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Abstract

When sharing relational databases with other parties, in addition to providing high quality (utility)
database to the recipients, a database owner also aims to have (i) privacy guarantees for the

data entries and (ii) liability guarantees (via fingerprinting) in case of unauthorized redistribution.
However, (i) and (ii) are orthogonal objectives, because when sharing a database with multiple
recipients, privacy via data sanitization requires adding noise once (and sharing the same noisy
version with all recipients), whereas liability via unique fingerprint insertion requires adding
different noises to each shared copy to distinguish all recipients. Although achieving (i) and (ii)
together is possible in a naive way (e.g., either differentially-private database perturbation or
synthesis followed by fingerprinting), this approach results in significant degradation in the utility
of shared databases. In this paper, we achieve privacy and liability guarantees simultaneously by
proposing a novel entry-level differentially-private (DP) fingerprinting mechanism for relational
databases without causing large utility degradation.

The proposed mechanism fulfills the privacy and liability requirements by leveraging the
randomization nature of fingerprinting and transforming it into provable privacy guarantees.
Specifically, we devise a bit-level random response scheme to achieve differential privacy
guarantee for arbitrary data entries when sharing the entire database, and then, based on this, we
develop an e-entry-level DP fingerprinting mechanism. We theoretically analyze the connections
between privacy, fingerprint robustness, and database utility by deriving closed form expressions.
We also propose a sparse vector technique-based solution to control the cumulative privacy loss
when fingerprinted copies of a database are shared with multiple recipients.

We experimentally show that our mechanism achieves strong fingerprint robustness (e.g., the
fingerprint cannot be compromised even if the malicious database recipient modifies/distorts more
than half of the entries in its received fingerprinted copy), and higher database utility compared
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to various baseline methods (e.g., application-dependent database utility of the shared database
achieved by the proposed mechanism is higher than that of the considered baselines).

l. Introduction

Massive data collection and availability of relational databases (collection of data records
with the same attributes [13]) are very common in the current big data era. This results in

an increasing demand to share such databases with (or among) different database recipients/
service providers (SPs) such as companies, research institutions, or hospitals, for the purpose
of “do-it-yourself” calculations, like personal advertisements, social recommendations, and
customized healthcare.

Most databases include personal data, and thus they usually contain sensitive and proprietary
information, e.g., medical records collected as part of an agreement which restricts
redistribution. This poses three major challenges in database sharing with different SPs: (1)
privacy, the database owner is obligated to protect the privacy of data entries in the shared
database to comply with the privacy policy and ensure confidentiality, (2) liability, the
database owner needs to prevent illegal redistribution of the shared databases, and eventually
prosecute the malicious SPs who leak its data, and (3) utility, the shared database needs to
maintain high utility to support accurate data mining and analysis.

Many works have attempted to address the challenges on privacy and liability in isolation.
To address the privacy challenge, various data sanitization metrics are proposed, e.g.,
k-anonymity [47], I-diversity [41], r-closeness [31], and differential privacy (DP) [16].
Among them, DP has been developed as a de facto standard for responding to statistical
queries from databases with provable privacy guarantees. It can also be used to share
personal data streams or an entire database (i.e., identity query) in a privacy-preserving
manner [11], [24]. Differentially-private mechanisms hide the presence or absence of a data
record in the database by perturbing the query results with noise calibrated to the query
sensitivity.

To protect copyright and deter illegal redistribution, different database watermarking and
fingerprinting mechanisms are devised to prove database ownership (i.e., identifying the
database owner from shared databases) [1], [46] and database possession (i.e., differentiating
between the SPs who received copies of the database) [35], [22], [26], [23], [50]. In practice,
when sharing a database with a specific SP, the database owner embeds a unique fingerprint
(a binary string customized for the SP) in the database. The embedded fingerprint is hard to
be located and removed even if a malicious SP attacks the fingerprinted database (to identify
and distort the fingerprint).

Only a few works have attempted to combine database sanitization and fingerprinting

in database sharing. In particular, [45], [4], [29] propose inserting fingerprints into
databases sanitized using k-anonymity, and [17] proposed embedding fingerprints into
databases sanitized by the (a, #)-privacy model [44]. However, these works solve the
aforementioned challenges in a two-stage (sequential) manner, where data sanitization is
conducted before fingerprinting. As a result, they end up changing a large amount of
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entries in the database and they significantly compromise the utility of the shared database
(corroborated in Section VII). The only work that attempts to integrate privacy protection
and fingerprinting is proposed in [20]. However, [20] injects continuous-valued Gaussian
noise to the data, considers various combinations of variances as fingerprints, and relies on
learning algorithms to fit the Gaussian noises. Thus, [20] is vulnerable if a malicious SP
compromises a large portion of fingerprinted data entries (shown in Section VII). Besides,
these works do not address the critical problem of controlling cumulative privacy loss if the
same database is repeatedly shared with multiple SPs.

In this paper, we bring together data sanitization and fingerprinting in a unified mechanism,
consider a stronger privacy model compared to previous works, and develop entry-level DP
fingerprinting for relational database sharing. In what follows, we summarize the main
contributions and insights of our work, and discuss its limitation caused by a unique
requirement of DBMS (Database Management System) design.

Main Contributions.

Database fingerprinting is a randomized scheme (that essentially performs bitwise
randomization, i.e., randomly changes insignificant bits of randomly selected data entries
[1]), and thus is naturally endowed with certain level of privacy. Yet, this hidden property
(privacy protection) is ignored in the literature. We harness the intrinsic randomness
introduced by fingerprinting and transform it into a provable privacy guarantee. In particular,

J We propose a bit-level random response scheme, which fingerprints (marks)
insignificant bits of data entries using pseudorandomly generated binary mark
bits, to achieve e-entry-level DP for the entire database. Then, based on this
scheme, we devise the e-entry-level DP fingerprinting mechanism.

J We establish a comprehensive and solid theoretical foundation to quantify the
properties of the proposed e-entry-level DP fingerprinting mechanism from 3
dimensions: (i) the privacy guarantee of it under attribute inference attack, (ii)
the fingerprint robustness of the mechanism when it is subject to various attacks
targeting on the inserted marks, and (iii) the relationship among privacy, utility,
and fingerprint robustness.

J We devise a sparse vector technique (SVT)-based solution to control the
cumulative privacy loss when different fingerprinted versions of a database are
shared with multiple SPs.

J We evaluate the proposed mechanism using two real-life databases. Experiment
results show that our mechanism (i) provides higher fingerprint robustness
than a state-of-the-art database fingerprinting mechanism [35], and (ii) achieves
higher database utility than the two-step methods (i.e., either local DP-based
perturbation, data synthesis under central DP, or k-anonymity followed [35])
and the one-step approach (i.e., Gaussian noise-based fingerprinting [20]) by
considering specific applications.
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This paper is the first to show the feasibility of considering privacy and liability in a unified
mechanism to simultaneously protect data privacy and prevent unauthorized redistribution.
Our mechanism can help a database owners (i) generate privacy-preserving fingerprinted
databases based on their requirements on utility, privacy, and fingerprint robustness and (ii)
assess the privacy leakage under multiple sharings and set the privacy budget accordingly in
each sharing.

In this work, we consider the sharing of entire relational databases, where each data record
can be uniquely identified by an immutable pseudo-identifier (i.e., the primary key) in order
to support common database operations, e.g., union and intersection, which all depend on
the value of primary keys. This is a unique and hard requirement of DBMS, and thus in
this work, we do not consider membership inference attacks as they become irrelevant under
these settings. We further discuss this in detail in Section III.

In Section II we review related works followed by the privacy, system, objectives, and
threat models in Section III. In Section IV, we present the entry-level DP fingerprinting
mechanism. Then, we theoretically investigate the relationships between database utility,
fingerprint robustness, and privacy guarantees in Section V. We develop the sparse vector
technique (SVT)-based mechanism to share multiple fingerprinted databases under entry-
level DP in Section VI. We evaluate the proposed scheme via extensive experiments in
Section VII. We provide further discussions and point out open problems with potential
solutions in Section VIII. Finally, Section IX concludes the paper.

Il. Related Work

Database watermarking/fingerprinting.

The seminal work of database watermarking (that embeds the same bit-string in selected
insignificant bits to all shared database copies to claim ownership) is proposed in [1].
Based on [1], several database fingerprinting techniques were proposed [46], [35], [38]. In
particular, [35] is considered as the state-of-the-art that also best suits for fingerprinting
the entire database. This is because [35] enables the insertion and extraction of arbitrary
bit-strings in relational databases and it also provides an extensive robustness analysis. In
Section VII, we develop three baselines based on [35] (i.e., either local DP perturbation,
DP database synthesis, or k-anonymity followed by database fingerprinting via [35]) and

compare them with our proposed mechanism.

Data sanitization followed by watermarking/fingerprinting.

Some works attempted to protect data privacy and ensure liability in isolation when sharing
databases [17], [4], [29], [45]. To be more specific, Bertino et al. [4] adopted the binning
method [36] to generalize the database first, then watermark the binned data to protect
copyright. Kieseberg et al. [29] and Schrittwieser et al. [45] proposed fingerprinting a
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database generalized by k-anonymity. Gambs et al. [17] sanitized the database using the

(a, B)-privacy model [44], which selects a true data record in the domain of the database

with probability « and includes a fake data record outside the domain of the database with
probability g, and then they embed personalized fingerprint in the database. These studies
usually change a large amount of data entries, which degrades database utility. In particular,
it has been observed that k-anonymity may create data records that leak information due to
the lack of diversity in some sensitive attributes, and it does not protect against attacks based
on background knowledge [18].

All these schemes embed watermark or fingerprint into already sanitized databases, instead
of considering sanitization and marking (fingerprinting) together as a unified process. Such
sequential processing of a database will result in significant degradation in utility. This is
because both sanitization and fingerprinting are achieved via noise addition (first adding
noise to protect privacy, then adding noise to achieve liability guarantee) which over-distorts
the database. Our work is different from previous ones, since we unify data sanitization and
fingerprinting (to have higher data utility). We achieve provable privacy guarantees during
fingerprint insertion by adopting a customized privacy model for DBMS and harnessing the
randomness of fingerprinting.

Database sanitization together with fingerprinting.

The closest work to ours is a concurrent paper [20], which inserts Gaussian noises with
various pre-determined variances to different blocks of a database to protect data privacy.
The various combination of noise variances for data blocks plays the role of tractable
fingerprints. However, the mechanism in [20] is vulnerable even to the subset attack (Section
V-C), because in the fingerprints detection phase, [20] needs to use learning algorithms

to fit the inserted Gaussian noise and re-calculate the corresponding variances. Hence,

the fingerprint robustness of [20] is very sensitive to the adopted learning algorithms and
the size of the database. Besides, [20] adds Gaussian noise to data entries, which will
significantly reduce the data utility. In contrast, our mechanism changes each insignificant
bit with a certain probability, so some data entries will be intact. In Section VII, we will
show also compare with [20].

lll. Privacy, System, Objectives, And Threat

Here, we discuss the considered privacy model, database fingerprinting system, objectives of
the database owner and malicious SPs, and various threats. The frequently used notations in
this paper is listed in Table I. In what follows, we first review the definition of a relational
database and its unique features, which are important for our specific definition of the
privacy model.

Definition 1 (Relational database [13]): A relational database denoted as R is a collection
of T-tuples. Each tuple represents a data record containing T ordered attributes. Each data
record is also associated with a primary key, which is used to uniquely identify that
record. We denote the ith data record in R as r; and its primary key as r,. PnyKey.
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Unique Features of a Relational Database.

In order to support database operations, such as union, intersection, and update, the primary
keys should not be changed if a database is fingerprinted or pirated [35], [1], [34] 1Due to
the uniqueness and immutability of the primary keys in relational databases, the presence

of a specific data record is not a private information in general. In other words, it is no

secret whether an individual’s data record (a specific T-tuple) is present in a database or not.
Hence, the common definition of neighboring databases (which differ by one row) in the
differential privacy literature does not apply in the case of sharing relational databases. Thus,
we consider an alternative definition of neighboring relational databases and their sensitivity
as follows.

Definition 2 (Neighboring relational databases): Two relational databases R and R’ are called
neighboring, if they only differ by one entry, i.e., an attribute of a single individual.

Definition 3 (Sensitivity of a relational database): Given a pair of neighboring relational
databases R and R’ that differ by one entry (e.g., the rth attribute of the ith row, r[¢] and
r,[t]"), the sensitivity is defined as 4 = supg x [[R=R'||; = sup,.cia|r:[f] — r.lf]’| where sup and F

represent the supreme value and the matrix Frobenius norm, respectively.

A. Privacy Model—Next, we give our privacy model customized specifically for
databases with immutable primary keys.

Definition 4 (e-entry-level DP): A randomized mechanism .# with domain & satisfies
e-entry-level differential privacy if for any two neighboring relational databases R,R’ € 9,
and for all & € Range(.#), it holds that Pr[.Z(R) = S] < e“Pr[.#(R’) = S|, where ¢ > 0.

Remark I Definition 4 is adapted from the conventional notation of e-DP [16], which
obfuscates the presence or absence of an entire row in R. Since the database recipient

can easily identify if an individual is present in R by directly checking its primary key,

the conventional e-DP is not appropriate in the setting we consider. In contrast, our
privacy model, which aims at obscuring the specific value of an arbitrary entry in R,

better suits the requirement of DBMS design. As discussed in Section I, destroying pseudo-
identifiers to prevent linkability or membership inference attacks becomes an ill-posed
problem for our considered case of DBMS. Thus, in this paper, we focus on the attribute
inference attacks instead of membership inference attacks. As a matter of fact, in addition
to common database applications (e.g., SQL, merging, splitting, union, and intersection),
there are quite a few applications requiring consideration of attribute inference attacks over
membership inference attacks, such as clustering-based applications, where the goal is to
assign individuals to different clusters (determine their membership). An example is the
construction of a recommendation system based on the attributes of participants, in which

I DBMS design, the primary keys are required to be immutable, as updating a primary key can lead to the update of potentially
many other tables or rows in the system. The reason is that in DBMS, a primary key also serves as a foreign key (a column that creates
a relationship between two tables in DBMS). For instance, consider the database in Section VII in which each data record represents a
student. Here, the primary key of the data record can be chosen as the student’s unique identification number, which can then be used
to refer to another table keeping the their real name, email, etc.
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the goal is to recommend movies or products to each dataset participant while preserving
the privacy of the attributes of the participants [27]. Another example is the community
detection in social networks under the setting of edge-DP (where hiding the presence or
absence of a specific node is an ill-posed problem) [24], [25].

Similar to the conventional DP, we define (¢, 5)-entry-level DP as
Pr[(R) = S| < ePr[U(R') = S] + 6,5 € [0.1].

B. System, Objectives, and Potential Threats —We present the system model in
Figure 1. We consider a database owner with a relational database denoted as R, who wants
to share it with at most C SPs (e.g., to receive specific services). To prevent unauthorized
redistribution of the database by a malicious SP (e.g., the jth SP in Figure 1), the database
owner includes unique fingerprints in all shared copies of the database. The fingerprint
essentially changes different entries in R at different positions (indicated by the yellow
dots). The fingerprint bit-string customized for the jth SP (SP)) is denoted as f,, and

the database received by SP, is represented as R,. Both fsv, and R, are obtained using the

proposed mechanism discussed in HYPERLINK Section IV. R represents an instance of the
privacy-preserving fingerprinted database.

Objectives of database owner.

In general, a database recipient (SP) can be any of the following: (1) an honest party who
will use the received database to do SQL queries or data mining, (2) an attacker who will
hijack the database to make illegal profits by making pirate copies of it, or (3) a curious
party who will try to infer the original data entries. Since an SP can potentially play any
of these three roles, the objectives of a database owner are to make sure that the shared
database have

. (i) high utility in order to support accurate database queries and data mining
tasks,
J (ii) liability guarantees to discourage illegal redistribution, i.e., successfully

extract a malicious SP’s fingerprint (even if a malicious SP distorts the
fingerprint to mitigate detection) if the database is redistributed without
authorization,

. (iii) entry-level privacy guarantees against attributes inference attacks, i.e., a data
analyst cannot distinguish between r,[¢] and r,[7]’ by inferring its received copy.

Although (ii) and (iii) are different demands, they can be achieved at the same time, but at
the cost of (i) (formally discussed in Section V). In this paper, we assume that the database
owner is benign (i.e., it will not modify its own database in order to frame any SP).

Objectives of malicious SPs.

From the perspective of malicious SPs, their objectives are to
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J (a) redistribute received databases (make pirated copies) without being accused
by means of distorting the inserted fingerprint and/or infer the original sensitive
data entries,

J (b) preserve database utility to gain illegal profit.

Since the malicious SPs will introduce extra utility loss while distorting the fingerprint, (a)
and (b) are also conflicting. Additionally, we assume that all malicious SPs are rational (i.e.,
they will not over-distort the content of a fingerprinted database, otherwise they cannot make
illegal profit out of a pirated copy with poor utility).

Since we consider developing a mechanism to simultaneously achieve data privacy and
liability guarantees, we also need to address the corresponding threats from these two
aspects. In particular, the malicious SP can

. Infer the original values of data entries (in shared databases) by using its prior
knowledge or other revealed data entries (we consider an adversary who knows
all data entries except for one, and uses advanced learning methods to infer the
original value of the unknown data entry).

J Conduct various attacks to distort the embedded fingerprint bit-strings, e.g.,
random bit flipping attack, subset attack, and correlation attack. In Section V,
we discuss these attacks in detail and derive closed-form fingerprint robustness
expression for each of them.

IV. Privacy-preserving Fingerprinting

In this section, we first present the design principles of the proposed mechanism and also
discuss some plausible but not viable alternatives. Next, we develop a general condition

for a bit-level random response scheme to achieve entry-level DP database release/sharing.
Then, we devise a concrete mechanism built upon such a scheme to achieve provable privacy
guarantees for fingerprint insertion.

Principles of Mechanism Design.

The core idea of database fingerprinting is to introduce small errors by changing randomly
selected insignificant bits of encoded data entries using a certain probability [1], [35].

The collections of selected bits vary for different SPs and their fingerprinted values are
determined by the unique fingerprint bit-strings of the SPs. Thus, database fingerprinting is a
randomized mechanism, which essentially performs bitwise-randomization, i.e., changes the
data values by introducing noise at the bit-level of data entries instead of directly perturbing
the data (i.e., introducing noise at the entry-level). As a result, we also establish our entry-
level DP fingerprinting scheme by conducting bitwise-randomization. To achieve a provable
privacy guarantee, we calibrate the flipping probability (p) and the number of insignificant
bits (K) based on the sensitivity of the data entries. Note that to achieve the desired privacy
guarantee, we only need to calibrate the binary noise (fingerprint) to “obfuscate” a certain
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number of insignificant bits that lead to the maximum difference between any pair of entries,
instead of letting the binary noise “overwhelm” all the bits.

Other Plausible but not Viable Solutions.

The entrywise-randomization adopted by the conventional DP output perturbation
mechanisms, e.g., [11], [24], are infeasible as a building block of a fingerprinting
mechanism, because they change all data entries by adding noises drawn from some
probability distributions. Although local DP via randomized response only changes each
data entry with a particular probability [3], connecting such probability with the randomly
generated fingerprint bit-string is not straightforward. This is because randomly changing
each bit of each data entry (by fingerprinting) may not lead to the identical random effect
required by local DP. Hence, it is also not suitable for designing a database fingerprinting
mechanism.

Another possible solution is to synthesize differentially-private relational databases while
keeping the primary keys intact, and then inserting fingerprints into the results. This
approach is also not viable, because data synthesis techniques usually generate artificial
databases by sampling from noisy marginal and joint distributions of attributes, which
require the clustering of similar attributes [9]. These methods heavily depend on the accurate
clustering of highly correlated variables. Besides, data synthesis also requires additional
computation to analyze other similar and public data to identify correlations and important
marginals. To show the advantage of our mechanism, in Section VII, we compare it with
DPSyn (a novel data synthesis technique) [33] followed by fingerprinting in [35].

Since the other solutions fail due to the aforementioned reasons, we consider achieving
entry-level DP for the released database by using bit-level random response. In particular,
when sharing a database with a specific SP, the values of selected insignificant bits of
selected data entries are determined by XORing them with random binary variables, which
vary for different data sharing instances (with various SPs). Such modification of bit
positions in the database using different binary values can also be considered as inserting
different fingerprints, which can be used to accuse a malicious SP if there is a data leakage.
Moreover, to achieve high utility for the shared database, we simultaneously achieve entry-
level DP and fingerprinting, instead of achieving them in a two-step appraoch (fingerprinting
a differentially-private database) The two-step approach is suboptimal compared with our
mechanism, because we directly harness the randomness (noises) introduced in fingerprint
insertion and transform it into a provable privacy guarantee (entry-level DP). Thus, the
privacy guarantee can be interpreted as “achieved free” during the fingerprint insertion.
Whereas, the two-step solutions need to assign separate randomness (noises) budgets to
achieve privacy and liability guarantee in a sequential manner.

A. Privacy-preserving Sharing via Bit-level Randomization—Traditional DP
guarantees that the computed statistics from a database (e.g., mean or histogram) are
independent of the absence or presence of an individual. However, in this work we consider
the release (sharing) of the entire fingerprinted database, and the existence of a particular
individual can be easily determined by checking its primary key in the released copy

NDDS Symp. Author manuscript; available in PMC 2023 June 02.



1duosnuey Joyiny 1duosnue|y Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Jietal.

Page 10

(discussed in Section III). Therefore, we focus on the privacy of database entries (attributes
of individuals).

Definition 5 (Bit-level random response): A bit-level random response scheme
(pseudorandomly) selects some bits of some data entries in a database and changes the
bit values of such entries by conducting an XOR operation on them with independently
generated random binary mark bits, denoted as B, where B~Bernoulli(p).

Database fingerprinting schemes only mark the insignificant bits of the data entries to
introduce tolerable error in the database. In this paper, we assume that the kth to the last bit
of an entry is its kth insignificant bit. If the kth insignificant bit of attribute ¢ of data record

r; (represented as r/[z, k]) is selected, then the bit-level random response scheme changes its
value as r/[t, k] ® B, where & is the XOR operator, and B is a Bernoulli random variable with

parameter p.

We develop the following condition for such a scheme to achieve e-entry-level DP on the
entire database.

Theorem I: Given a relational database R with sensitivity 4 (Definition 3), a bit-level

random response scheme, which only changes the last K bits of data entries, satisfies
e-entry-level DP if K = |log,4| + 1 and p > /+

|

Proof: Since we consider neighboring databases that have only a pair of different data entries
which differ by at most 4, it requires K = |log, 4] + 1 bits to encode the difference. Then, by

applying Definition 4, we have

Pr(4(R) =R)

P¢%m3—7

@ H Pr(r[t, k] ® B, = Tilt, k1)
L Pr(rlt, k1 @ B, = Ft, k)

_ H Pr(B,,k-r,[z k] @ Filt, k])
o= Pr(Bii = rilt, k] @ Til1, k1)
) 1y Pl @ Tk — (1l K @I K])

k=1 plelt kI @ Flr. k1) — ﬁl—mtﬂ®rhﬂ)

I:l

K - K (Irilt, K1 = rilt, k1| (2F 2, k] = 1))
r[t, k] — xi[t, K1)(2E [t k] - 1)) 1—p
9 11 (52 < I1(5*

K=1 k=17

IA
'b

1’-:‘[ -

where (a) can be obtained by assuming (without loss of generality) that R and R’ differ at
the rth attribute of the ith row, and thus the probability ratio at other entries cancel out. r,[z, k]
(or r}[t, k]) represents the kth least significant bit of the rth attribute of r, (or r;), B, , . (or

B.,,) is the random mark bit fingerprinted on r,[#, k] (or r/[t, k]), and T [1, k| is the identical
result of the bit-level random response at this bit position. (b) is because each of the last

K bits of entry r,[¢] (or r,[¢]") are changed independently with probability p, and (c) can be
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obtained by applying u @ v = (1 — u)v + u(1 — v) for any binary variable « and v. Then, by
making [];_, I%P < e, we complete the proof. ll

In Figure 2, we present a toy example of using bit-wise randomization to achieve entry-level
DP on a database R. R’ is the neighboring relational database of R (Definition 2). R and

R’ only differs in the 2nd attribute of the i th data record (highlighted cells in the upper
panel of Figure 2). In this example, we assume 4 = 3. Then, according to Theorem 1, by
just flipping the last K = |log,3]| + 1 = 2 insignificant bits of entries in R with probability p,
a certain level of entry-level DP can be achieved. The lower panel of Figure 2 shows the
binary representation of R and R’, where the last 2 bits subject to bit-wise randomization are
underlined. In the next section, we will show that the desired randomness (probability p) can
be obtained as a result of fingerprint insertion.

B. e-Entry-level Differentially-Private Fingerprinting—Due to the randomness
involved in the bit-level random response scheme, for any given p and R, the output
databases will vary for each different run. However, in order to detect the guilty SP who
leaks the database, it is required that the fingerprinted database shared with a specific SP
must be unique and it can be reproduced by the database owner even if the mark bits, i.e.,
B’s, are generated randomly. In this section, we discuss how to develop an instantiation of an
e-entry-level differentially-private fingerprinting mechanism based on the bit-level random
response scheme, i.e., a mechanism that satisfies Theorem 1, and at the same time, is
reproducible when sharing a fingerprinted copy with any specific SP using a given Bernoulli
distribution parameter p (i.e., the probability of a bit being changed due to fingerprinting).

First, we collect all fingerprintable bits in R, i.e., all insignificant bits (the last K bits) of

all entries, in a set : % = {r,[t.k] | i € [1,N],t € [1,T],k € [1,min{ K, K,}]}, where N is the
number of data records in R, and K, represents the number of bits to encode the rth attribute
in R. When the database owner wants to share a fingerprinted copy of R with an SP with

a publicly known external ID denoted as I D,y it first generates an internal ID for this

SP denoted as I Dj.ma. We will elaborate the generation of 1D, in Section VI-A. Then,
the database owner generates the unique fingerprint for this SP via f = HMAC(Y | I Diena)»
which is a message authentication code (MAC) involving a cryptographic hash function and
a secret cryptographic key (% is the secret key of the database owner and | represents the

concatenation operator). We use L to denote the length of the generated fingerprint.2

The database owner also has a cryptographic pseudorandom sequence generator %, which
selects the data entries and their insignificant bits, and determines the mask bit x and
fingerprint bit f (which is an element of the fingerprint bit-string f) to obtain the Bernoulli
random variable (i.e., B= x & f). To be more specific, for each rz, k] in 2, the database

owner sets the initial seed as s = {% | r,. PmyKey|t|k}. If %,(s) mod {ZLJ = 0(1) = ;),
p /K 41

2We use MDS to generate a 128-bits fingerprint string, since if the database owner shares C copies of its database and L > In C, the
fingerprinting mechanism can thwart exhaustive search and various types of attacks [35]
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then r/[t, k] is fingerprinted. Next, the database owner decides the value of mask bit x by
checking if %,(s) is even or odd, and sets the fingerprint index / = %,(s) mod L. By doing
80, it obtains the mark bit as B = x & f(/), and finally it changes the bit value of r[7, k] with
rj[t, k] ® B. We summarize the steps to generate a fingerprinted database in Algorithm 1.

Algorithm 1: Generate M(R) for SP I Dcyiernal.

Input : Database R, privacy budget ¢, number of
changeable bits /&, Bernoulli distribution
parameter p = 1/(e*/ 4+ 1), pseudorandom
number sequence generator U{, database
owner’s secret key )

Output: fingerprinted database M(R.) with e-entry-level DP

1 Construct the fingerprintable set P.

2 Generate the internal ID, i.e., I Diptermar for this SP
(will be elaborated in Section VI-A).

3 Generate the fingerprint string, i.e.,
f o Hﬂ{AC"{ylIDinL{:rrml)-

4 forall r;[t, k] € P do

s | Set pseudorandom seed s = {Y|r;.PmyKey|t|k},

6 if U (s) mod inpj = 0 then

7 Set mask bit x = 0, if Us(s) is even;
otherwise = = 1.

8 Set fingerprint index ! = U3(s) mod L.

9 Let fingerprint bit f = f(1I).

10 Obtain mark bit B=2 @ f.

1 Set r;[t, k] = r;[t, k] @ B. {insert fingerprint}

Theorem 2: Algorithm 1 is e-entry-level DP.

Proof: Since the value of % (s) (the jth random value generated by %) is
. I Ll _o)=q1/L
uniformly distributed for a seed s [8], we have Pr(% 1(s) mod [z—pJ = 0) = 1/[ sz > 2p.

Similarly, Pr(x = 0) = %, thus, for any given fingerprint bit f, we also have

Pr(B =1,% (s) mod [Z—IPJ = 0) > %Zp = p, which suggests that each r,[7, k] will be changed (i.e.,

XORed by 1) with probability higher than p, and this satisfies the condition in Theorem 1. ll

Remark 2: The proposed database fingerprinting scheme is different from the existing ones
discussed in Section II, as all existing schemes fingerprint each selected bit by replacing

it with a new value obtained from the XOR of pseudorandomly generated mask bit x

and fingerprint bit /. Hence, the new value is independent of the original bit value in the
relational database. This is why the privacy guarantees of existing fingerprinting schemes
cannot be explicitly analyzed. On the contrary, we fingerprint each selected bit by XORing
it with a Bernoulli random variable B to make the fingerprinted entries dependent on the
original bit value in the relational database. This enables us to derive a tight upper bound
on the ratio of the probabilities of a pair of neighboring databases returning identical
fingerprinted outcomes, which is the key step to further connect this bound to a provable
privacy guarantee.

Note that % produces a sequence of random numbers using an initial seed, and it is
computationally prohibitive to compute the next random number in the sequence without
knowing the seed. Thus, from an SP’s point of view, the results of .#Z(R)’s are random.
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However, .#(R) can be reproduced by the database owner who has access to its own private
key as well as the external and the determined internal IDs of SPs.

C. Extracting the Fingerprint—When the database owner observes a leaked (or
pirated) database denoted as R, it will try to identify the traitor (malicious SP) by extracting
the fingerprint from R and comparing it with the fingerprints of SPs who have received

a copy of its database. We present the fingerprint extraction procedure from a leaked
fingerprinted database in Algorithm 2.

Algorithm 2: Fingerprint extraction procedure

Input : The original database R, the leaked database
R, the Bernoulli distribution parameter p,
database owner’s secret key V,
pseudorandom number sequence generator
U, and a fingerprint template.
QOutput: The extracted fingerprint from the leaked
database.
1 Initialize co(l) = e4(l) =0,V € [1, L.
2 Construct the fingerprintable set 7.
3 forall ; € P do
4 Set pseudorandom seed s = {V|r;. PmyKeyl|t|k},
s | if Ui(s) mod |5;] =0 then
6 Set mask bit x = 0, if Ua(s) is even; otherwise z = 1.
7
3
9

Set fingerprint index [ = Us(s) mod L.
Recover mark bit B = T[t, k] @ r; [, k].
Recover fingerprint bit fj = z @ B.

10 ci(l) + +, if fi = 1; otherwise co(l) + +.

u forall I € [1, L] do
12 | f(l) =1, if c1(l) > co(l); otherwise, £(I) = 0.

13 Return the extracted fingerprint bit string f.

Specifically, the database owner first initiates a fingerprint template

(fir for > f) =(2,2, -+, 7). Here, “?” means that the fingerprint bit at that position
remains to be determined. Then, the database owner locates the positions of the
fingerprinted bits as in Algorithm 1, and fills in each “?° using majority voting.

To be more precise, it first constructs the fingerprintable sets 2 from R, i.e.,
P={rt,k]|ie [1,N],t € [1,T],k € [1, min{K, K,}]}, where T[t, k] is the kth insignificant
bit of attribute ¢ of the ith data record in R, and N is the number of records in R. Note

that N may not be equal to N, because a malicious SP may conduct the subset attack (as
will be discussed in Section V-C2) to remove some data records from the received database
before leaking it. Second, the database owner selects the same bit positions, mask bit x, and
fingerprint index / using the pseudorandom seed s = { %|r,. PmyKey|t | k}. Third, it recovers
the mark bit as B = r[t, k] @ r,[7, k] and fingerprint bit at index / as f, = x @ B. Since the value
of f, may be changed due to the attacks launched by a malicious SP, the database owner
maintains and updates two counting arrays ¢, and ¢,, where ¢,(/) and ¢,(/) record the number
of times f; is recovered as 0 and 1, respectively. Finally, the database owner sets f(/) = 1, if
c(1) > ¢y(!), otherwise f(/) = 0. The database owner compares the constructed fingerprint bit-
string with the fingerprint customized for each SP who has received the database, and one
of these SPs will be considered as guilty if there is a large overlap between its fingerprint

NDDS Symp. Author manuscript; available in PMC 2023 June 02.



1duosnuey Joyiny 1duosnue|y Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Jietal. Page 14

and the constructed one. It has been shown that the database owner can correctly identify the
malicious SP as long as the overlapping between fingerprints is above 50% [26].

V. Associating Privacy, Fingerprint Robustness, AND Database Utility

Previously, we have presented a mechanism that achieves provable privacy guarantees
when fingerprinting a database. Here, we investigate its impact on the database utility

and fingerprint robustness, and also establish the connection between p (the probability of
changing one insignificant bit of a data entry),3 entry-level DP guarantee (¢), fingerprint
robustness, and utility of shared databases. We visualize the relationships between these in
Figure 3, where the arrow means “leads to”. We have the high-level conclusion that privacy
and fingerprint robustness are not conflicting objectives that can be achieved at the same
time, however, at the cost of database utility.

A. Privacy against Attribute Inference Attacks

After receiving the fingerprinted database .#(R), a malicious SP can leverage sophisticated
learning methods to infer the original value of each data entry. In this section, we show that
under our proposed privacy model (i.e., entry-level DP, Definition 4), the malicious SP’s
inference capability can never exceed a certain threshold.

In particular, we consider a malicious SP who has access to R, (i.e., the original values

of all data entries except the rth attribute of the ith data record, r,[7]), and its inference
capability is defined as InfCap = Pr(r[t] = ¢, | #(R),R,,;), which is the posterior probability
of the unknown entry r,[¢] taking a specific value ¢,. InfCap covers a wide-range of inference
attacks using learning-based techniques, as most of the learning frameworks give outputs in
terms of posterior probabilities, e.g., Bayesian inference and deep learning. We can have the
following proposition about the inference capability of a malicious SP.

Proposition 1: No matter what learning-based inference attack the malicious SP conducts,

€ . e€
v ,1.e., InfCap < v

, Where
wef + 1 we + 1

its inference capability can never be higher than

_ Prlrlt] = & 1 Riyo)
V= Pr(nli =6 I Ry

entry r,[¢] taking different values (i.e., ¢, and ¢,) given all other entries are known.

is the ratio of the malicious SP’s prior knowledge of the unknown

Proposition 1 can be proved by using techniques presented in [37], [24], and we omit it

€

due to space limitation. Given y, decreases as e decreases, it means that the higher

wef + 1
the entry-level DP guarantee (smaller ¢) is, the lower the inference capability of malicious
SPs becomes. The above considered adversary who knows the entire database except one
data entry is a standard threat model in the DP literature. In some of the real-world attacks,

3 p is the probability of the mark bit B taking value 1 (the probability of a specific bit is fingerprinted and changed, i.e., XORed by
1). The probability of the mark bit taking the value O is also p by design (i.e., the probability of a specific bit is fingerprinted but not
changed, i.e., XORed by 0). Thus, the probability of a specific bit position being fingerprinted is 2p (see Line 6 in Algorithm 1). We
would like to remind that 2p < 1, as the probability of a specific bit position is not selected to be marked is 1 — 2p.
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an adversary can also utilize some publicly known auxiliary information (e.g., correlations
among data entries [37], [51], [11], [49] or social connections [30], [24]) to improve its
inference capability. We will also work along this direction in future work.

The goal of attribute inference attack using data correlations is to compromise data privacy.
In Section V-C3, we discuss its counterpart that compromises the fingerprint robustness;
malicious SPs can also leverage the discrepancy between data correlations before and after
fingerprint insertion to distort the embedded fingerprint bits.

B. Database Utility

Fingerprinting naturally changes the content of the database, and thus degrades the utility.
Here, we evaluate the utility of a fingerprinted database from both data accuracy and data
correlation perspectives: we quantify the impact of Algorithm 1 on the accuracy of each
fingerprinted data entry and the joint probability distribution of any pair of attributes. The
theoretical analyses are summarized in Proposition 2 and 3. These considered utility metrics
are application independent, and in general, the higher the accuracy of data entries and
pairwise joint distributions are, the better the task-specific application utilities get (e.g.,
classification accuracy and mean square error). We empirically validate this statement by
considering task-specific application utilities in Section VII.

Proposition 2: Let r,[t] and r,[t] be the original and the fingerprinted values of the rth attribute

e[| 7).

falls in [0, 4p], where 4 is the sensitivity of a pair of neighboring relational databases. and p

of the ith row. Then, the expected error caused by fingerprinting, i.e., [EB~Be,.,,0um(,,,[

is the probability of a mark bit B taking value 1.

The proof is in Appendix A. Clearly, the higher the value of p, the larger the expected
absolute difference between a fingerprinted data entry and the original value. It suggests that
the database owner can set the value of p based on its requirement of data entry accuracy
when generating a fingerprinted database, which achieves a certain level of entry-level DP,
and vice versa. This leads us to the next corollary.

Corollary I: Define fingerprint density as || #(R) — R ||,,, where || - ||,, is the matrix
(1,1)-norm which sums over the absolute value of each entry in the matrix. Then, we have
[EB~Bem0ulli(p)[||%(R) -R i, ] € [07 APNT]-

In Section VI-B, we will exploit fingerprint density to develop a support vector technique
(SVT)-based solution to share fingerprinted databases with multiple SPs.

Proposition 3: Let Pr(R[¢] = =, R[z] = @) and Pr(if[?] =, RTE] = co) be the joint probability
of the rth attribute taking value = and the zth attribute taking value w before

and after fingerprint insertion, respectively. Then, Pr(i{[?] =, f{[a = a)) falls in the
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Pr(RH - RH - w)(l - p)j: + Prmm(RH, RH)(I —(1- p)K)z, - Pry (R[], R[z]) (or
= a))(l - p) + Prmux(R[t ,RH)(I -(1-p") ]

Pr...(R[7], R[z])) is the minimum (or maximum) joint probability of attributes 7 and z in R.

range of

Pr(RH =, R[z

The proof is in Appendix B. By marginalizing over R[¢] and R[z], we can have the following
corollary.

Corollary 2: Let Pr(R[t] = ) and Pr(ﬁﬁ = 71') be the marginal probability of the rth attribute

taking value = before and after fingerprint insertion, respectively. Then, Pr(ﬁm = 71') belongs

to [Pr(R[t] = 1)1 = pK 4 P RID(1 - (1 - K Pr(RI1] = 7)1 - p)*K, where P (R]1]) (or
+ Pr(R[1])(1 - (1 - p)K)2]

Pr...(R[?])) is the minimum (or maximum) marginal probability of the rth attribute in R.

Thus, when p is small, both joint distributions and marginal distributions will be close to that
of the original databases, i.e., the fingerprinted database will have higher statistical utility.

C. Fingerprint Robustness against Attacks

Although, Li et al. [35] analyzed fingerprint robustness by studying the false negative rate
(i.e., the probability that the database owner fails to extract the exact fingerprint from a
pirated database), they do not establish the direct connection between the robustness and the
tuning parameter (the fingerprinting ratio, which can be interpreted as a counterpart of p in
our work) in their mechanism.

In this paper, we investigate the robustness of the proposed fingerprinting mechanism
against three attacks, i.e., the random bit flipping attack [1], [35], [14], subset attack [35],
[10], [50], [14], and correlation attack [50], [26]. In the following, we quantitatively analyze
the relationship between p (the probability of changing one insignificant bit of a data

entry) and fingerprint robustness against these four attacks. The relationship between e and
fingerprint robustness can easily be obtained by applying Theorem 1.

1) Robustness Against Random Flipping Attack: In random flipping attack, a
malicious SP flips each of the K last bits of data entries in R with probability y,,, with the
goal of distorting the data in the fingerprinted positions. In [26], the authors have empirically
shown that the malicious SP ends up being uniquely accusable as long as the extracted
fingerprint from the leaked database has more than 50% matches with the malicious SP’s
fingerprint.

Yet, as the database owner shares more fingerprinted copies of database with different SPs,
to uniquely hold the correct malicious SP responsible, it requires more bit matches between
the extracted fingerprint and the malicious SP’s fingerprint. Thus, the number of bit matches
(denoted as D, D < L) should be set based on the number of fingerprinted sharings of the
database. Appendix C discusses how to determine D.
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Given the determined D, we evaluate the robustness of the proposed fingerprinting
mechanism against random bit flipping attack in terms of the probability (denoted as P ma)
that the database owner successfully extracts any D fingerprint bits of the malicious SP.

Let the /th bit of the fingerprint string be embedded w), times in R (which happens with
probability (1/L)""). Thus, to extract this fingerprint bit correctly from a copy of R that is

compromised by the random bit flipping attack, the database owner needs to make sure that
at most |w,/2] bits in R that are marked by the /th bit of the fingerprint string are flipped by

the malicious SP, which happens with probability p, = ¥ (w/)yf"d (1—y.0)" 4
q

Let m be the number of fingerprinted bit positions in the database (m < NKT)
received by the malicious SP, and define set 7" as % = {wy, w,, =+ ,w. > 0| X,_, w, = m}
Let also &#,, be the collection of any D bits of the malicious SP’s fingerprint

(|Zo| = D). Then, we can obtain the closed form expression of P, ., in terms of

1\Wi - . .
pas Py ma = ,’:,”:(Tl(zul cwieli] n7p H/eseppz(f) )( el )(ZP)m(l - 2p)NKT ™ which is

monotonically increasing with p(p < 0.5) (detailed analysis is deferred to Appendix C). Thus,
a higher p leads to more robustness against the random bit flipping attack.

2) Robustness Against the Subset Attack: In subset attack, the malicious SP
generates a pirated database by selecting each data record in R for inclusion (in the pirated
database) with probability y,,,. This attack is shown to be much weaker than the random
bit flipping attack [35], [26], [50]. According to [35] (page 40), the subset attack cannot
succeed (i.e., distorting even one fingerprint bit) unless the malicious SP excludes all

the rows fingerprinted by at least one fingerprint bit. Thus, we measure the robustness

of the proposed fingerprinting mechanism against subset attack using the probability
(denoted as P, ) that the malicious SP fails to exclude all fingerprinted rows involving

a particular fingerprint bit (note that our analysis can be easily generalized for excluding a
fraction of fingerprinted rows). Since the probability that a specific row is fingerprinted
)KT

by a specific fingerprint bitis 1 — (1 — p/L)™" , we have the closed form expression

of P, . in terms of p (the probability of changing an insignificant bit of an entry)

as P = 1 — Z:’Zl(:)(mb)n[l — (1= p KT = KTV =0 =y [1 - 1 - KT
—[1=a=p* 4y - p/L)KT]N

Clearly, the larger p leads to less difference between 1 — (1 — p/L)KT and

1—(1-p/ L)KT + 7u(l — p/ L)KT, which suggests that P, ., also monotonically increases
with p.

Note that in the subset attack, the primary keys are shared intact, but the content is shared
partially. It is different with the scenario where the malicious SP just leaks specific attributes
without the primary keys. Our proposed mechanism can only have privacy guarantee but

no liability guarantee for the latter scenario. However, without the primary keys, the leaked
information is not a valid relational database anymore and it cannot support operations like
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database union and intersection, thus, it is considered to have no database utility and it will
not help the malicious SP make illegal profit.

3) Robustness Against Correlation Attack: In [26], the authors identify

a correlation attack against database fingerprinting mechanisms, which takes
advantage of the intrinsic correlation between data entries in the database to

infer and compromise the potentially fingerprinted bit positions. In particular, the
malicious SP changes the insignificant bits of entries in R if the data entries

satisfy [Pr(R[f] = 7, R[z] = ) - Pr(R[f] = z,R[z] = 0)| 2 7,Vz € [1,T], Voo, where 7 is a

predetermined parameter for this attack.

Similar to [26], we adopt the confidence gain of the malicious SP (denoted as G) to analyze
the robustness of the proposed fingerprinting mechanism against the correlation attack. The
confidence gain measures the knowledge of a potentially fingerprinted data entry under
correlation attack over random guess. To be more specific, G is defined as the ratio between
the probability that a specific entry (whose original rth attribute takes value x) will be
selected to be compromised in the correlation attack and the probability that such entry will
be selected to be compromised in the random bit flipping attack. Mathematically, this can be
— [:cpn.-+ ILPr(|Pr(R[] = 7, Rf] = @) - Pr(R[1] = 7, R[z] = 0)| < 7)

1
shown as G = e
(1 —(-p )Pr(R[t] =7

In Appendix D, we show that G decreases as p increases when our proposed entry-level
DP fingerprinting mechanism is used. This implies that the robustness of our proposed
fingerprinting mechanism also increases with p.

Sharing Multiple Databases

A major challenge in practical use of DP is that data privacy degrades if the same statistics
are repeatedly calculated and released using the same differentially-private mechanism. The
same is true for sharing a database with multiple SPs. If different fingerprinted copies of the
same database are shared multiple times, the average of them may converge to the original
database (known as average attack), which implies that privacy guarantee of Algorithm 1
degrades linearly with number of sharings.

If the privacy budget is depleted, then the database curator will just stop answering to the
same queries (e.g., page 42 and 56 of [16]). Thus, in practice, the database owner will also
release its database only to a limited number of SPs, and for each released copy, it will have
certain data privacy and fingerprint robustness requirements. According to Figure 3, these
requirements can both be fulfilled if the utility of the shared database is compromised to a
certain extent (but not significantly as will be corroborated in Section VII). Based on Section
V, we know that the database utility can be characterized by the fingerprint density (defined
in Corollary 1), because the higher the fingerprint density is, the lower the database utility
becomes, and the database owner can control the utility of repeatedly shared databases using
fingerprint density. Hence, we let the database owner only share a fingerprinted database,
A(R), if its fingerprint density, || #(R) — R ||, is beyond a predetermined publicly known
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numerical threshold, I', in order to meet the requirement of high data privacy guarantee and
fingerprint robustness.

As discussed in Section I'V-B, the fingerprinted database .#(R) customized for a particular
SP depends on an internal ID assigned by the database owner to the corresponding SP.
Since the internal ID of the SP is an input for inserting the fingerprint (Algorithm 1),
whether || #(R) — R ||,, is higher than I' also depends on the assigned internal ID. As

a consequence, when an SP queries the database, the database owner needs to keep
generating a new internal ID for it until the resulting fingerprint density is above I'.
Moreover, this process (i.e., internal ID generation and fingerprint density comparison with
the threshold) also needs to be performed in a privacy-preserving manner. The reason is

that according to Section V (Proposition 2 and Corollary 1), fingerprint density provides
additional knowledge about the fingerprint robustness and privacy guarantee. If a malicious
SP accurately knows for sure that its received database has fingerprint density higher than I,
i.e., the database owner cannot plausibly deny, the malicious SP can estimate the percentage
of changed entries due to fingerprint, and further distort the fingerprint.

The above discussion inspires us to resort to the sparse vector technique (SVT) [16], [40],
that only releases a noisy query result when it is beyond a noisy version of I', to design

a mechanism for sharing multiple entry-level differentially-private fingerprinted databases
and at the same time controlling the cumulative privacy loss. The unique benefit of SVT

is that it can answer multiple queries while paying the cost of privacy only for the ones
satisfying a certain condition, e.g., when the result is beyond a given threshold. In Section
VI-A, we present an intermediate step which considers only one SP, determines its internal
ID, and conducts the comparison between the resulting fingerprint density and threshold
under entry-level DP guarantee. In Section VI-B, we compose this intermediate step for C
times to determine the internal IDs for C SPs and share different fingerprinted databases.

Intermediate Step: Determining Internal ID for One SP

As elaborated earlier, the database owner needs to assign an internal ID to an SP in

order to achieve || #(R)—R ||, > I for the purpose of simultaneously meeting data
privacy and fingerprint robustness requirements. To achieve differential privacy for this
intermediate step, we perturb both || #(R) — R ||,, and I', and consider the noisy comparison
| Z(R)—R ||\, +p> I+ p,where u and p are Laplace noises. Establishing the noisy
comparison is a standard approach in SVT (see [16] page 57, and [40] page 639).

Next, we formally present the intermediate step. When the database owner receives

a query from a new SP (suppose that this SP is the ¢ th SP and ¢ € [1,C)), it

generates an instance of internal ID for the ¢ th SP via I D}, = Hash(% |c|i), where

i € {1,2,---} denotes the sequence number of this trial to generate I D, . Then, the
database owner generates the fingerprinted database via Algorithm 1 with the internal
ID set as I Djma in Line 2. Similarly, we denote the fingerprinted database generated

for the ¢ th SP at the i th trial as ;(R). Next, the database owner conducts the

noisy comparison || #;(R) =R ||\, + > I' + p,, where y~Lap(4/e,) and p~Lap(4/e;). Here,

e, and ¢, are the privacy budgets used to control the accuracy of the noisy comparison.
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If || #(R)—R ||\, + u; > I + p, holds, then the database owner returns a symbol T and
immediately terminates the intermediate step. This means that 1D, generated at the

ith trial for the ¢ th SP can lead to a fingerprinted database satisfying the data privacy

and fingerprint robustness requirements. Otherwise, the database owner returns a symbol

1, increases i by 1, and continues the process. We summarize this intermediate step in
Algorithm 3. This entire process achieves entry-level DP as proven in the following theorem.
Note that the identified I D;,.... is not released to the SP. As we will show in Section VII-C,
an instance of I D, satisfying || #;(R) — R ||, + u, > I + p, can usually be generated in 1 or
2 trials depending on the ratio of ¢, and ;.

Algorithm 3: Determine the Internal ID for One SP

Input : Original database R, fingerprinting scheme
M, sequence number of a new SP, i.e., c,
threshold I', and privacy budget €, €2, and €3.

Output: {1, 1,---, 1L, T}h

1 forall i € {1,2,3,---} do

2 Get an instance of internal ID for the cth SP,
;;ltemal = HUSh(KJC'E)

3 Get MS(R) by calling Algorithm 1 with

T inar @nd privacy budget e.

4 Sample ; ~ La,p(%) and p; ~ L?Lp(%).

s | if |[M{(R)—R||11 4 p =T+ p; then

6 Output a; = T. {ith trial meets the
requirement}

7 Terminate the algorithm.

8 else

9 Output a; = L. {trial does not meet the
requirement}

Theorem 3: Algorithm 3 achieves (e, + ¢;)-entry-level DP.

Proof: Suppose that Algorithm 3 terminates with / outputs (it takes / tries to determine
1 D5, ena» leading to a “TRUE” condition for the noisy comparison). We represent the output

sequence as a, i.e.,

a=lana, ~,a]={L) " Tu{T).

By defining

fiR, z) =Pr(||#4R) = R|| .. + s < T + z)),
&R, 2) =Pr(||4,R) = R|| 1+ p; > T + z)),

where z is an instance of p, generated at Line 5 in Algorithm 3. Then, we can have

Pr(DetermineThelnternallDforOneSP(R) = a)
Pr(DetermineThelnternalIDforOneSP(R’) = a)

_ /_ZPr(ﬂf = Zi)Hi;llfl(R’ z)&(R, z;)dz;
(o= I AR 2)a(R', 2)dz,

(*) LoPr(p =z — ML f(R 2 — Dg(R, z — A)dz,
- L2 Pr(p = z)[T;2) fi(R', 2)g(R, z)dz,

=&,
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where (*) is obtained by changing all the integration variables, i.e., z,’s, to (z, — 4)’s,
Vi e {l, 2, 3,---}. Next, we investigate the three parts of the integrand in the numerator of &
separately.

First, we have Pr(p, = z, — 4) < e®Pr(p, = z,), as p, is attributed to a Laplace distribution whose

parameter is calibrated using 4.
Second, suppose R and R’ differs at r, and r,;. Then,

[I-2,(R") = R[|,.1 = [|-2,(R) = R]|.,

rij = ry| = g —ri] < 4,

where 77, (or ;:) is the fingerprinted version of r, (or r;,). The equality follows from that for
any specific SP (which uniquely determines a pseudorandom seed), Algorithm 1 will select
exactly the same bit positions in both R and R’ to insert the fingerprint, and all selected bits
except for the different entry between R and R’ will also be replaced with the exact same

bit values. The inequality is because both |7, — r,| and |; - /| are upper bounded by 4. As a

result, for the second part in &, we obtain

fi(R’ Zi — A)
= Pr(||#,R) = Ry, + g < T+ z,— A) < Pr(||M(R) =R|| p+ p; — A < T + z, — 4)
= fi(R/,Zi),

where the inequality holds since we replace || .Z,(R)—R ||,, by a smaller value, i.e.,
| #(R)—R'||,— 4, which decreases the probability.

Third, since g, is a Laplace noise, which is also calibrated using 4, we have
&(R, z; — 4)

=Pr(|| 4R —R|[; 1+ > T+ z— A) < ePr(||4(R)-R'||,, + i — A>T +z— 4)
= e€2g[(R” Zi)A

Hence,
el = )L AR 2)e (R, 2)dz,

B f_mer(Py = Zi)Hilllfl(R/’ z)g(R’, z;)dz;
=2t 6

which completes the proof. B

Note that although we allocate the privacy budget ¢ when generating the fingerprinted
database for the SP at Line 3 in Algorithm 3, it does not contribute to the total privacy loss.
This is because here, I Dj.... is used for fingerprint insertion, but the numerical fingerprinted

database has not been shared yet.
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B. Composition of Intermediate Steps: Releasing Multiple Fingerprinted Databases

We have presented an intermediate step, in which, to guarantee that an SP receives a copy
of fingerprinted database, the database owner keeps generating an instance of internal ID
for it until the noisy comparison result is “TRUE”. Now, we show how to compose the
intermediate steps for C times to determine the internal IDs for C SPs, and at the same time,
share the corresponding fingerprinted databases (generated using their final internal IDs)
with them. The workflow is summarized in Algorithm 4. Its differences with Algorithm 3
are highlighted in the boxes.

Algorithm 4: Share Fingerprinted Databases with C' SPs
Input : Original database R, fingerprinting scheme
M, sequence number of SPs, i.e.,

{1,2,--- ,C}, threshold I', and privacy
budget €, €3, €3 and &',
Output: {a;,az,0a3,--- ,ac}.
1 Set count = 0,
2 forall |cth SP c € {1,2--- ,C}|do
3 | forallie {1,2,3,---} do

4 Generate an instance of internal ID for the cth
SP via IDg, ... = Hash(K|e|i).
5 Generate M$(R) by calling Algorithm 1 with

JrDi(;n.crn.'ll and privacy bUdgel €.
Sample 1; ~ Lap(2) and p; ~ Lap(£).

6
7 if ||M$(R) — R |11 + s > T + p; then
8
9

Output a; = MF(R) ‘

i

else
10 [_ Output a; = L.

If the database owner wants to share its database with more than C different SPs, it can
reduce the value of the fingerprint density threshold I', which, however, compromises the
privacy and fingerprint robustness of shared databases, because reducing I" increases utility
of shared databases. We show the privacy guarantee of Algorithm 4 in Theorem 4.

Theorem 4: Algorithm 4 achieves (&, &)-entry-level DP with
6 =+2CIn(1/8")(e+ &+ &) + C(e(e€ — 1) + (e +, &)(e2T 4 — 1)) and §, = 25".

Proof: Algorithm 4 is the composition of C rounds of Algorithm 3 together with C rounds of
Algorithm 1. According to the advanced composition theorem [16], C rounds of Algorithm 3

and C rounds of Algorithm 1 are ( 2C ln(%)(ez +6) + Cle,+ &)(e2 T & — 1), |-entry-level. DP

and ( 2C ln(%)e + Ce(e€ — 1), 6’)-entry-level DP, respectively. Then, by simple composition of
those two, we complete the proof. ll

Privacy budget allocation.—In practice, given the cumulative privacy budget ¢, and &,
we need to decide the values of ¢, €,, and €. Since ¢ is used to obtain the fingerprinted

database, its value should be determined based on the specific database of interest and the
requirements about database utility and fingerprint robustness (discussed in Section V).
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Furthermore, we note that (e, + &) is used to obtain the internal IDs of SPs.

Once ¢ is decided, the database owner can solve for (e, + ;) numerically,

ie., (y2CIn(1/8") - C)(e: + &) + Cle, + 6)e® + & = g, — (y2C In(1/6") — C)e — Cee€. Suppose the
numerical solution is (e, + &) = e*. Then, we need to allocate €* to ¢, and ;. Inspired by the
analysis in [40], we observe that ¢, and ¢, control the accuracy of noisy comparison, i.e.,

| Z(R)—=R |\, + p > T + p, (or equivalently, ||.Z,(R) — R||,., — I' > p, — y,)in both Algorithms
3 and 4. To boost the accuracy of the noisy comparison, we minimize the variance of the
difference between p, and ;. Since they are both Laplace random variables, the variance

of their difference is 2(4/ 62)2 + Z(A/eg)z. Clearly, given e*, the variance is minimized when

6 =€ =¢€*/2.

Note that in classical SVT, the database owner does not respond to all the queries, i.e.,

it merely reports “L” if the considered noisy comparison is “FALSE” (page 55 [16]), yet,
this is not user-friendly in database sharing, especially, when the database owner still has
remaining privacy budget. In our proposed SVT-based solution, we make sure all SPs get
their fingerprinted databases as long as they are among the top C SPs sending the query
request. This is achieved by letting the database owner keep generating new internal IDs
for the SPs until the noisy comparison turns out to be “TRUE”, and this approach does not
violate the design principle of SVT.

Experiments

We evaluate the developed entry-level differentially-private relational database fingerprinting
mechanism under both single and multiple database sharing scenarios.

A. Experiment Setup

Databases.— We consider two publicly available databases from UCI machine learning
repository [2]. First is a medium size nursery school application database, which contains
data of 12,960 applicants. Each applicant has 8 categorical attributes, e.g., “form of the
family” (complete, completed, incomplete, or foster). Each data record is associated with
one of the five labels, i.e., “not_recom”, “recommend”, “very_recom”, “priority”, and
“spec_prior”. Second is a large size Census database recording 14 discrete or categorical
attributes (e.g., age, workclass, and marital-status) of 32,561 individuals, in which each
individual is labeled as either ‘> 50K or ‘< 50K, which represents the income. Since
both databases contain categorical attributes, we need to encode them as integers before

fingerprinting.

Database encoding.—Similar to [26], to fingerprint discrete attributes (e.g., “age” in
Census database), the database owner will first sorts the values in an ascending order

and then divides them into non-overlapping ranges, which are then encoded as ascending
integers starting from 0. For categorical attributes, e.g., “marital-status” in the census
database, the instances are first mapped to a high dimensional space via the word
embedding. Words (instances) having similar meanings appear roughly in the same area
of the space, and the values of their integer codes will also be close. In the considered
nursery school application database, the maximum integer representation of a data entry is
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4 (we do not fingerprint the labels, which will be used in a classification task to evaluate

the utility of the fingerprinted database). Note that we drop the attribute of “fnlwgt” in the
Census database, because it represents the number of people the census believes a specific
row represents. After dropping the “fnlwgt” attribute, each row of the Census database can
be interpreted as a specific individual. Besides, we encode “capital-gain”, “capital-loss”, and
“native-country” attributes as binary, because the columns of “capital-gain” and “capital-
loss” are very sparse, and nearly all “native-country” values are “United-States”. After
encoding, the maximum integer representation of a data entry in the Census database is 15
(we also do not fingerprint the binary labels, i.e., > 50K or ‘< 50K, in order to conduct
task specific utility evaluations).

Sensitivity control on nursery school application database.—Since the integer
representations of data entries vary from O to 4 in the nursery school application database,
the sensitivity is 4 = 4. Thus, the proposed mechanism needs to fingerprint K =log,4 +1=3
(see Theorem 1) least significant bits of each data entry. This, however, may significantly
compromise the utility of the fingerprinted database. To control the sensitivity (and hence
improve the utility), we make the following observation. We calculate the fraction of
pairwise absolute differences taking a specific value (between the attributes) and show the
results in Table II. Clearly, in each class, a large portion of the absolute differences are 0 and
1, and only a small fraction of them have difference larger than 1. Thus, in the experiments,
we consider sensitivity 4 = 1 with the assumption that the different entries in a pair of
neighboring nursery databases can change by at most by 1, otherwise, it introduces a rare
event (e.g., outliers that occurs with very low probability) in the database. Our approach to
control the sensitivity is similar to the restricted sensitivity [5] (that calculates sensitivity

on a restricted subset of the database, instead of all possible data records) and smooth
sensitivity [28] (which smooths the data records after partitioning them into non-overlapping
groups). Note that it has been widely recognized that rare events or outliers consume extra
privacy budget, and this is a common problem in differentially-private database queries [12],
[39], [15], [32]. Controlling local and global sensitivity in differential privacy is a separate
topic, and it is beyond the scope of this paper.

Note that for the Census database, we do not control its sensitivity, because the absolute
differences between attributes of individuals are more evenly distributed. Since the
maximum integer representation of a data entry in the Census database is 15, the sensitivity
is A = 15, and hence, the proposed mechanism needs to fingerprint K = |log, 15| + 1 = 4 least

significant bits of each data entry.

Post-processing.— After fingerprinting a database (R), some entries may have integer
representations that are outside the domain of the original database. For example, in the
Nursery school database, the maximum integer is 4, i.e., “100”, after fingerprinting, it may
become 5, i.e., “101”, which is not in the original database domain. Thus, we also need to
post-process the resulting database (.#(R)) to eliminate entries that are not in the original
domain. Otherwise, the database recipient can understand that these entries are changed

due to fingerprinting. Due to the post-processing immunity property of differential privacy,
there is no privacy degradation in this step. Even though the post-processing may alter some
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fingerprinted entries, it has negligible impact on the fingerprint robustness, because it only
changes a small fraction of fingerprinted entries, and in the fingerprint extraction phase,

we determine the value of each bit in the fingerprint by counting how many times it has
been extracted as 1 or O followed by majority voting, i.e., each bit of the fingerprint is
recovered by the majority voting on the positions marked by this fingerprint bit (i.e., Line 12
in Algorithm 2. Generally, post-processing steps are able to make a fingerprinted database
meet the domain requirements so as to achieve better utility in downstream applications.

For example, post-processing steps can let a fingerprinted database preserve the column-
and row-wise data correlations and the covariance matrix of the database [26], which are
frequently utilized to establish predictive models, e.g., regression and probability fitting.

Baseline Methods. —We compare our mechanism (that simultaneously achieves privacy
and liability guarantees) with six baselines summarized in Table III. In particular, baselines
(1), (i1), and (iii) are naive two-step approaches. Baseline (iv), discussed in Section II, is

a one-step solution that brings together data sanitization and fingerprinting. Baselines (v)
and (vi) achieve data perturbation and fingerprinting only, respectively. In baselines (i) and
(v), data perturbation is achieved via local DP. In baseline (ii), data synthesis is obtained
using DPSyn [9], [33], which generates differentially-private version of given databases by
clustering similar attributes, and then perturbing the cell counts of the joint histograms for
each cluster. The fingerprinting scheme used in all baselines (i), (ii), (iii), and (vi) is the
database fingerprinting scheme developed in [35].

Experiment Outline.—To show the performance of our proposed mechanism, we conduct
extensive experiments focusing on fingerprint robustness and database utility. This is
because we cannot directly compare the privacy guarantees with the baselines, as the
privacy definitions vary for different baselines; our mechanism uses entry-level DP, whereas
baseline (i) and (v), (iii), and (ii) and (iv), respectively, adopt local DP, k-anonymity, and
conventional centralized DP. To enhance readability, we lists the considered experiments as
follows.

In Section VII-B1, we compare the fingerprint robustness with all baselines (except for

(v)) under the following scenarios: baseline (i) changes the same amount of data with our
mechanism via LDP perturbation using the same ¢ with us and fingerprinting via [35];
baseline (vi) directly changes the same amount of data with our mechanism; baselines (ii)
and (iv) use the same ¢ values with us; and baseline (iii) adopts 2-anonymity. We do not
compare with baseline (v) because it does not provide fingerprint robustness. We cannot
require baselines (ii), (iii), and (iv) change the same amount of data entries with us because
(ii) adopts DPSyn to synthesize a completely new database using the probabilistic generative
model, (iii) generalizes a significant amount of data entries to achieve 2-anonymity, and (v)
can change all data using continuous Gaussian noise.

In Section VII-B2, we compare database utilities achieved by all methods when: baselines
(1), (ii), (iv), and (v) adopts the same e values with us; baseline (iii) adopts 2-anonymity; and
baseline (vi) changes the same amount of data entries with our mechanism. Note that same ¢
does not lead to the same privacy guarantee due to different privacy definitions (as discussed
before).
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In section VII-C, we study the cumulative privacy loss when our mechanism is repeatedly
applied to share databases with different SPs. We do not compare with other baselines,
because our mechanism is the only one that applies Advanced Composition Theorem via
SVT and the others just apply simple (linear) composition, so our mechanism is guaranteed
to reduce cumulative privacy loss by an order of 6(y/C) if the database is shared C times [16].

B. Evaluations for One-time Sharing

We first consider that the database owner only releases the database with one SP. Thus, only
Algorithm 1 is invoked.

1) Fingerprint Robustness: Among common attacks against database fingerprinting
mechanisms (i.e., random flipping attack, subset attack, and superset attack [35]), random
flipping attack is shown to be the most powerful one [35], [50]. This is because the flipped
data entries might create a fingerprint pattern that misleads the database owner during the
fingerprint extraction phase [35], [51]. Thus, we investigate the fingerprint robustness of
the proposed mechanism and the baselines against this attack. In Section VIII, we discuss
how to make the proposed mechanism robust against more sophisticated correlation attacks
[26]. In particular, in favor of the malicious SP, we let the malicious SP randomly flip 50%
of the bit positions in its received copy of the database. Then, we measure the fingerprint
robustness using the number of bit matches between the malicious SP’s fingerprint and the
one extracted from R (the compromised database).

As per the experiment outline discussed in Section VII-A, for the Nursery database we
select e from {1,2, ---,7}. In Figure 4, we scatter the values of accuracy and number

of matched fingerprint bits obtained by all methods. Note that higher accuracy suggests
higher utility of the obtained databases, and higher number of matched bits suggest higher
robustness against 50% random flipping. Clearly, the databases obtained by our mechanism
(represented by red dots) achieve the highest robustness given the same database accuracy
and the highest accuracy given the same robustness. In particular, we outperform baseline
(i), because the inserted noises (marks) generated by our mechanism serve the purposes

of privacy protection and fingerprinting simultaneously, whereas (i) inserts noises twice to
protect privacy and perform fingerprinting separately. We achieve higher robustness than
baseline (vi), as (vi) only fingerprints one attribute for each selected row, and our mechanism
can fingerprint multiple attributes. Baseline (iii) leads to lower database accuracy, because
to achieve 2-anonymity, it needs to change all entries in some columns due to attributes
generalization. Baselines (ii) and (iv) result in the lowest database accuracy, because they
synthesize a new database and add continuous Gaussian noise to the original database,
respectively. It is noteworthy that although baseline (iv) is a one-step solution like ours, it
has the lowest robustness, because it needs to use learning algorithms to fit the inserted
Gaussian noise, re-calculate the corresponding variance, and then recover the inserted
fingerprints. Thus, when a large portion of data entries have been compromised, the obtained
variance is highly inaccurate, so does the recovered fingerprints. For example, when € > 5,
baseline (iv) can only achieve less than 50 fingerprint bit matches (out of 128), which
suggests that the malicious SP can avoid being accused. This has been empirically validate
in [26]: as long as a malicious SP can compromise more than half of the fingerprint bits
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(e.g., achieving less than 64 matches out of 128), the database owner will accuse another
innocent SP with large probability. In contrast, when e > 5, our mechanism can still achieve
more than 64 bit matches, which suggests that the malicious SP will end up being uniquely
identifiable.

For the Census database, we select ¢ from {6,7, ---, 12} to achieve high accuracy for all
the methods. The comparison of fingerprint robustness is shown in Figure 5. Similar to
the Nursery database, our mechanism also outperforms all baselines in terms of database
accuracy and fingerprint robustness.

2) Utility of the Shared Database: To show the utility guarantees of the proposed
entry-level DP fingerprint mechanism, we conduct the comparison by considering specific
applications, where we use fingerprinted databases (ours and the baselines) to do linear
SVM classification and principal component analysis (PCA). Please refer to [21] for the
experiments considering task-independent comparison, e.g., change of variance of attributes
and the accuracy of SQL queries.

To perform classification, we adopt a multi-class support vector machine (SVM) classifier
and use 65% of data records for training and the rest for testing. We evaluate the utility

of various fingerprinted databases by comparing the fingerprinted testing accuracy (i.e.,
SVM classifier trained on fingerprinted training data and then tested on the original testing
data) with the original testing accuracy (i.c., SVM classifier trained on the original training
data and then tested on the original testing data). Thus, the smaller the difference between
fingerprinted testing accuracy and original testing accuracy (i.e., accuracy loss), the higher
the utility.

The utility for PCA is defined using the total deviation, TTLpey = X, _, |4 — ¥/ CV/|, here T is
the number of attributes (T is 8 and 13 for Nursery and Census databases, respectively), C

is the empirical covariance matrix of the original (non-fingerprinted) database, 4, values are
the eigenvalues of C, and v, vectors are the eigenvectors of the empirical covariance matrix
of fingerprinted database. TTLyey measures the deviation of the variance (of the fingerprinted
database) from 4, in the direction of the ith component of C. The smaller TTLy is, the

higher the utility.

In Figure 6 (a) and (b) by varying e from 0.25 to 2, we compare the utilities for SVM

and PCA achieved by our mechanism and all baselines on the Nursery database. Clearly,
our mechanism (red lines with pentagrams) achieves higher database utilities in both
applications. Particularly, for baseline (i), a large portion of data entries are substituted with
other values with high probability when e is small, which leads to inaccurate task-specific
applications, and fingerprinting after LDP perturbation further compromises the utility.
Baseline (ii) can outperform baseline (i), because DPSyn generates the synthetic database by
sampling from the noisy marginals of the clustered attributes and also involves techniques
proposed in [43] to constrain the noisy marginals to be consistent with one another [9].
However, baseline (ii) still achieves lower utility compared with our mechanism, because
the synthetic database is further distorted by fingerprint insertion. Baseline (iii) achieves the
lowest utility in all two-step approaches, because it needs to modify a lager portion of data
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entries to achieve 2-anonymity. Thus, two-step approaches are highly suboptimal. Although
baseline (iv) is a one-step approach, it has the worst utility among all the mechanisms,
because it introduces Gaussian noises that completely overwhelm the original data. Baseline
(v) leads to higher utility than baseline (i), because it does not involve fingerprinting.
Although baseline (vi) has the similar performance with us, it cannot provide any privacy
guarantees.

The same experiment results using the Census database when ¢ varies from 6 to 9 are
shown in Figure 6 (c) and (d). As discussed in Section VII-B1, we consider high ¢ values to
achieve high utility for all mechanisms. Clearly, our proposed mechanism still outperforms
all baselines in terms of both accuracy loss of SVM and total deviation of PCA. Note that
the accuracy loss on Census data is much less than the Nursery data, because Census data
is highly unbalanced. The total deviation is much higher for the Census data, because it has
more columns and large value of sensitivity, which lead to a large Frobenius norm of the

empirical covariance matrix.4

C. Evaluations for Multiple Sharing

Next, we consider the scenario where at most 100 SPs query the entire database over time in
a sequential order (i.e., C = 100). As discussed in Section VI, the database owner performs
the noisy comparison (||.Z;(R) — R||,., + u; > I' + p;, where I is the fingerprint density,

and p, are Laplace noises) to determine the proper internal IDs for the SPs to generate

the fingerprinted databases. In the experiment, we set I' = (1/2 + 1/4/12)ApNK . The reason

is that according to Corollary 1, the expected value of || #;(R) — R ||,, falls in [0, ApNT].
Since we do not have any assumption on the database, and the pseudorandom number
generator % generates each random number with equal probability, we approximately model
|| #;(R)—R ||, as a uniformly distributed random variable in the range of [0, ApNT]. Then,
its mean and standard deviation are ApNT/2 and ApN K/,/12, respectively.

Moreover, we consider the cumulative privacy loss as ¢ = 40 and §, = 2 * 1073, 1f e < 40

and the database owner still wants to generate fingerprinted databases with the identical
privacy and fingerprint robustness guarantees as when ¢, = 40, it will end up sharing its
database with fewer number of SPs. To achieve a decent database utility, we set the privacy
budget to generate the entry-level differentially-private fingerprinted database as e = 0.5.
Then, by solving the privacy budget allocation problem (Section VI-B) numerically, we have
€ + ¢, = 0.002 approximately.

We first investigate the impact of privacy allocation between ¢, and ¢; on the total number of
trials to determine the proper internal IDs for all 100 SPs. We take the Nursery database as
an example, vary the ratio between ¢, and ¢; from 9 : 1 to 1 : 1, and show the results in Table
IV. We observe that as the difference between ¢, and ¢, decreases (their ratio decreases),
Algorithm 4 terminates with fewer internal ID generation trials. Especially, when ¢,:¢; = 9:1,
81 (181 instead of 100) additional trials are made, whereas, when e,:¢; = 1:1, only 56 (156

4We do not fine-tune the training parameters in SVM and PCA algorithms, because it is out of the scope of this paper.
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instead of 100) additional trials are made. Since the cumulative privacy loss is identical for
the different total number of trials reported in Table IV, this suggests that when ¢, = ¢, the
internal ID generation efficiency is higher from the perspective of the data recipients (i.e.,
the probability that the database owner can generate a proper internal ID for an SPin 1 or 2
trials increases). This finding validates our suggestion of equally dividing the privacy budget
between ¢, and ¢, to reduce the number of trials to generate proper internal IDs. Besides, we
also would like to highlight that by adopting SVT, we significantly reduce the cumulative
privacy loss, because otherwise, the privacy loss will be (¢ + €, + €;) X (Total No . of trials). For
instance, when Total No. of trials = 181, the privacy would be € = (0.5 + 0.02) x 181 = 90.862
without SVT (compared to a cumulative privacy loss of 40 with SVT).

Discussion

Our work is a first step in uniting provable privacy guarantee and database fingerprinting.
We believe that it will draw attention to other challenges and urgent research problems,
which we plan to investigate in the future.

Mitigation of correlation attacks.

Jiet al. [26] have developed a mitigation technique to alleviate the correlation attacks against
database fingerprinting. Their technique modifies a fingerprinted database (via optimal
transport technique) to make sure that it has similar column- and row-wise joint distributions
with the original database. Since their technique only changes the non-fingerprinted data
entries and it can be applied as a post-processing step after any fingerprinting mechanism,

it can also be utilized following our mechanism to defend against the correlation attacks. In
case of such an integration, our privacy guarantee will still hold because of the immunity
property of differential privacy for post-processing [16].

Defending against collusion attacks.

Another widely studied threat is the collusion attack where multiple malicious SPs ally
together to generate a pirated database from their unique fingerprinted copies with the hope
that none of them will be traced back. Several works have proposed collusion-resistant
fingerprinting mechanisms in the literature [7], [6], [48], [42]. To develop a entry-level DP
and collusion-resistant fingerprinting mechanism, one solution is to replace the fingerprint
generation step (i.e., Line 3 of Algorithm 1) with the Boneh-Shaw (BS) codes [6] and decide
p (the probability of changing one insignificant bit of an entry) based on € and the number of
1’s in the BS codeword. We will explore this extension in future work.

Two-step solutions versus our mechanism.

Making the two-step solutions outperform our mechanism is still an open problem. Since
currently, our mechanism treats each attribute equally sensitive. One potential approach is
to take advantage of the semantic meaning of the attributes and then inject varying amounts
of noise and insert different density of fingerprints to various portions of the database
based on their sensitive level (e.g., some attributes like salary or health conditions may be
more sensitive or private than others). However, this two-step approach will require domain
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experts on the database and can involve extra data analysis before it is subject to privacy
protection and fingerprinting.

IX. Conclusions

In this paper, we have proposed a novel mechanism that unites provable privacy and
database fingerprinting for sharing relational databases. We first devised a bit-level random
response scheme to achieve e-entry-level DP guarantee for the entire database, and then
developed a concrete entry-level DP database fingerprinting mechanism on top of it. We
have also provided the closed form expressions to characterize the connections between
database utility, privacy protection, and fingerprint robustness. Finally, we developed a
SVT-based solution to share entry-level DP fingerprinted databases with multiple recipients,
and at the same time, control the cumulative privacy loss. Experimental results on two

real relational databases show that we can achieve higher fingerprint robustness than a
state-of-the-art database fingerprinting mechanism and achieve higher database utility than
other baselines.
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Appendix A

Proof of Proposition 2

Proof: The fingerprinting mechanism only changes the last K bits of selected data entries,

|

=E Z(rzkeaB)zr[fk]EBB—l e, ker e =1
k_

) |

=E (r [t k] + B — 2r[t, k| BN K+ B= 200 KB =1y yprift k] =1

thus, we have

- v
K _
DA L e S
K=
K

|

((1 _ I'[f k] 2 T; [f k] l',-[f, k]2r,[t, k] - l)p

p.

”MN”MW*‘

(r, [ k]21' [l k] I‘,-[l, k]zri[t, k] - ])
1

k

Since Y5_ 1t k]2r’[t’ k1= 1 the decimal representation of the complement of the last K
bits of r,, and according to Definition 3, ¥’ _, (r,[t, ke k=1 e k285 K= 1) falls in the

range of [ — 4, 4], so its absolute value falls in [0, 4], which completes the proof. B
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Appendix B

Proof of Proposition 3

Proof: We let binary vector 7, € {0,1 }’< (orz, € {0,1 }K ) represent the K mark bits embedded
to entries of the rth (or zth) attribute. || - ||, denotes the /, norm, which counts the number of
nonzero entries in a vector. x and  are the binary representations of = and w, respectively.

Then, we have

Pr(R[7] = =, R[7] = )
= Z z pr(R[,] = 7 ® 7, R[z] = 0 & 7.) xp”T'”o(l _ p)K - ||Tf||op||TZ||o(1 _ p)K = Izl
e{0o.)®r e ok
= Pr( [1]= ”[2] R(z] = op)(1 - p) Ky Zr,e 0.11%70 Zz‘ze (0.1 %P (R[] = 7120 © 7, R[z] = ooy @ 72)
|

Xp||r,||0(1 — p) = Tf||op||TZ||o(1 - p) = Iz,
By denoting the second summand in the above equation as ¢, we have

o< Pr I, RI]x T o = K= el = K = e
max e {0.1)%0, e {0.1)%10

= Pr (R[1].R[z]) x x Z ||7:,||0(1 - p) =17 llo| % E p||TZ||o(1 — p)K_ lI7=lo
max K
e (0,1}%0 r.e {0,150
K\2
nf;x(R[zLR[zD(l -1~ > )

- 2 .
Similarly, we also have ¢ > Pr,,. (R[], R[z])(l -(1- p)K) , thus, the proof is completed. ll

Appendix C
Analysis of P, .., in Random Bit Flipping Attack

Note that a rational database owner will not change more than 50% of the bit positions in a
database, because it will significantly compromise the database utility, and a malicious SP
can flip the bits back and then launch an attack.

First, we show how to determine D (number of bit matches with the malicious SP’s
fingerprint) given C (number of times a database can be shared), and L (length of
fingerprinting string). If the database owner shares its database with C different SPs.
To make the extracted fingerprint have the most bit matches with the malicious SP, it
requires that the probability of having more than D bit matches is higher than 1/C,i.e.,

b

One can easily check that the closed form expression of P, ., in terms of p is

(l)D(l)L P > L which can be solved analytically
2) \2 C’ .
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NKT L\W\(NKT) | ' NKT —m
Prbsl?md:Zm=I(ZMVEWQIE[]Y”ZgDH/EgDpI(f) )( m )(2P) 1-2p) s

which can be obtained by marginalizing all instances of malicious SP’s fingerprint, all
collections of D fingerprint bits of it, and the number of fingerprinted bits m. To show that
higher p leads to more robustness against the random bit flipping attack, it is equivalent

to show that P, ., is monotonically increasing with p(0 < p < 0.5). To this end, we define
w,
function f(m) = Y emicn 2wp[licen pl(%) ' (m is embedded as a parameter of set 7,

ie, 7 = {w,wy, ~,w,>0] Y w=m}. Then, Py, . represents the expected value of
f(m), m~Binomial(N KT,2p). As a result, it is sufficient to show that f(m) is monotonically
increasing with m. First, we observe that p, (see Section V-C1, p, = Zgi(?)yﬁ’nd(l —7ma) 7D
is the cumulative distribution function of a binomial distribution function, which is
monotonically increasing with w;, thus the multiplication of all p, *s,i.e., [[icv,p 1S
increasing with m = Y, w,. Second, it is easy to check that the carnality of %" is m!S(w, L),
where S(w, L) represents Stirling number of the second kind (i.e., the number of ways

to partition a set of w objects into L nonempty subsets) [19]. Since ! grows faster then

L™ as m increases (in real-life applications, we have m > L > In N), we can conclude

that f(m) is monotonically increasing with m (the number of fingerprinted bit positions).
When 0 < p < 0.5, Py e can be characterized as the summation of monotonically increasing
functions with respect to m and p, which suggests that the higher the value of p, the more
robust of the proposed fingerprinting mechanism is against the random bit flipping attack.

Appendix D

Analysis of G in Correlation Attack

As per proposition 3,

Pr(R[t] = 7, R[z] = o) - Pr(R[f] = 7, R[z] = )| falls

in the range of [0, max{|A|,|B|}], where A and B,

respectively, are A = Pr(R[1] = 7, R[z] = @)((1 = p)*X = 1) + Pro. (R[], R[z])(1 - (1 - p)K)z,
B =Pr(R[1] = =,R[z] = »)((1 - K- 1) + Pr (R[], R[2])(1 - (1 - p)K)2. Without any

assumption on the database, we consider each of the point
7 (threshold) in [0, max{|A],

B|}] has equal probability density
T
1= Hze[l.r],z#rnmm
(1 —(- p)K)Pr(R[l] =)

then, we have 4 = Pr(R[] = 7, R[z] = @)((1 = p)*X + 1)(=2) + Pr,u,(R[1], R[2])47,

[26]. Thus, G =

.Let/lz1—(l—p)K€[0,1—(%)K],

B =Pr(R[1] = 7,R[z] = 0)((1 = p*X +1)(=2) + Pr (R[], R[z])4>. Thus,

1_( T )Zze[l.T],z#rkz
P (1)

,and k. is the number of possible instances of attribute z. Since

o(4)
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both the numerator and denominator increases with p, but the denominator grows with a

much higher rate, G decreases as p increases.
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Fig. 3.
Relationship among p (probability of changing one insignificant bit of an entry), privacy

guarantee (¢), fingerprint robustness, and database utility.
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Robustness comparison of fingerprinted Nursery databases.
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Table I.

Frequently used notations in the paper.

notations descriptions
R original database
R’ a neighboring database of R
M (R) fingerprinted database
R leaked (pirated) database
I; i throw of R
rjt, k] the kth insignificant bit of the fth attribute of I
P the probability of changing an insignificant bit in an entry in the database
B mark bit to fingerprint a bit position B~Bernoulli(p)
€, 6,6 privacy budgets
A database sensitivity
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Table II.

Fraction of pairwise absolute differences between instances of attributes.

1duosnuep Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

abs. diff. 0 1 2 3 4
not_recom 40% 46.79% | 7.08% | 5.12% 1%
recommend | 93.75% | 6.25% 0 0 0
very_recom | 35.10% | 49.71% | 10.66% | 4.39% | 0.13%

priority 36.04% | 44.65% | 1131% | 507% | 2.93%
spec_prior | 50.50% | 37.19% 901% | 3.29% 0
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Comparing baselines considered in the experiments. Note that baselines (i)-(iv) provide both privacy and
liability guarantees during database sharing. Baseline (v) only provides privacy guarantee (i.e., no fingerprint

robustness), and baseline (vi) only provides fingerprint robustness (i.e., no privacy guarantee).

baseline (i)
baseline (ii)
baseline (iii)

baseline (iv)

data perturbation followed by fingerprinting
data synthesis followed by fingerprinting
k-anonymity-based fingerprinting

privacy-protection fingerprinting via Gaussian noise [20]

two-step
two-step
two-step

one-step

baseline (v)

baseline (vi)

data perturbation only via local differential privacy

fingerprinting only via mechanism developed in [35]

no liability

no privacy
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Impact of the ratio between ¢, and ¢; on the total number of internal ID generation trials for 100 SPs.

66

9:1

7:1

3:1

1:1

No. of trials

181

177

173

165

156
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