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Abstract
When sharing relational databases with other parties, in addition to providing high quality (utility) 
database to the recipients, a database owner also aims to have (i) privacy guarantees for the 
data entries and (ii) liability guarantees (via fingerprinting) in case of unauthorized redistribution. 
However, (i) and (ii) are orthogonal objectives, because when sharing a database with multiple 
recipients, privacy via data sanitization requires adding noise once (and sharing the same noisy 
version with all recipients), whereas liability via unique fingerprint insertion requires adding 
different noises to each shared copy to distinguish all recipients. Although achieving (i) and (ii) 
together is possible in a naïve way (e.g., either differentially-private database perturbation or 
synthesis followed by fingerprinting), this approach results in significant degradation in the utility 
of shared databases. In this paper, we achieve privacy and liability guarantees simultaneously by 
proposing a novel entry-level differentially-private (DP) fingerprinting mechanism for relational 
databases without causing large utility degradation.

The proposed mechanism fulfills the privacy and liability requirements by leveraging the 
randomization nature of fingerprinting and transforming it into provable privacy guarantees. 
Specifically, we devise a bit-level random response scheme to achieve differential privacy 
guarantee for arbitrary data entries when sharing the entire database, and then, based on this, we 
develop an !-entry-level DP fingerprinting mechanism. We theoretically analyze the connections 
between privacy, fingerprint robustness, and database utility by deriving closed form expressions. 
We also propose a sparse vector technique-based solution to control the cumulative privacy loss 
when fingerprinted copies of a database are shared with multiple recipients.

We experimentally show that our mechanism achieves strong fingerprint robustness (e.g., the 
fingerprint cannot be compromised even if the malicious database recipient modifies/distorts more 
than half of the entries in its received fingerprinted copy), and higher database utility compared 
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to various baseline methods (e.g., application-dependent database utility of the shared database 
achieved by the proposed mechanism is higher than that of the considered baselines).

I. Introduction
Massive data collection and availability of relational databases (collection of data records 
with the same attributes [13]) are very common in the current big data era. This results in 
an increasing demand to share such databases with (or among) different database recipients/
service providers (SPs) such as companies, research institutions, or hospitals, for the purpose 
of “do-it-yourself” calculations, like personal advertisements, social recommendations, and 
customized healthcare.

Most databases include personal data, and thus they usually contain sensitive and proprietary 
information, e.g., medical records collected as part of an agreement which restricts 
redistribution. This poses three major challenges in database sharing with different SPs: (1) 
privacy, the database owner is obligated to protect the privacy of data entries in the shared 
database to comply with the privacy policy and ensure confidentiality, (2) liability, the 
database owner needs to prevent illegal redistribution of the shared databases, and eventually 
prosecute the malicious SPs who leak its data, and (3) utility, the shared database needs to 
maintain high utility to support accurate data mining and analysis.

Many works have attempted to address the challenges on privacy and liability in isolation. 
To address the privacy challenge, various data sanitization metrics are proposed, e.g., 
"-anonymity [47], #-diversity [41], $-closeness [31], and differential privacy (DP) [16]. 
Among them, DP has been developed as a de facto standard for responding to statistical 
queries from databases with provable privacy guarantees. It can also be used to share 
personal data streams or an entire database (i.e., identity query) in a privacy-preserving 
manner [11], [24]. Differentially-private mechanisms hide the presence or absence of a data 
record in the database by perturbing the query results with noise calibrated to the query 
sensitivity.

To protect copyright and deter illegal redistribution, different database watermarking and 
fingerprinting mechanisms are devised to prove database ownership (i.e., identifying the 
database owner from shared databases) [1], [46] and database possession (i.e., differentiating 
between the SPs who received copies of the database) [35], [22], [26], [23], [50]. In practice, 
when sharing a database with a specific SP, the database owner embeds a unique fingerprint 
(a binary string customized for the SP) in the database. The embedded fingerprint is hard to 
be located and removed even if a malicious SP attacks the fingerprinted database (to identify 
and distort the fingerprint).

Only a few works have attempted to combine database sanitization and fingerprinting 
in database sharing. In particular, [45], [4], [29] propose inserting fingerprints into 
databases sanitized using "-anonymity, and [17] proposed embedding fingerprints into 
databases sanitized by the %, & -privacy model [44]. However, these works solve the 
aforementioned challenges in a two-stage (sequential) manner, where data sanitization is 
conducted before fingerprinting. As a result, they end up changing a large amount of 
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entries in the database and they significantly compromise the utility of the shared database 
(corroborated in Section VII). The only work that attempts to integrate privacy protection 
and fingerprinting is proposed in [20]. However, [20] injects continuous-valued Gaussian 
noise to the data, considers various combinations of variances as fingerprints, and relies on 
learning algorithms to fit the Gaussian noises. Thus, [20] is vulnerable if a malicious SP 
compromises a large portion of fingerprinted data entries (shown in Section VII). Besides, 
these works do not address the critical problem of controlling cumulative privacy loss if the 
same database is repeatedly shared with multiple SPs.

In this paper, we bring together data sanitization and fingerprinting in a unified mechanism, 
consider a stronger privacy model compared to previous works, and develop entry-level DP 
fingerprinting for relational database sharing. In what follows, we summarize the main 
contributions and insights of our work, and discuss its limitation caused by a unique 
requirement of DBMS (Database Management System) design.

Main Contributions.
Database fingerprinting is a randomized scheme (that essentially performs bitwise 
randomization, i.e., randomly changes insignificant bits of randomly selected data entries 
[1]), and thus is naturally endowed with certain level of privacy. Yet, this hidden property 
(privacy protection) is ignored in the literature. We harness the intrinsic randomness 
introduced by fingerprinting and transform it into a provable privacy guarantee. In particular,

• We propose a bit-level random response scheme, which fingerprints (marks) 
insignificant bits of data entries using pseudorandomly generated binary mark 
bits, to achieve !-entry-level DP for the entire database. Then, based on this 
scheme, we devise the !-entry-level DP fingerprinting mechanism.

• We establish a comprehensive and solid theoretical foundation to quantify the 
properties of the proposed !-entry-level DP fingerprinting mechanism from 3 
dimensions: (i) the privacy guarantee of it under attribute inference attack, (ii) 
the fingerprint robustness of the mechanism when it is subject to various attacks 
targeting on the inserted marks, and (iii) the relationship among privacy, utility, 
and fingerprint robustness.

• We devise a sparse vector technique (SVT)-based solution to control the 
cumulative privacy loss when different fingerprinted versions of a database are 
shared with multiple SPs.

• We evaluate the proposed mechanism using two real-life databases. Experiment 
results show that our mechanism (i) provides higher fingerprint robustness 
than a state-of-the-art database fingerprinting mechanism [35], and (ii) achieves 
higher database utility than the two-step methods (i.e., either local DP-based 
perturbation, data synthesis under central DP, or "-anonymity followed [35]) 
and the one-step approach (i.e., Gaussian noise-based fingerprinting [20]) by 
considering specific applications.
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Insights.
This paper is the first to show the feasibility of considering privacy and liability in a unified 
mechanism to simultaneously protect data privacy and prevent unauthorized redistribution. 
Our mechanism can help a database owners (i) generate privacy-preserving fingerprinted 
databases based on their requirements on utility, privacy, and fingerprint robustness and (ii) 
assess the privacy leakage under multiple sharings and set the privacy budget accordingly in 
each sharing.

Limitations.
In this work, we consider the sharing of entire relational databases, where each data record 
can be uniquely identified by an immutable pseudo-identifier (i.e., the primary key) in order 
to support common database operations, e.g., union and intersection, which all depend on 
the value of primary keys. This is a unique and hard requirement of DBMS, and thus in 
this work, we do not consider membership inference attacks as they become irrelevant under 
these settings. We further discuss this in detail in Section III.

Roadmap.
In Section II we review related works followed by the privacy, system, objectives, and 
threat models in Section III. In Section IV, we present the entry-level DP fingerprinting 
mechanism. Then, we theoretically investigate the relationships between database utility, 
fingerprint robustness, and privacy guarantees in Section V. We develop the sparse vector 
technique (SVT)-based mechanism to share multiple fingerprinted databases under entry-
level DP in Section VI. We evaluate the proposed scheme via extensive experiments in 
Section VII. We provide further discussions and point out open problems with potential 
solutions in Section VIII. Finally, Section IX concludes the paper.

II. Related Work
Database watermarking/fingerprinting.

The seminal work of database watermarking (that embeds the same bit-string in selected 
insignificant bits to all shared database copies to claim ownership) is proposed in [1]. 
Based on [1], several database fingerprinting techniques were proposed [46], [35], [38]. In 
particular, [35] is considered as the state-of-the-art that also best suits for fingerprinting 
the entire database. This is because [35] enables the insertion and extraction of arbitrary 
bit-strings in relational databases and it also provides an extensive robustness analysis. In 
Section VII, we develop three baselines based on [35] (i.e., either local DP perturbation, 
DP database synthesis, or "-anonymity followed by database fingerprinting via [35]) and 
compare them with our proposed mechanism.

Data sanitization followed by watermarking/fingerprinting.
Some works attempted to protect data privacy and ensure liability in isolation when sharing 
databases [17], [4], [29], [45]. To be more specific, Bertino et al. [4] adopted the binning 
method [36] to generalize the database first, then watermark the binned data to protect 
copyright. Kieseberg et al. [29] and Schrittwieser et al. [45] proposed fingerprinting a 
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database generalized by "-anonymity. Gambs et al. [17] sanitized the database using the 
%, & -privacy model [44], which selects a true data record in the domain of the database 

with probability % and includes a fake data record outside the domain of the database with 
probability &, and then they embed personalized fingerprint in the database. These studies 
usually change a large amount of data entries, which degrades database utility. In particular, 
it has been observed that "-anonymity may create data records that leak information due to 
the lack of diversity in some sensitive attributes, and it does not protect against attacks based 
on background knowledge [18].

All these schemes embed watermark or fingerprint into already sanitized databases, instead 
of considering sanitization and marking (fingerprinting) together as a unified process. Such 
sequential processing of a database will result in significant degradation in utility. This is 
because both sanitization and fingerprinting are achieved via noise addition (first adding 
noise to protect privacy, then adding noise to achieve liability guarantee) which over-distorts 
the database. Our work is different from previous ones, since we unify data sanitization and 
fingerprinting (to have higher data utility). We achieve provable privacy guarantees during 
fingerprint insertion by adopting a customized privacy model for DBMS and harnessing the 
randomness of fingerprinting.

Database sanitization together with fingerprinting.
The closest work to ours is a concurrent paper [20], which inserts Gaussian noises with 
various pre-determined variances to different blocks of a database to protect data privacy. 
The various combination of noise variances for data blocks plays the role of tractable 
fingerprints. However, the mechanism in [20] is vulnerable even to the subset attack (Section 
V-C), because in the fingerprints detection phase, [20] needs to use learning algorithms 
to fit the inserted Gaussian noise and re-calculate the corresponding variances. Hence, 
the fingerprint robustness of [20] is very sensitive to the adopted learning algorithms and 
the size of the database. Besides, [20] adds Gaussian noise to data entries, which will 
significantly reduce the data utility. In contrast, our mechanism changes each insignificant 
bit with a certain probability, so some data entries will be intact. In Section VII, we will 
show also compare with [20].

III. Privacy, System, Objectives, And Threat
Here, we discuss the considered privacy model, database fingerprinting system, objectives of 
the database owner and malicious SPs, and various threats. The frequently used notations in 
this paper is listed in Table I. In what follows, we first review the definition of a relational 
database and its unique features, which are important for our specific definition of the 
privacy model.

Definition 1 (Relational database [13]): A relational database denoted as ' is a collection 
of ( -tuples. Each tuple represents a data record containing (  ordered attributes. Each data 
record is also associated with a primary key, which is used to uniquely identify that 
record. We denote the )th data record in ' as *) and its primary key as *) . +,-./-.
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Unique Features of a Relational Database.
In order to support database operations, such as union, intersection, and update, the primary 
keys should not be changed if a database is fingerprinted or pirated [35], [1], [34].1Due to 
the uniqueness and immutability of the primary keys in relational databases, the presence 
of a specific data record is not a private information in general. In other words, it is no 
secret whether an individual’s data record (a specific ( -tuple) is present in a database or not. 
Hence, the common definition of neighboring databases (which differ by one row) in the 
differential privacy literature does not apply in the case of sharing relational databases. Thus, 
we consider an alternative definition of neighboring relational databases and their sensitivity 
as follows.

Definition 2 (Neighboring relational databases): Two relational databases ' and '′ are called 
neighboring, if they only differ by one entry, i.e., an attribute of a single individual.

Definition 3 (Sensitivity of a relational database): Given a pair of neighboring relational 
databases ' and '′ that differ by one entry (e.g., the $th attribute of the )th row, *) $  and 
*) $ ′), the sensitivity is defined as 0 = sup', '′ '−'′ 1 = sup*) $ , *)[$]′ *) $ − *)[$]′  where sup and 1
represent the supreme value and the matrix Frobenius norm, respectively.

A. Privacy Model—Next, we give our privacy model customized specifically for 
databases with immutable primary keys.

Definition 4 (!-entry-level DP): A randomized mechanism ℳ with domain 2 satisfies 
!-entry-level differential privacy if for any two neighboring relational databases ', '′ ∈ 2, 
and for all 3 ∈ Range ℳ , it holds that Pr ℳ ' = 4 ≤ /!Pr ℳ '′ = 4 , where ! > 0.

Remark 1: Definition 4 is adapted from the conventional notation of !-DP [16], which 
obfuscates the presence or absence of an entire row in '. Since the database recipient 
can easily identify if an individual is present in ' by directly checking its primary key, 
the conventional !-DP is not appropriate in the setting we consider. In contrast, our 
privacy model, which aims at obscuring the specific value of an arbitrary entry in ', 
better suits the requirement of DBMS design. As discussed in Section I, destroying pseudo-
identifiers to prevent linkability or membership inference attacks becomes an ill-posed 
problem for our considered case of DBMS. Thus, in this paper, we focus on the attribute 
inference attacks instead of membership inference attacks. As a matter of fact, in addition 
to common database applications (e.g., SQL, merging, splitting, union, and intersection), 
there are quite a few applications requiring consideration of attribute inference attacks over 
membership inference attacks, such as clustering-based applications, where the goal is to 
assign individuals to different clusters (determine their membership). An example is the 
construction of a recommendation system based on the attributes of participants, in which 

1In DBMS design, the primary keys are required to be immutable, as updating a primary key can lead to the update of potentially 
many other tables or rows in the system. The reason is that in DBMS, a primary key also serves as a foreign key (a column that creates 
a relationship between two tables in DBMS). For instance, consider the database in Section VII in which each data record represents a 
student. Here, the primary key of the data record can be chosen as the student’s unique identification number, which can then be used 
to refer to another table keeping the their real name, email, etc.
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the goal is to recommend movies or products to each dataset participant while preserving 
the privacy of the attributes of the participants [27]. Another example is the community 
detection in social networks under the setting of edge-DP (where hiding the presence or 
absence of a specific node is an ill-posed problem) [24], [25].

Similar to the conventional DP, we define !, 5 -entry-level DP as 
Pr ℳ ' = 4 ≤ /!Pr ℳ '′ = 4 + 5, 5 ∈ 0,1 .

B. System, Objectives, and Potential Threats—We present the system model in 
Figure 1. We consider a database owner with a relational database denoted as ', who wants 
to share it with at most 6 SPs (e.g., to receive specific services). To prevent unauthorized 
redistribution of the database by a malicious SP (e.g., the 7th SP in Figure 1), the database 
owner includes unique fingerprints in all shared copies of the database. The fingerprint 
essentially changes different entries in ' at different positions (indicated by the yellow 
dots). The fingerprint bit-string customized for the 7th SP SP7  is denoted as 8SP7, and 
the database received by SP7 is represented as '7. Both 8SP7 and '7 are obtained using the 
proposed mechanism discussed in HYPERLINK Section IV. ' represents an instance of the 
privacy-preserving fingerprinted database.

Objectives of database owner.
In general, a database recipient (SP) can be any of the following: (1) an honest party who 
will use the received database to do SQL queries or data mining, (2) an attacker who will 
hijack the database to make illegal profits by making pirate copies of it, or (3) a curious 
party who will try to infer the original data entries. Since an SP can potentially play any 
of these three roles, the objectives of a database owner are to make sure that the shared 
database have

• (i) high utility in order to support accurate database queries and data mining 
tasks,

• (ii) liability guarantees to discourage illegal redistribution, i.e., successfully 
extract a malicious SP’s fingerprint (even if a malicious SP distorts the 
fingerprint to mitigate detection) if the database is redistributed without 
authorization,

• (iii) entry-level privacy guarantees against attributes inference attacks, i.e., a data 
analyst cannot distinguish between *) $  and *) $ ′ by inferring its received copy.

Although (ii) and (iii) are different demands, they can be achieved at the same time, but at 
the cost of (i) (formally discussed in Section V). In this paper, we assume that the database 
owner is benign (i.e., it will not modify its own database in order to frame any SP).

Objectives of malicious SPs.
From the perspective of malicious SPs, their objectives are to
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• (a) redistribute received databases (make pirated copies) without being accused 
by means of distorting the inserted fingerprint and/or infer the original sensitive 
data entries,

• (b) preserve database utility to gain illegal profit.

Since the malicious SPs will introduce extra utility loss while distorting the fingerprint, (a) 
and (b) are also conflicting. Additionally, we assume that all malicious SPs are rational (i.e., 
they will not over-distort the content of a fingerprinted database, otherwise they cannot make 
illegal profit out of a pirated copy with poor utility).

Threats.
Since we consider developing a mechanism to simultaneously achieve data privacy and 
liability guarantees, we also need to address the corresponding threats from these two 
aspects. In particular, the malicious SP can

• Infer the original values of data entries (in shared databases) by using its prior 
knowledge or other revealed data entries (we consider an adversary who knows 
all data entries except for one, and uses advanced learning methods to infer the 
original value of the unknown data entry).

• Conduct various attacks to distort the embedded fingerprint bit-strings, e.g., 
random bit flipping attack, subset attack, and correlation attack. In Section V, 
we discuss these attacks in detail and derive closed-form fingerprint robustness 
expression for each of them.

IV. Privacy-preserving Fingerprinting
In this section, we first present the design principles of the proposed mechanism and also 
discuss some plausible but not viable alternatives. Next, we develop a general condition 
for a bit-level random response scheme to achieve entry-level DP database release/sharing. 
Then, we devise a concrete mechanism built upon such a scheme to achieve provable privacy 
guarantees for fingerprint insertion.

Principles of Mechanism Design.
The core idea of database fingerprinting is to introduce small errors by changing randomly 
selected insignificant bits of encoded data entries using a certain probability [1], [35]. 
The collections of selected bits vary for different SPs and their fingerprinted values are 
determined by the unique fingerprint bit-strings of the SPs. Thus, database fingerprinting is a 
randomized mechanism, which essentially performs bitwise-randomization, i.e., changes the 
data values by introducing noise at the bit-level of data entries instead of directly perturbing 
the data (i.e., introducing noise at the entry-level). As a result, we also establish our entry-
level DP fingerprinting scheme by conducting bitwise-randomization. To achieve a provable 
privacy guarantee, we calibrate the flipping probability 9  and the number of insignificant 
bits .  based on the sensitivity of the data entries. Note that to achieve the desired privacy 
guarantee, we only need to calibrate the binary noise (fingerprint) to “obfuscate” a certain 
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number of insignificant bits that lead to the maximum difference between any pair of entries, 
instead of letting the binary noise “overwhelm” all the bits.

Other Plausible but not Viable Solutions.
The entrywise-randomization adopted by the conventional DP output perturbation 
mechanisms, e.g., [11], [24], are infeasible as a building block of a fingerprinting 
mechanism, because they change all data entries by adding noises drawn from some 
probability distributions. Although local DP via randomized response only changes each 
data entry with a particular probability [3], connecting such probability with the randomly 
generated fingerprint bit-string is not straightforward. This is because randomly changing 
each bit of each data entry (by fingerprinting) may not lead to the identical random effect 
required by local DP. Hence, it is also not suitable for designing a database fingerprinting 
mechanism.

Another possible solution is to synthesize differentially-private relational databases while 
keeping the primary keys intact, and then inserting fingerprints into the results. This 
approach is also not viable, because data synthesis techniques usually generate artificial 
databases by sampling from noisy marginal and joint distributions of attributes, which 
require the clustering of similar attributes [9]. These methods heavily depend on the accurate 
clustering of highly correlated variables. Besides, data synthesis also requires additional 
computation to analyze other similar and public data to identify correlations and important 
marginals. To show the advantage of our mechanism, in Section VII, we compare it with 
DPSyn (a novel data synthesis technique) [33] followed by fingerprinting in [35].

Since the other solutions fail due to the aforementioned reasons, we consider achieving 
entry-level DP for the released database by using bit-level random response. In particular, 
when sharing a database with a specific SP, the values of selected insignificant bits of 
selected data entries are determined by XORing them with random binary variables, which 
vary for different data sharing instances (with various SPs). Such modification of bit 
positions in the database using different binary values can also be considered as inserting 
different fingerprints, which can be used to accuse a malicious SP if there is a data leakage. 
Moreover, to achieve high utility for the shared database, we simultaneously achieve entry-
level DP and fingerprinting, instead of achieving them in a two-step appraoch (fingerprinting 
a differentially-private database) The two-step approach is suboptimal compared with our 
mechanism, because we directly harness the randomness (noises) introduced in fingerprint 
insertion and transform it into a provable privacy guarantee (entry-level DP). Thus, the 
privacy guarantee can be interpreted as “achieved free” during the fingerprint insertion. 
Whereas, the two-step solutions need to assign separate randomness (noises) budgets to 
achieve privacy and liability guarantee in a sequential manner.

A. Privacy-preserving Sharing via Bit-level Randomization—Traditional DP 
guarantees that the computed statistics from a database (e.g., mean or histogram) are 
independent of the absence or presence of an individual. However, in this work we consider 
the release (sharing) of the entire fingerprinted database, and the existence of a particular 
individual can be easily determined by checking its primary key in the released copy 
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(discussed in Section III). Therefore, we focus on the privacy of database entries (attributes 
of individuals).

Definition 5 (Bit-level random response): A bit-level random response scheme 
(pseudorandomly) selects some bits of some data entries in a database and changes the 
bit values of such entries by conducting an XOR operation on them with independently 
generated random binary mark bits, denoted as :, where : Bernoulli 9 .

Database fingerprinting schemes only mark the insignificant bits of the data entries to 
introduce tolerable error in the database. In this paper, we assume that the "th to the last bit 
of an entry is its "th insignificant bit. If the "th insignificant bit of attribute $ of data record 
*) (represented as *) $, " ) is selected, then the bit-level random response scheme changes its 
value as *) $, " ⊕ :, where ⊕ is the XOR operator, and : is a Bernoulli random variable with 
parameter 9.

We develop the following condition for such a scheme to achieve !-entry-level DP on the 
entire database.

Theorem 1: Given a relational database ' with sensitivity 0 (Definition 3), a bit-level 
random response scheme, which only changes the last . bits of data entries, satisfies 

!-entry-level DP if . = log2 0 + 1 and 9 ≥ 1
/!/. + 1

.

Proof: Since we consider neighboring databases that have only a pair of different data entries 
which differ by at most 0, it requires . = log2 0 + 1 bits to encode the difference. Then, by 
applying Definition 4, we have

Pr(ℳ(') = ')
Pr ℳ '′ = '

=; ∏
" = 1

. Pr *)[$, "] ⊕ :), $, " = *)[$, "]
Pr *)

′[$, "] ⊕ :), $, "
′ = *)[$, "]

= ∏
" = 1

. Pr :), $, " = *)[$, "] ⊕ *)[$, "]
Pr :), $, "

′ = *)
′[$, "] ⊕ *)[$, "]

=< ∏
" = 1

. 9 *)[$, "] ⊕ *)[$, "] 1 − 9 1 − *)[$, "] ⊕ *)[$, "]

9 *)
′[$, "] ⊕ *)[$, "] 1 − 9 1 − *)

′[$, "] ⊕ *)[$, "]

== ∏
" = 1

. 1 − 9
9

*)[$, "] − *)
′[$, "] 2*)[$, "] − 1

≤ ∏
" = 1

. 1 − 9
9

*)[$, "] − *)
′[$, "] 2*)[$, "] − 1

≤ ∏
" = 1

. 1 − 9
9 ,

where ;  can be obtained by assuming (without loss of generality) that ' and '′ differ at 
the $th attribute of the )th row, and thus the probability ratio at other entries cancel out. *) $, "
(or *)

′ $, " ) represents the "th least significant bit of the $th attribute of *) (or *)
′), :), $, " (or 

:), $, "
′ ) is the random mark bit fingerprinted on *) $, "  (or *)

′ $, " ), and *) $, "  is the identical 
result of the bit-level random response at this bit position. <  is because each of the last 
. bits of entry *) $  (or *) $ ′) are changed independently with probability 9, and =  can be 
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obtained by applying > ⊕ ? = 1 − > ? + > 1 − ?  for any binary variable > and ?. Then, by 

making ∏" = 1
. 1 − 9

9 ≤ !, we complete the proof. ■

In Figure 2, we present a toy example of using bit-wise randomization to achieve entry-level 
DP on a database '. '′ is the neighboring relational database of ' (Definition 2). ' and 
'′ only differs in the 2nd attribute of the ) th data record (highlighted cells in the upper 
panel of Figure 2). In this example, we assume 0 = 3. Then, according to Theorem 1, by 
just flipping the last . = log2 3 + 1 = 2 insignificant bits of entries in ' with probability 9, 
a certain level of entry-level DP can be achieved. The lower panel of Figure 2 shows the 
binary representation of ' and '′, where the last 2 bits subject to bit-wise randomization are 
underlined. In the next section, we will show that the desired randomness (probability 9) can 
be obtained as a result of fingerprint insertion.

B. @-Entry-level Differentially-Private Fingerprinting—Due to the randomness 
involved in the bit-level random response scheme, for any given 9 and ', the output 
databases will vary for each different run. However, in order to detect the guilty SP who 
leaks the database, it is required that the fingerprinted database shared with a specific SP 
must be unique and it can be reproduced by the database owner even if the mark bits, i.e., 
:’s, are generated randomly. In this section, we discuss how to develop an instantiation of an 
!-entry-level differentially-private fingerprinting mechanism based on the bit-level random 
response scheme, i.e., a mechanism that satisfies Theorem 1, and at the same time, is 
reproducible when sharing a fingerprinted copy with any specific SP using a given Bernoulli 
distribution parameter 9 (i.e., the probability of a bit being changed due to fingerprinting).

First, we collect all fingerprintable bits in ', i.e., all insignificant bits (the last . bits) of 
all entries, in a set A:A = *) $, " ∣ ) ∈ 1, B , $ ∈ 1, ( , " ∈ 1, min ., .$ , where B is the 
number of data records in ', and .$ represents the number of bits to encode the $th attribute 
in '. When the database owner wants to share a fingerprinted copy of ' with an SP with 
a publicly known external ID denoted as CDexternal, it first generates an internal ID for this 
SP denoted as CDinternal. We will elaborate the generation of CDinternal in Section VI-A. Then, 
the database owner generates the unique fingerprint for this SP via E = FGH6 I ∣ CDinternal , 
which is a message authentication code (MAC) involving a cryptographic hash function and 
a secret cryptographic key (I is the secret key of the database owner and ∣ represents the 
concatenation operator). We use J to denote the length of the generated fingerprint.2

The database owner also has a cryptographic pseudorandom sequence generator K, which 
selects the data entries and their insignificant bits, and determines the mask bit L and 
fingerprint bit 8 (which is an element of the fingerprint bit-string E) to obtain the Bernoulli 
random variable (i.e., : = L ⊕ 8). To be more specific, for each *) $, "  in A, the database 

owner sets the initial seed as M = I ∣ *) . +,-./- $ " . If K1 M  mod  1
29 = 0 9 = 1

/!/. + 1
, 

2We use MD5 to generate a 128-bits fingerprint string, since if the database owner shares 6 copies of its database and J ≥ ln 6, the 
fingerprinting mechanism can thwart exhaustive search and various types of attacks [35]
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then *) $, "  is fingerprinted. Next, the database owner decides the value of mask bit L by 
checking if K2 M  is even or odd, and sets the fingerprint index # = K3 M mod J. By doing 
so, it obtains the mark bit as : = L ⊕ E # , and finally it changes the bit value of *) $, "  with 
*) $, " ⊕ :. We summarize the steps to generate a fingerprinted database in Algorithm 1.

Theorem 2: Algorithm 1 is !-entry-level DP.

Proof: Since the value of K7 M  (the 7th random value generated by K) is 

uniformly distributed for a seed M [8], we have Pr K1 M mod 1
29 = 0 = 1/ 1

29 > 29. 

Similarly, Pr L = 0 = 1
2 , thus, for any given fingerprint bit 8, we also have 

Pr : = 1, K1 M mod 1
29 = 0 ≥ 1

229 = 9, which suggests that each *) $, "  will be changed (i.e., 

XORed by 1) with probability higher than 9, and this satisfies the condition in Theorem 1. ■

Remark 2: The proposed database fingerprinting scheme is different from the existing ones 
discussed in Section II, as all existing schemes fingerprint each selected bit by replacing 
it with a new value obtained from the XOR of pseudorandomly generated mask bit L
and fingerprint bit 8. Hence, the new value is independent of the original bit value in the 
relational database. This is why the privacy guarantees of existing fingerprinting schemes 
cannot be explicitly analyzed. On the contrary, we fingerprint each selected bit by XORing 
it with a Bernoulli random variable : to make the fingerprinted entries dependent on the 
original bit value in the relational database. This enables us to derive a tight upper bound 
on the ratio of the probabilities of a pair of neighboring databases returning identical 
fingerprinted outcomes, which is the key step to further connect this bound to a provable 
privacy guarantee.

Note that K produces a sequence of random numbers using an initial seed, and it is 
computationally prohibitive to compute the next random number in the sequence without 
knowing the seed. Thus, from an SP’s point of view, the results of ℳ ' ’s are random. 
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However, ℳ '  can be reproduced by the database owner who has access to its own private 
key as well as the external and the determined internal IDs of SPs.

C. Extracting the Fingerprint—When the database owner observes a leaked (or 
pirated) database denoted as ', it will try to identify the traitor (malicious SP) by extracting 
the fingerprint from ' and comparing it with the fingerprints of SPs who have received 
a copy of its database. We present the fingerprint extraction procedure from a leaked 
fingerprinted database in Algorithm 2.

Specifically, the database owner first initiates a fingerprint template 
81, 82,  ⋯ , 8J = ?, ?,  ⋯ , ? . Here, “?” means that the fingerprint bit at that position 

remains to be determined. Then, the database owner locates the positions of the 
fingerprinted bits as in Algorithm 1, and fills in each “?’ using majority voting. 
To be more precise, it first constructs the fingerprintable sets A−  from ', i.e., 
A− = *)

− $, " ∣ ) ∈   1, B‾ , $ ∈ 1, ( , " ∈ 1, min ., .$ , where *)
− $, "  is the "th insignificant 

bit of attribute $ of the )th data record in ', and B‾  is the number of records in '. Note 
that B‾  may not be equal to B, because a malicious SP may conduct the subset attack (as 
will be discussed in Section V-C2) to remove some data records from the received database 
before leaking it. Second, the database owner selects the same bit positions, mask bit L, and 
fingerprint index # using the pseudorandom seed M = I *) . +,-./- $ ∣ " . Third, it recovers 
the mark bit as : = *)

− $, " ⊕ *) $, "  and fingerprint bit at index # as 8# = L ⊕ :. Since the value 
of 8# may be changed due to the attacks launched by a malicious SP, the database owner 
maintains and updates two counting arrays N0 and N1, where N0 #  and N1 #  record the number 
of times 8# is recovered as 0 and 1, respectively. Finally, the database owner sets E # = 1, if 
N1 # > N0 # , otherwise E # = 0. The database owner compares the constructed fingerprint bit-
string with the fingerprint customized for each SP who has received the database, and one 
of these SPs will be considered as guilty if there is a large overlap between its fingerprint 
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and the constructed one. It has been shown that the database owner can correctly identify the 
malicious SP as long as the overlapping between fingerprints is above 50% [26].

V. Associating Privacy, Fingerprint Robustness, AND Database Utility
Previously, we have presented a mechanism that achieves provable privacy guarantees 
when fingerprinting a database. Here, we investigate its impact on the database utility 
and fingerprint robustness, and also establish the connection between 9 (the probability of 
changing one insignificant bit of a data entry),3 entry-level DP guarantee ! , fingerprint 
robustness, and utility of shared databases. We visualize the relationships between these in 
Figure 3, where the arrow means “leads to”. We have the high-level conclusion that privacy 
and fingerprint robustness are not conflicting objectives that can be achieved at the same 
time, however, at the cost of database utility.

A. Privacy against Attribute Inference Attacks
After receiving the fingerprinted database ℳ ' , a malicious SP can leverage sophisticated 
learning methods to infer the original value of each data entry. In this section, we show that 
under our proposed privacy model (i.e., entry-level DP, Definition 4), the malicious SP’s 
inference capability can never exceed a certain threshold.

In particular, we consider a malicious SP who has access to '/O) $  (i.e., the original values 
of all data entries except the $th attribute of the )th data record, O) $ ), and its inference 
capability is defined as InfCap = Pr O) $ = P1 ∣ ℳ ' , '/O) $ , which is the posterior probability 
of the unknown entry O) $  taking a specific value P1. InfCap covers a wide-range of inference 
attacks using learning-based techniques, as most of the learning frameworks give outputs in 
terms of posterior probabilities, e.g., Bayesian inference and deep learning. We can have the 
following proposition about the inference capability of a malicious SP.

Proposition 1: No matter what learning-based inference attack the malicious SP conducts, 

its inference capability can never be higher than Q/!
Q/! + 1

, i.e., InfCap ≤ Q/!
Q/! + 1

, where 

Q = Pr O) $ = P1 ∣ '/O) $

Pr O) $ = P2 ∣ '/O) $
 is the ratio of the malicious SP’s prior knowledge of the unknown 

entry O) $  taking different values (i.e., P1 and P2) given all other entries are known.

Proposition 1 can be proved by using techniques presented in [37], [24], and we omit it 

due to space limitation. Given Q, Q/!
Q/! + 1

 decreases as ! decreases, it means that the higher 

the entry-level DP guarantee (smaller !) is, the lower the inference capability of malicious 
SPs becomes. The above considered adversary who knows the entire database except one 
data entry is a standard threat model in the DP literature. In some of the real-world attacks, 

39 is the probability of the mark bit : taking value 1 (the probability of a specific bit is fingerprinted and changed, i.e., XORed by 
1). The probability of the mark bit taking the value 0 is also 9 by design (i.e., the probability of a specific bit is fingerprinted but not 
changed, i.e., XORed by 0). Thus, the probability of a specific bit position being fingerprinted is 29 (see Line 6 in Algorithm 1). We 
would like to remind that 29 < 1, as the probability of a specific bit position is not selected to be marked is 1 − 29.
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an adversary can also utilize some publicly known auxiliary information (e.g., correlations 
among data entries [37], [51], [11], [49] or social connections [30], [24]) to improve its 
inference capability. We will also work along this direction in future work.

The goal of attribute inference attack using data correlations is to compromise data privacy. 
In Section V-C3, we discuss its counterpart that compromises the fingerprint robustness; 
malicious SPs can also leverage the discrepancy between data correlations before and after 
fingerprint insertion to distort the embedded fingerprint bits.

B. Database Utility
Fingerprinting naturally changes the content of the database, and thus degrades the utility. 
Here, we evaluate the utility of a fingerprinted database from both data accuracy and data 
correlation perspectives: we quantify the impact of Algorithm 1 on the accuracy of each 
fingerprinted data entry and the joint probability distribution of any pair of attributes. The 
theoretical analyses are summarized in Proposition 2 and 3. These considered utility metrics 
are application independent, and in general, the higher the accuracy of data entries and 
pairwise joint distributions are, the better the task-specific application utilities get (e.g., 
classification accuracy and mean square error). We empirically validate this statement by 
considering task-specific application utilities in Section VII.

Proposition 2: Let *) $  and *) $  be the original and the fingerprinted values of the $th attribute 
of the )th row. Then, the expected error caused by fingerprinting, i.e., R: Bernoulli 9 *) $ − *) $ , 

falls in 0, 09 , where 0 is the sensitivity of a pair of neighboring relational databases. and 9
is the probability of a mark bit : taking value 1.

The proof is in Appendix A. Clearly, the higher the value of 9, the larger the expected 
absolute difference between a fingerprinted data entry and the original value. It suggests that 
the database owner can set the value of 9 based on its requirement of data entry accuracy 
when generating a fingerprinted database, which achieves a certain level of entry-level DP, 
and vice versa. This leads us to the next corollary.

Corollary 1: Define fingerprint density as ∥ ℳ ' − ' ∥1,1, where ∥ ⋅ ∥1,1 is the matrix 
1,1 -norm which sums over the absolute value of each entry in the matrix. Then, we have 

R: Bernoulli 9 ℳ ' − ' ∥1,1 ∈ 0, 09B( .

In Section VI-B, we will exploit fingerprint density to develop a support vector technique 
(SVT)-based solution to share fingerprinted databases with multiple SPs.

Proposition 3: Let Pr ' $ = S, ' T = U  and Pr ' $ = S, ' T = U  be the joint probability 

of the $th attribute taking value S and the Tth attribute taking value U before 
and after fingerprint insertion, respectively. Then, Pr ' $ = S, ' T = U  falls in the 
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range of Pr ' $ = S, ' T = U 1 − 9
2.

+ Prmin ' $ , ' T 1 − 1 − 9 . 2,

 Pr ' $ = S, ' T = U 1 − 9
2.

+ Prmax ' $ , ' T 1 − 1 − 9 . 2

. Prmin ' $ , ' T  (or 

Prmax ' $ , ' T ) is the minimum (or maximum) joint probability of attributes $ and T in '.

The proof is in Appendix B. By marginalizing over ' $  and ' T , we can have the following 
corollary.

Corollary 2: Let Pr ' $ = S  and Pr ' $ = S  be the marginal probability of the $th attribute 

taking value S before and after fingerprint insertion, respectively. Then, Pr ' $ = S  belongs 

to Pr ' $ = S (1 − 9)2. + Prmin ' $ 1 − (1 − 9). 2, Pr ' $ = S (1 − 9)2.

+ Prmax ' $ 1 − (1 − 9). 2
, where Prmin ' $  (or 

Prmax ' $ ) is the minimum (or maximum) marginal probability of the $th attribute in '.

Thus, when 9 is small, both joint distributions and marginal distributions will be close to that 
of the original databases, i.e., the fingerprinted database will have higher statistical utility.

C. Fingerprint Robustness against Attacks
Although, Li et al. [35] analyzed fingerprint robustness by studying the false negative rate 
(i.e., the probability that the database owner fails to extract the exact fingerprint from a 
pirated database), they do not establish the direct connection between the robustness and the 
tuning parameter (the fingerprinting ratio, which can be interpreted as a counterpart of 9 in 
our work) in their mechanism.

In this paper, we investigate the robustness of the proposed fingerprinting mechanism 
against three attacks, i.e., the random bit flipping attack [1], [35], [14], subset attack [35], 
[10], [50], [14], and correlation attack [50], [26]. In the following, we quantitatively analyze 
the relationship between 9 (the probability of changing one insignificant bit of a data 
entry) and fingerprint robustness against these four attacks. The relationship between ! and 
fingerprint robustness can easily be obtained by applying Theorem 1.

1) Robustness Against Random Flipping Attack: In random flipping attack, a 
malicious SP flips each of the . last bits of data entries in ' with probability Vrnd with the 
goal of distorting the data in the fingerprinted positions. In [26], the authors have empirically 
shown that the malicious SP ends up being uniquely accusable as long as the extracted 
fingerprint from the leaked database has more than 50% matches with the malicious SP’s 
fingerprint.

Yet, as the database owner shares more fingerprinted copies of database with different SPs, 
to uniquely hold the correct malicious SP responsible, it requires more bit matches between 
the extracted fingerprint and the malicious SP’s fingerprint. Thus, the number of bit matches 
(denoted as D, D ≤ J) should be set based on the number of fingerprinted sharings of the 
database. Appendix C discusses how to determine D.
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Given the determined D, we evaluate the robustness of the proposed fingerprinting 
mechanism against random bit flipping attack in terms of the probability (denoted as + rbst_rnd) 
that the database owner successfully extracts any D fingerprint bits of the malicious SP. 
Let the #th bit of the fingerprint string be embedded W# times in ' (which happens with 

probability (1/J)W#). Thus, to extract this fingerprint bit correctly from a copy of ' that is 
compromised by the random bit flipping attack, the database owner needs to make sure that 
at most W#/2  bits in ' that are marked by the #th bit of the fingerprint string are flipped by 

the malicious SP, which happens with probability 9# = ∑X = 0
W#/2 W#

X Vrnd 
X 1 − Vrnd

W# − X.

Let , be the number of fingerprinted bit positions in the database , ≤ B.(
received by the malicious SP, and define set Y as Y = W1, W2,  ⋯ , WJ > 0 ∣ ∑# = 1

J W# = ,
Let also ℒD be the collection of any D bits of the malicious SP’s fingerprint 

ℒD = D . Then, we can obtain the closed form expression of + rbst_rnd in terms of 

9 as + rbst_rnd = ∑, = 1
B.( ∑W1 ∈ Y, # ∈ 1, J ∑ℒD ∏# ∈ ℒD 9#

1
J

W#  ,
B.( (29),(1 − 29)B.( − ,, which is 

monotonically increasing with 9 9 < 0.5  (detailed analysis is deferred to Appendix C). Thus, 
a higher 9 leads to more robustness against the random bit flipping attack.

2) Robustness Against the Subset Attack: In subset attack, the malicious SP 
generates a pirated database by selecting each data record in ' for inclusion (in the pirated 
database) with probability Vsub. This attack is shown to be much weaker than the random 
bit flipping attack [35], [26], [50]. According to [35] (page 40), the subset attack cannot 
succeed (i.e., distorting even one fingerprint bit) unless the malicious SP excludes all 
the rows fingerprinted by at least one fingerprint bit. Thus, we measure the robustness 
of the proposed fingerprinting mechanism against subset attack using the probability 
(denoted as + rbst_sub) that the malicious SP fails to exclude all fingerprinted rows involving 
a particular fingerprint bit (note that our analysis can be easily generalized for excluding a 
fraction of fingerprinted rows). Since the probability that a specific row is fingerprinted 
by a specific fingerprint bit is 1 − 1 − 9/J .( , we have the closed form expression 
of + rbst_sub in terms of 9 (the probability of changing an insignificant bit of an entry) 

as + rbst_sub = 1 − ∑! = 1
B B

! Vsub
! 1 − (1 − 9/J).( !(1 − 9/J).( B − ! = 1 + 1 − (1 − 9/J).( B

− 1 − (1 − 9/J).( + Vsub(1 − 9/J).( B
. 

Clearly, the larger 9 leads to less difference between 1 − 1 − 9/J .(  and 

1 − 1 − 9/J .( + Vsub 1 − 9/J .( , which suggests that + rbst_sub also monotonically increases 
with 9.

Note that in the subset attack, the primary keys are shared intact, but the content is shared 
partially. It is different with the scenario where the malicious SP just leaks specific attributes 
without the primary keys. Our proposed mechanism can only have privacy guarantee but 
no liability guarantee for the latter scenario. However, without the primary keys, the leaked 
information is not a valid relational database anymore and it cannot support operations like 
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database union and intersection, thus, it is considered to have no database utility and it will 
not help the malicious SP make illegal profit.

3) Robustness Against Correlation Attack: In [26], the authors identify 
a correlation attack against database fingerprinting mechanisms, which takes 
advantage of the intrinsic correlation between data entries in the database to 
infer and compromise the potentially fingerprinted bit positions. In particular, the 
malicious SP changes the insignificant bits of entries in ' if the data entries 
satisfy Pr ' $ = S, ' T = U − Pr ' $ = S, ' T = U ≥ ", ∀T ∈ 1, ( , ∀U, where # is a 

predetermined parameter for this attack.

Similar to [26], we adopt the confidence gain of the malicious SP (denoted as $) to analyze 
the robustness of the proposed fingerprinting mechanism against the correlation attack. The 
confidence gain measures the knowledge of a potentially fingerprinted data entry under 
correlation attack over random guess. To be more specific, $ is defined as the ratio between 
the probability that a specific entry (whose original $th attribute takes value S) will be 
selected to be compromised in the correlation attack and the probability that such entry will 
be selected to be compromised in the random bit flipping attack. Mathematically, this can be 

shown as $ = 1 − ∏T ∈ 1, $ , T ≠ $ ∏UPr Pr ' $ = S, ' $ = U − Pr ' $ = S, ' T = U ≤ "
1 − (1 − 9). Pr(%[$] = S)

.

In Appendix D, we show that $ decreases as 9 increases when our proposed entry-level 
DP fingerprinting mechanism is used. This implies that the robustness of our proposed 
fingerprinting mechanism also increases with 9.

VI. Sharing Multiple Databases
A major challenge in practical use of DP is that data privacy degrades if the same statistics 
are repeatedly calculated and released using the same differentially-private mechanism. The 
same is true for sharing a database with multiple SPs. If different fingerprinted copies of the 
same database are shared multiple times, the average of them may converge to the original 
database (known as average attack), which implies that privacy guarantee of Algorithm 1 
degrades linearly with number of sharings.

If the privacy budget is depleted, then the database curator will just stop answering to the 
same queries (e.g., page 42 and 56 of [16]). Thus, in practice, the database owner will also 
release its database only to a limited number of SPs, and for each released copy, it will have 
certain data privacy and fingerprint robustness requirements. According to Figure 3, these 
requirements can both be fulfilled if the utility of the shared database is compromised to a 
certain extent (but not significantly as will be corroborated in Section VII). Based on Section 
V, we know that the database utility can be characterized by the fingerprint density (defined 
in Corollary 1), because the higher the fingerprint density is, the lower the database utility 
becomes, and the database owner can control the utility of repeatedly shared databases using 
fingerprint density. Hence, we let the database owner only share a fingerprinted database, 
ℳ ' , if its fingerprint density, ∥ ℳ ' − ' ∥1,1, is beyond a predetermined publicly known 
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numerical threshold, & , in order to meet the requirement of high data privacy guarantee and 
fingerprint robustness.

As discussed in Section IV-B, the fingerprinted database ℳ '  customized for a particular 
SP depends on an internal ID assigned by the database owner to the corresponding SP. 
Since the internal ID of the SP is an input for inserting the fingerprint (Algorithm 1), 
whether ∥ ℳ ' − ' ∥1,1 is higher than &  also depends on the assigned internal ID. As 
a consequence, when an SP queries the database, the database owner needs to keep 
generating a new internal ID for it until the resulting fingerprint density is above & . 
Moreover, this process (i.e., internal ID generation and fingerprint density comparison with 
the threshold) also needs to be performed in a privacy-preserving manner. The reason is 
that according to Section V (Proposition 2 and Corollary 1), fingerprint density provides 
additional knowledge about the fingerprint robustness and privacy guarantee. If a malicious 
SP accurately knows for sure that its received database has fingerprint density higher than & , 
i.e., the database owner cannot plausibly deny, the malicious SP can estimate the percentage 
of changed entries due to fingerprint, and further distort the fingerprint.

The above discussion inspires us to resort to the sparse vector technique (SVT) [16], [40], 
that only releases a noisy query result when it is beyond a noisy version of & , to design 
a mechanism for sharing multiple entry-level differentially-private fingerprinted databases 
and at the same time controlling the cumulative privacy loss. The unique benefit of SVT 
is that it can answer multiple queries while paying the cost of privacy only for the ones 
satisfying a certain condition, e.g., when the result is beyond a given threshold. In Section 
VI-A, we present an intermediate step which considers only one SP, determines its internal 
ID, and conducts the comparison between the resulting fingerprint density and threshold 
under entry-level DP guarantee. In Section VI-B, we compose this intermediate step for 6
times to determine the internal IDs for 6 SPs and share different fingerprinted databases.

A. Intermediate Step: Determining Internal ID for One SP
As elaborated earlier, the database owner needs to assign an internal ID to an SP in 
order to achieve ∥ ℳ ' − ' ∥1,1 > &  for the purpose of simultaneously meeting data 
privacy and fingerprint robustness requirements. To achieve differential privacy for this 
intermediate step, we perturb both ∥ ℳ ' − ' ∥1,1 and & , and consider the noisy comparison 
∥ ℳ ' − ' ∥1,1 + ' > & + (, where ' and ( are Laplace noises. Establishing the noisy 
comparison is a standard approach in SVT (see [16] page 57, and [40] page 639).

Next, we formally present the intermediate step. When the database owner receives 
a query from a new SP (suppose that this SP is the = th SP and = ∈ 1, 6 ), it 
generates an instance of internal ID for the = th SP via CDinternal

= = F;Mℎ ) = ) , where 
) ∈ 1,2, ⋯  denotes the sequence number of this trial to generate CDinternal 

= . Then, the 
database owner generates the fingerprinted database via Algorithm 1 with the internal 
ID set as CDinternal

=  in Line 2. Similarly, we denote the fingerprinted database generated 
for the = th SP at the ) th trial as ℳ)

= ' . Next, the database owner conducts the 
noisy comparison ∥ ℳ)

= ' − ' ∥1,1 + ') > & + (), where ') Lap 0/!2  and () Lap 0/!3 . Here, 
!2 and !3 are the privacy budgets used to control the accuracy of the noisy comparison. 
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If ∥ ℳ)
= ' − ' ∥1,1 + ') > & + () holds, then the database owner returns a symbol ⊤ and 

immediately terminates the intermediate step. This means that CDinternal
=  generated at the 

)th trial for the = th SP can lead to a fingerprinted database satisfying the data privacy 
and fingerprint robustness requirements. Otherwise, the database owner returns a symbol 
⊥, increases ) by 1, and continues the process. We summarize this intermediate step in 
Algorithm 3. This entire process achieves entry-level DP as proven in the following theorem. 
Note that the identified CDinternal

=  is not released to the SP. As we will show in Section VII-C, 
an instance of CDinternal

=  satisfying ∥ ℳ)
= ' − ' ∥1,1 + ') > & + () can usually be generated in 1 or 

2 trials depending on the ratio of !2 and !3.

Theorem 3: Algorithm 3 achieves !2 + !3 -entry-level DP.

Proof: Suppose that Algorithm 3 terminates with # outputs (it takes # tries to determine 
CDinternal

= , leading to a “TRUE” condition for the noisy comparison). We represent the output 
sequence as a, i.e.,

* = ;1, ;2,  ⋯ , ;# = ⊥ # − 1 ∪ ⊤ .

By defining

8) ', T = Pr ℳ) ' − ' 1, 1 + ') < & + T) ,
+)(', T) = Pr ℳ)(') − ' 1, 1 + ') ≥ & + T) ,

where T) is an instance of () generated at Line 5 in Algorithm 3. Then, we can have

Pr DetermineTheInternalIDforOneSP ' = ;
Pr DetermineTheInternalIDforOneSP '′ = *

=
∫−∞

∞ Pr () = T) ∏) = 1
# − 1 8) ', T) +# ', T) ,T)

∫−∞
∞ Pr () = T) ∏) = 1

# − 1 8) '′, T) +# '′, T) ,T)

=( * ) ∫−∞
∞ Pr () = T) − 0 ∏) = 1

# − 1 8) ', T) − 0 +# ', T) − 0 ,T)

∫−∞
∞ Pr () = T) ∏) = 1

# − 1 8) '′, T) +# '′, T) ,T)
= ♣,
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where (*) is obtained by changing all the integration variables, i.e., T)’s, to T) − 0 ’s, 
∀) ∈ 1,  2,  3, ⋯ . Next, we investigate the three parts of the integrand in the numerator of ♣ 
separately.

First, we have Pr () = T) − 0 ≤ /!3Pr () = T) , as () is attributed to a Laplace distribution whose 
parameter is calibrated using 0.

Second, suppose ' and '′ differs at -)7 and -)7
′ . Then,

ℳ) '′ − '′ 1, 1 − ℳ) ' − ' 1, 1

= -)7
' − -)7

' − -)7 − -)7 ≤ 0,

where -)7 (or -)7
′ ) is the fingerprinted version of -)7 (or -)7

′ ). The equality follows from that for 
any specific SP (which uniquely determines a pseudorandom seed), Algorithm 1 will select 
exactly the same bit positions in both ' and '′ to insert the fingerprint, and all selected bits 
except for the different entry between ' and '′ will also be replaced with the exact same 
bit values. The inequality is because both -)7 − -)7  and -)7

′ − -)7
′  are upper bounded by 0. As a 

result, for the second part in ♣, we obtain

8) ', T) − 0
= Pr ℳ)(') − ' 1, 1 + ') < & + T) − 0 ≤ Pr ℳ) '′ − '′ 1 + ') − 0 < & + T) − 0
= 8) '′, T) ,

where the inequality holds since we replace ∥ ℳ) ' − ' ∥1,1 by a smaller value, i.e., 
∥ ℳ) '′ − '′ ∥1 − 0, which decreases the probability.

Third, since ') is a Laplace noise, which is also calibrated using 0, we have

+# ', T) − 0
= Pr ℳ)(') − ' 1, 1 + ') ≥ & + T) − 0 ≤ /!2Pr ℳ) '′ − '′ 1, 1 + ') − 0 ≥ & + T) − 0
= /!2+# '′, T) .

Hence,

♣ ≤
∫−∞

∞ /!3Pr () = T) ∏) = 1
# − 1 8) '′, T) /!2+# '′, T) ,T)

∫−∞
∞ Pr () = T) ∏) = 1

# − 1 8) '′, T) +# '′, T) ,T)

= /!2 + !3 .

which completes the proof. ■

Note that although we allocate the privacy budget ! when generating the fingerprinted 
database for the SP at Line 3 in Algorithm 3, it does not contribute to the total privacy loss. 
This is because here, CDinternal 

=  is used for fingerprint insertion, but the numerical fingerprinted 
database has not been shared yet.
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B. Composition of Intermediate Steps: Releasing Multiple Fingerprinted Databases
We have presented an intermediate step, in which, to guarantee that an SP receives a copy 
of fingerprinted database, the database owner keeps generating an instance of internal ID 
for it until the noisy comparison result is “TRUE”. Now, we show how to compose the 
intermediate steps for 6 times to determine the internal IDs for 6 SPs, and at the same time, 
share the corresponding fingerprinted databases (generated using their final internal IDs) 
with them. The workflow is summarized in Algorithm 4. Its differences with Algorithm 3 
are highlighted in the boxes.

If the database owner wants to share its database with more than 6 different SPs, it can 
reduce the value of the fingerprint density threshold & , which, however, compromises the 
privacy and fingerprint robustness of shared databases, because reducing &  increases utility 
of shared databases. We show the privacy guarantee of Algorithm 4 in Theorem 4.

Theorem 4: Algorithm 4 achieves !0, 50 -entry-level DP with 
!0 = 26 ln 1/5′ ! + !2 + !3 + 6 ! /! − 1 + !2 + ,  !3 /!2 + !3 − 1  and 50 = 25′.

Proof: Algorithm 4 is the composition of 6 rounds of Algorithm 3 together with 6 rounds of 
Algorithm 1. According to the advanced composition theorem [16], 6 rounds of Algorithm 3 

and 6 rounds of Algorithm 1 are 26 ln 1
5′ !2 + !3 + 6 !2 + !3 /!2 + !3 − 1 , 5′ -entry-level. DP 

and 26 ln 1
5′ ! + 6! /! − 1 , 5′ -entry-level DP, respectively. Then, by simple composition of 

those two, we complete the proof. ■

Privacy budget allocation.—In practice, given the cumulative privacy budget !0 and 50, 
we need to decide the values of !,  !2, and !3. Since ! is used to obtain the fingerprinted 
database, its value should be determined based on the specific database of interest and the 
requirements about database utility and fingerprint robustness (discussed in Section V).
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Furthermore, we note that !2 + !3  is used to obtain the internal IDs of SPs. 
Once ! is decided, the database owner can solve for !2 + !3  numerically, 
i.e., 26 ln 1/5′ − 6 !2 + !3 + 6 !2 + !3 /!2 + !3 = !0 − 26 ln 1/5′ − 6 ! − 6!/!. Suppose the 
numerical solution is !2 + !3 = !*. Then, we need to allocate !* to !2 and !3. Inspired by the 
analysis in [40], we observe that !2 and !3 control the accuracy of noisy comparison, i.e., 
∥ ℳ) ' − ' ∥1,1 + ') ≥ & + () (or equivalently, ℳ) ' − ' 1, 1 − & ≥ () − '))in both Algorithms 
3 and 4. To boost the accuracy of the noisy comparison, we minimize the variance of the 
difference between () and '). Since they are both Laplace random variables, the variance 

of their difference is 2 0/!2
2 + 2 0/!3

2. Clearly, given !*, the variance is minimized when 
!2 = !3 = !*/2.

Note that in classical SVT, the database owner does not respond to all the queries, i.e., 
it merely reports “⊥” if the considered noisy comparison is “FALSE” (page 55 [16]), yet, 
this is not user-friendly in database sharing, especially, when the database owner still has 
remaining privacy budget. In our proposed SVT-based solution, we make sure all SPs get 
their fingerprinted databases as long as they are among the top 6 SPs sending the query 
request. This is achieved by letting the database owner keep generating new internal IDs 
for the SPs until the noisy comparison turns out to be “TRUE”, and this approach does not 
violate the design principle of SVT.

VII. Experiments
We evaluate the developed entry-level differentially-private relational database fingerprinting 
mechanism under both single and multiple database sharing scenarios.

A. Experiment Setup
Databases.—We consider two publicly available databases from UCI machine learning 
repository [2]. First is a medium size nursery school application database, which contains 
data of 12,960 applicants. Each applicant has 8 categorical attributes, e.g., “form of the 
family” (complete, completed, incomplete, or foster). Each data record is associated with 
one of the five labels, i.e., “not_recom”, “recommend”, “very_recom”, “priority”, and 
“spec_prior”. Second is a large size Census database recording 14 discrete or categorical 
attributes (e.g., age, workclass, and marital-status) of 32,561 individuals, in which each 
individual is labeled as either ‘> 50K’ or ‘≤ 50K’, which represents the income. Since 
both databases contain categorical attributes, we need to encode them as integers before 
fingerprinting.

Database encoding.—Similar to [26], to fingerprint discrete attributes (e.g., “age” in 
Census database), the database owner will first sorts the values in an ascending order 
and then divides them into non-overlapping ranges, which are then encoded as ascending 
integers starting from 0. For categorical attributes, e.g., “marital-status” in the census 
database, the instances are first mapped to a high dimensional space via the word 
embedding. Words (instances) having similar meanings appear roughly in the same area 
of the space, and the values of their integer codes will also be close. In the considered 
nursery school application database, the maximum integer representation of a data entry is 
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4 (we do not fingerprint the labels, which will be used in a classification task to evaluate 
the utility of the fingerprinted database). Note that we drop the attribute of “fnlwgt” in the 
Census database, because it represents the number of people the census believes a specific 
row represents. After dropping the “fnlwgt” attribute, each row of the Census database can 
be interpreted as a specific individual. Besides, we encode “capital-gain”, “capital-loss”, and 
“native-country” attributes as binary, because the columns of “capital-gain” and “capital-
loss” are very sparse, and nearly all “native-country” values are “United-States”. After 
encoding, the maximum integer representation of a data entry in the Census database is 15 
(we also do not fingerprint the binary labels, i.e., ‘> 50K’ or ‘≤ 50K’, in order to conduct 
task specific utility evaluations).

Sensitivity control on nursery school application database.—Since the integer 
representations of data entries vary from 0 to 4 in the nursery school application database, 
the sensitivity is 0 = 4. Thus, the proposed mechanism needs to fingerprint . = log2 4 + 1 = 3
(see Theorem 1) least significant bits of each data entry. This, however, may significantly 
compromise the utility of the fingerprinted database. To control the sensitivity (and hence 
improve the utility), we make the following observation. We calculate the fraction of 
pairwise absolute differences taking a specific value (between the attributes) and show the 
results in Table II. Clearly, in each class, a large portion of the absolute differences are 0 and 
1, and only a small fraction of them have difference larger than 1. Thus, in the experiments, 
we consider sensitivity 0 = 1 with the assumption that the different entries in a pair of 
neighboring nursery databases can change by at most by 1, otherwise, it introduces a rare 
event (e.g., outliers that occurs with very low probability) in the database. Our approach to 
control the sensitivity is similar to the restricted sensitivity [5] (that calculates sensitivity 
on a restricted subset of the database, instead of all possible data records) and smooth 
sensitivity [28] (which smooths the data records after partitioning them into non-overlapping 
groups). Note that it has been widely recognized that rare events or outliers consume extra 
privacy budget, and this is a common problem in differentially-private database queries [12], 
[39], [15], [32]. Controlling local and global sensitivity in differential privacy is a separate 
topic, and it is beyond the scope of this paper.

Note that for the Census database, we do not control its sensitivity, because the absolute 
differences between attributes of individuals are more evenly distributed. Since the 
maximum integer representation of a data entry in the Census database is 15, the sensitivity 
is 0 = 15, and hence, the proposed mechanism needs to fingerprint . = log2 15 + 1 = 4 least 
significant bits of each data entry.

Post-processing.—After fingerprinting a database ' , some entries may have integer 
representations that are outside the domain of the original database. For example, in the 
Nursery school database, the maximum integer is 4, i.e., “100”, after fingerprinting, it may 
become 5, i.e., “101”, which is not in the original database domain. Thus, we also need to 
post-process the resulting database ℳ '  to eliminate entries that are not in the original 
domain. Otherwise, the database recipient can understand that these entries are changed 
due to fingerprinting. Due to the post-processing immunity property of differential privacy, 
there is no privacy degradation in this step. Even though the post-processing may alter some 
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fingerprinted entries, it has negligible impact on the fingerprint robustness, because it only 
changes a small fraction of fingerprinted entries, and in the fingerprint extraction phase, 
we determine the value of each bit in the fingerprint by counting how many times it has 
been extracted as 1 or 0 followed by majority voting, i.e., each bit of the fingerprint is 
recovered by the majority voting on the positions marked by this fingerprint bit (i.e., Line 12 
in Algorithm 2. Generally, post-processing steps are able to make a fingerprinted database 
meet the domain requirements so as to achieve better utility in downstream applications. 
For example, post-processing steps can let a fingerprinted database preserve the column- 
and row-wise data correlations and the covariance matrix of the database [26], which are 
frequently utilized to establish predictive models, e.g., regression and probability fitting.

Baseline Methods.—We compare our mechanism (that simultaneously achieves privacy 
and liability guarantees) with six baselines summarized in Table III. In particular, baselines 
(i), (ii), and (iii) are naïve two-step approaches. Baseline (iv), discussed in Section II, is 
a one-step solution that brings together data sanitization and fingerprinting. Baselines (v) 
and (vi) achieve data perturbation and fingerprinting only, respectively. In baselines (i) and 
(v), data perturbation is achieved via local DP. In baseline (ii), data synthesis is obtained 
using DPSyn [9], [33], which generates differentially-private version of given databases by 
clustering similar attributes, and then perturbing the cell counts of the joint histograms for 
each cluster. The fingerprinting scheme used in all baselines (i), (ii), (iii), and (vi) is the 
database fingerprinting scheme developed in [35].

Experiment Outline.—To show the performance of our proposed mechanism, we conduct 
extensive experiments focusing on fingerprint robustness and database utility. This is 
because we cannot directly compare the privacy guarantees with the baselines, as the 
privacy definitions vary for different baselines; our mechanism uses entry-level DP, whereas 
baseline (i) and (v), (iii), and (ii) and (iv), respectively, adopt local DP, "-anonymity, and 
conventional centralized DP. To enhance readability, we lists the considered experiments as 
follows.

In Section VII-B1, we compare the fingerprint robustness with all baselines (except for 
(v)) under the following scenarios: baseline (i) changes the same amount of data with our 
mechanism via LDP perturbation using the same ! with us and fingerprinting via [35]; 
baseline (vi) directly changes the same amount of data with our mechanism; baselines (ii) 
and (iv) use the same ! values with us; and baseline (iii) adopts 2-anonymity. We do not 
compare with baseline (v) because it does not provide fingerprint robustness. We cannot 
require baselines (ii), (iii), and (iv) change the same amount of data entries with us because 
(ii) adopts DPSyn to synthesize a completely new database using the probabilistic generative 
model, (iii) generalizes a significant amount of data entries to achieve 2-anonymity, and (v) 
can change all data using continuous Gaussian noise.

In Section VII-B2, we compare database utilities achieved by all methods when: baselines 
(i), (ii), (iv), and (v) adopts the same ! values with us; baseline (iii) adopts 2-anonymity; and 
baseline (vi) changes the same amount of data entries with our mechanism. Note that same !
does not lead to the same privacy guarantee due to different privacy definitions (as discussed 
before).
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In section VII-C, we study the cumulative privacy loss when our mechanism is repeatedly 
applied to share databases with different SPs. We do not compare with other baselines, 
because our mechanism is the only one that applies Advanced Composition Theorem via 
SVT and the others just apply simple (linear) composition, so our mechanism is guaranteed 
to reduce cumulative privacy loss by an order of . 6  if the database is shared 6 times [16].

B. Evaluations for One-time Sharing
We first consider that the database owner only releases the database with one SP. Thus, only 
Algorithm 1 is invoked.

1) Fingerprint Robustness: Among common attacks against database fingerprinting 
mechanisms (i.e., random flipping attack, subset attack, and superset attack [35]), random 
flipping attack is shown to be the most powerful one [35], [50]. This is because the flipped 
data entries might create a fingerprint pattern that misleads the database owner during the 
fingerprint extraction phase [35], [51]. Thus, we investigate the fingerprint robustness of 
the proposed mechanism and the baselines against this attack. In Section VIII, we discuss 
how to make the proposed mechanism robust against more sophisticated correlation attacks 
[26]. In particular, in favor of the malicious SP, we let the malicious SP randomly flip 50% 
of the bit positions in its received copy of the database. Then, we measure the fingerprint 
robustness using the number of bit matches between the malicious SP’s fingerprint and the 
one extracted from ' (the compromised database).

As per the experiment outline discussed in Section VII-A, for the Nursery database we 
select ! from 1,2,  ⋯ , 7 . In Figure 4, we scatter the values of accuracy and number 
of matched fingerprint bits obtained by all methods. Note that higher accuracy suggests 
higher utility of the obtained databases, and higher number of matched bits suggest higher 
robustness against 50% random flipping. Clearly, the databases obtained by our mechanism 
(represented by red dots) achieve the highest robustness given the same database accuracy 
and the highest accuracy given the same robustness. In particular, we outperform baseline 
(i), because the inserted noises (marks) generated by our mechanism serve the purposes 
of privacy protection and fingerprinting simultaneously, whereas (i) inserts noises twice to 
protect privacy and perform fingerprinting separately. We achieve higher robustness than 
baseline (vi), as (vi) only fingerprints one attribute for each selected row, and our mechanism 
can fingerprint multiple attributes. Baseline (iii) leads to lower database accuracy, because 
to achieve 2-anonymity, it needs to change all entries in some columns due to attributes 
generalization. Baselines (ii) and (iv) result in the lowest database accuracy, because they 
synthesize a new database and add continuous Gaussian noise to the original database, 
respectively. It is noteworthy that although baseline (iv) is a one-step solution like ours, it 
has the lowest robustness, because it needs to use learning algorithms to fit the inserted 
Gaussian noise, re-calculate the corresponding variance, and then recover the inserted 
fingerprints. Thus, when a large portion of data entries have been compromised, the obtained 
variance is highly inaccurate, so does the recovered fingerprints. For example, when ! ≥ 5, 
baseline (iv) can only achieve less than 50 fingerprint bit matches (out of 128), which 
suggests that the malicious SP can avoid being accused. This has been empirically validate 
in [26]: as long as a malicious SP can compromise more than half of the fingerprint bits 
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(e.g., achieving less than 64 matches out of 128), the database owner will accuse another 
innocent SP with large probability. In contrast, when ! ≥ 5, our mechanism can still achieve 
more than 64 bit matches, which suggests that the malicious SP will end up being uniquely 
identifiable.

For the Census database, we select ! from 6,7,  ⋯ , 12  to achieve high accuracy for all 
the methods. The comparison of fingerprint robustness is shown in Figure 5. Similar to 
the Nursery database, our mechanism also outperforms all baselines in terms of database 
accuracy and fingerprint robustness.

2) Utility of the Shared Database: To show the utility guarantees of the proposed 
entry-level DP fingerprint mechanism, we conduct the comparison by considering specific 
applications, where we use fingerprinted databases (ours and the baselines) to do linear 
SVM classification and principal component analysis (PCA). Please refer to [21] for the 
experiments considering task-independent comparison, e.g., change of variance of attributes 
and the accuracy of SQL queries.

To perform classification, we adopt a multi-class support vector machine (SVM) classifier 
and use 65% of data records for training and the rest for testing. We evaluate the utility 
of various fingerprinted databases by comparing the fingerprinted testing accuracy (i.e., 
SVM classifier trained on fingerprinted training data and then tested on the original testing 
data) with the original testing accuracy (i.e., SVM classifier trained on the original training 
data and then tested on the original testing data). Thus, the smaller the difference between 
fingerprinted testing accuracy and original testing accuracy (i.e., accuracy loss), the higher 
the utility.

The utility for PCA is defined using the total deviation, TTLDEV = ∑) = 1
( /) − 0)

(10) , here (  is 
the number of attributes ((  is 8 and 13 for Nursery and Census databases, respectively), 1
is the empirical covariance matrix of the original (non-fingerprinted) database, /) values are 
the eigenvalues of 1, and 0) vectors are the eigenvectors of the empirical covariance matrix 
of fingerprinted database. TTLDEV measures the deviation of the variance (of the fingerprinted 
database) from /) in the direction of the )th component of 1. The smaller TTLDEV is, the 
higher the utility.

In Figure 6 (a) and (b) by varying ! from 0.25 to 2, we compare the utilities for SVM 
and PCA achieved by our mechanism and all baselines on the Nursery database. Clearly, 
our mechanism (red lines with pentagrams) achieves higher database utilities in both 
applications. Particularly, for baseline (i), a large portion of data entries are substituted with 
other values with high probability when ! is small, which leads to inaccurate task-specific 
applications, and fingerprinting after LDP perturbation further compromises the utility. 
Baseline (ii) can outperform baseline (i), because DPSyn generates the synthetic database by 
sampling from the noisy marginals of the clustered attributes and also involves techniques 
proposed in [43] to constrain the noisy marginals to be consistent with one another [9]. 
However, baseline (ii) still achieves lower utility compared with our mechanism, because 
the synthetic database is further distorted by fingerprint insertion. Baseline (iii) achieves the 
lowest utility in all two-step approaches, because it needs to modify a lager portion of data 
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entries to achieve 2-anonymity. Thus, two-step approaches are highly suboptimal. Although 
baseline (iv) is a one-step approach, it has the worst utility among all the mechanisms, 
because it introduces Gaussian noises that completely overwhelm the original data. Baseline 
(v) leads to higher utility than baseline (i), because it does not involve fingerprinting. 
Although baseline (vi) has the similar performance with us, it cannot provide any privacy 
guarantees.

The same experiment results using the Census database when ! varies from 6 to 9 are 
shown in Figure 6 (c) and (d). As discussed in Section VII-B1, we consider high ! values to 
achieve high utility for all mechanisms. Clearly, our proposed mechanism still outperforms 
all baselines in terms of both accuracy loss of SVM and total deviation of PCA. Note that 
the accuracy loss on Census data is much less than the Nursery data, because Census data 
is highly unbalanced. The total deviation is much higher for the Census data, because it has 
more columns and large value of sensitivity, which lead to a large Frobenius norm of the 
empirical covariance matrix.4

C. Evaluations for Multiple Sharing
Next, we consider the scenario where at most 100 SPs query the entire database over time in 
a sequential order (i.e., 6 = 100). As discussed in Section VI, the database owner performs 
the noisy comparison ( ℳ)

= ' − ' 1, 1 + ') ≥ & + (), where &  is the fingerprint density, ')

and () are Laplace noises) to determine the proper internal IDs for the SPs to generate 
the fingerprinted databases. In the experiment, we set & = 1/2 + 1/ 12 09B.. The reason 
is that according to Corollary 1, the expected value of ∥ ℳ)

= ' − ' ∥1,1 falls in 0, 09B( . 
Since we do not have any assumption on the database, and the pseudorandom number 
generator K generates each random number with equal probability, we approximately model 
∥ ℳ)

= ' − ' ∥1,1 as a uniformly distributed random variable in the range of 0, 09B( . Then, 
its mean and standard deviation are 09B( /2 and 09B. / 12, respectively.

Moreover, we consider the cumulative privacy loss as !0 = 40 and 50 = 2 * 10−3. If !0 < 40
and the database owner still wants to generate fingerprinted databases with the identical 
privacy and fingerprint robustness guarantees as when !0 = 40, it will end up sharing its 
database with fewer number of SPs. To achieve a decent database utility, we set the privacy 
budget to generate the entry-level differentially-private fingerprinted database as ! = 0.5. 
Then, by solving the privacy budget allocation problem (Section VI-B) numerically, we have 
!2 + !3 = 0.002 approximately.

We first investigate the impact of privacy allocation between !2 and !3 on the total number of 
trials to determine the proper internal IDs for all 100 SPs. We take the Nursery database as 
an example, vary the ratio between !2 and !3 from 9 : 1 to 1 : 1, and show the results in Table 
IV. We observe that as the difference between !2 and !3 decreases (their ratio decreases), 
Algorithm 4 terminates with fewer internal ID generation trials. Especially, when !2:!3 = 9:1, 
81 (181 instead of 100) additional trials are made, whereas, when !2:!3 = 1:1, only 56 (156 

4We do not fine-tune the training parameters in SVM and PCA algorithms, because it is out of the scope of this paper.
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instead of 100) additional trials are made. Since the cumulative privacy loss is identical for 
the different total number of trials reported in Table IV, this suggests that when !2 = !3, the 
internal ID generation efficiency is higher from the perspective of the data recipients (i.e., 
the probability that the database owner can generate a proper internal ID for an SP in 1 or 2 
trials increases). This finding validates our suggestion of equally dividing the privacy budget 
between !2 and !3 to reduce the number of trials to generate proper internal IDs. Besides, we 
also would like to highlight that by adopting SVT, we significantly reduce the cumulative 
privacy loss, because otherwise, the privacy loss will be ! + !2 + !3 × Total No .  of trials . For 
instance, when Total No. of trials = 181, the privacy would be ! = 0.5 + 0.02 × 181 = 90.862
without SVT (compared to a cumulative privacy loss of 40 with SVT).

VIII. Discussion
Our work is a first step in uniting provable privacy guarantee and database fingerprinting. 
We believe that it will draw attention to other challenges and urgent research problems, 
which we plan to investigate in the future.

Mitigation of correlation attacks.
Ji et al. [26] have developed a mitigation technique to alleviate the correlation attacks against 
database fingerprinting. Their technique modifies a fingerprinted database (via optimal 
transport technique) to make sure that it has similar column- and row-wise joint distributions 
with the original database. Since their technique only changes the non-fingerprinted data 
entries and it can be applied as a post-processing step after any fingerprinting mechanism, 
it can also be utilized following our mechanism to defend against the correlation attacks. In 
case of such an integration, our privacy guarantee will still hold because of the immunity 
property of differential privacy for post-processing [16].

Defending against collusion attacks.
Another widely studied threat is the collusion attack where multiple malicious SPs ally 
together to generate a pirated database from their unique fingerprinted copies with the hope 
that none of them will be traced back. Several works have proposed collusion-resistant 
fingerprinting mechanisms in the literature [7], [6], [48], [42]. To develop a entry-level DP 
and collusion-resistant fingerprinting mechanism, one solution is to replace the fingerprint 
generation step (i.e., Line 3 of Algorithm 1) with the Boneh-Shaw (BS) codes [6] and decide 
9 (the probability of changing one insignificant bit of an entry) based on ! and the number of 
1’s in the BS codeword. We will explore this extension in future work.

Two-step solutions versus our mechanism.
Making the two-step solutions outperform our mechanism is still an open problem. Since 
currently, our mechanism treats each attribute equally sensitive. One potential approach is 
to take advantage of the semantic meaning of the attributes and then inject varying amounts 
of noise and insert different density of fingerprints to various portions of the database 
based on their sensitive level (e.g., some attributes like salary or health conditions may be 
more sensitive or private than others). However, this two-step approach will require domain 
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experts on the database and can involve extra data analysis before it is subject to privacy 
protection and fingerprinting.

IX. Conclusions
In this paper, we have proposed a novel mechanism that unites provable privacy and 
database fingerprinting for sharing relational databases. We first devised a bit-level random 
response scheme to achieve !-entry-level DP guarantee for the entire database, and then 
developed a concrete entry-level DP database fingerprinting mechanism on top of it. We 
have also provided the closed form expressions to characterize the connections between 
database utility, privacy protection, and fingerprint robustness. Finally, we developed a 
SVT-based solution to share entry-level DP fingerprinted databases with multiple recipients, 
and at the same time, control the cumulative privacy loss. Experimental results on two 
real relational databases show that we can achieve higher fingerprint robustness than a 
state-of-the-art database fingerprinting mechanism and achieve higher database utility than 
other baselines.
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Appendix A

Proof of Proposition 2
Proof: The fingerprinting mechanism only changes the last . bits of selected data entries, 
thus, we have

R *) $ − *) $

= R ∑
" = 1

.
*) $, " 2*) $, " − 1 − *) $, " 2*) $, " − 1

= R ∑
" = 1

.
*) $, " ⊕ : 2*) $, " ⊕ : − 1 − *) $, " 2*) $, " − 1

= R ∑
" = 1

.
*) $, " + : − 2*) $, " : 2*) $, " + : − 2*) $, " : − 1 − *) $, " 2*) $, " − 1

= ∑
" = 1

.
1 − *) $, " 2−*) $, " − *) $, " 2*) $, " − 1 9

= ∑
" = 1

.
*) $, " 2*) $, " − 1 − *) $, " 2*) $, " − 1 9 .

Since ∑" = 1
. *) $, " 2*) $, " − 1 is the decimal representation of the complement of the last .

bits of *), and according to Definition 3, ∑" = 1
. *) $, " 2*) $, " − 1 − *) $, " 2*) $, " − 1  falls in the 

range of − 0, 0 , so its absolute value falls in 0, 0 , which completes the proof. ■
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Appendix B

Proof of Proposition 3

Proof: We let binary vector "$ ∈ 0,1 . (or "T ∈ 0,1 .) represent the . mark bits embedded 
to entries of the $th (or Tth) attribute. ∥ ⋅ ∥0 denotes the #0 norm, which counts the number of 
nonzero entries in a vector. S and U are the binary representations of S and U, respectively. 
Then, we have

Pr ' $ = S, ' T = U
= ∑

"$ ∈ 0, 1 .
∑

"T ∈ 0, 1 .
Pr ' $ = S 2 ⊕ "$, ' T = U 2 ⊕ "T × 9 "$ 0(1 − 9). − "$ 09 "T 0(1 − 9). − "T 0

= Pr ' $ = S 2 , ' T = U 2 (1 − 9)2. + ∑"$ ∈ 0, 1 . /2 ∑"T ∈ 0, 1 . /2Pr '[$] = S[2] ⊕ "$, '[T] = U[2] ⊕ "T

× 9 "$ 0(1 − 9). − "$ 09 "T 0(1 − 9). − "T 0 .

By denoting the second summand in the above equation as ♢, we have

♢ ≤ Pr
max

' $ , ' T × ∑
"$ ∈ 0, 1 . /0

∑
"T ∈ 0, 1 . /0

9 "$ 0(1 − 9). − "$ 09 "T 0(1 − 9). − "T 0

= Pr
max

' $ , ' T × × ∑
"$ ∈ 0, 1 . /0

9 "$ 0(1 − 9). − "$ 0 × ∑
"T ∈ 0, 1 . /0

9 "T 0(1 − 9). − "T 0

Pr
max

' $ , ' T 1 − 1 − 9 . 2 .

Similarly, we also have ♢ ≥ Prmin ' $ , ' T 1 − (1 − 9). 2, thus, the proof is completed. ■

Appendix C

Analysis of + rbst_rnd  in Random Bit Flipping Attack
Note that a rational database owner will not change more than 50% of the bit positions in a 
database, because it will significantly compromise the database utility, and a malicious SP 
can flip the bits back and then launch an attack.

First, we show how to determine D (number of bit matches with the malicious SP’s 
fingerprint) given 6 (number of times a database can be shared), and J (length of 
fingerprinting string). If the database owner shares its database with 6 different SPs. 
To make the extracted fingerprint have the most bit matches with the malicious SP, it 
requires that the probability of having more than D bit matches is higher than 1/6, i.e., 
J
D

1
2

D 1
2

J − D ≥ 1
6 , which can be solved analytically.

One can easily check that the closed form expression of + rbst_rnd  in terms of 9 is
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+ rbst_rnd  = ∑, = 1
B.( ∑W# ∈ Y, # ∈ [1, J] ∑ℒD ∏# ∈ ℒD 9#

1
J

W# B.(
, (29),(1 − 29)B.( − ,,

which can be obtained by marginalizing all instances of malicious SP’s fingerprint, all 
collections of D fingerprint bits of it, and the number of fingerprinted bits ,. To show that 
higher 9 leads to more robustness against the random bit flipping attack, it is equivalent 
to show that + rbst_rnd  is monotonically increasing with 9(0 < 9 < 0.5). To this end, we define 

function 8 , = ∑W# ∈ Y, # ∈ 1, J ∑ℒD ∏# ∈ ℒD 9#
1
J

W# (, is embedded as a parameter of set Y, 

i.e., Y = W1, W2,  ⋯ , WJ > 0 ∣ ∑# = 1
J W# = , . Then, + rbst_rnd  represents the expected value of 

8 , , , Binomial B.( , 29 . As a result, it is sufficient to show that 8 ,  is monotonically 

increasing with ,. First, we observe that 9# (see Section V-C1, 9# = ∑X = 0

W#
2 W#

X Vrnd 
X 1 − Vrnd 

W# − X) 

is the cumulative distribution function of a binomial distribution function, which is 
monotonically increasing with W#, thus the multiplication of all 9# ‘s, i.e., ∏# ∈ ℒD 9# is 
increasing with , = ∑# W#. Second, it is easy to check that the carnality of Y is ,!4 W, J , 
where 4 W, J  represents Stirling number of the second kind (i.e., the number of ways 
to partition a set of W objects into J nonempty subsets) [19]. Since ! grows faster then 
JW# as , increases (in real-life applications, we have , ≫ J ≫ ln B), we can conclude 
that 8 ,  is monotonically increasing with , (the number of fingerprinted bit positions). 
When 0 < 9 < 0.5, + rbst_rnd  can be characterized as the summation of monotonically increasing 
functions with respect to , and 9, which suggests that the higher the value of 9, the more 
robust of the proposed fingerprinting mechanism is against the random bit flipping attack.

Appendix D

Analysis of $ in Correlation Attack

As per proposition 3, Pr ' $ = S, ' T = U − Pr ' $ = S, ' T = U  falls 

in the range of 0, max H , : , where H and :, 

respectively, are H = Pr ' $ = S, ' T = U (1 − 9)2. − 1 + Prmin ' $ , ' T 1 − (1 − 9). 2, 

: = Pr ' $ = S, ' T = U (1 − 9)2. − 1 + Prmax ' $ , ' T 1 − (1 − 9). 2. Without any 

assumption on the database, we consider each of the point 
" (threshold) in 0, max H , :  has equal probability density 

[26]. Thus, $ =
1 − ∏T ∈ [1, ( ], T ≠ $ ∏U

"
max H , :

1 − (1 − 9). Pr('[$] = S)
. Let / = 1 − (1 − 9). ∈ 0, 1 − 1

2
.

, 

then, we have H = Pr ' $ = S, ' T = U (1 − 9)2. + 1 −/ + Prmin ' $ , ' T /2, 

: = Pr ' $ = S, ' T = U (1 − 9)2. + 1 −/ + Prmax ' $ , ' T /2. Thus, 

$ =
1 − "

. /
∑T ∈ 1, ( , T ≠ $ "T

. / , and "T is the number of possible instances of attribute T. Since 
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both the numerator and denominator increases with 9, but the denominator grows with a 
much higher rate, $ decreases as 9 increases.
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Fig. 1. 
System model. All shared copies of the database meet entry-level differential privacy, 
fingerprint robustness, and database utility requirements.
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Fig. 2. 
An example of bit-wise randomizing last . = 2 insignificant bits of each entry to achieve 
entry-level DP on database ' with sensitivity 0 = 3.
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Fig. 3. 
Relationship among 9 (probability of changing one insignificant bit of an entry), privacy 
guarantee ! , fingerprint robustness, and database utility.
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Fig. 4. 
Robustness comparison of fingerprinted Nursery databases.

Ji et al. Page 39

NDDS Symp. Author manuscript; available in PMC 2023 June 02.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Fig. 5. 
Robustness comparison of fingerprinted Census databases.
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Fig. 6. 
Database utility in task-specific applications.
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Table I.

Frequently used notations in the paper.

notations descriptions

' original database

'′ a neighboring database of '
ℳ ' fingerprinted database

' leaked (pirated) database

*) ) th row of '
*) $, " the "th insignificant bit of the $th attribute of *)

9 the probability of changing an insignificant bit in an entry in the database

: mark bit to fingerprint a bit position : Bernoulli(9)
!, !2, !3 privacy budgets

0 database sensitivity
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Table II.

Fraction of pairwise absolute differences between instances of attributes.

abs. diff. 0 1 2 3 4

not_recom 40% 46.79% 7.08% 5.12% 1%

recommend 93.75% 6.25% 0 0 0

very_recom 35.10% 49.71% 10.66% 4.39% 0.13%

priority 36.04% 44.65% 11.31% 5.07% 2.93%

spec_prior 50.50% 37.19% 9.01% 3.29% 0
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Table III.

Comparing baselines considered in the experiments. Note that baselines (i)-(iv) provide both privacy and 
liability guarantees during database sharing. Baseline (v) only provides privacy guarantee (i.e., no fingerprint 
robustness), and baseline (vi) only provides fingerprint robustness (i.e., no privacy guarantee).

baseline (i) data perturbation followed by fingerprinting two-step

baseline (ii) data synthesis followed by fingerprinting two-step

baseline (iii) "-anonymity-based fingerprinting two-step

baseline (iv) privacy-protection fingerprinting via Gaussian noise [20] one-step

baseline (v) data perturbation only via local differential privacy no liability

baseline (vi) fingerprinting only via mechanism developed in [35] no privacy
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Table IV.

Impact of the ratio between !2 and !3 on the total number of internal ID generation trials for 100 SPs.

!2:!3 9 : 1 7 : 1 5 : 1 3 : 1 1 : 1

No. of trials 181 177 173 165 156
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