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of F E D AV G [18]. We train a ConvNet under different
butions (i.e., non-IID) — a common scenario in
reality — federatedly learned models have been
shown to perform poorly compared to central-
izedly learned models. Extensive studies have
thus been conducted to understand and allevi-
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Abstract

Federated learning aims to train a machine learning model (e.g., a neural network) in a
data-decentralized fashion. The key challenge is the potential data heterogeneity
among clients. When clients’ data are non-IID, federatedly learned models could
hardly achieve the same performance as centralizedly learned models. In this paper,
we conduct the very first, pilot study to understand the challenge of federated
learning through the lens of loss landscapes. We extend the visualization methods
developed to uncover the training trajectory of centralized learning to federated
learning, and explore the effect of data heterogeneity on model training. Through
our approach, we can clearly visualize the phenomenon of model drifting: the
more the data heterogeneity is, the larger the model drifting is. We further explore
how model initialization affects the loss landscape, and how clients’ participation
affects the model training trajectory. We expect our approach to serve as a new,
qualitative way to analyze federated learning.

1 Introduction
20

IID

=0.1

=0.5

Federated learning (FL) aims to train a machine
learning model (e.g., a neural network) in a data- 0

decentralized fashion [10]. Namely, data holders
(i.e., clients) do not need to share their data with 20

a centralized server for model training. This
largely protects data privacy and ownership. 40

=1.0

Initial

Training a model in an F L  manner, however, is
by no means trivial. As data are decentralized, 60

model training (i.e., parameter update) must take
place at the clients’ local sites, followed by an 20 0 20 40 60 80 100

aggregation process to produce a single, global     Figure 1: Visualization of the training trajectory
model. When clients data are of different distri- 

non-IID conditions of CIFAR-10 [12]. Smaller α means
a severer non-IID condition [9]. We collect the global
model after each round, and plot the loss surface using
the aggregated training data. As shown, the training
trajectory under non-IID data gradually deviates away

ate such an issue [16, 11, 1]. However, most of     
from that under IID data, and ends at a larger loss value.

these studies were presented in quantitative ways. There is a lack of user-friendly, qualitative ways
(e.g., visualizations) to understand the inner working and challenges of federated learning.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.
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In this paper, we explore the use of visualizations to understand the loss landscape and model training
trajectory of federated learning. Visualizing the loss landscape has been shown as an intuitive way to
understand centralized neural network training and how different network architectures, optimizers,
and hyperparameters (e.g., batch size, learning rate) play their roles [14, 7]. Compared to centralized
learning, federated learning has a more complicated training procedure as it usually involves iterations
between local training (of multiple models in parallel) and global aggregation.

To perform visualizations in a meaningful way, we first discuss what to visualize in FL.  We identify
two loss landscapes, the loss function computed on each client’s data or on the aggregated data, and
two training trajectories, local model training or global models aggregated after different iterations.
We show how to extend the existing approaches [14, 7] to visualize them. We then use visualizations
to explore the effect of data heterogeneity on the loss landscape and training trajectory. Our goal is to
understand how data heterogeneity makes the optimization in F L  harder, and how existing solutions
(e.g., pre-training) could alleviate it.

We obtain the following insights through our visualizations.

• Treating the trajectory on IID data as the ideal trajectory one can obtain in FL ,  we show
that when the data becomes less IID, the trajectory would deviate away from the ideal
trajectory, or even converge to a different (and worse) local minima. This demonstrates the
phenomenon of model drifting, one major cause of performance degradation in F L  [17].

• With proper model initialization, the trajectories under different non-IID degrees (including
IID) would enter the same basin of the loss landscape. This provides an explanation of why
pre-training could largely improve F L  [3].

• Partial client participation makes the training trajectory less stable.

For future work, we will extend our visualizations to compare different local training [11, 1, 15] and
model aggregation [2, 13, 20] approaches on more datasets, as well as other hyperparameter settings
(e.g., local epochs). We expect that our visualizations to serve as an analytics tool for other future
research in FL.

2 Background

We provide backgrounds of federated learning and visualizations of loss landscapes.

Federated learning (FL).  In F L  with M clients, each client has a data set D =  { ( x  , y )}|D m | .
The optimization problem to solve can be formulated as

min L (θ )  =  
X  |Dm |

Lm (θ),
m = 1

where     L m (θ )  =  
|Dm| 

i      

ℓ(xi , yi ; θ). (1)

Here, θ is the model parameter; D  =  � D is the aggregated data set from all clients; L  (θ) is the
empirical risk computed from client m’s data; ℓ is a loss function applied to each data instance.

As clients’ data are decentralized, Equation 1 cannot be solved directly (otherwise, it is centralized
learning). A  standard way to relax it is Federated Averaging (FEDAVG) [18], which iterates between
two steps, local training and global aggregation, for multiple rounds of communication (indexed by t)

Local: θ (t)  =  arg minθ Lm (θ ) ,  initialized with θ ( t−1) ; Global: θ ( t )  ← 
X  |Dm|

θ(t) .
m = 1

(2)

The local training is performed at all (or part of) the clients in parallel, usually with multiple epochs of
SGD to produce the local model θ . The global aggregation is by taking element-wise average over
model weights. Since local training is driven by clients’ empirical risks, when clients’ data are non-
IID, θm would drift away from each other, making θ deviate from the solution of Equation 1.

Visualizations of loss landscapes. Visualizing the optimization trajectory and its surrounding loss
surface is a powerful technique to analyze the high-dimensional learning behavior and generalization
of neural networks [5, 6, 7, 14]. Let L  be the loss function and θ � R K  be the parameter, to perform

2
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(a) Global scope (b) Local scope
Figure 2: Visualizations of the global scope and local scope. (a) We show the trajectory of the global models
over 100 rounds on the loss landscape of L .  (b) We show the trajectories from θ ( t − 1 )  (round start ∆ )  to θ ( t ) ,
and to θ ( t )  (aggregated �), for all 10 clients at a particular round t =  10. On the background, we overlay two
landscapes together: L  (the minima is at the middle); L m  for the red client (the minima is on the right).

2D visualizations, one common way is to visualize the loss in a 2D subspace θ =  v� +  β v  +  β v  .
Here, v� � R K  is the center point; v  � R K , v  � R K  are the spanning directions; β � R, β � R
are the coefficients. That is, (β , β )  on the 2D visualization plane corresponds to L (θ  =  v� +
β1v1 +  β2v2).

To visualize the loss landscape around a specific model checkpoint, one can simply use it as v�, and
randomly sample v  and v  . To visualize the training trajectory along multiple checkpoints, one
common way is to set v� as the last checkpoint, set v  and v  as the top two principal components of
the checkpoints, and then project each checkpoint onto the 2D subspace/plane.

3 Visualizations of the Loss Landscape of Federated Learning

As mentioned in section 2, F L  has a more complicated training procedure than centralized learning.
Specifically, FE DAVG involves multiple rounds of parallel local training (each with multiple epochs)
followed by global aggregation. The goal is to learn θ to minimize the global loss L  calculated on
the aggregated data, while during local training, each θ is trained to minimize the local loss L
calculated on each client’s data. To make the visualizations meaningful, we must clearly identify
what to visualize, i.e., what models and on what loss functions.

To this end, we consider two scopes: global and local. At the global scope, we analyze the trajectory
along the global models {θ ( t ) }  after each round, and see if it converges to the minima of L .  At the
local scope, we analyze the trajectory from θ ( t−1 )  to θ (t) , and to θ (t) , within each communication
round. In particular, we want to see if local training makes each θ (t)  deviate from the overall goal of
minimizing L ,  and if global aggregation can compensate for it. For each scope, we collect the
corresponding model checkpoints, and follow the procedure in section 2 to create the visualizations.

Experimental setup. We conduct experiments on the CIFAR-10 [12] image classification dataset.
We follow [9] to split the 50K training images into M =  10 portion. A  coefficient α controls the
non-IID degree. The smaller the α is, the larger the non-IID degree is. In the extreme cases, each
client may have data from only a single class. On contrary, when α is large, each client is likely to
have data from all the classes; the class proportion is close to uniform.

We consider two neural networks. One is the ConvNet with 6 Conv and 2 F C  layers. The other is
ResNet20 [8]. We apply FE DAVG [18] with 100 rounds of local training. Each round takes 5 epochs,
using a learning rate of 0.01 and a batch size 16. We consider full client participation at each round, but
will investigate partial participation in section 5. We initialize the global model θ (0) with random
weights, but will investigate pre-trained weights in section 4.

Global scope. We show an example of the global scope in Figure 2a. We use the ConvNet and α
=  0.3 (mid non-IID), and visualize the trajectory of the global models {θ ( t ) }  on the loss landscape of
L .  As shown, the global models seem to converge to a minima of L .
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Figure 3: Visualizations of the final global models (i.e., θ (100) ) under the I ID and different non-IID
conditions, using the same random weights for initialization. (a) Using the ConvNet. (b) Using the ResNet-
20. (c) Global loss L  along the interpolation between the IID global model and each of the non-IID global model.
A  higher intermediate loss indicates the existence of a larger barrier between two models.
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Figure 4: Visualizations of the local scope under different non-IID conditions, at t =  30.

Local scope. We show an example of the local scope in Figure 2b. We visualize the trajectories
from θ ( t−1 )  to θ (t) , and to θ (t) , for all clients at a particular round t =  10. We plot two loss surfaces
together, one is on L  and the other is on L of one client. As shown, the model learned during local
training moves away from the minima of the global loss L  and towards the minima of the local loss
L m .  Nevertheless, after aggregation, θ(t) moves towards the minima of the global loss L .

4 Visualizations of the Effect of Data Heterogeneity and Model Initialization

In this section, we use visualizations to explore the effect of data heterogeneity on federated learning.
We consider IID, α =  1.0 (slight non-IID), α =  0.5, and α =  0.1 (severe non-IID).

Initialization with random weights. We first visualize the final global model θ(100) and surrounding
loss landscape of L .  We use the same random weights to initialize FE DAVG for the IID and different
non-IID conditions, and plot the four final global models together on the landscape of global loss L .
Figure 3a shows the visualizations using the ConvNet. We find that even with the same initialization,
global models under different non-IID conditions soon diverge into different loss basins. The smaller
the α is (severer non-IID), the larger the loss is, which seems to explain the degradation of FL under
non-IID conditions. A  similar observation is found for ResNet-20 in Figure 3b.

To further verify our observations, we linearly interpolate between the IID and non-IID final global
models, and plot the intermediate model’s global loss in Figure 3c. We see a notable barrier between the
IID model and the non-IID model, suggesting that they indeed enter different loss basins. To make sure
that this does not happen by chance, we train another global models under the IID condition but with a
different data split. (The same random weights are used for initialization.) We then perform the
interpolation again. We have a quite consistent observation in Figure 3c: we can clearly see three pairs
of highly consistent curves (each pair is from the two IID models to one non-IID model); all curves
have large losses in the middle.

We further explore how data heterogeneity affects the local scope, as shown in Figure 4. We found
that the smaller the α is (severer non-IID), the denser the contour is, meaning that the locally trained
models quickly move away from the minima of the global loss. Moreover, for less non-IID conditions,
the aggregated global model (either θ ( t−1 )  or θ (t) at t =  30) is closer to the center of the basin; i.e., it is
more likely to attain smaller global losses.
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Figure 5: Visualizations of the final global models (i.e., θ (100) ) under the I ID and different non-IID
conditions, using the same pre-trained weights for initialization. (a) Using the ConvNet. (b) Using the
ResNet-20. (c) Global loss L  along the interpolation between the IID global model and each of the non-IID
global model. A  higher intermediate loss indicates the existence of a larger barrier between two models.
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(a) Pre-trained weights. (b) Random weights, followed by one IID round.
Figure 6: Visualization of the global scope, under different non-IID conditions. We use the ConvNet.
(a) We initialize F E D AV G with the ImageNet pre-trained weights. (b) We initialize F E D AV G  with the random
weights after one round of IID training. For each figure, we also consider running F E D AV G  for more rounds,
using a reduced learning rate (α =  1.0�).

Initialization with pre-trained weights. Several recent work [3, 19] has empirically and quanti-
tatively showed that pre-training significantly improves F E DAV G. It closes the performance gap
between centralized learning and federated learning under non-IID conditions. Here, we want to
investigate how model initialization with pre-trained weights affects FL,  through visualizations. We
follow [3] to pre-train the model using ImageNet data [4] that are down-sampled to the size of
CIFAR-10 images.

Figure 5 shows the visualizations under the same setting as Figure 3, except the initialization. Unlike
random weights, initialization with a well pre-trained model leads to a much smoother loss landscape.
All  the final global models (i.e., θ (100) under IID and different non-IID conditions) enter the same
loss basin. The non-IID model with α =  1.0 can even arrive at the same loss level of the IID model.
Besides, we see a small barrier along the interpolation. All  of these together seem to well explain
why pre-training can largely improve FL,  especially under non-IID conditions.

Detailed visualizations on training trajectories. The observation that F E DAV G initialized with
pre-trained weights would enter the same loss basin under different non-IID conditions allows us to
further analyze the phenomenon of model drifting (see section 2). Treating the trajectory of global
models under the IID data as the ideal trajectory one could obtain in FL, we aim to visualize how the
trajectory changes when the data becomes non-IID.

To this end, we collect all the intermediate global models θ (t)  for the IID and non-IID conditions,
and visualize them on the loss landscape of L .  Figure 6a shows the visualization. When the data
become non-IID (i.e., from IID to α =  1.0, α =  0.5, and then to α =  0.1), the trajectory gradually
deviates away from the ideal trajectory (purple one, under IID data) and ends at a higher loss value.

Importantly, even if we run more rounds of FE DAVG and use a reduced learning rate, FE DAVG under
non-IID data (e.g., at α =  1.0) cannot converge to the final global model obtained under the IID
data. This is shown by the black segment (i.e., α =  1.0�) in Figure 6a. This observation may seem to
conflict the observation in Figure 5c. Namely, with pre-training, if there is no barrier between the final
global models obtained under IID and non-IID data, why cannot the latter eventually converge to the
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former after more rounds of FE DAVG? To answer this question, we revisit the training procedure of
F E DAV G in section 2. We note that while the overall goal of F E DAV G is to minimize L ,  it does not
have a direct access to L .  That is, even there is no barrier (on the landscape of L) ,  F E DAV G cannot
sufficiently guide the final global model towards the minima of L .

The above results demonstrate the phenomenon of model drifting, one major cause of degradation in
FL.  Moreover, while pre-training largely improves F E DAVG, it still cannot eliminate model drifting.

Visualizations of the training trajectories without pre-training. In Figure 5c, we use pre-trained
weights to initialize F E DAV G. This is because with random initialization, F E DAV G will rapidly
diverge into different loss basins under different non-IID conditions, making it hard to visualize the
gradual deviation of the training trajectories (cf. Figure 5c). Here, we investigate if we can still
visualize the phenomenon without a pre-trained model for initialization. After all, for some
applications beyond natural images or natural language, pre-training might not be feasible.

We consider an analytics strategy, which is to run F E DAV G under the IID data for one round, using
random weights for initialization. After that, we then run F E DAV G for different non-IID conditions,
using the aggregated global model θ (1) under the IID data as the initialization. Figure 6b shows the
visualization, using the same setting as in Figure 6a except for the initialization. We have a similar
observation as in Figure 6a: the training trajectory under non-IID data deviates away from that under
IID data; the degree of deviation is governed by the non-IID degree (i.e., α).

5 Additional Analyses

We explore how other factors in federated learning, such as partial client participation, affect the loss
landscape and training trajectory.

Partial client participation. So far, we assume that all the clients participate in each round of local
training and global aggregation. In reality, clients may only participate in part of the F L  process,
e.g., due to communication bandwidth or quality. In Figure 7, we visualize such a case, where we
randomly sample a portion of the M =  50 clients at each round to participate in local training and
global aggregation. We conduct the experiments with both IID and non-IID data (α =  0.5). Figure 7a
shows the three trajectories using different client sampling rates (i.e., 0.2, 0.5, 0.8). When the clients’
data are IID, we found that even with different sampling rates (and fewer clients participating in each
round), the three trajectories still fall into the same loss basin. Whereas under the non-IID condition,
if we only use a small portion of clients at each round, the overall performance of FE DAVG could drop
significantly, as shown in Figure 7b. Specifically, the purple trajectory with 20% client participation
largely deviates away from the other two trajectories and finally arrives at a larger loss value.
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(a) IID. (b) Non-IID with α =  0.5.

Figure 7: Visualizations on the global scope, under different levels of client participation. We use the
ConvNet. At each round, we randomly sample a portion of the M =  50 clients to participate in local training
and global aggregation.

6 Conclusion

We present the very first, pilot study on using visualizations to understand federated learning. Our
study clearly shows how data heterogeneity and model pre-training affect the loss landscape and
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training trajectory of federated learning. We expect that our visualizations to serve as a user-friendly
analytics tool for future research in federated learning. Moving forward, we plan to extend our
study to different local training and model aggregation approaches on more datasets, as well as other
hyperparameter settings (e.g., local epochs).
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