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1. Preliminaries

Quantum channels are essential components in quantum communications and quan-
tum computings. They also have a wide range of applications such as quantum cryp-
tography etc. Given two quantum systems H and K which are usually considered as
finite dimensional Hilbert spaces. A quantum channel ® is a completely positive trace-
preserving (CPTP for short) linear map from B(H) and B(K), and (r,o)-covariant
quantum channel with respect to two unitary representations m and o of a group G is
a quantum channel that satisfies the condition ®(7(g)Tr(¢g~ 1)) = o(9)®(T)o (g ') for
every T € B(H) and every g € G. Covariant quantum channels form important class
of channels since many challenging problems in quantum information theory are usu-
ally more tractable when certain symmetries are imposed on the channel. We refer to
for example [2,6,8—11,19,22,24,25,28] for some recent progresses on theoretical studies of
covariant quantum channels. In particular, in their recent work [22], M. Mozrzymas, M.
Studzi’nski and N. Datta investigated the structure of covariant quantum channels with
respect to an irreducible representation 7 for a finite group G, and obtained spectral
decomposition of such a covariant quantum channels in terms of representation charac-
teristics of the group G.

If o(9) = Ik is the trivial representation, where Iy is the identity map on K, a
(m, I )-covariant quantum channel preserves the mw-orbit invariant of any pure state
pri=c @z € B(H), ie.,

O(ps) = D(m(g)pa(g™))

for all g € G and x € H. If we view each orbit [p,]r := {7(g)p.m(g~!) : g € G} as a
class of pure states of interests, then naturally we would like to know under what condi-
tion does a m-orbit invariant quantum channel separate these orbits, i.e., the condition
®(ps) = ®(py) implies that [py]r = [pz]r. Such a quantum channel will be called orbit
injective for pure states. This type of channels allow a quantum channel to map different
symmetric related pure states to different output states that can be used to distinguish
input pure states by their symmetries. The concept of group-invariant and orbit injective
maps also recently finds important applications on max filtering in machine learning cf.
[1,20,21].

The purpose of this paper is to obtain necessary and/or sufficient conditions for orbit
injective quantum channels. The theory of quantum information could have some con-
ceptual differences based on real and complex Hilbert spaces cf. [3,26]. In our case, we do
have some subtle differences between finite and infinite groups, and between complex and
real Hilbert space representations. Therefore for the purpose of clarity we will first treat
the finite group case in section 2 and then briefly discuss the case for complex Hilbert
space representations of (infinite) compact groups in section 3. Almost all of our charac-
terizations involve a special family of irreducible representations whose characterizations
will be discussed in the last section of the paper.
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Here is a list of standard notations we will use in this paper:

e H, K — finite dimensional Hilbert spaces over C or R, B(H, K) — the space of all the
linear operators from H to K, write B(H) = B(H,K) if H = K. In the case that
H=C"and K =C™, B(H,K) = M;;,x»(C) and we use M,,(C) for the case when
m = n. We use Iy (or I if no confusion from the context) to denote the identity
operator on H.

o U(n) or U(H) — the group of unitary operators on an n-dimensional complex Hilbert
space.

o For a subset A of B(H), the commutant A’ ={T € B(H): TA = AT,VA € A}.

o Letz € Hyy e K. Wewill use p, ,, (write p, if £ = y) or 2®y to denote the rank-one
operator defined by z — (z,y)x for z € K. Occasionally, x ® y is also used to denote
the tensor product in H ® K and the readers should be able to tell from the context.

e Let 7 be a unitary representation of a group G, we use 7" to denote the representa-
tion @ ... 7 (m-copies). For one-dimensional unitary representation 7 of a group
G, we also write # = x and 7™ = xI,,, where x = tr(n(g)) is the corresponding
multiplicative character.

e Let m be a unitary representation of a group G acting on a Hilbert space H and
xr € H. We use [p,] to denote the orbit {m(g)p.m(g~ ') : g € G} of ps.

1.1. Unitary representations [23,27,29]

For a compact group G, a continuous function 7 : G — U(H) is called a (finite dimen-
sional) unitary representation if w(gh) = 7w(g)m(h). A subspace V of H is called invariant
if 7(g)x € V for all g € G and = € V. A representation 7 is called irreducible if {0} and
H are the only invariant subspaces. It is well-known that any unitary representation 7
on a finite-dimensional Hilbert space H is the direct sum of irreducible representations.
Given a pair of unitary representation (m, H;) and (o, H,). Intertwining space is the
space

Homg(w,0) ={A € B(Hy,,H,) : Ar(g9) = a(g)A, Vg € G},

where each element in this space is an intertwining operator. It is well-known that = and
o are unitarily equivalent if and only if Homg(7, o) contains a unitary matrix A (hence
dim H, = dim H,).

We remark that while all the results in this paper are presented for the case that
7 is a unitary representation, it is straightforward to check that all the results remain
valid for projective unitary representations of G: A projective unitary representation
for a group G is a mapping g — 7(g) from G into the group U(H) such that the map
g — a4 is a group homomorphism of G into the automorphism group of the operator
algebra B(H), where ay(T) = m(g)Tm(g)*. Or equivalently, there is a 2-cocycle p of G
such that 7w(g)m(h) = u(g, h)w(gh). Recall that i : G x G—=T is a 2-cocycle if it satisfies
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(i) w91, 9293) (92, 93) = (9192, 93)11(g1,92) for all g1,92,95 € G, and (ii) u(g,e) =
u(e,g) = 1 for all g € G, where e denotes the group unit of G and T denotes the unit
circle.

1.2. Covariant quantum channels

A quantum channel is a model for a particular snapshot of the time evolution of a
density matrix, and especially for the evolution of pure into mixed states. Let H, K
be finite-dimensional Hilbert spaces. A quantum channel is a completely positive trace-
preserving (CPTP for short) linear map ® : B(H) — B(K), and a quantum channel in
the Heisenberg picture is described by its adjoint map. By the famous theorem of Kraus
(1971), a CP map ® from B(H) to B(K) has a simple Kraus representation:

O(T) =Y  A;TA;, VT € B(H)
=1

for some operators Ay, ..., A, € B(H, K). In this representation, Ay,..., A, are also re-
ferred to as the Kraus representation operators of the CP map . Clearly, such a map
P is trace-preserving if and only if > ;| A*A; = Iy, and it is unital (i.e., ®(Iy) = Ix)
if and only if !, A; A = Ik.

The Choi rank of a CP map ® (denoted by Cr(®)) is defined to be the smallest r
such that ®(T) = 25:1 A;T A for some A; € B(H, K). Let {e;}}"; be a basis of H
and Ej;; be the rank-one operator e; ® e;. Then the Choi-Jamiolkowski matrix Cy is the
linear operator on H ® K defined by

Co= Y _ Eij®d(Ej)

ij=1

In the case that H = C", K = C™ and {e;}, is the standard orthonormal basis,
Co = [®(e; ® €;)]nxn. The following are well known (cf. [4,5,7,18]).

Theorem 1.1. (Choi’s first theorem) Let ® : B(H) — B(K) be a linear map. Then ® is
CP if and only if Cg is positive. Moreover, Cr(®) = rank(Cs) if ® is a CP map.

Theorem 1.2. (Choi’s second theorem) Suppose that ® : Mg(C) — M (C) is com-
pletely positive and Cr(®) = r. Write ®(T) = Y°_, A;TAS with A; € Myxa(C).
Let Bj € Myxq(C). Then ®(T) = Z;n=1 B;TB; if and only if there exists matriz
U = (uij) € Mypxr(C) such that U*U = I, and A; = Z;Zl wi;Bj fori = 1,..,m
and span{Bi, ..., By} = span{A1, ..., A, }.

The following group representation induced quantum channel plays an essential role
in our investigation: Let G be a compact group and let u be the unique Haar measure
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such that u(G) = 1. In the case that G is finite, then p is the normalized counting
measure. Given a pair of continuous unitary representations m,o on Hilbert spaces H
and K, respectively. We define

By o (T) = / w(g)To(g Vdulg), T € B(H),
G

and write ®, = @, .. Clearly, if G is a finite group then

We have the following properties:

(i) @, is a quantum channel, and range(®,) = n(G)'.

(i) @ (T) = gi57tr(T)Ig if and only if 7 is irreducible.

(iii) ®x,» = 0 if 7 and o are inequivalent irreducible unitary representations.
(

iv) ®,.(T) =T if 1 = xIg for some multiplicative character x.

Definition 1.1. Let 7 and ¢ be unitary representations of a group G on C” and C™,
respectively. We say that @ is (, o)-covariant if

O(m(g)Tr(g™ ")) = o(g)@(T)o(g™")
holds for every g € G.

There is a natural way, called channel twirling, to produce a (7, c)-covariant quan-
tum channel from any given quantum channel. Let ® : B(H) — B(K) be a quantum
channel, and 7,0 be two continuous unitary representations of a group G on H and K,
respectively. Then

(T) :/0(971)¢(W(9)TW(971))U(Q)du(g)
G
is a (7, o)-covariant quantum channel. Again
=@ g; g e (9)Tr(g~"))o(9)

if G is finite.
Remark 1.1. (i) Since ®(T) = ¥(7T) if ® is (m, 0)-covariant, we immediately get that a

quantum channel ® is (7, o)-covariant if and only if it is obtained by channel twirling.
(ii) If o(g) = I for every g € G, then W(T') = &( [, 7( “Ddu(g)) = ®(®,(T)).
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(iii) Suppose that ®(T) = Y.._, A;TAf and Cr(®) = r. If ® is (m, I)-covariant,
then span{Aj,..., A} is m-invariant, i.e., 7(g)AF € span{Aj,...,A:} for every g € G
and ¢ = 1,..,7. Indeed, if ® is (m, I)-covariant, then by Theorem 1.2 there is a unitary
matrix U = [u;;] such A;m(g) = >°;_; uijA; which is in turn equivalent to (g HAr =
22:1 u;j A7 and hence span{AJ, ..., A7} is m-invariant. The converse is also true if we

assume that {A4;A}} is linear independent: Assume that A;m(g) = 3_;_; uijA;. Then

T T T

1= (A4m(g)(Aim(9) =D O uijAj)(Z wigAy) = Y () i) A Aj,

i=1 i=1 j=1 gk=1 i=1

Since {A;A;} is linear independent, we have that > ., u;;u;; = dj5. Thus, by Theo-
rem 1.2 again,

O(r(g)Tr(g ™) = 3 Aim(g)T(Aimlg))" = Y ATA; = ¥(T)

for every T' € B(H).

Definition 1.2. Let m be a unitary representation of G on a Hilbert space H, and ® :
B(H) — B(K) be a quantum channel. We call that ® is

(i) pure-state injective if ®(p,) = ®(p,) implies that p, = py,

(ii) w-orbit invariant if

(7(g)(pa)m(g™")) = (pa)

for any x € H and any g € G.
(ili) m-orbit-injective if it is m-orbit invariant and that ®(p,) = ®(p,) implies [p,]r =
[Pyl -

Remark 1.2. (i) We point out that m-orbit injectivity of ® does not necessarily imply the
orbit injectivity of ® over B(H) (i.e., ®(S) = ®(T) = S € {n(9)Tn(g7 ') : g € G}). For
example, let m = I be the trivial representation, it is easy to construct examples that
are pure-state injective (and hence m-orbit injective) but ker(®) is nontrivial.

(ii) For quantum channels over complex Hilbert space case, m-orbit invariant is the
same as (7, I )-covariant since every operator T is a linear combination of pure states p,.
This is no longer true for real Hilbert space cases.

Proposition 1.3. Let H, K be finite dimensional complex Hilbert spaces and m be a unitary
representation of a group G on H. Then we have

(i) ® : B(H) — B(K) is w-orbit invariant if and only if range(®*) C 7(G)’

(ii) If Cr(®) = 1, then ¥ = ®o D, is orbit injective if and only if . is orbit injective.
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Proof. (i) Suppose that ® is m-orbit invariant. Then for any T € B(K) and g € G we
have

(m(9)®*(T)w(g™"), pa) = (@*(T),7(g~ ") pa7(yg))
= (T, ®(n(g")pa(9))) = (T, ®(ps))
=(*(T), pu)

for every * € H. Thus 7(g)®*(T)n(g~) = ®*(T) since span{p, : * € H} =
B(H) when H is a complex Hilbert space. Conversely, if range(®*) C 7(G)’, then
(m(g)®*(T)m (97 1), pz) = (®*(T),ps) for any g € G,z € H and T € B(H) which is
equivalent to (T, ®(7(g~ ) p.m(9))) = (T, ®(p,)) and hence ®(7(g 1) p.7(g)) = ®(pz)
for all g € G and = € H. Therefore ® is w-orbit invariant.

(ii) Let ®(T) = VTV* where V : H — K is an isometry. Then the statement follows
from the fact that ¥(p,) = ¥(py) if and only if @ (p,) = Pr(py) O

We point out that the condition in Proposition 1.3 (ii) is still necessary for any ®.
However, it is not sufficient in general. Nevertheless, it is clear that &, will play an
essential role in our characterization of orbit injective quantum channels.

2. Orbit-injective quantum channel for finite groups

An essential tool in our characterizations of orbit injective quantum channels involves
some special properties of multiplicative characters. For our convenience, we introduce
the following concept:

Definition 2.1. A family of multiplicative characters xi,..,xx of a compact group G
is called to have the Hadamard property (property (H), for short) if for any k-tuple
(a1, ...a) of modulus one entries, there exists g € G such that a;a; = x:(g)x;(g) for all
ij=1,.. k.

The characterizations of orbit injective quantum channels for finite groups are different
for real and complex Hilbert space representations and we treat them separately in two
subsections. In this section, we always assume that |G| < co.

2.1. Complez space case

For finite groups, we will show that there is no nontrivial orbit injective quantum
channels acting on complex Hilbert spaces other than the pure-state injective ones.

Lemma 2.1. Let 71 = 7 @ ... ® m, be a unitary representation of G on a (real or
complex) Hilbert space H, where w1, ..., are irreducible representations. If ®,(T) =
ﬁ >_geG 7(g)Tw(g~1) is orbit-invariant, then each w; is one-dimensional.
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Proof. Assume, for example, that dy = dim H,, > 2. Let u be a fixed unit vector in H,
and v € Hy, be an arbitrary unit vector. Set r =u® 0@ .. @0andy=v 406 ... 8 0.
Then

1 1
Q7 (pu) = @tr(pu)f = @tr(pv)f = o, (o),

which implies that ®x(ps) = Pr(py). Thus [pz]r = [py]s, which in turn implies that
po € {m(g)pum(971) : g € G} for any unit vector v € H,,. This is impossible since
di > 2 and {m(g)pum(g™') : g € G} is a finite set. Therefore each m; must be a one-
dimensional representation. 0O

Proposition 2.2. Let m be a unitary representation of G on H. Then the following are
equivalent:

(i) ©r is pure-state injective;

(i) @, is orbit-injective;

(i) m = o™ for some one-dimensional representation o.

Proof. Clearly (i) = (i¢), and (i#i) = () follows from fact that if 7(g) = o(g)I,, then

D, (z®x) gren(g)r=zQ x.

|G| =

(#4) = (i4i): Assume that ®, is obit-injective. Then, by Lemma 2.1, we get that
T =m P ... m, such that each 7; is one-dimensional and so we can assume that each
m; is a multiplicative character acting on the one-dimensional space C. Suppose, for
example, that m; and 7y are inequivalent. Without losing the generality we can assume
that m = m; @ ma. Note that S := {m1(g)ma(g9™!) : g € G} is a finite set. Let a,b € C
be such that |a| = |b| = 1 and ab ¢ S. Let & = x1 ® 23 and y = az; ® bxa be two unit
vectors such that both 21 and z2 are nonzero. Note that - mi(g)m2 (g71) = 0. So we

get
Bale©0) = [ 3 mlo) s @ 2)mle ], = |17 ©
™ |G| = ? 2777 2%x2 0 |m2|2
Thus @, (z ® ) = @,(y ® y). However, from
-1y — 1 |2 mi(g)ma (g™t ) 2122
7r(9)(£®:c)7T(g ) = [WQ(Q)Wl(gl)IQzl |:C2|2 ]

and

y®y - l_)azngl |I2|2

|1L'1|2 ab$1$2‘|
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we obtain that y ® y # 7(g)(z ® x)n(g~!) for any g € G, which contradicts with the
assumption that @, is orbit-injective. Therefor all the 7;’s are unitarily equivalent which
implies (i73). O

With the help of the above result we get:

Theorem 2.3. Let ® be a w-invariant quantum channel over a complex Hilbert space H.
Then ® is m-orbit injective if and only if ® is pure-state injective.

Proof. Since ® is m-invariant, we get

B(p.) = 157 3 Wrlo)oen(g ™)) = B(@r(p). Vo H

geG

We only need to prove the necessary part. Assume that ® is m-orbit injective. First we
claim that m = x[I for some multiplicative character x. Indeed, if this is not the case,
then by Proposition 2.2, ®, is not orbit-injective. Thus there exists x,y € H such that
Py & [pz)x and @ (z ® ) = @ (y ® y). This implies that

P(rer)=0(Pr(z01) =2(P(y®y)) =2(yY),

which leads to a contradiction since @ is 7-orbit injective. Thus m = xI for some multi-
plicative character x. Now suppose that ®(z ®x) = ®(y®y). Then p, € [p;]r and hence
r®r =1y ®y since m = xI. Therefore ® is pure-state injective O

2.2. Real space case

Unlike the complex space case, the next example shows that orbit-injective quantum
channels that are not pure-state injective do exist in real Hilbert space setting.

0 -1
-1 0
identity map. Then ®(T) = (T + UTU*). By Proposition 2.2, the complex quantum
channel ® : M5(C) — M5(C) is not orbit-injective. However, the real quantum channel
O, My(R) — My(R) is orbit-injective.

Example 2.1. Let G = {I,U} where U = Then U? = I. Let 7 be the

Proof. Assume that ®,(z ® z) = &,(y ® y). If  and Ux are linearly dependent, then
&, (z ® x) is a rank-one operator and hence y = cx for some ¢ € R. This implies that
y®y =z @ x since ||z|| = ||y||. Now assume that x and Uz are linearly independent.
We write

y=ax+bUx
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for some a,b € R. This implies that Uy = bz + aUxz since U? = I. From ®,(z ® z) =
D, (y ® y) we get that

r@r+Ur®Uzr = (la? + b} (z @z + Ur®Uz) + 2ab(zr @ Uz + Uz ® ),
which implies that
r®[(1 - (a® +b*))z —2abUz] + Uz @ [(1 — b* 4 b*))Ux — 2abx] = 0.

Since x, Uz are linearly independent, we get that 1 = a? 4+ b2 and 2ab = 0. So a = 0 or
b = 0 which implies that either y®@y =z ®z or y®y = Uz @ Uz. Thus [y]. = [z],. O

The reason for the above example to work is simply because that we have a decom-
position ™ = x1 @ x2 such that {x1, x2} has property (H).

Theorem 2.4. Let m be a unitary representation of G on a real Hilbert space H. Then
&, is orbit-injective if and only if 1 = x1lm, ® ... B Xplm, Such that x1,...,xr are
multiplicative characters with property (H).

Proof. (=-). Assume that ® is orbit-injective. By Lemma 2.1, we know that m = x1.Ip,, ®
e ® X1, such x1,..., xx are distinct multiplicative characters. If x1, ..., xx fail to satisfy
property (H), then there exists a vector (a1, ...,ax) such that a; = £1 and [a;a;]kxk #
Xi(9)x;(9)]kxk for any g € G. Now let ¢ = 21 @ ... Py and y = a121 @ ... B apTy
such that x; # 0 for each 1 < i < k. Then we get P,(z @ z) = P, (y®@y) and yRy ¢
{n(9)x ® w(g)z : g € G}, which contradicts with the orbit-injectivity assumption of ®.

(<) Assume that m = x11m, @ ... ® Xxlm, such that xi, ...,y satisfy property (H).
Suppose that ¢, (z @) = P, (yQy). Write z =21 D ... Dz and y = y1 D ... ® yg. Then
we get O, (z; @ ;) = $r, (y; @ y;) for i =1, ..., k, where m; = x;n,. This implies that
2, @x; = y; ®y; since . (T) =T for any T € B(H,,). Thus x; = a;y; for some a; = 1.
Since X1, ..., xx satisfy property (H), there exists g € G such that oza; = x:(g)x;(g) for
all 4,7 =1, ..., k. This implies that

TR = [2; @ Tjlkxk = @09 @ Yilexk = [Xi(9)¥ © x5(9)y5l2x2 = 7(9)(y @ y)w(g™h).
Thus @, is orbit-injective. O

Remark 2.1. From the definition, it is easy to see that a family of real valued multi-
plicative characters {x1, ..., xx} has property (H) if and only if there exists a subset A
of G such that |[A| = 2= and (x1(9), ..., xx(9) # £(x1(h), ..., xx(h)) for any distinct
g,h € A. In particular, if y; and yo are two distinct multiplicative characters, then
they are orthogonal to each other, which implies that the matrix [x1(g), x2(9)];g|x2 has
rank-2 and hence has two linearly independent rows. Thus any two distinct real valued
multiplicative characters always satisfy property (H). So we get



38 K. Liu et al. / Linear Algebra and its Applications 668 (2023) 28-50

Corollary 2.5. (i) If m = x1Im, © Xolm, is a unitary representation over a real Hilbert
space H, then @ is orbit-injective.

(ii) Suppose that G has at most two real valued multiplicative characters and  be a
unitary representation of G over a real Hilbert space H. Then ®, is orbit injective over
H if and only if m is a direct sum of some one-dimensional representations.

Remark 2.2. Many groups (e.g. Frobenius group Fj, symmetric groups Sy, Sy, S13, Di-
hedral groups Dy, D11 etc.) have at most two real-valued multiplicative characters.

Example 2.2. (i) Let G = (Z/27)? (Klein four-group). The four characters x1, X1, X3, X4
are listed as column vectors in the following matrix:

1 1 1
1 -1 -1
-1 1 -1
-1 -1 1

—_ = =

(ii) Let G = D4 (Dihedral group). The four multiplicative characters x1, X1, X3, X4
are given by

1 1 1 1
1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

Clearly, in both cases, any three of the four characters satisfy property (H). Thus we get
that @ is orbit-injective on a real Hilbert space if and only if 7 = x11n, ® ... ® XxIm,
for some k < 3.

Now we move to the general 7m-orbit invariant quantum channel case. Let 7 = x11,,, ©
<o ® XxIm, be a unitary representation acting on H = H;y @ ... ® Hy, where I,,,, is the
identity operator on H; and m; = dim H;. For a quantum channel ® acting on H, let ®;
be the restricting of ® on B(H;).

Theorem 2.6. Let m be a unitary representation of G on a real Hilbert space H. Then the
following claims hold.

(i) If ® is m-orbit-injective, then m = x1Im, ® ... & Xilm, Such that xi,...,xr are
multiplicative characters with property (H) and each ®; is pure-state injective.

(i) Suppose that m = x1lm, ® ... ® Xplm, such that xi,...,xr are multiplicative
characters with property (H), and each A; = diag(A;1, ..., Aik) is block-diagonal with
Aij € B(H,), then ® is m-orbit injective if and only if each ®; is pure-state injective
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Proof. (i) Assume that ® is w-orbit-injective. We first show that 7 = x11m, ... ® XL,
such that x1, ..., xx are multiplicative characters with property (H). If this is false, then,
by Theorem 2.4, ® is not orbit injective. Thus there exists ,y € H such that p, ¢ [p]~
and &, (z ® x) = ¢, (y ® y). This implies that

Pzez)=0(Pr(z@1x)) =2(Pr(y®@y)) = P(y®@Y),

which leads to the contradiction to the orbit-injectivity of ®. Now we show that each ®;
is pure-state injective. Let x;,y; € H; be such that ®;(x; @ ;) = ®;(y; ® y;). Set

7=00. 0002, 00 ...00

and

y=00.000y; ®0®...00.

Then ¢(z @ z) = ¢(y ®y). Thus y ® y = 7(g9)z ® w(g)x for some g € G, which implies
that y; ® y; = xi(9)x; ® xi(9)x; = x; ® ;. Therefore ®; is pure-state injective.

(73) By (i), we only need to prove the condition is sufficient. Since 7 = 1, ®
woe @ Xk Im, such that xi,..., xx are multiplicative characters with property (H), again
by Theorem 2.4, ®, is orbit-injective. Now suppose that ®(z @ z) = ®(y ® y). Write
x=(x1,...,2k), ¥y = (Y1, .-, Y ). Note that

T X x1 0 o --- 0
0 ToQxe 0 --- 0
0 0 0 T ® Tk,
Since each A; is block-diagonal,
Oy (1 ® 1) 0 0o - 0
0 (1)2(1'2 ® SUQ) 0 0
P(rzex)=0(P(z®x)) = .
0 0 0 - Oz @ mp)

Thus ®(z ® ) = ®(y ® y) implies that ®;(x; @ x;) = P;(y; @ y;) for i = 1,..., k. Since
each @, is pure-state injective, we get that z; ® x; = y; ® y; for each ¢, and hence
O (x®x) = Pr(y ®y). Since O, is orbit injective, we get that p, € [pz]r. Therefore &
is m-orbit injective. O

Example 2.3. Let {e;}"_; be an orthonormal basis for R™ and 7n(g) = diag(x1(9), .-,
Xn(g)) such that xi,...,xr are multiplicative characters satisfying property (H). Let
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A; = e; ® e;. Then, by the above theorem, the quantum channel defined by ®(T) =
S AT AY is w-orbit injective.

The above example can be slightly generalized. Recall that a sequence {z1, ...,z4} in
a Hilbert space H is called a phase-retrievable frame for H if |(x,z;)| = |(y, x;)| for all ¢
implies that * ® z = y ®y. A Parseval frame is a frame {x;} such that Z?zl r;@x; = 1.
We refer to [12-15] for some background materials related to the connections among
phase retrievable frames, group representations and quantum channels.

Example 2.4. Suppose that 7 = x11g, @ ... ® xxlp, such that xi,...,xx are different
multiplicative characters with property (H), where R® = H; @ ... ® Hy. For each ¢, let
{@;1...,ziq, } be a phase-retrievable frame for H; such that {||z;;||x;; }? 1 is a Parseval
frame for H; and {A”} , is linearly independent, where A;; = z;; ® z;; for 1 < j < d;
and 1 < i < k. Define a quantum channel

ko d;
DR W
i=1 j=1
Then & is m-orbit injective.

Proof. Suppose that ®(u ® u) = ®(v ® v) for some v = (uy,...,ux) and v = (v, ..., Vg)
in R" = Hy & ... ® Hy, with v;,u; € H;. Then we get for each 1, Zj L Aij(u@u)Aj; =
Z?';l Aij(v®w)Af; which implies that Z L Aij(u; @ug) A Z] 1 Aij(vi @v;) AY;, or
equivalently,

d; d;
| Uiy Lij | Alj Z|<U¢,$ij>‘2Aij~
Jj=1 j=

Thus [(u;, i;)|> = |{(us, xi;)|? for 1 < j < d; due to the linear independence of {Aij}?le
Since {x;; };li:l is phase-retrievable for H;, we get that u; ® u; = v; ® v; for each 4. Finally,
using the property (H) for x1,..., Xx, we get that [p,]r = [py]r and hence ® is w-orbit
injective. O

Remark 2.3. If 2m; — 1 < d; < W, then it is known that every generic Parseval
frame {xij};;;1 satisfies the requirements in the above example. Similar examples can
also be easily constructed without requiring that each A;; is a rank-one operator.

3. Orbit injective quantum channels for compact groups

3.1. Characterizations

In this section we assume that G is a compact group and 7 is a continuous unitary
representation on a finite dimensional complex Hilbert space case. Unlike the finite group



K. Liu et al. / Linear Algebra and its Applications 668 (2023) 28-50 41

case, n-tuples (n > 2) of complex characters with property (H) does exist for some infinite
compact groups (see section 4). By using the fact that ®(z ® ) = &(P,(z ® x)) for any
m-orbit invariant quantum channel ®, we also get the following two results similar to
the real-valued multiplicative character case. The proofs are almost indentical to that of
Theorem 2.4 and Theorem 2.6, and we leave the proofs to the interested readers.

Theorem 3.1. Suppose that 7 = X1lm, @ ... ® Xilm, such that xi,...,xx are distinct
multiplicative characters of G. Then

(i) O is orbit injective if and only if x1, ..., X satisfy property (H).

(i) If

O(T) = Z A;TA:
=1

is a w-orbit invariant quantum channel such that A; = diag(A;1, ..., Air) s block-diagonal
with A;; € B(Hj), then ® is m-orbit injective if and only if x1,..., Xx Satisfy property
(H) and each ®; is pure-state injective.

The above theorem allows us to construct a rich class of orbit injective quantum
channels. In particular we point out the following:

Corollary 3.2. Let m = x11pm, ®...® XkIm, be a unitary representation of a group G' on H
such that x1, ..., xx satisfy property (H). Suppose that ¥ : B(H) — B(K) is an injective
quantum channel (i.e., one to one, but not necessarily m-orbit invariant), and let

O(T)=V(D,(T)) T € B(H).
Then ® is m-orbit injective.

Proof. By construction we know that ® is m-orbit invariant. Suppose that ®(p,) = ®(py)
for some x,y € H. Since ¥ is injective, we get that ®.(p,;) = ®r(py). By Theorem 3.1
(i), we get that [pz]x = [py]+ and hence ® is m-orbit injective. O

While the above results provide a large class of orbit injective quantum channels for
unitary representations that are direct sum of one-dimensional representations, unlike the
finite group case this one-dimensional decomposition is no longer necessary for infinite
compact groups. For example, let G = U(n) and 7(g) = ¢g. Then 7 is an irreducible
representation on C™. Since [p.], = {g(z®x)g ' : g€ G} = {y®y:y € H,||ly|| = ||z|},
the quantum channel ®(7T") = %tr(T)I is m-orbit invariant and orbit injective.

Now we examine the cases when the irreducible subrepresentations of 7 is not nec-
essarily one dimensional. We have the following simple observation for the case that

® = &, and 7 is irreducible.
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Lemma 3.3. Let m be an irreducible unitary representation of G and let x be a fized unit
vector in H. Then @, is orbit injective if and only if y € Tw(G)x for any unit vector y.
Proof. Since 7 is irreducible we get that ®(T) = L7 tr(T)I. So P (z2®z) = P (y®y)
if and only if ||z|| = ||y||.- Thus @, is orbit injective if and only if [z], = {y®y : ||y|| = 1},
which is equivalent to the condition that y € Tw(G)z for any unit vector y. O

Remark 3.1. Clearly, the equality {y @ y : |ly|| = 1} = T#(G)z holds if T7(G) = U(n).
So the inclusion representation 7 : SU(n) < U(n) has the property in the above lemma.

Naturally we need to generalize the property (H) for multiplicative characters to more
general irreducible representations.

Definition 3.1. Let G be a compact group. We say that a family of irreducible represen-
tations 71, ..., T satisfy property (H) if the following is true: For any k-tuples (g1, ..., gx)
and (z1,...,xk), there exist g € G and ¢t € T such that m;(g;)x; = tm;(g)x; for every i.

Remark 3.2. Let G =U(dy) ® ... @ U(dy) and m;(G) = g; for every g = g1 @ ... ® gx, € G.
Then it is easy to verify that m, ..., 7, satisfy property (H). More generally, we say that
a family of irreducible representations 7y, ..., m, satisfy property (H.) if for any k-tuples
(91, .-, g ), there exist g € G such that m;(g;) = m;(g) for every i. Clearly property (H.)
implies property (H).

(i) Let m = m @...® 7. Then property (H; ) holds if and only if 7 induces a surjection
of G onto m1(G) ® ... ® 7k (G). That is, the natural map G—G/ ker(m) @ - - - ® G/ ker(my,)
is surjective.

(ii) We construct an example such that property (H) holds but property (Hy) does
not hold. Let G = T x G; x Gy with G; = SU(n;). Let p; : SU(n;) — U(n;) be the
inclusion map. Let 7; be the representation of G such that m;(t,g1,92) = t'pi(g;) for
t € T and g; € G;. It is easy to verify that for any k-tuples (g1, ..., gx), there exist g € G
and t € T such that m;(g;) = tm;(g) for i = 1, 2. Hence 7y, m satisfy property (H). They
do not satisfy property (Hy) by (i).

Theorem 3.4. Suppose that # = w{"* @ ... ® ©."" such that m,..., 7 are inequivalent
irreducible representations of G, and let o; = m; .

(i) If ®, is w-orbit injective, then w1, ..., 7y satisfy property (H) and each ®,, is o;-
orbit injective.

(i) If w1, ..., 7 satisfy property (Hy) and each ®,, is o;-orbit injective, then @, is
m-orbit injective.

(i) If my = ... = my, = 1, then @, is w-orbit injective if and only if 71, ..., T satisfy
property (H) and each @, is mw;-orbit injective.

Proof. (i) Assume that ®, is m-orbit injective. Clearly ®,, is m;-orbit injective by
restricting ®, to the vectors = (0,..,0,2;,0,..0) € H. If 7,...,m; do not sat-
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isfy property (H), then there exist two k-tuple (gi,...,g9x) and (z1,...,xk) such that
(m(g1)z1, o mi(gr)zr) ¢ Tw(G)x, where ¢ = (%1,..,2x) € H, z; € H,, and
Z; = (%;,0,...,0) € H,,. Let y; = m;i(g;)z; and y = (%1,...,9x). Then y ¢ [z],. Note
that @, (z; ® ;) = Pr, (y; @ y;) and hence @, (Z; @ T;) = Py, (§; ® ¥;). Since 71, ..., Ty
are inequivalent irreducible representations, we get that

[otgusagro=o

G

fori # jand u € H,,,v € Hy,. Thus we get that ®(y®y) = ®(z ®x), which contradicts
to the m-orbit injectivity of ®.

(ii) Assume that 7y, ..., 7 satisfy property (Hy) and each ®,, is o;-orbit injective. If
P(y®y) =P(zr®x), then

(bo'i (l‘i ® in) = (bo'i (?/z ® yi),

where z;,y; € H,, and © = (z1,...,2%),y = (y1,.-,yx) € H. Since ®,, is o;-orbit
injective, there is g; € G such that y; ® y; = 0;(g:)x; ® 0;(g;)2;. Since w1, ..., T, satisfy
property (H. ), we get that there exist g € G and ¢t € T such that m;(g;) = tm;(g) for all
i. This implies that

y @y = [0i(g:)r: ® 0(95)xilkxr = [0i(9)zi @ 0j(9)2)lkxk = 0(9)r @ 0 (g)z.

Thus @ is orbit injective.
(iii) By (i) we only need to prove the sufficient part which is similar to the proof of
(ii): H ?(y ®@ y) = P(x ® x), then

P, (7 @ 1) = P, (Y5 @ Yi)

for every 4. Since m;-orbit injective, there is g; € G such that y; ®y; = m;(g;)x; @ m;(g: ) x4,
which implies by property (H) that there exist ¢ € G and t € T such that m;(g;)x; =
tm;(g)x; for all 4. Thus

Y@y = [mi(gi)wi @ mj(95)x]kxi = [mi(9)x: @ 7 (9)i]kxr = 7(9)r @ 7(g)z,
and so @, is orbit injective. O

Corollary 3.5. Suppose that 7 = 7" @ ... ® m"* such that m,..., 7} are inequivalent

irreducible representations of G. If there exists a w-orbit injective quantum channel @,
then 1, ..., T satisfy property (H).

Proof. Since ® is m-orbit invariant, we have that ®(x @ ) = ®(P,(z ® z)) for every
x € H. So if @ is orbit injective, then so is ®,. Thus, by Theorem 3.1, 71, ..., T satisfy
property (H). O
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3.2. Orbit injectivity for compatible quantum channels

Quantum channel compatibility is one of the fundamental issues in quantum informa-
tion which asks if two quantum channels are the marginal channels of a joint channel. In
the Heisenberg picture, two quantum channels ®; : B(H;) — B(K) and ®5 : B(H3) —
B(K) are compatible if there is a quantum channel ® : B(H; ® Hy) — B(K) such that
®1(A) = P(A® Iy,) and $2(B) = &(Ig, ® B), where A € B(H1) and B € B(H>). It is
natural to impose covariant structure on ® if both ®; are covariant channels. Let o; be
unitary representations on H; and 7 be a unitary representation on K of a group G. Let
o(g) = 01(g9) ® o2(g) be the unitary representation of G acting on H; ® Hs. It is clear
that if ® is (o, 7)-covariant, then ®; is (o, 7)-covariant for ¢ = 1,2. But the converse is
not necessarily true. However, there exists always a quantum (o, 7)-covariant quantum
channel ¥ such that ®; and ®5 are the two marginal channels of W. This can be done
by channel twirling or covariantizing [10]:

o(C) = /W(g)*¢(0(g)00(g)*)ﬂ(9)du(g)7 C € B(H, ® Hj).
G

Clearly ® is (o, w)-covariant and for any A € B(H;) we have

b(40 1) = [ 7(9)"2o(9)(A5 In)ol9) )r(o)dils)

7(9)"®(01(9)Ao1(9)" @ Im,)m(g)du(g)

m(9)"®1(01(9)Ao1(9)")7m(9)dp(g)

|
Q— Q% O~ Q

D, (A)du(g) = ©1(A)

and similarly ®(Iy, ® B) = ®9(B) for B € B(Hz). So we can always assume that the
joint channel ® is already (o, )-covariant.

If we particularly let o; be the identity map, then we get range(®) C 7(G)’ whenever
range(®;) C w(G)’ for ¢ = 1,2. This implies, by Proposition 1.3, that ®} and ®* all are
m-orbit invariant. Moreover,

O1(T) =Try,®"(T)
and

O5(T) =Try, ®*(T)
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for T € B(K) (cf., [17]). Thus we immediately have the following
Proposition 3.6. Let @, @, be as above. If one of ®F is w-orbit injective, then so is *.

We point out that it could happen only one of the ®} is m-orbit injective: Consider
the case H = K; = Ky and dim H = n. Let ¥ : B(H) — B(H) be a m-orbit injective
quantum channel, where 7 is a unitary representation of a finite group G on H. Let
®*(A) = LIy ® U(A). Then ®;(A) = LTr(¥(A)) Iy and ®3(A) = U(A). While clearly
@3 is m-orbit injective, ®7 is not m-orbit injective. Indeed, for any unit vectors x € H,
we have

1 1 1
D1 (pz) = =Tr(V(p)) g = =Tr(pe) g = =1
1(pe) = ~Tr(Y(p)) = ~Tr(pa)ln = 1
which implies that ®7(p,) = ®}(py) for all unit vectors z,y € H. But [py]r = [pyl~ is

not necessarily true since G is finite.
The next example shows that the converse of Proposition 3.6 is false.

Example 3.1. Let n = dim H and let ¥, : B(H) — B(H) (i = 1,2) be quantum channels
such that each of them is not m-orbit injective but they jointly orbit injective, i.e.,
Ui(pz) = ¥;(py) for both ¢ = 1,2 imply that [pz]x = [py]r (such a pair can be easily
constructed). Define

1 1
O*(A) = ~Wi(A) @ I + ~ Iy © Ua(A), A€ B(H).

Then

and
DI(A) = %Tr(\l/l(A))IH +Uy(A) = %T’/‘(A)IH + Uy(A).

If ®*(pz) = ®*(py) for some x,y € H, then we get

1 1 1 1
ﬁwl(px) Iy + EIH Q@ Wa(ps) = 5\1’1(,0;,) Iy + E]H ® Wa(py)

which implies by taking partial traces that ¥1(p,) = ¥1(py) and ¥a(p,) = Pa(py).
Thus [pz]r = [py]r and therefore ®* is m-orbit injective. However, neither of its marginal
channels is 7-orbit injective since neither ¥y nor W, is m-orbit injective.
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3.8. The dual picture of orbit injective channels

Let ® : B(H) — B(K) be a quantum channel. Then ®* : B(K) — B(H) is unital and
completely positive. In fact, ®(S) = >0 A7SA; it ®(T) =Y .;_, A, TA;. We say that
® does phase retrieval if there exists a collection of orthogonal projections (observables)
{P,} in B(K) such that the measurements {tr(p,®*(P,))}s uniquely determine the
pure state p, in B(H) in the sense that tr(p,®*(P.)) = tr(p,®*(P,)) for each o implies
that p, = p,. Some characterizations for such channels have been examined in [16]. The
following tells us that a 7-orbit injective quantum channel is not phase retrievable unless
7 is trivial (i.e., 7 = xIg)

Proposition 3.7. Let ® : B(H) — B(K) be a m-orbit invariant quantum channel from
B(H) to B(K). Then the following are equivalent:

(i) © is orbit injective.

(ii) there exists a collection of observables { Py} in B(K) such that the measurements
{tr(ps®*(Pa)) }o uniquely determine the pure state [pz)nx.

In particular, if ® = ®., then ® is orbit injective if and only if the orbit [pz]. is
uniquely determined by {tr(p,P(Pa))}a-

Proof. (i) = (ii): Suppose that ® is orbit injective. Let {P,} be a family of orthogonal
projections such that span{P,} = B(K). If tr(p,®*(P,)) = tr(py,®*(P,)) for every
a, then we get (®(pg), Pa) = (®(py), Pa) for each a and hence ®(p,) = ®(p,) since
span{P,} = B(K). Therefore, by the orbit injectivity of ®, [pz]r = [py]x-

(1) = (i): Suppose that ®(p,) = ®(p,). Then the same argument implies that

tr(pe®*(Pu)) = tr(py @ (Pa))

for every o and hence [p;]r = [py]x. Therefore ® is orbit injective. O
4. Characters with property (H)
In this section we characterize the family of characters that have property (H).

4.1. The real case

We study real valued multiplicative characters which are used in Theorem 2.4 and
Theorem 2.6 to characterize orbit injective quantum channels over real Hilbert spaces.

Let G be a finite group. Let x : G — {£1} be a character. Then x factors through
G (the abelianization of () and then factors through G%/(G%)? as {£1} has order
2. Without loss of generality, we may assume that G is an elementary finite abelian
2-group, i.e. G = (Z/2Z)*. Then G EﬁZ/2Z)’C and we view it as an Fa-vector space of

dimension k. Fix an isomorphism ¢ : G — G. This is equivalent to fixing a pairing on
G x G.
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Let X1, X2,..., X& be an Fo-basis of G. Then G = (x1) @ --- @ (xx). Let G; be the
orthogonal complement of the kernel of y; with respect to the above paring. Then G =
G1® -+ ® Gg. We claim that for any tuple (a;)1<;<x with a; € {1}, there exists an
element g € G such that a;a; = x:(g)x;(g). Indeed, (x;) is the dual group of G; and
one may simply take g; € G; with x;(¢;) = a;. Then x,(g;) = 1 for all j # i. Let
g = (9i)1<i<k € G, then this g satisfies a; = x;(g) hence satisfies the required property.
The element 1 — g = (1 — ¢i)1<i<x € G satisfies a; = —x;(1 — g). They are the only two
elements with a;a; = xi(9)x;(9)-

Now let x1,---,x; be | characters with [ > k. Then there are 2! possibilities for
the tuple (a;)1<j<i, but only 2* possibilities for the tuple (x;(g))1<j<i- In general the
expected element g does not exist. We have the following result.

Proposition 4.1. Let G be a finite group. Let x1,..., xi be real valued characters of G.
Let k = log, (|G /(G)?|) and s = dimg, span{x1, ..., xi}- Note that s < k. Then the
characters x1,..., x1 have property (H) if and only if one of the following two holds:

(1) s=1;
(2) s+ 1=1 and the only relation involves odd number of characters.

Proof. Let H := G /(G%)2. Then H = (Z/27)%" = H. View H as an Fy-vector space
of dimension k and fix an isomorphism H — H.

Let x1,..., xXs be a maximal linearly independent subset of x1,..., x;. Let H; be the
orthogonal complement of the kernel of x; as before. Then

ZS: ker(x;)) Zker Xi)-
i=1

Note that H; & Z/2Z and H; = (x;). Write H = Hy & --- & H, & H°. Then ;(g) =
xi(g+x) for all x € H¢ and 1 < i <. Therefore, changing g by an element x € H¢ does
not affect our discussion. We may assume that H€ is trivial and s = k.

If s =1, then x1,..., x; satisfy property (H).

If s + 2 <, then xi,..., x; do not satisfy property (H) by counting the possibilities.

If s +1 =1, write xs11 = [[;_; Xi* (e; = 0 or 1). Let (a;)51] € {£1}**!. Without
Xs+1, there exists a unique g € H = H; @ -+ @ H, with x;(9) = a; (1 < i < s). Then
Xi(l —g) = —a; (1 < i < s). These are the only two elements with a;a; = x;(x)x;(2)
(1 <i<s). (Recall that we assume that H€ is trivial as its elements do not affect the
values of x;(g).) Note that

Xsi1(9) = [J e, xerr1(1—g) = (=1)== [ a5,
3 =1
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o Case that > 7, e; is even. In this case, if as41 = [[}_, ai’, then g satisfies x;(g) = a;
for 1 <i<l;ifasyr = —[]]_; af’, then 1 — g satisfies x;(1 —g) = —a; for 1 <i <.
Here we have an element « € H with a;a; = x;(2)x;(z) (1 < <1).

o Case that }_7_, e; is odd. In this case, if as41 = [[;_; ai’, then g satisfies x;(g) = a;
for 1 <i <l;if agy1 = —[]_; a’, then we have no solution for a;a; = x;(z)x;(z)
(1<i<).

The proposition follows. O

Example 4.1. Let G = (Z/2Z)* and let x1, X2,---, X& be an Fo-basis of G. The characters
X1, -, Xk satisfy property (H). Therefore if 7 = x;'* @ ... ® x;* for some i1,...,i €
{1,2,...,k}, then ®, is orbit-injective by Theorem 2.4. See also Example 2.2.

4.2. The complex case

The second characterization is about complex valued multiplicative characters for
(infinite) compact groups. In this case, the unit circle T plays the role of Z/2Z and the
essential case is T¥ = T x --- x T. For example, for a Lie group G, a character y : G—T
factors through G and its connected component would be a product of copies of R and
copies of T.

We could see the strategy in the following explicit case. Let G = T x---xT = T*. Let
1; be the projection of G to the i-th component. Then G is a free Z-module with basis
Y1,..., Py, Certainly, v1,..., 1y, satisfy property (H) in the sense that for any (a;) € T*
there exist g € G with a;a; = 9i(9)¥;(g). This g is unique if we require a; = 1;(g) as
1 @ --- @1y is an isomorphism. The other elements with a,a; = x;(g)x;(g) are those
of the form tg where t € T and we view it as an element of G by diagonal embedding.
(Indeed, ¥;(tg) = ti;(g) = ta;.) It is possible to add one more character to the family
of characters. Let ¢y, = Hle wfi. Let (ay,...,ar,apr1) € T Let g € G be the
unique element such that ¥;(g) = a; (1 <1 < k). Then

k

Yrt1(g) = Ha?i =capy1, ceT.
i=1

Ifc=1 (ie. Hle a%’ = agy1), then g satisfies a; = 1;(g) for all 4, hence satisfies the
equations a;a; = 1;(9)¥;(g) (1 <i,j <k+1).
If ¢ # 1, we look for d € T with ¢;(dg) = da; (d € T, 1 < i < k+1). The only

problem is for ¢ = k + 1, which gives us the equation
dXi=idic — .

Therefore, characters 1,..., ¥, Yr+1 = Hle wfi satisfy property (H) if and only if
Yy di # 1.
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For the general case, let x1,..., x; be a family of characters of G. Note that if | > k+2,
then these characters do not satisfy property (H) by comparing the dimensions. Let s
be the rank of the subgroup of G generated by these y. This subgroup corresponds to a
subtorus of G with dimension s. By replacing G with this subtorus, we may assume that
s = k. As for finite group case, we have two cases [ = k and [ = k + 1. Similar argument
gives us the following result.

Proposition 4.2. Let G = T*. Let x1,..., x1 be characters of G such that the rank of the
group generated by them is s. The characters x1,..., xi satisfy property (H) if and only
if one of the following two holds.

(1) s=1.
(2) s+ 1 =1, and suppose that x1,..., xs form a set of generators, in the relation

xo= 1T X Yo di # 1.

Proof. As explained above, we may assume that s = k. Any nontrivial character of G is
surjective. If x1,..., xs are Q-linearly independent in G® Q= QF then x1 & @ xs :
G — T* is surjective. If [ = s, then x1,..., x; satisfy property (H).

Ifl=s+1=k+1and x1,..., xs_1 form a set of generators, for a given (a;) € T',
there exist g € G such that x;(¢9) = a; (1 <i <1 —1 = k). From the assumption on
X1-y Xi—1, the natural map x1 @ --- ® yi—1 : G=T!"! is surjective. Therefore for any
t € T, there exists at least one hy € G such that x;(h;) =t for all 1 < i <1 — 1. Write
xi =1, Xfi, similar argument as before shows that xi,..., x; satisfy property (H) if
and only if >°7_, d; # 1. This completes the proof of the proposition. O

Example 4.2. Let G = U(n1) @ --- @ U(nk). Then each character of G factors through
GP=T@---®T = TF via the determinant map. One could then easily construct orbit
injective quantum channels by combining Theorem 3.1 and Proposition 4.2.
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