
Linear Algebra and its Applications 668 (2023) 28–50
Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

Orbit-injective covariant quantum channels

Kai Liu a, Chuangxun Cheng b, Deguang Han a,∗,1

a Department of Mathematics, University of Central Florida, Orlando, FL 32816, 
United States of America
b Department of Mathematics, Nanjing University, Nanjing 210093, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 August 2022
Accepted 17 March 2023
Available online 22 March 2023
Submitted by C.-K. Li

MSC:
15A63
20C33
42C15
46C05
47B06
81R05

Keywords:
Quantum channels
Covariant quantum channels
Completely positive maps
Frames
Group representations
Orbit invariant and orbit injective 
quantum channels

The purpose of this paper is to investigate the quantum 
channels that preserve and also separate the orbits of pure 
states under the action of a group unitary representation 
π. Such a quantum channel will be called π-orbit injective. 
We prove that for finite group and complex Hilbert space 
cases, such a channel necessarily separates all the pure states. 
However, this is no longer true for quantum channels acting on 
real Hilbert spaces, or quantum channels acting on complex 
Hilbert spaces with (infinite) compact group representations. 
In both cases, we obtain necessary and/or sufficient conditions 
under which the quantum channel is orbit injective. These 
conditions are given in terms of the so called property (H) of 
characters (more generally, irreducible representations) of the 
group, and characterizations of property (H) are presented for 
real and complex valued multiplicative characters.

© 2023 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: kailiu@knights.ucf.edu (K. Liu), cxcheng@nju.edu.cn (C. Cheng), 

deguang.han@ucf.edu (D. Han).
1 Deguang Han is partially supported by the NSF grant DMS-2105038.
https://doi.org/10.1016/j.laa.2023.03.018
0024-3795/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2023.03.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2023.03.018&domain=pdf
mailto:kailiu@knights.ucf.edu
mailto:cxcheng@nju.edu.cn
mailto:deguang.han@ucf.edu
https://doi.org/10.1016/j.laa.2023.03.018


K. Liu et al. / Linear Algebra and its Applications 668 (2023) 28–50 29
1. Preliminaries

Quantum channels are essential components in quantum communications and quan-
tum computings. They also have a wide range of applications such as quantum cryp-
tography etc. Given two quantum systems H and K which are usually considered as 
finite dimensional Hilbert spaces. A quantum channel Φ is a completely positive trace-
preserving (CPTP for short) linear map from B(H) and B(K), and (π, σ)-covariant 
quantum channel with respect to two unitary representations π and σ of a group G is 
a quantum channel that satisfies the condition Φ(π(g)Tπ(g−1)) = σ(g)Φ(T )σ(g−1) for 
every T ∈ B(H) and every g ∈ G. Covariant quantum channels form important class 
of channels since many challenging problems in quantum information theory are usu-
ally more tractable when certain symmetries are imposed on the channel. We refer to 
for example [2,6,8–11,19,22,24,25,28] for some recent progresses on theoretical studies of 
covariant quantum channels. In particular, in their recent work [22], M. Mozrzymas, M. 
Studzi’nski and N. Datta investigated the structure of covariant quantum channels with 
respect to an irreducible representation π for a finite group G, and obtained spectral 
decomposition of such a covariant quantum channels in terms of representation charac-
teristics of the group G.

If σ(g) = IK is the trivial representation, where IK is the identity map on K, a 
(π, IK)-covariant quantum channel preserves the π-orbit invariant of any pure state 
ρx := x ⊗ x ∈ B(H), i.e.,

Φ(ρx) = Φ(π(g)ρxπ(g−1))

for all g ∈ G and x ∈ H. If we view each orbit [ρx]π := {π(g)ρxπ(g−1) : g ∈ G} as a 
class of pure states of interests, then naturally we would like to know under what condi-
tion does a π-orbit invariant quantum channel separate these orbits, i.e., the condition 
Φ(ρx) = Φ(ρy) implies that [ρy]π = [ρx]π. Such a quantum channel will be called orbit 
injective for pure states. This type of channels allow a quantum channel to map different 
symmetric related pure states to different output states that can be used to distinguish 
input pure states by their symmetries. The concept of group-invariant and orbit injective 
maps also recently finds important applications on max filtering in machine learning cf.
[1,20,21].

The purpose of this paper is to obtain necessary and/or sufficient conditions for orbit 
injective quantum channels. The theory of quantum information could have some con-
ceptual differences based on real and complex Hilbert spaces cf. [3,26]. In our case, we do 
have some subtle differences between finite and infinite groups, and between complex and 
real Hilbert space representations. Therefore for the purpose of clarity we will first treat 
the finite group case in section 2 and then briefly discuss the case for complex Hilbert 
space representations of (infinite) compact groups in section 3. Almost all of our charac-
terizations involve a special family of irreducible representations whose characterizations 
will be discussed in the last section of the paper.
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Here is a list of standard notations we will use in this paper:

• H, K – finite dimensional Hilbert spaces over C or R, B(H, K) – the space of all the 
linear operators from H to K, write B(H) = B(H, K) if H = K. In the case that 
H = Cn and K = Cm, B(H, K) = Mm×n(C) and we use Mn(C) for the case when 
m = n. We use IH (or I if no confusion from the context) to denote the identity 
operator on H.

• U(n) or U(H) – the group of unitary operators on an n-dimensional complex Hilbert 
space.

• For a subset A of B(H), the commutant A′ = {T ∈ B(H) : TA = AT, ∀A ∈ A}.
• Let x ∈ H, y ∈ K. We will use ρx,y (write ρx if x = y) or x ⊗y to denote the rank-one 

operator defined by z �→ 〈z, y〉x for z ∈ K. Occasionally, x ⊗ y is also used to denote 
the tensor product in H ⊗ K and the readers should be able to tell from the context.

• Let π be a unitary representation of a group G, we use πm to denote the representa-
tion π ⊕ ... ⊕ π (m-copies). For one-dimensional unitary representation π of a group 
G, we also write π = χ and πm = χIm, where χ = tr(π(g)) is the corresponding 
multiplicative character.

• Let π be a unitary representation of a group G acting on a Hilbert space H and 
x ∈ H. We use [ρx]π to denote the orbit {π(g)ρxπ(g−1) : g ∈ G} of ρx.

1.1. Unitary representations [23,27,29]

For a compact group G, a continuous function π : G → U(H) is called a (finite dimen-
sional) unitary representation if π(gh) = π(g)π(h). A subspace V of H is called invariant 
if π(g)x ∈ V for all g ∈ G and x ∈ V . A representation π is called irreducible if {0} and 
H are the only invariant subspaces. It is well-known that any unitary representation π
on a finite-dimensional Hilbert space H is the direct sum of irreducible representations. 
Given a pair of unitary representation (π, Hπ) and (σ, Hσ). Intertwining space is the 
space

HomG(π, σ) = {A ∈ B(Hσ, Hπ) : Aπ(g) = σ(g)A, ∀g ∈ G},

where each element in this space is an intertwining operator. It is well-known that π and 
σ are unitarily equivalent if and only if HomG(π, σ) contains a unitary matrix A (hence 
dim Hπ = dim Hσ).

We remark that while all the results in this paper are presented for the case that 
π is a unitary representation, it is straightforward to check that all the results remain 
valid for projective unitary representations of G: A projective unitary representation π
for a group G is a mapping g �→ π(g) from G into the group U(H) such that the map 
g → αg is a group homomorphism of G into the automorphism group of the operator 
algebra B(H), where αg(T ) = π(g)Tπ(g)∗. Or equivalently, there is a 2-cocycle μ of G
such that π(g)π(h) = μ(g, h)π(gh). Recall that μ : G × G→T is a 2-cocycle if it satisfies 
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(i) μ(g1, g2g3)μ(g2, g3) = μ(g1g2, g3)μ(g1, g2) for all g1, g2, g3 ∈ G, and (ii) μ(g, e) =
μ(e, g) = 1 for all g ∈ G, where e denotes the group unit of G and T denotes the unit 
circle.

1.2. Covariant quantum channels

A quantum channel is a model for a particular snapshot of the time evolution of a 
density matrix, and especially for the evolution of pure into mixed states. Let H, K
be finite-dimensional Hilbert spaces. A quantum channel is a completely positive trace-
preserving (CPTP for short) linear map Φ : B(H) → B(K), and a quantum channel in 
the Heisenberg picture is described by its adjoint map. By the famous theorem of Kraus 
(1971), a CP map Φ from B(H) to B(K) has a simple Kraus representation:

Φ(T ) =
r∑

i=1
AiTA∗

i , ∀T ∈ B(H)

for some operators A1, ..., Ar ∈ B(H, K). In this representation, A1, ..., Ar are also re-
ferred to as the Kraus representation operators of the CP map Φ. Clearly, such a map 
Φ is trace-preserving if and only if 

∑r
i=1 A∗

i Ai = IH , and it is unital (i.e., Φ(IH) = IK) 
if and only if 

∑r
i=1 AiA

∗
i = IK .

The Choi rank of a CP map Φ (denoted by Cr(Φ)) is defined to be the smallest r
such that Φ(T ) =

∑r
j=1 AjTA∗

j for some Aj ∈ B(H, K). Let {ei}n
i=1 be a basis of H

and Eij be the rank-one operator ei ⊗ ej . Then the Choi-Jamiolkowski matrix CΦ is the 
linear operator on H ⊗ K defined by

CΦ =
n∑

i,j=1
Eij ⊗ Φ(Eij)

In the case that H = Cn, K = Cm and {ei}n
i=1 is the standard orthonormal basis, 

CΦ = [Φ(ei ⊗ ej)]n×n. The following are well known (cf. [4,5,7,18]).

Theorem 1.1. (Choi’s first theorem) Let Φ : B(H) → B(K) be a linear map. Then Φ is 
CP if and only if CΦ is positive. Moreover, Cr(Φ) = rank(CΦ) if Φ is a CP map.

Theorem 1.2. (Choi’s second theorem) Suppose that Φ : Md(C) → Mk(C) is com-
pletely positive and Cr(Φ) = r. Write Φ(T ) =

∑r
j=1 AjTA∗

j with Aj ∈ Mk×d(C). 
Let Bj ∈ Mk×d(C). Then Φ(T ) =

∑m
j=1 BjTB∗

j if and only if there exists matrix 
U = (uij) ∈ Mm×r(C) such that U∗U = Ir and Ai =

∑r
j=1 uijBj for i = 1, ..., m

and span{B1, ..., Bm} = span{A1, ..., Ar}.

The following group representation induced quantum channel plays an essential role 
in our investigation: Let G be a compact group and let μ be the unique Haar measure 
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such that μ(G) = 1. In the case that G is finite, then μ is the normalized counting 
measure. Given a pair of continuous unitary representations π, σ on Hilbert spaces H
and K, respectively. We define

Φπ,σ(T ) =
∫
G

π(g)Tσ(g−1)dμ(g), T ∈ B(H),

and write Φπ = Φπ,π. Clearly, if G is a finite group then

Φπ(T ) = 1
|G|

∑
g∈G

π(g)Tπ(g−1).

We have the following properties:
(i) Φπ is a quantum channel, and range(Φπ) = π(G)′.
(ii) Φπ(T ) = 1

dim H tr(T )IH if and only if π is irreducible.
(iii) Φπ,σ = 0 if π and σ are inequivalent irreducible unitary representations.
(iv) Φπ(T ) = T if π = χIH for some multiplicative character χ.

Definition 1.1. Let π and σ be unitary representations of a group G on Cn and Cm, 
respectively. We say that Φ is (π, σ)-covariant if

Φ(π(g)Tπ(g−1)) = σ(g)Φ(T )σ(g−1)

holds for every g ∈ G.

There is a natural way, called channel twirling, to produce a (π, σ)-covariant quan-
tum channel from any given quantum channel. Let Φ : B(H) → B(K) be a quantum 
channel, and π, σ be two continuous unitary representations of a group G on H and K, 
respectively. Then

Ψ(T ) =
∫
G

σ(g−1)Φ(π(g)Tπ(g−1))σ(g)dμ(g)

is a (π, σ)-covariant quantum channel. Again

Ψ(T ) = 1
|G|

∑
g∈G

σ(g−1)Φ(π(g)Tπ(g−1))σ(g)

if G is finite.

Remark 1.1. (i) Since Φ(T ) = Ψ(T ) if Φ is (π, σ)-covariant, we immediately get that a 
quantum channel Φ is (π, σ)-covariant if and only if it is obtained by channel twirling.

(ii) If σ(g) = I for every g ∈ G, then Ψ(T ) = Φ(
∫

π(g)Tπ(g−1)dμ(g)) = Φ(Φπ(T )).

G



K. Liu et al. / Linear Algebra and its Applications 668 (2023) 28–50 33
(iii) Suppose that Φ(T ) =
∑r

i=1 AiTA∗
i and Cr(Φ) = r. If Φ is (π, I)-covariant, 

then span{A∗
1, ..., A∗

r} is π-invariant, i.e., π(g)A∗
i ∈ span{A∗

1, ..., A∗
r} for every g ∈ G

and i = 1, .., r. Indeed, if Φ is (π, I)-covariant, then by Theorem 1.2 there is a unitary 
matrix U = [uij ] such Aiπ(g) =

∑
j=1 uijAj which is in turn equivalent to π(g−1)A∗

i =∑r
j=1 ūijA∗

j and hence span{A∗
1, ..., A∗

r} is π-invariant. The converse is also true if we 
assume that {AjA∗

k} is linear independent: Assume that Aiπ(g) =
∑

j=1 uijAj . Then

I =
r∑

i=1
(Aiπ(g))(Aiπ(g))∗ =

r∑
i=1

(
r∑

j=1
uijAj)(

r∑
j=1

ūijA∗
j ) =

r∑
j,k=1

(
r∑

i=1
uij ūik)AjA∗

k

Since {AjA∗
k} is linear independent, we have that 

∑r
i=1 uij ūik = δjk. Thus, by Theo-

rem 1.2 again,

Φ(π(g)Tπ(g−1)) =
r∑

i=1
Aiπ(g)T (Aiπ(g))∗ =

r∑
i=1

AiTA∗
i = Φ(T )

for every T ∈ B(H).

Definition 1.2. Let π be a unitary representation of G on a Hilbert space H, and Φ :
B(H) → B(K) be a quantum channel. We call that Φ is

(i) pure-state injective if Φ(ρx) = Φ(ρy) implies that ρx = ρy,
(ii) π-orbit invariant if

Φ(π(g)(ρx)π(g−1)) = Φ(ρx)

for any x ∈ H and any g ∈ G.
(iii) π-orbit-injective if it is π-orbit invariant and that Φ(ρx) = Φ(ρy) implies [ρx]π =

[ρy]π.

Remark 1.2. (i) We point out that π-orbit injectivity of Φ does not necessarily imply the 
orbit injectivity of Φ over B(H) (i.e., Φ(S) = Φ(T ) ⇒ S ∈ {π(g)Tπ(g−1) : g ∈ G}). For 
example, let π = I be the trivial representation, it is easy to construct examples that 
are pure-state injective (and hence π-orbit injective) but ker(Φ) is nontrivial.

(ii) For quantum channels over complex Hilbert space case, π-orbit invariant is the 
same as (π, I)-covariant since every operator T is a linear combination of pure states ρx. 
This is no longer true for real Hilbert space cases.

Proposition 1.3. Let H, K be finite dimensional complex Hilbert spaces and π be a unitary 
representation of a group G on H. Then we have

(i) Φ : B(H) → B(K) is π-orbit invariant if and only if range(Φ∗) ⊆ π(G)′

(ii) If Cr(Φ) = 1, then Ψ = Φ ◦Φπ is orbit injective if and only if Φπ is orbit injective.
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Proof. (i) Suppose that Φ is π-orbit invariant. Then for any T ∈ B(K) and g ∈ G we 
have

〈π(g)Φ∗(T )π(g−1), ρx〉 = 〈Φ∗(T ), π(g−1)ρxπ(g)〉
= 〈T, Φ(π(g−1)ρxπ(g))〉 = 〈T, Φ(ρx)〉
= 〈Φ∗(T ), ρx〉

for every x ∈ H. Thus π(g)Φ∗(T )π(g−1) = Φ∗(T ) since span{ρx : x ∈ H} =
B(H) when H is a complex Hilbert space. Conversely, if range(Φ∗) ⊆ π(G)′, then 
〈π(g)Φ∗(T )π(g−1), ρx〉 = 〈Φ∗(T ), ρx〉 for any g ∈ G, x ∈ H and T ∈ B(H) which is 
equivalent to 〈T, Φ(π(g−1)ρxπ(g))〉 = 〈T, Φ(ρx)〉 and hence Φ(π(g−1)ρxπ(g)) = Φ(ρx)
for all g ∈ G and x ∈ H. Therefore Φ is π-orbit invariant.

(ii) Let Φ(T ) = V TV ∗ where V : H → K is an isometry. Then the statement follows 
from the fact that Ψ(ρx) = Ψ(ρy) if and only if Φπ(ρx) = Φπ(ρy) �

We point out that the condition in Proposition 1.3 (ii) is still necessary for any Φ. 
However, it is not sufficient in general. Nevertheless, it is clear that Φπ will play an 
essential role in our characterization of orbit injective quantum channels.

2. Orbit-injective quantum channel for finite groups

An essential tool in our characterizations of orbit injective quantum channels involves 
some special properties of multiplicative characters. For our convenience, we introduce 
the following concept:

Definition 2.1. A family of multiplicative characters χ1, .., χk of a compact group G

is called to have the Hadamard property (property (H), for short) if for any k-tuple 
(a1, ...ak) of modulus one entries, there exists g ∈ G such that aiāj = χi(g)χ̄j(g) for all 
i, j = 1, ..., k.

The characterizations of orbit injective quantum channels for finite groups are different 
for real and complex Hilbert space representations and we treat them separately in two 
subsections. In this section, we always assume that |G| < ∞.

2.1. Complex space case

For finite groups, we will show that there is no nontrivial orbit injective quantum 
channels acting on complex Hilbert spaces other than the pure-state injective ones.

Lemma 2.1. Let π = π1 ⊕ ... ⊕ πk be a unitary representation of G on a (real or 
complex) Hilbert space H, where π1, ..., πk are irreducible representations. If Φπ(T ) =

1 ∑
g∈G π(g)Tπ(g−1) is orbit-invariant, then each πi is one-dimensional.
|G|



K. Liu et al. / Linear Algebra and its Applications 668 (2023) 28–50 35
Proof. Assume, for example, that d1 = dim Hπ1 ≥ 2. Let u be a fixed unit vector in Hπ1

and v ∈ Hπ1 be an arbitrary unit vector. Set x = u ⊕ 0 ⊕ ... ⊕ 0 and y = v ⊕ 0 ⊕ ... ⊕ 0. 
Then

Φπ1(ρu) = 1
|G| tr(ρu)I = 1

|G| tr(ρv)I = Φπ1(ρv),

which implies that Φπ(ρx) = Φπ(ρy). Thus [ρx]π = [ρy]π, which in turn implies that 
ρv ∈ {π(g)ρuπ(g−1) : g ∈ G} for any unit vector v ∈ Hπ1 . This is impossible since 
d1 ≥ 2 and {π(g)ρuπ(g−1) : g ∈ G} is a finite set. Therefore each πi must be a one-
dimensional representation. �
Proposition 2.2. Let π be a unitary representation of G on H. Then the following are 
equivalent:

(i) Φπ is pure-state injective;
(ii) Φπ is orbit-injective;
(iii) π = σn for some one-dimensional representation σ.

Proof. Clearly (i) ⇒ (ii), and (iii) ⇒ (i) follows from fact that if π(g) = σ(g)In, then

Φπ(x ⊗ x) = 1
|G|

∑
g∈G

π(g)x ⊗ π(g)x = x ⊗ x.

(ii) ⇒ (iii): Assume that Φπ is obit-injective. Then, by Lemma 2.1, we get that 
π = π1 ⊕ ... ⊕ πn such that each πi is one-dimensional and so we can assume that each 
πi is a multiplicative character acting on the one-dimensional space C. Suppose, for 
example, that π1 and π2 are inequivalent. Without losing the generality we can assume 
that π = π1 ⊕ π2. Note that S := {π1(g)π2(g−1) : g ∈ G} is a finite set. Let a, b ∈ C

be such that |a| = |b| = 1 and ab̄ /∈ S. Let x = x1 ⊕ x2 and y = ax1 ⊕ bx2 be two unit 
vectors such that both x1 and x2 are nonzero. Note that 

∑
g∈G π1(g)π2(g−1) = 0. So we 

get

Φπ(x ⊗ x) =
[ 1
|G|

∑
g∈G

πi(g)(xi ⊗ xj)πj(g−1)
]

2×2 =
[

|x1|2 0
0 |x2|2

]

Thus Φπ(x ⊗ x) = Φπ(y ⊗ y). However, from

π(g)(x ⊗ x)π(g−1) =
[

|x1|2 π1(g)π2(g−1)x1x̄2
π2(g)π1(g−1)x2x̄1 |x2|2

]

and

y ⊗ y =
[

|x1|2 ab̄x1x̄2
b̄ax2x̄1 |x2|2

]
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we obtain that y ⊗ y �= π(g)(x ⊗ x)π(g−1) for any g ∈ G, which contradicts with the 
assumption that Φπ is orbit-injective. Therefor all the πi’s are unitarily equivalent which 
implies (iii). �

With the help of the above result we get:

Theorem 2.3. Let Φ be a π-invariant quantum channel over a complex Hilbert space H. 
Then Φ is π-orbit injective if and only if Φ is pure-state injective.

Proof. Since Φ is π-invariant, we get

Φ(ρx) = 1
|G|

∑
g∈G

Φ(π(g)ρxπ(g−1)) = Φ(Φπ(ρx)), ∀x ∈ H.

We only need to prove the necessary part. Assume that Φ is π-orbit injective. First we 
claim that π = χI for some multiplicative character χ. Indeed, if this is not the case, 
then by Proposition 2.2, Φπ is not orbit-injective. Thus there exists x, y ∈ H such that 
ρy /∈ [ρx]π and Φπ(x ⊗ x) = Φπ(y ⊗ y). This implies that

Φ(x ⊗ x) = Φ(Φπ(x ⊗ x)) = Φ(Φπ(y ⊗ y)) = Φ(y ⊗ y),

which leads to a contradiction since Φ is π-orbit injective. Thus π = χI for some multi-
plicative character χ. Now suppose that Φ(x ⊗x) = Φ(y ⊗y). Then ρy ∈ [ρx]π and hence 
x ⊗ x = y ⊗ y since π = χI. Therefore Φ is pure-state injective �
2.2. Real space case

Unlike the complex space case, the next example shows that orbit-injective quantum 
channels that are not pure-state injective do exist in real Hilbert space setting.

Example 2.1. Let G = {I, U} where U =
[

0 −1
−1 0

]
Then U2 = I. Let π be the 

identity map. Then Φπ(T ) = 1
2 (T + UTU∗). By Proposition 2.2, the complex quantum 

channel Φπ : M2(C) → M2(C) is not orbit-injective. However, the real quantum channel 
Φπ : M2(R) → M2(R) is orbit-injective.

Proof. Assume that Φπ(x ⊗ x) = Φπ(y ⊗ y). If x and Ux are linearly dependent, then 
Φπ(x ⊗ x) is a rank-one operator and hence y = cx for some c ∈ R. This implies that 
y ⊗ y = x ⊗ x since ||x|| = ||y||. Now assume that x and Ux are linearly independent. 
We write

y = ax + bUx
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for some a, b ∈ R. This implies that Uy = bx + aUx since U2 = I. From Φπ(x ⊗ x) =
Φπ(y ⊗ y) we get that

x ⊗ x + Ux ⊗ Ux = (|a|2 + |b|2)(x ⊗ x + Ux ⊗ Ux) + 2ab(x ⊗ Ux + Ux ⊗ x),

which implies that

x ⊗ [(1 − (a2 + b2))x − 2abUx] + Ux ⊗ [(1 − b2 + b2))Ux − 2abx] = 0.

Since x, Ux are linearly independent, we get that 1 = a2 + b2 and 2ab = 0. So a = 0 or 
b = 0 which implies that either y ⊗ y = x ⊗ x or y ⊗ y = Ux ⊗ Ux. Thus [y]π = [x]π. �

The reason for the above example to work is simply because that we have a decom-
position π = χ1 ⊕ χ2 such that {χ1, χ2} has property (H).

Theorem 2.4. Let π be a unitary representation of G on a real Hilbert space H. Then 
Φπ is orbit-injective if and only if π = χ1Im1 ⊕ ... ⊕ χkImk

such that χ1, ..., χk are 
multiplicative characters with property (H).

Proof. (⇒). Assume that Φπ is orbit-injective. By Lemma 2.1, we know that π = χ1Im1 ⊕
... ⊕χkImk

such χ1, ..., χk are distinct multiplicative characters. If χ1, ..., χk fail to satisfy 
property (H), then there exists a vector (a1, ..., ak) such that ai = ±1 and [aiaj ]k×k �=
[χi(g)χj(g)]k×k for any g ∈ G. Now let x = x1 ⊕ ... ⊕ xk and y = a1x1 ⊕ ... ⊕ akxk

such that xi �= 0 for each 1 ≤ i ≤ k. Then we get Φπ(x ⊗ x) = Φπ(y ⊗ y) and y ⊗ y /∈
{π(g)x ⊗ π(g)x : g ∈ G}, which contradicts with the orbit-injectivity assumption of Φπ.

(⇐) Assume that π = χ1Im1 ⊕ ... ⊕ χkImk
such that χ1, ..., χk satisfy property (H). 

Suppose that Φπ(x ⊗ x) = Φπ(y ⊗ y). Write x = x1 ⊕ ... ⊕ xk and y = y1 ⊕ ... ⊕ yk. Then 
we get Φπi

(xi ⊗ xi) = Φπi
(yi ⊗ yi) for i = 1, ..., k, where πi = χiImi

. This implies that 
xi ⊗xi = yi ⊗yi since Φπi

(T ) = T for any T ∈ B(Hπi
). Thus xi = aiyi for some ai = ±1. 

Since χ1, ..., χk satisfy property (H), there exists g ∈ G such that αiaj = χi(g)χj(g) for 
all i, j = 1, ..., k. This implies that

x ⊗ x = [xi ⊗ xj ]k×k = [aiajyi ⊗ yj ]k×k = [χi(g)yi ⊗ χj(g)yj ]2×2 = π(g)(y ⊗ y)π(g−1).

Thus Φπ is orbit-injective. �
Remark 2.1. From the definition, it is easy to see that a family of real valued multi-
plicative characters {χ1, ..., χk} has property (H) if and only if there exists a subset Λ
of G such that |Λ| = 2k−1 and (χ1(g), ..., χk(g) �= ±(χ1(h), ..., χk(h)) for any distinct 
g, h ∈ Λ. In particular, if χ1 and χ2 are two distinct multiplicative characters, then 
they are orthogonal to each other, which implies that the matrix [χ1(g), χ2(g)]|G|×2 has 
rank-2 and hence has two linearly independent rows. Thus any two distinct real valued 
multiplicative characters always satisfy property (H). So we get
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Corollary 2.5. (i) If π = χ1Im1 ⊕ χ2Im2 is a unitary representation over a real Hilbert 
space H, then Φπ is orbit-injective.

(ii) Suppose that G has at most two real valued multiplicative characters and π be a 
unitary representation of G over a real Hilbert space H. Then Φπ is orbit injective over 
H if and only if π is a direct sum of some one-dimensional representations.

Remark 2.2. Many groups (e.g. Frobenius group F5, symmetric groups S4, S5, S13, Di-
hedral groups D9, D11 etc.) have at most two real-valued multiplicative characters.

Example 2.2. (i) Let G = (Z/2Z)2 (Klein four-group). The four characters χ1, χ1, χ3, χ4
are listed as column vectors in the following matrix:

⎡⎢⎢⎢⎣
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤⎥⎥⎥⎦
(ii) Let G = D4 (Dihedral group). The four multiplicative characters χ1, χ1, χ3, χ4

are given by

⎡⎢⎢⎢⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎦
Clearly, in both cases, any three of the four characters satisfy property (H). Thus we get 
that Φπ is orbit-injective on a real Hilbert space if and only if π = χ1Im1 ⊕ ... ⊕ χkImk

for some k ≤ 3.

Now we move to the general π-orbit invariant quantum channel case. Let π = χ1Im1 ⊕
... ⊕ χkImk

be a unitary representation acting on H = H1 ⊕ ... ⊕ Hk, where Imi
is the 

identity operator on Hi and mi = dim Hi. For a quantum channel Φ acting on H, let Φi

be the restricting of Φ on B(Hi).

Theorem 2.6. Let π be a unitary representation of G on a real Hilbert space H. Then the 
following claims hold.

(i) If Φ is π-orbit-injective, then π = χ1Im1 ⊕ ... ⊕ χkImk
such that χ1, ..., χk are 

multiplicative characters with property (H) and each Φi is pure-state injective.
(ii) Suppose that π = χ1Im1 ⊕ ... ⊕ χkImk

such that χ1, ..., χk are multiplicative 
characters with property (H), and each Ai = diag(Ai1, ..., Aik) is block-diagonal with 
Aij ∈ B(Hj), then Φ is π-orbit injective if and only if each Φi is pure-state injective
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Proof. (i) Assume that Φ is π-orbit-injective. We first show that π = χ1Im1 ⊕ ... ⊕χkImk

such that χ1, ..., χk are multiplicative characters with property (H). If this is false, then, 
by Theorem 2.4, Φπ is not orbit injective. Thus there exists x, y ∈ H such that ρy /∈ [ρx]π
and Φπ(x ⊗ x) = Φπ(y ⊗ y). This implies that

Φ(x ⊗ x) = Φ(Φπ(x ⊗ x)) = Φ(Φπ(y ⊗ y)) = Φ(y ⊗ y),

which leads to the contradiction to the orbit-injectivity of Φ. Now we show that each Φi

is pure-state injective. Let xi, yi ∈ Hi be such that Φi(xi ⊗ xi) = Φi(yi ⊗ yi). Set

x = 0 ⊕ .. ⊕ 0 ⊕ xi ⊕ 0 ⊕ ... ⊕ 0

and

y = 0 ⊕ .. ⊕ 0 ⊕ yi ⊕ 0 ⊕ ... ⊕ 0.

Then Φ(x ⊗ x) = Φ(y ⊗ y). Thus y ⊗ y = π(g)x ⊗ π(g)x for some g ∈ G, which implies 
that yi ⊗ yi = χi(g)xi ⊗ χi(g)xi = xi ⊗ xi. Therefore Φi is pure-state injective.

(ii) By (i), we only need to prove the condition is sufficient. Since π = χ1Im1 ⊕
... ⊕ χkImk

such that χ1, ..., χk are multiplicative characters with property (H), again 
by Theorem 2.4, Φπ is orbit-injective. Now suppose that Φ(x ⊗ x) = Φ(y ⊗ y). Write 
x = (x1, ..., xk), y = (y1, ..., yk). Note that

Φπ(x ⊗ x) =

⎡⎢⎢⎢⎢⎣
x1 ⊗ x1 0 0 · · · 0

0 x2 ⊗ x2 0 · · · 0
...

...
...

...
0 0 0 · · · xk ⊗ xk

⎤⎥⎥⎥⎥⎦
Since each Ai is block-diagonal,

Φ(x ⊗ x) = Φ(Φπ(x ⊗ x)) =

⎡⎢⎢⎢⎢⎣
Φ1(x1 ⊗ x1) 0 0 · · · 0

0 Φ2(x2 ⊗ x2) 0 · · · 0
...

...
...

...
0 0 0 · · · Φk(xk ⊗ xk)

⎤⎥⎥⎥⎥⎦ .

Thus Φ(x ⊗ x) = Φ(y ⊗ y) implies that Φi(xi ⊗ xi) = Φi(yi ⊗ yi) for i = 1, ..., k. Since 
each Φi is pure-state injective, we get that xi ⊗ xi = yi ⊗ yi for each i, and hence 
Φπ(x ⊗ x) = Φπ(y ⊗ y). Since Φπ is orbit injective, we get that ρy ∈ [ρx]π. Therefore Φ
is π-orbit injective. �
Example 2.3. Let {ei}n

i=1 be an orthonormal basis for Rn and π(g) = diag(χ1(g), ...,
χn(g)) such that χ1, ..., χk are multiplicative characters satisfying property (H). Let 
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Ai = ei ⊗ ei. Then, by the above theorem, the quantum channel defined by Φ(T ) =∑n
i=1 AiTA∗

i is π-orbit injective.

The above example can be slightly generalized. Recall that a sequence {x1, ..., xd} in 
a Hilbert space H is called a phase-retrievable frame for H if |〈x, xi〉| = |〈y, xi〉| for all i
implies that x ⊗ x = y ⊗ y. A Parseval frame is a frame {xi} such that 

∑d
i=1 xi ⊗ xi = I. 

We refer to [12–15] for some background materials related to the connections among 
phase retrievable frames, group representations and quantum channels.

Example 2.4. Suppose that π = χ1IH1 ⊕ ... ⊕ χkIHk
such that χ1, ..., χk are different 

multiplicative characters with property (H), where Rn = H1 ⊕ ... ⊕ Hk. For each i, let 
{xi1..., xidi

} be a phase-retrievable frame for Hi such that {||xij ||xij}di
j=1 is a Parseval 

frame for Hi and {Aij}di
j=1 is linearly independent, where Aij = xij ⊗ xij for 1 ≤ j ≤ di

and 1 ≤ i ≤ k. Define a quantum channel

Φ(T ) =
k∑

i=1

di∑
j=1

AijTA∗
ij .

Then Φ is π-orbit injective.

Proof. Suppose that Φ(u ⊗ u) = Φ(v ⊗ v) for some u = (u1, ..., uk) and v = (v1, ..., vk)
in Rn = H1 ⊕ ... ⊕ Hk with vi, ui ∈ Hi. Then we get for each i, 

∑di

j=1 Aij(u ⊗ u)A∗
ij =∑di

j=1 Aij(v ⊗ v)A∗
ij which implies that 

∑di

j=1 Aij(ui ⊗ ui)A∗
ij =

∑di

j=1 Aij(vi ⊗ vi)A∗
ij , or 

equivalently,

di∑
j=1

|〈ui, xij〉|2Aij =
di∑

j=1
|〈vi, xij〉|2Aij .

Thus |〈ui, xij〉|2 = |〈ui, xij〉|2 for 1 ≤ j ≤ di due to the linear independence of {Aij}di
j=1. 

Since {xij}di
j=1 is phase-retrievable for Hi, we get that ui ⊗ui = vi ⊗vi for each i. Finally, 

using the property (H) for χ1, ..., χk, we get that [ρu]π = [ρv]π and hence Φ is π-orbit 
injective. �
Remark 2.3. If 2mi − 1 ≤ di ≤ mi(mi+1)

2 , then it is known that every generic Parseval 
frame {xij}di

j=1 satisfies the requirements in the above example. Similar examples can 
also be easily constructed without requiring that each Aij is a rank-one operator.

3. Orbit injective quantum channels for compact groups

3.1. Characterizations

In this section we assume that G is a compact group and π is a continuous unitary 
representation on a finite dimensional complex Hilbert space case. Unlike the finite group 
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case, n-tuples (n ≥ 2) of complex characters with property (H) does exist for some infinite 
compact groups (see section 4). By using the fact that Φ(x ⊗ x) = Φ(Φπ(x ⊗ x)) for any 
π-orbit invariant quantum channel Φ, we also get the following two results similar to 
the real-valued multiplicative character case. The proofs are almost indentical to that of 
Theorem 2.4 and Theorem 2.6, and we leave the proofs to the interested readers.

Theorem 3.1. Suppose that π = χ1Im1 ⊕ ... ⊕ χkImk
such that χ1, ..., χk are distinct 

multiplicative characters of G. Then
(i) Φπ is orbit injective if and only if χ1, ..., χk satisfy property (H).
(ii) If

Φ(T ) =
r∑

i=1
AiTA∗

i

is a π-orbit invariant quantum channel such that Ai = diag(Ai1, ..., Aik) is block-diagonal 
with Aij ∈ B(Hj), then Φ is π-orbit injective if and only if χ1, ..., χk satisfy property 
(H) and each Φi is pure-state injective.

The above theorem allows us to construct a rich class of orbit injective quantum 
channels. In particular we point out the following:

Corollary 3.2. Let π = χ1Im1 ⊕ ... ⊕χkImk
be a unitary representation of a group G on H

such that χ1, ..., χk satisfy property (H). Suppose that Ψ : B(H) → B(K) is an injective 
quantum channel (i.e., one to one, but not necessarily π-orbit invariant), and let

Φ(T ) = Ψ(Φπ(T )) T ∈ B(H).

Then Φ is π-orbit injective.

Proof. By construction we know that Φ is π-orbit invariant. Suppose that Φ(ρx) = Φ(ρy)
for some x, y ∈ H. Since Ψ is injective, we get that Φπ(ρx) = Φπ(ρy). By Theorem 3.1
(i), we get that [ρx]π = [ρy]π and hence Φ is π-orbit injective. �

While the above results provide a large class of orbit injective quantum channels for 
unitary representations that are direct sum of one-dimensional representations, unlike the 
finite group case this one-dimensional decomposition is no longer necessary for infinite 
compact groups. For example, let G = U(n) and π(g) = g. Then π is an irreducible 
representation on Cn. Since [ρx]π = {g(x ⊗x)g−1 : g ∈ G} = {y ⊗y : y ∈ H, ||y|| = ‖x‖}, 
the quantum channel Φ(T ) = 1

n tr(T )I is π-orbit invariant and orbit injective.
Now we examine the cases when the irreducible subrepresentations of π is not nec-

essarily one dimensional. We have the following simple observation for the case that 
Φ = Φπ and π is irreducible.
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Lemma 3.3. Let π be an irreducible unitary representation of G and let x be a fixed unit 
vector in H. Then Φπ is orbit injective if and only if y ∈ Tπ(G)x for any unit vector y.

Proof. Since π is irreducible we get that Φπ(T ) = 1
dim H tr(T )I. So Φπ(x ⊗x) = Φπ(y⊗y)

if and only if ||x|| = ||y||. Thus Φπ is orbit injective if and only if [x]π = {y⊗y : ‖y‖ = 1}, 
which is equivalent to the condition that y ∈ Tπ(G)x for any unit vector y. �
Remark 3.1. Clearly, the equality {y ⊗ y : ‖y‖ = 1} = Tπ(G)x holds if Tπ(G) = U(n). 
So the inclusion representation π : SU(n) ↪→ U(n) has the property in the above lemma.

Naturally we need to generalize the property (H) for multiplicative characters to more 
general irreducible representations.

Definition 3.1. Let G be a compact group. We say that a family of irreducible represen-
tations π1, ..., πk satisfy property (H) if the following is true: For any k-tuples (g1, ..., gk)
and (x1, ..., xk), there exist g ∈ G and t ∈ T such that πi(gi)xi = tπi(g)xi for every i.

Remark 3.2. Let G = U(d1) ⊕ ... ⊕ U(dk) and πi(G) = gi for every g = g1 ⊕ ... ⊕ gk ∈ G. 
Then it is easy to verify that π1, ..., πk satisfy property (H). More generally, we say that 
a family of irreducible representations π1, ..., πk satisfy property (H+) if for any k-tuples 
(g1, ..., gk), there exist g ∈ G such that πi(gi) = πi(g) for every i. Clearly property (H+) 
implies property (H).

(i) Let π = π1 ⊕ ... ⊕πk. Then property (H+) holds if and only if π induces a surjection 
of G onto π1(G) ⊕ ... ⊕πk(G). That is, the natural map G→G/ ker(π1) ⊕· · ·⊕G/ ker(πk)
is surjective.

(ii) We construct an example such that property (H) holds but property (H+) does 
not hold. Let G = T × G1 × G2 with Gi = SU(ni). Let ρi : SU(ni) → U(ni) be the 
inclusion map. Let πi be the representation of G such that πi(t, g1, g2) = tiρi(gi) for 
t ∈ T and gi ∈ Gi. It is easy to verify that for any k-tuples (g1, ..., gk), there exist g ∈ G

and t ∈ T such that πi(gi) = tπi(g) for i = 1, 2. Hence π1, π2 satisfy property (H). They 
do not satisfy property (H+) by (i).

Theorem 3.4. Suppose that π = πm1
1 ⊕ ... ⊕ πmk

k such that π1, ..., πk are inequivalent 
irreducible representations of G, and let σi = πmi

i .
(i) If Φπ is π-orbit injective, then π1, ..., πk satisfy property (H) and each Φσi

is σi-
orbit injective.

(ii) If π1, ..., πk satisfy property (H+) and each Φσi
is σi-orbit injective, then Φπ is 

π-orbit injective.
(iii) If m1 = ... = mk = 1, then Φπ is π-orbit injective if and only if π1, ..., πk satisfy 

property (H) and each Φπi
is πi-orbit injective.

Proof. (i) Assume that Φπ is π-orbit injective. Clearly Φπi
is πi-orbit injective by 

restricting Φπ to the vectors x = (0, .., 0, xi, 0, ...0) ∈ H. If π1, ..., πk do not sat-
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isfy property (H), then there exist two k-tuple (g1, ..., gk) and (x1, ..., xk) such that 
(π1(g1)x1, ..., πk(gk)xk) /∈ Tπ(G)x, where x = (x̃1, ..., ̃xk) ∈ H, xi ∈ Hπi

and 
x̃i = (xi, 0, ..., 0) ∈ Hσi

. Let yi = πi(gi)xi and y = (ỹ1, ..., ỹk). Then y /∈ [x]π. Note 
that Φπi

(xi ⊗ xi) = Φπi
(yi ⊗ yi) and hence Φσi

(x̃i ⊗ x̃i) = Φσi
(ỹi ⊗ ỹi). Since π1, ..., πk

are inequivalent irreducible representations, we get that∫
G

σi(g)u ⊗ σj(g)v = 0

for i �= j and u ∈ Hσi
, v ∈ Hσj

. Thus we get that Φ(y ⊗y) = Φ(x ⊗x), which contradicts 
to the π-orbit injectivity of Φ.

(ii) Assume that π1, ..., πk satisfy property (H+) and each Φσi
is σi-orbit injective. If 

Φ(y ⊗ y) = Φ(x ⊗ x), then

Φσi
(xi ⊗ xi) = Φσi

(yi ⊗ yi),

where xi, yi ∈ Hσi
and x = (x1, ..., xk), y = (y1, ..., yk) ∈ H. Since Φσi

is σi-orbit 
injective, there is gi ∈ G such that yi ⊗ yi = σi(gi)xi ⊗ σi(gi)xi. Since π1, ..., πk satisfy 
property (H+), we get that there exist g ∈ G and t ∈ T such that πi(gi) = tπi(g) for all 
i. This implies that

y ⊗ y = [σi(gi)xi ⊗ σj(gj)xj ]k×k = [σi(g)xi ⊗ σj(g)xj ]k×k = σ(g)x ⊗ σ(g)x.

Thus Φπ is orbit injective.
(iii) By (i) we only need to prove the sufficient part which is similar to the proof of 

(ii): If Φ(y ⊗ y) = Φ(x ⊗ x), then

Φπi
(xi ⊗ xi) = Φπi

(yj ⊗ yi)

for every i. Since πi-orbit injective, there is gi ∈ G such that yi ⊗yi = πi(gi)xi ⊗πi(gi)xi,
which implies by property (H) that there exist g ∈ G and t ∈ T such that πi(gi)xi =
tπi(g)xi for all i. Thus

y ⊗ y = [πi(gi)xi ⊗ πj(gj)xj ]k×k = [πi(g)xi ⊗ πj(g)xj ]k×k = π(g)x ⊗ π(g)x,

and so Φπ is orbit injective. �
Corollary 3.5. Suppose that π = πm1

1 ⊕ ... ⊕ πmk

k such that π1, ..., πk are inequivalent 
irreducible representations of G. If there exists a π-orbit injective quantum channel Φ, 
then π1, ..., πk satisfy property (H).

Proof. Since Φ is π-orbit invariant, we have that Φ(x ⊗ x) = Φ(Φπ(x ⊗ x)) for every 
x ∈ H. So if Φ is orbit injective, then so is Φπ. Thus, by Theorem 3.1, π1, ..., πk satisfy 
property (H). �
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3.2. Orbit injectivity for compatible quantum channels

Quantum channel compatibility is one of the fundamental issues in quantum informa-
tion which asks if two quantum channels are the marginal channels of a joint channel. In 
the Heisenberg picture, two quantum channels Φ1 : B(H1) → B(K) and Φ2 : B(H2) →
B(K) are compatible if there is a quantum channel Φ : B(H1 ⊗ H2) → B(K) such that 
Φ1(A) = Φ(A ⊗ IH2) and Φ2(B) = Φ(IH1 ⊗ B), where A ∈ B(H1) and B ∈ B(H2). It is 
natural to impose covariant structure on Φ if both Φi are covariant channels. Let σi be 
unitary representations on Hi and π be a unitary representation on K of a group G. Let 
σ(g) = σ1(g) ⊗ σ2(g) be the unitary representation of G acting on H1 ⊗ H2. It is clear 
that if Φ is (σ, π)-covariant, then Φi is (σi, π)-covariant for i = 1, 2. But the converse is 
not necessarily true. However, there exists always a quantum (σ, π)-covariant quantum 
channel Ψ such that Φ1 and Φ2 are the two marginal channels of Ψ. This can be done 
by channel twirling or covariantizing [10]:

Φ̃(C) =
∫
G

π(g)∗Φ(σ(g)Cσ(g)∗)π(g)dμ(g), C ∈ B(H1 ⊗ H2).

Clearly Φ̃ is (σ, π)-covariant and for any A ∈ B(H1) we have

Φ̃(A ⊗ IH2) =
∫
G

π(g)∗Φ(σ(g)(A ⊗ IH2)σ(g)∗)π(g)dμ(g)

=
∫
G

π(g)∗Φ(σ1(g)Aσ1(g)∗ ⊗ IH2)π(g)dμ(g)

=
∫
G

π(g)∗Φ1(σ1(g)Aσ1(g)∗)π(g)dμ(g)

=
∫
G

Φ1(A)dμ(g) = Φ1(A)

and similarly Φ̃(IH1 ⊗ B) = Φ2(B) for B ∈ B(H2). So we can always assume that the 
joint channel Φ is already (σ, π)-covariant.

If we particularly let σi be the identity map, then we get range(Φ) ⊂ π(G)′ whenever 
range(Φi) ⊂ π(G)′ for i = 1, 2. This implies, by Proposition 1.3, that Φ∗

i and Φ∗ all are 
π-orbit invariant. Moreover,

Φ∗
1(T ) = TrH2Φ∗(T )

and

Φ∗
2(T ) = TrH1Φ∗(T )
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for T ∈ B(K) (cf., [17]). Thus we immediately have the following

Proposition 3.6. Let Φ, Φi be as above. If one of Φ∗
i is π-orbit injective, then so is Φ∗.

We point out that it could happen only one of the Φ∗
i is π-orbit injective: Consider 

the case H = K1 = K2 and dim H = n. Let Ψ : B(H) → B(H) be a π-orbit injective 
quantum channel, where π is a unitary representation of a finite group G on H. Let 
Φ∗(A) = 1

n IH ⊗ Ψ(A). Then Φ∗
1(A) = 1

n Tr(Ψ(A))IH and Φ∗
2(A) = Ψ(A). While clearly 

Φ∗
2 is π-orbit injective, Φ∗

1 is not π-orbit injective. Indeed, for any unit vectors x ∈ H, 
we have

Φ∗
1(ρx) = 1

n
Tr(Ψ(ρx))IH = 1

n
Tr(ρx)IH = 1

n
IH

which implies that Φ∗
1(ρx) = Φ∗

1(ρy) for all unit vectors x, y ∈ H. But [ρx]π = [ρy]π is 
not necessarily true since G is finite.

The next example shows that the converse of Proposition 3.6 is false.

Example 3.1. Let n = dim H and let Ψi : B(H) → B(H) (i = 1, 2) be quantum channels 
such that each of them is not π-orbit injective but they jointly orbit injective, i.e., 
Ψi(ρx) = Ψi(ρy) for both i = 1, 2 imply that [ρx]π = [ρy]π (such a pair can be easily 
constructed). Define

Φ∗(A) = 1
n

Ψ1(A) ⊗ IH + 1
n

IH ⊗ Ψ2(A), A ∈ B(H).

Then

Φ∗
1(A) = Ψ1(A) + 1

n
Tr(Ψ2(A))IH = Ψ1(A) + 1

n
Tr(A)IH

and

Φ∗
2(A) = 1

n
Tr(Ψ1(A))IH + Ψ2(A) = 1

n
Tr(A)IH + Ψ2(A).

If Φ∗(ρx) = Φ∗(ρy) for some x, y ∈ H, then we get

1
n

Ψ1(ρx) ⊗ IH + 1
n

IH ⊗ Ψ2(ρx) = 1
n

Ψ1(ρy) ⊗ IH + 1
n

IH ⊗ Ψ2(ρy)

which implies by taking partial traces that Ψ1(ρx) = Ψ1(ρy) and Ψ2(ρx) = Ψ2(ρy). 
Thus [ρx]π = [ρy]π and therefore Φ∗ is π-orbit injective. However, neither of its marginal 
channels is π-orbit injective since neither Ψ1 nor Ψ2 is π-orbit injective.
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3.3. The dual picture of orbit injective channels

Let Φ : B(H) → B(K) be a quantum channel. Then Φ∗ : B(K) → B(H) is unital and 
completely positive. In fact, Φ(S) =

∑r
i=1 A∗

i SAi if Φ(T ) =
∑r

i=1 AiTA∗
i . We say that 

Φ does phase retrieval if there exists a collection of orthogonal projections (observables) 
{Pα} in B(K) such that the measurements {tr(ρxΦ∗(Pα))}α uniquely determine the 
pure state ρx in B(H) in the sense that tr(ρxΦ∗(Pα)) = tr(ρyΦ∗(Pα)) for each α implies 
that ρx = ρy. Some characterizations for such channels have been examined in [16]. The 
following tells us that a π-orbit injective quantum channel is not phase retrievable unless 
π is trivial (i.e., π = χIH)

Proposition 3.7. Let Φ : B(H) → B(K) be a π-orbit invariant quantum channel from 
B(H) to B(K). Then the following are equivalent:

(i) Φ is orbit injective.
(ii) there exists a collection of observables {Pα} in B(K) such that the measurements 

{tr(ρxΦ∗(Pα))}α uniquely determine the pure state [ρx]π.
In particular, if Φ = Φπ, then Φ is orbit injective if and only if the orbit [ρx]π is 

uniquely determined by {tr(ρxΦ(Pα))}α.

Proof. (i) ⇒ (ii): Suppose that Φ is orbit injective. Let {Pα} be a family of orthogonal 
projections such that span{Pα} = B(K). If tr(ρxΦ∗(Pα)) = tr(ρyΦ∗(Pα)) for every 
α, then we get 〈Φ(ρx), Pα〉 = 〈Φ(ρy), Pα〉 for each α and hence Φ(ρx) = Φ(ρy) since 
span{Pα} = B(K). Therefore, by the orbit injectivity of Φ, [ρx]π = [ρy]π.

(ii) ⇒ (i): Suppose that Φ(ρx) = Φ(ρy). Then the same argument implies that

tr(ρxΦ∗(Pα)) = tr(ρyΦ∗(Pα))

for every α and hence [ρx]π = [ρy]π. Therefore Φ is orbit injective. �
4. Characters with property (H)

In this section we characterize the family of characters that have property (H).

4.1. The real case

We study real valued multiplicative characters which are used in Theorem 2.4 and 
Theorem 2.6 to characterize orbit injective quantum channels over real Hilbert spaces.

Let G be a finite group. Let χ : G → {±1} be a character. Then χ factors through 
Gab (the abelianization of G) and then factors through Gab/(Gab)2 as {±1} has order 
2. Without loss of generality, we may assume that G is an elementary finite abelian 
2-group, i.e. G ∼= (Z/2Z)k. Then Ĝ ∼= (Z/2Z)k and we view it as an F2-vector space of 
dimension k. Fix an isomorphism ι : Ĝ → G. This is equivalent to fixing a pairing on 
G × G.
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Let χ1, χ2,..., χk be an F2-basis of Ĝ. Then Ĝ = 〈χ1〉 ⊕ · · · ⊕ 〈χk〉. Let Gi be the 
orthogonal complement of the kernel of χi with respect to the above paring. Then G =
G1 ⊕ · · · ⊕ Gk. We claim that for any tuple (ai)1≤i≤k with ai ∈ {±1}, there exists an 
element g ∈ G such that aiaj = χi(g)χj(g). Indeed, 〈χi〉 is the dual group of Gi and 
one may simply take gi ∈ Gi with χi(gi) = ai. Then χj(gi) = 1 for all j �= i. Let 
g = (gi)1≤i≤k ∈ G, then this g satisfies ai = χi(g) hence satisfies the required property. 
The element 1 − g = (1 − gi)1≤i≤k ∈ G satisfies ai = −χi(1 − g). They are the only two 
elements with aiaj = χi(g)χj(g).

Now let χ1, · · · , χl be l characters with l > k. Then there are 2l possibilities for 
the tuple (aj)1≤j≤l, but only 2k possibilities for the tuple (χj(g))1≤j≤l. In general the 
expected element g does not exist. We have the following result.

Proposition 4.1. Let G be a finite group. Let χ1,..., χl be real valued characters of G. 
Let k = log2(|Gab/(Gab)2|) and s = dimF2 span{χ1, . . . , χl}. Note that s ≤ k. Then the 
characters χ1,..., χl have property (H) if and only if one of the following two holds:

(1) s = l;
(2) s + 1 = l and the only relation involves odd number of characters.

Proof. Let H := Gab/(Gab)2. Then H ∼= (Z/2Z)⊕k ∼= Ĥ. View Ĥ as an F2-vector space 
of dimension k and fix an isomorphism H → Ĥ.

Let χ1,..., χs be a maximal linearly independent subset of χ1,..., χl. Let Hi be the 
orthogonal complement of the kernel of χi as before. Then

s∑
i=1

(ker(χi)) =
l∑

i=1
ker(χi).

Note that Hi
∼= Z/2Z and Ĥi = 〈χi〉. Write H = H1 ⊕ · · · ⊕ Hs ⊕ Hc. Then χi(g) =

χi(g + x) for all x ∈ Hc and 1 ≤ i ≤ l. Therefore, changing g by an element x ∈ Hc does 
not affect our discussion. We may assume that Hc is trivial and s = k.

If s = l, then χ1,..., χl satisfy property (H).
If s + 2 ≤ l, then χ1,..., χl do not satisfy property (H) by counting the possibilities.
If s + 1 = l, write χs+1 =

∏s
i=1 χei

i (ei = 0 or 1). Let (ai)s+1
i=1 ∈ {±1}s+1. Without 

χs+1, there exists a unique g ∈ H = H1 ⊕ · · · ⊕ Hs with χi(g) = ai (1 ≤ i ≤ s). Then 
χi(1 − g) = −ai (1 ≤ i ≤ s). These are the only two elements with aiaj = χi(x)χj(x)
(1 ≤ i ≤ s). (Recall that we assume that Hc is trivial as its elements do not affect the 
values of χi(g).) Note that

χs+1(g) =
s∏

aei
i , χs+1(1 − g) = (−1)

∑s
i=1 ei

s∏
aei

i .

i=1 i=1
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• Case that 
∑s

i=1 ei is even. In this case, if as+1 =
∏s

i=1 aei
i , then g satisfies χi(g) = ai

for 1 ≤ i ≤ l; if as+1 = − 
∏s

i=1 aei
i , then 1 − g satisfies χi(1 − g) = −ai for 1 ≤ i ≤ l. 

Here we have an element x ∈ H with aiaj = χi(x)χj(x) (1 ≤ i ≤ l).
• Case that 

∑s
i=1 ei is odd. In this case, if as+1 =

∏s
i=1 aei

i , then g satisfies χi(g) = ai

for 1 ≤ i ≤ l; if as+1 = − 
∏s

i=1 aei
i , then we have no solution for aiaj = χi(x)χj(x)

(1 ≤ i ≤ l).

The proposition follows. �
Example 4.1. Let G = (Z/2Z)k and let χ1, χ2,..., χk be an F2-basis of Ĝ. The characters 
χ1, ..., χk satisfy property (H). Therefore if π = χm1

i1
⊕ ... ⊕ χm�

i�
for some i1, ..., i� ∈

{1, 2, . . . , k}, then Φπ is orbit-injective by Theorem 2.4. See also Example 2.2.

4.2. The complex case

The second characterization is about complex valued multiplicative characters for 
(infinite) compact groups. In this case, the unit circle T plays the role of Z/2Z and the 
essential case is Tk = T ×· · ·×T . For example, for a Lie group G, a character χ : G→T

factors through Gab and its connected component would be a product of copies of R and 
copies of T .

We could see the strategy in the following explicit case. Let G = T ×· · ·×T = Tk. Let 
ψi be the projection of G to the i-th component. Then Ĝ is a free Z-module with basis 
ψ1,..., ψk. Certainly, ψ1,..., ψk satisfy property (H) in the sense that for any (ai) ∈ Tk

there exist g ∈ G with aiāj = ψi(g)ψ̄j(g). This g is unique if we require ai = ψi(g) as 
ψ1 ⊕ · · · ⊕ ψk is an isomorphism. The other elements with aiāj = χi(g)χ̄j(g) are those 
of the form tg where t ∈ T and we view it as an element of G by diagonal embedding. 
(Indeed, ψi(tg) = tψi(g) = tai.) It is possible to add one more character to the family 
of characters. Let ψk+1 =

∏k
i=1 ψdi

i . Let (a1, . . . , ak, ak+1) ∈ Tk+1. Let g ∈ G be the 
unique element such that ψi(g) = ai (1 ≤ i ≤ k). Then

ψk+1(g) =
k∏

i=1
adi

i = cak+1, c ∈ T .

If c = 1 (i.e. 
∏k

i=1 adi
i = ak+1), then g satisfies ai = ψi(g) for all i, hence satisfies the 

equations aiāj = ψi(g)ψ̄j(g) (1 ≤ i, j ≤ k + 1).
If c �= 1, we look for d ∈ T with ψi(dg) = dai (d ∈ T , 1 ≤ i ≤ k + 1). The only 

problem is for i = k + 1, which gives us the equation

d
∑k

i=1 dic = d.

Therefore, characters ψ1,..., ψk, ψk+1 =
∏k

i=1 ψdi
i satisfy property (H) if and only if ∑k

i=1 di �= 1.
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For the general case, let χ1,..., χl be a family of characters of G. Note that if l ≥ k +2, 
then these characters do not satisfy property (H) by comparing the dimensions. Let s
be the rank of the subgroup of Ĝ generated by these χ. This subgroup corresponds to a 
subtorus of G with dimension s. By replacing G with this subtorus, we may assume that 
s = k. As for finite group case, we have two cases l = k and l = k + 1. Similar argument 
gives us the following result.

Proposition 4.2. Let G = Tk. Let χ1,..., χl be characters of G such that the rank of the 
group generated by them is s. The characters χ1,..., χl satisfy property (H) if and only 
if one of the following two holds.

(1) s = l.
(2) s + 1 = l, and suppose that χ1,..., χs form a set of generators, in the relation 

χl =
∏s

i=1 χdi
i , 

∑s
i=1 di �= 1.

Proof. As explained above, we may assume that s = k. Any nontrivial character of G is 
surjective. If χ1,..., χs are Q-linearly independent in Ĝ ⊗ Q ∼= Qk, then χ1 ⊕ · · · ⊕ χs :
G → T s is surjective. If l = s, then χ1,..., χl satisfy property (H).

If l = s + 1 = k + 1 and χ1,..., χl−1 form a set of generators, for a given (ai) ∈ T l, 
there exist g ∈ G such that χi(g) = ai (1 ≤ i ≤ l − 1 = k). From the assumption on 
χ1,..., χl−1, the natural map χ1 ⊕ · · · ⊕ χl−1 : G→T l−1 is surjective. Therefore for any 
t ∈ T , there exists at least one ht ∈ G such that χi(ht) = t for all 1 ≤ i ≤ l − 1. Write 
χl =

∏s
i=1 χdi

i , similar argument as before shows that χ1,..., χl satisfy property (H) if 
and only if 

∑s
i=1 di �= 1. This completes the proof of the proposition. �

Example 4.2. Let G = U(n1) ⊕ · · · ⊕ U(nk). Then each character of G factors through 
Gab ∼= T ⊕ · · ·⊕T = Tk via the determinant map. One could then easily construct orbit 
injective quantum channels by combining Theorem 3.1 and Proposition 4.2.
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