments, just-in-time
disclosure rules, and privacy labeling requirements [4, 35, 82, 90].

Gunawan et al.

5.4 Limitations and Future Work

The methods we used to interact with IoT devices were specifically
designed to enable us to explore more design surfaces than an
average user might during normal device use, and to do so under
carefully controlled, reproducible conditions. Our interaction script
does not necessarily reflect the interactions average people would
have with IoT devices, and it is not designed to elicit the day-to-day
dark patterns they encounter. Under real-world conditions, devices
might be moved room-to-room, taken outside the home, linked
to other IoT devices, or connected to additional apps to facilitate
complex use-cases. Our tests did not include interactions outside of
our simulated home environment or between multiple devices and
apps concurrently. Further, by creating unique accounts per-device,
our study may not reflect the home setup of a person who owns
multiple, interconnected IoT devices.

Given these limitations, our measurements should be interpreted
as lower-bound estimates of dark pattern prevalence in the IoT
devices we tested, and should not be construed as ecologically-valid
representations of the types or frequencies of dark patterns that
real people might encounter when using IoT devices. Future work
could expand our knowledge by taking in-situ measurements of
people’s interactions with IoT devices under real-world conditions.

We studied each device during only a single, small window of
time. Thus, our interaction approach misses dark patterns that
appear only after using a product repeatedly or for extended periods
of time. Furthermore, device and companion app behavior may
change over time due to firmware and software updates. Future
studies may consider taking a longitudinal approach to dark pattern
measurements, e.g., to see if experiences get “darker” over time.

Though this study measures dark pattern presence and frequency,
it does not discern between higher or lower “darkness” effects be-
tween patterns. As such, our results should not be taken as definitive
representations of harms severity across devices, but rather as an
account of dark design capacity in IoT experiences. The ability to
weigh different dark patterns for a more precise measure of dark
pattern outcomes is an important area for future research; in partic-
ular, scaled measures of dark patterns are necessary for articulating
harms towards regulatory thresholds or evidentiary requirements.

Our study is constrained to the devices we had in our possession.
While these devices cover many device types and manufacturers,
they do not cover them all. Missing device types include: smart
watches, rings, and other wearables; cars; and industrial IoT devices.
It is unclear whether our results generalize to these other device
types or manufacturers.

As discussed in subsubsection 3.4.4 and subsubsection 4.1.4, as
well as in prior work [19, 26, 39, 42, 67, 68, 89], manual labeling
approaches have weaknesses when attempting to generalizing dark
patterns research. This can be due to differences in taxonomical
interpretation and subjectivity in the concept of ‘darkness. User
studies similarly demonstrate variance in how participants per-
ceive dark designs. Narrower scopes [19, 26, 67, 89] may yield more
clarity but for limited context or for fewer patterns, while broader
scopes [39, 68] trade specificity for holistic, dimensional understand-
ings of dark patterns. Our study inspects multifactor, contextual
situated IoT devices and thus necessitates a broad approach with a
large codebook. Therefore, the generality of our findings is limited
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by the same challenges as in other broadly-scoped studies. Future
measurement work could delve into specific IoT device types or
manufacturers in isolation to trade off breadth for depth, and possi-
ble yield more consistent measurements of dark patterns.
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APPENDIX

This appendix provides additional figures, tables, and analysis that
supplement the main body of work in this paper.

A.1 Supplementary Device Information
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Device Type Device Name Device Firmware Version App Name App Version
Amazon Smart Plug Up to date (11/5/21) Amazon Alexa 2.2.432925.0
Jinvoo Smart Bulb Up to date (6/10/22) Jinvoo Smart 2.0.9
Gosund Smart Light Bulb V3.3.35 Gosund 4.5.0
Govee LED Light Bulb Up to date (11/8/21) Govee Home 4.5.5
Magichome Strip 1.8.1 Magic Home Pro 33.v4.17.6445-A
Meross Door Opener 3.2.5 meross 2.32.4
Home Automation  Nest Thermostat™ 6.2-22 Nest 5.67.0.6
Ring Chime Up to date (11/5/2021) Ring 3.45.1
Smartlife LED Bulb 3325 Smart Life 2.3.0
WeMo Plug Up to date (11/4/21) Wemo 1.29.1
Thermopro TP90 Up to date (11/4/21) ThermoPro Home 1.0.4
TP-Link Bulb 1.8.11 Kasa Smart 2.35.0.1021
TP-Link Plug 1.2.6 Kasa Smart 2.35.0.1021
Amcrest Cam V2.400.AC02.15.R Amcrest View Pro 4.2.015
Arlo Q Cam Up to date (6/10/22) Arlo Secure: Home Security Ver Jun 6 2022
D-Link Cam 2.06.03(3.5.18-b01) mydlink 2.6.1
Lefun Cam Up to date (11/01/21) MIPC v8.9.3.2109291620
Camera Nest Camera Up to date (6/13/22) Google Home Ver Jun 8 2022
Ring Camera Up to date (12/13/2021) Ring 3.46.0
Ring Camera (Indoor) Up to date (6/10/22) Ring Ver Jun 8 2022
Tuya Smart Camera V5.2.7 (Main Module) V5.2.7 (MCU Module) Tuya Smart 3.325
Wyze Cam 4.36.6.17 Wyze 2.25.31
Yi Home Camera 2.1.0.0E_201809191630 Yi Home 5.1.4_20211020

Media Device

Smart Hub

Doorbell

Speaker

Home Appliance

vV

Health

Apple TV*

Chromecast w/ Google TV*
Facebook Portal Mini*

Fire TV*

Nintendo Switch™

Roku TV*

TiVo Stream™

Agara Hub
Sengled Smart Hub
SmartThings Hub
Switchbot Hub
Philips Hue Bridge

Arlo Doorbell
Nest Doorbell
Ring Doorbell
Ring Doorbell ('21, Wired)

Echo Dot (4th Gen)
Echo Show 5*
Home Mini

Nest Mini
Homepod
Homepod Mini
Nest Hub Max™

Samsung Fridge™
GE Microwave

LG TV*
Samsung TV*
Sony TVv*
Vizio TV*

Oxylink Oxygen Monitor
Renpho Smart Scale
Withings BPM Connect
Withings Sleep

Withings Thermo

tvOS 15.0 (19]346)

4.9.180 (Kernel version) 10 (Android TV OS version) QTS1.210311.008.7350836 (Android TV OS Build)
1.28.1 (Software version)

Fire OS 5.2.8.4(672751320) (Software Version) 6330056.1 (Fire TV Home Version)

13.1.0

10.0.0 (Software version) 4209 (Build)

9 (OS version) 1.0.902-53 (App version) 1.4.191 (TiVo+ version)

3.3.2_0010.0610

Up to date (11/23/21)
000.039.00006

Up to date (11/3/21)
1.47.1947108030 (Software)

Up to date (6/10/22)
Up to date (6/13/22)
Up to date (11/2/2021)
Up to date (6/13/22)

5805755780 (Software version)

5805754756 (Software version)

Up to date (11/10/21)

Up to date (11/10/21)

15.0 (Software version)

15.0 (Software version)

43.2.26.392523459 (Software Version) 1.56.265669 (Cast Firmware Version)

TIZEN 6.0 (AFH-US-KTM-21-XXXXMU 20210813 _055302
Up to date (11/5/21)

06.00.25 (Software Version) [LG] webOS TV UJ7700 (TV Information)
1290 (Software version)

Up to date (11/11/21)
Up to date (11/8/21)
Up to date (11/2/21)
Up to date (11/3/21)
Up to date (11/2/21)

Aqara Home
Sengled Home
SmartThings
SwitchBot
Philips Hue

Arlo Secure: Home Security
Google Home

Ring

Ring

Amazon Alexaf
Amazon Alexatf
Google Home
Google Homet
Home (iPhone)t
Home (iPhone)t
Google Homet

SmartHQ

ViHealth

Renpho

Withings Health Mate
Withings Health Mate
Thermo

2.3.17
2.1.9
1.7.73.22
5.4.0.8
4.7.0

Ver Jun 6 2022
Ver Jun 8 2022
3.45.1

Ver Jun 8 2022

2.2.432925.0
2.2.432925.0
2.45.1.8
2.45.1.8

Not available
Not available
2.45.1.8

2.45.1.8
1.0.0.101.11

2.72.0
3.113
5.6.4
5.6.4
2.0.0

Table 5: The 57 devices used in this study, with device firmware and app software versions. This table supplements Table 1. App
names and versions are left blank in cases where the device did not necessitate the use of a companion app.

Table 5 provides device firmware and app software version numbers
where available. Devices that did not provide accessible version
information are annotated with their recording date to best approx-
imate the version used, as we factory-reset all devices and freshly
installed all apps prior to video recording. This table is a supplement

to Table 1.

Device Exclusions as User-Disadvantageous Designs The de-
vices in Table 6 were removed from the study due to reasons artic-
ulated in subsection 3.1 and subsection 3.4. The behaviors causing

these exclusions carry implications for user harm and poor out-
comes, particularly considering that IoT devices may be resold after
being used. Two notable cases were requirements for payment
information and inability to factory-reset devices.

For the former, we found that mandatory payment information

for account registration—which also prevented prior studies from

investigating certain apps or services [26, 42]—can be a dark pattern.
The Wink Smart Hub, for example, required credit card informa-
tion for a paid subscription service when creating a mandatory

account via the companion app. This device required app use for
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App Dependency

R for Excl

Device Type Device Name Ecosystem  Companion App Name
SmartLife Remote Smart Life
Home Automation ~ KEYCO Air KeyCo Air
D-Link Mov D-Link mydylink Home
Camera Microseven Camera Microseven
Wansview Camera Wansview
Wink Hub 2 Wink
Smart Hub IKEA Hub 2 IKEA Home Smart
Doorbell iCSee Doorbell iCSee
Echo Spot Amazon Amazon Alexa
Echo Dot (two devices) Amazon Amazon Alexa
Speaker Echo Dot 3 (three devices)  Amazon Amazon Alexa
Echo Flex (two devices) Amazon Amazon Alexa
Echo Plus Amazon Amazon Alexa
iKettle Smarter 3.0
Behmor Brewer Behmor
Home Appliance BlueAir Purifier BlueAir
Smart Washer Samsung SmartThings
Smart Dryer Samsung SmartThings

Smart interactions
All interactions
All interactions

All interactions
Setup interactions

All interactions
All interactions

All interactions

Setup interactions only
Setup interactions only
Setup interactions only
Setup interactions only
Setup interactions only

Smart interactions
Smart interactions
Smart interactions
Smart interactions
Smart interactions

Setup Issues
Reset Issues
Setup Issues

Reset Issues
Other Issues

Payment Required
Setup Issues

Setup Issues

Redundant Model
Redundant Model
Redundant Model
Redundant Model
Redundant Model

Other Setup Issues
Account Registration Issues
Reset & Setup Issues

Reset & Setup Issues

Reset Issues

Table 6: Devices excluded from our study. Reset issues denote problems with effectively factory resetting the device to a fresh
state, while setup issues (including account registration problems and payment requirements) prevented us from interacting
with newly-reset devices. Devices with both reset and setup issues initially appeared to be correctly wiped and allowed for
fresh registration, but otherwise indicated signs of incomplete or faulty factory resets. Redundant models were excluded to

reduce duplicate interactions within this study.

all interactions, thus obstructing us from even setting up the device
prior to selecting a subscription model. Upon further inspection,
we learned that the subscription requirement was a recent update;
prior to July 2020, Wink Hubs were at least partially free to use [96].
Requiring a paid subscription to support data storage and cloud
functions is not concerning by itself, but requiring payment infor-
mation at registration, prior to any device interactions, may prevent
consumers from making informed decisions on whether to opt in to
a longer-term financial relationship with the manufacturer or not.
As such, these issues risk user exposure to financial and autonomy
harms. In such cases, darkness may depend on appropriate disclo-
sure: up-front transparency on long-term financial requirements
may reduce darkness and deception.

With respect to resetting devices, we followed user-manual in-
structions for factory-resetting devices, taking cues from documen-
tation to indicate “successful” reset (one device, the Microseven
Camera, lacked a reset button and could not be reset via meth-
ods from product documentation). However, following reset, some
companion-app-dependent devices could not be set up with fresh
accounts due to issues like failed QR code scans or unexpected of-
fline status. Worse, other devices like the Smart Washer and BlueAir
Purifier appeared successfully reset (and therefore, wiped of user
data), but displayed pre-reset data or otherwise indicated reset fail-
ure when connected to a fresh account or when re-connected to
the established lab account in follow-up tests. We were forced to
omit over 10% of all available devices in our lab from our study
due to problems with reset and setup, as detailed in the Appendix
(Table 6). These issues highlight how bugs in IoT devices may leave
users with hardware that is inoperable or cannot safely be resold
without sharing personal data with strangers. These outcomes re-
late to dark patterns like the roach motel and forced action/disclosure

(users are trapped with poor options to escape, or forced to dis-
close information), as well as dark pattern categories like subverting
expectations.

A.2 Supplementary Tables

These tables provide further detail and context to other figures in
section 4.

Top Dark Patterns Tables. To supplement subsection 4.4, we
include Table 7, which lists the top five most commonly found
unique dark patterns that we documented across all devices per type.
We observe that the most common dark patterns in IoT interactions
tend to be similar across types, which helps explain why the lowest
overlap we observe in Figure 16a is J = 0.27.

Manufacturer Tables. We present the top five most popular
unique dark patterns per manufacturer in Table 8. In general, the
devices produced by each manufacturer were relatively consistent
in the sense that they tended to incorporate all or most of the most
frequent patterns within their cohort.

Modality Tables. Table 9 supplements the modality-based anal-
ysis in subsection 4.3 and Figure 13 and presents the top dark pat-
terns by number of devices the pattern appeared in, broken down
by devices’ degree of app dependency for our interactions.

A.3 Supplementary Figures

Figures that help provide context for other analyses, but may not
be as independently illuminative as other figures in the paper.
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Dark Pattern Total Ne Dark Pattern Total Ne Dark Pattern Total Ne
Popup nag 2 Visual preference 11 Acc’t required 8
No account deletion 2 Acc’t required 9 Visual preference 8
Notifs preselected 2 Preselection - general 8 No checkbox for ToS/PP 7
Nonperm opt-out 2 No explanation of perm. 7 Notifs preselected 7
Acc’t required 1 Popup nag 6 Nonperm opt-out 5
(a) Home Appliances (N=2 (b) Home Automation (N=13 (c) Cameras (N=10)
Dark Pattern Total Ne Dark Pattern Total Ne Dark Pattern Total Ne
Preselection - general 3 No explanation of perm. 4 Visual preference 7
Notifs preselected 3 Acc’t required 3 Nonperm opt-out 6
Acc’t required 2 Visual preference 3 Feature detour 6
Email sub. preselected 2 Extra notif badge 2 Preselection - general 6
Feature detour 2 No account deletion 2 Nagging - general 5
(d) Smart Hubs (N=5) (e) Health Devices (N=5) (f) Speakers (N=7)
Dark Pattern Total Ne Dark Pattern Total Ne Dark Pattern Total Ne
No notif settings 3 Acc’t required 4 Preselection - general 7
Preselection - general 3 No checkbox for ToS/PP 4 Visual preference 6
Nagging self-promo 2 Notifs preselected 4 Nonperm opt-out 5
Confusing text 2 Visual preference 3 Nagging - general 5
No account deletion 2 Priv settings preselected 3 No account deletion 5

(8) TVs (N=4)

(h) Doorbells (N=4)

(i) Media Devices (N=7)

Table 7: Top five dark patterns per device category, grouped by unique occurrences across devices within each category.

Average Total # of Instances Per Pattern

Figure 17: Average total counts of each pattern across devices, with each pattern colored according to our context categories.
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Dark Pattern Total Ne Dark Pattern Total Ne Dark Pattern Total Ne
Visual preference 122 Hidden feature behaviors 8 Visual preference 9
Nagging self-promo 41 Preselection - general 6 Nagging self-promo 5
Nonperm opt-out 32 Popup nag 6 Nonperm opt-out 4
No checkbox for ToS/PP 28 Notifs preselected 5 Unprompted suggestions 4
Preselection - general 23 Extra notif badge 4 Preselection - general 4
(a) Amazon (N=9) (b) Samsung (N=3) (c) Apple (N=3)
Dark Pattern Total Ne Dark Pattern Total Ne Dark Pattern Total Ne
Visual preference 102 Native ads 5 Visual preference 5
Preselection - general 35 No explanation of perm. 4 Acc’t required 2
Nonperm opt-out 34 Acc’t required 3 Priv settings preselected 2
Notifs preselected 14 Extra notif badge 3 Email sub. preselected 2
Feature detour 11 Nagging - general 3 No account deletion 2

(d) Google (N=7) (e) Withings Devices (N=3) (f) Kasa Devices (N=2)

Dark Pattern Total Ne

Visual preference

Notifs preselected

Acc’t required

No checkbox for ToS/PP

Email sub. preselected

(g) Arlo Devices (N=2)

Table 8: Top five dark patterns sorted by total frequency of each pattern across all our devices for that manufacturer. We include
less-represented manufacturers Kasa and Arlo in these tables for illustrative purposes in section 5, but do not include these
small manufacturers in subsection 4.5 figures due to small sample size.

DD NN W

Dark Pattern Total Ne Dark Pattern Total Ne Dark Pattern Total Ne Dark Pattern Total Ne
Visual preference 26 Visual preference 7 Popup nag 3 Preselection - general 10
Acc’t required 25 Nonperm opt-out 6 No explanation of perm. 3 Visual preference 9
Notifs preselected 20 Feature detour 6 Acc’t required 2 No account deletion 8
No explanation of perm. 18 Preselection - general 6 Notifs preselected 2 Nonperm opt-out 8
Preselection - general 18 Nagging - general 5 Nonperm opt-out 1 Nagging self-promo 7
No checkbox for ToS/PP 17 No account deletion 5 Nagging - general 1 Nagging - general 6
No account deletion 16 Nagging self-promo 5 Hidden info 1 Priv settings preselected 6
Nonperm opt-out 16 Unprompted suggestions 5 Visual preference 1 Feature detour 5
Extra notif badge 15 No checkbox for ToS/PP 4 Preselection - general 1 Extra notif badge 5
Priv settings preselected 12 Popup nag 4 No account deletion 1 No notif settings 5

(a) App Only (N = 35) (b) Both, For Setup (N =7) (c) Both, Non-setup (N = 3) (d) Device Only (N = 12)
Table 9: Top ten dark patterns for IoT devices that (1) must be controlled by a companion app, (b) require an app during setup,
(c) only require an app for optional functionality, and (d) never prompted us for an app at all. N = 45 devices mandate some
form of app use.
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Dark Patterns in the Interface Interference Category

Figure 18: Average total counts of each pattern in the Interface Interference category per device type, with each pattern colored
according to our context categories. This figure provides more context to the two highest average frequency patterns in Figure 3
and Figure 17, by inspecting Interface Interference patterns up-close and calculating the per-device-type average total counts
(dividing the total count sum of each pattern per device type by the number of devices within that type, instead of the entire
corpus of N=57).
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