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Abstract 

The enantiomers of chiral amino acids play versatile roles in biological systems including humans.  They are also very useful in the 
asymmetric synthesis of diverse chiral organic compounds.  Therefore, identification of a specific amino acid and distinguishing it from its 
enantiomer are of great importance.  Although significant progress has been made in the development of fluorescent probes for amino 
acids, most of them are not capable of conducting simultaneous chemoselective and enantioselective detection of a specific amino acid 
enantiomer.  In this article, several fluorescent probes have been designed and synthesized for chemoselective as well as enantioselective 
recognition of certain amino acid enantiomers.  (S)-1 shows greatly enhanced fluorescence in the presence of L-glutamic acid and L-
aspartic acid, but produces no or little fluorescent response toward their opposite enantiomers and other amino acids.  (R)-4 in combination 
with Zn2+ shows greatly enhanced fluorescence in the presence of L-serine.  (S)-6 is designed for the selective recognition of histidine.  
Micelles made of an amphiphilic diblock copolymer are used to encapsulate the water-insoluble compound (S)-8 which shows 
chemoselective as well as enantioselective fluorescence enhancement with L-lysine in the presence of Zn2+ in aqueous solution.  The same 
micelles are also used to encapsulate several (S)-1,1’-binaphthyl-based monoaldehydes (S)-10 for the chemoselective and enantioselective 
fluorescent recognition of L-tryptophan in the presence of Zn2+ in aqueous solution.  These findings have demonstrated that highly 
selective fluorescent identification of a specific amino acid enantiomer can be achieved by incorporating certain functional groups at the 
designated locations of the 1,1’-binaphthyls.  The binaphthyl core structure of these probes provides both chirality source and highly 
tunable fluorescence property.  Matching the structure and chirality of these probes with those of the specific amino acid enantiomers can 
generate structurally rigid reaction products and give rise to greatly enhanced fluorescence.  The strategies of this work can be further 
expanded to develop fluorescent probes for the specific identification of many amino acids of interests.  It should facilitate the analysis of 
chiral amino acids in various applications.  The outlook of this research and its comparison with other methods are also discussed. 
 
1.  Introduction 

Amino acids, specifically the L-enantiomers of α-amino acids, 
are the building blocks of life.1  They link together through amid 
bonds to form proteins that are essential for all the life systems 
including humans.  Among 20 canonical amino acids used in the 
protein syntheses of human body, only half of them can be 
produced by humans and the other half are named essential amino 
acids which need to be provided in daily diet.  Besides L-amino 
acids, their opposite enantiomers, D-amino acids, are also found 
in humans, other animals, plants and microbes and exhibit various 
biological functions.2-6  For example, D-aspartic acid and D-serine 
in the β-amyloid protein of brains were obtained from patients 
with Alzheimer’s disease.2  The level of D-aspartic acid in human 
lenses was found to increase with aging.3  Other D-amino acids 
such as D-alanine, D-glutamate, N-methyl-D-asparate, and D-
glutamine were found in brain to play important roles as 
neurotransmitters and messenger molecules.4  Detection of D-
amino acids and understanding the mechanism of their functions 
are important for the development of treatment for neurological 
diseases such as amyotrophic lateral sclerosis, Alzheimer’s 
disease and schizophrenia.4  The ratio of the enantiomers of amino 
acids in foods can be used to estimate the sample age and provide 
quality control since D-amino acids can be generated under 
certain food processing conditions or from the contamination of 
microbes.5  Both enantiomers of amino acids are also extensively 
used in organic synthesis including pharmaceutical production.7 

In order to analyze the enantiomeric composition of chiral 
amino acids, a number of methods have been used including 
HPLC, GC and electrophoresis.8-10  Optical methods such as UV-
vis absorption, circular dichroism and fluorescence spectrometry 
have also been developed to distinguish the enantiomers of amino 
acids.11-13  In our laboratory, we have conducted projects on the 
design and synthesis of chiral molecular hosts for the 
enantioselective fluorescent recognition of chiral organic 

compounds including α-hydroxy carboxylic acids, amines, amino 
alcohols and amino acids because using fluorescence 
spectroscopy has advantages of easily available instrument, fast 
and on-site analysis, high throughput assay, remote sensing, etc.14-

19  In spite of the progress in the development of fluorescent 
probes for amino acid analysis,13 simultaneous chemoselective as 
well as enantioselective identification of a specific amino acid 
enantiomer by using a fluorescent probe was rare.20  Recently, we 
have designed and synthesized several fluorescent probes that 
have exhibited both high chemoselectivity and high 
enantioselectivity in the recognition of amino acids.  These probes 
give greatly enhanced fluorescence in the presence of a specific 
amino acid enantiomer and they are potentially useful in various 
applications to distinguish one amino acid enantiomer from other 
amino acids and chemicals.  Herein, our study on the development 
of fluorescent probes for chemoselective as well as 
enantioselective recognition of free amino acids is discussed. 

 
II.  Selective Recognition of Glutamic Acid and Aspartic Acid. 

We synthesized 2,2’-diformyl-1,1’-binaphthyl (S)-1 from (S)-
1,1’-bi-2-naphthol [(S)-BINOL] according to Scheme 1.21  When 
(S)-1 was excited at 280 nm, it gave weak emissions at λ = 340 
nm and 410 nm.  It was interacted with the tetrabutylammonium 
(TBA) salts of 18 enantiomeric pairs of common amino acids, and 
only L-Glu-TBA and L-Asp-TBA generated large fluorescence 
enhancement at 365 nm (Figure 1).  The TBA salts of these amino 
acids were used for better solubility in methanol.  All other amino 
acid enantiomers including the opposite enantiomers D-Glu-TBA 
and D-Asp-TBA produced no or little fluorescence response.  
Figure 2 shows the fluorescence responses of (S)-1 toward L- and 
D-Glu-TBA.  In Figure 2a, (S)-1 (2.0 mM) in CH2Cl2 was first 
mixed with 5.0 equiv of L- or D-Glu-TBA at 300 K for 2 h and 
then diluted to 2.0 x 10-5 M with methanol for fluorescence 
measurement.  Figure 2b shows that when the concentration of L-
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Glu-TBA was increased from 0.5 to 5.0 equiv, the fluorescence 
enhancement reached maximum (81 folds of the original 
intensity), after which the fluorescence intensity started 
decreasing while the concentration of L-Glu-TBA was increasing.  
However, little fluorescence response was observed when the 
concentration of D-Glu-TBA was increased from 0 to 8.0 equiv.  
The maximum enantioselective fluorescence enhancement ratio 
[ef = (IL − I0)/(ID − I0)] was 25 at 5.0 equiv of the amino acid.  The 
limit of detection (LOD) for L-Glu was 4.76 × 10-8 M.   

 
Scheme 1.  Synthesis of probe (S)-1.   
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Figure 1.  Fluorescent response at 365 nm, I365/I0, for the 
interaction of (S)-1 (2.0 × 10-5 M) with 18 pairs of D-/ L-amino 
acids (5 equiv) (Solvent:  MeOH/CH2Cl2 = 99/1, v/v.  λexc = 280 
nm, slits = 5/5 nm.  I0: Fluorescence intensity of (S)-1 at 365 nm 
in the absence of amino acids).   

 
(a) 

 
                                                  (b)     
Figure 2.  (a)  Fluorescence spectra of (S)-1 (2.0 × 10-5 M) with 
(a) L- and D-Glu (5.0 equiv).  (b)  Fluorescence intensity at 365 

nm versus the equivalent of L- and D-Glu.  (Solvent:  
MeOH/CH2Cl2 = 99/1, v/v.  λexc = 280 nm. Slit: 5/5 nm) 
 

The fluorescence responses of probe (S)-1 and its enantiomer 
(R)-1 toward L- and D-Glu-TBA at various enantiomeric 
composition show a mirror image relationship which confirms the 
chiral recognition process.  The enantiomeric composition of the 
amino acid can thus be determined by the fluorescence 
measurement.   

No fluorescence response was observed when (S)-1 was treated 
with 4-amino butyric acid.  Reaction of (S)-1 with excess amount 
of L-Glu-TBA over extended reaction time gave the diimine 
product (S)-2 which gave only weak fluorescence (Scheme 2).  
Thus, the stereoselective formation of the dihemiacetal adduct 3 
was proposed to account for the chemoselective and 
enantioselective recognition of the amino acid.  The greatly 
increased structural rigidity of 3 over (S)-1 should have 
contributed to the greatly enhanced fluorescence.  (S)-1 might not 
be able to form a compound like 3 with D-Glu-TBA and other 
amino acid enantiomers and thus cannot produce significant 
fluorescence enhancement.   

 
Scheme 2.  A proposed mechanism for the reaction of (S)-1 with 
L-Glu. 
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III.  Selective Recognition of Serine.   

We designed and synthesized compound (R)-4 for the 
chemoselective and enantioselective detection of serine as shown 
in Scheme 3.22  This compound contains a chiral 1,1’-binaphthyl 
unit with two freely rotating arylethynyl groups.  The two 
aldehyde groups of (R)-4 can condense with the amine group of 
serine to form an imine product which upon coordination with a 
Zn2+ ion could give a macrocyclic Zn2+ complex 5.  This should 
restrict the rotation of the arylethynyl units of (R)-4 as well as that 
of its binaphthyl unit to give enhanced fluorescence.  It was 
proposed that when the chirality of the serine unit in 5 matches 
that of the binaphthyl unit, more of this macrocycle could be 
generated to give greater fluorescence enhancement than the 
mismatched one.  Other amino acids that cannot form a stable 
Zn2+ coordination like that in 5 will not be able to generate the 
same fluorescence enhancement. 

 
Scheme 3.  Design of a fluorescent probe (R)-4 for selective 
recognition of serine. 
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The fluorescent response of (R)-4 toward the TBA slats of the 
enantiomeric pairs of 18 common amino acids in the presence of 
Zn(OAc)2 was investigated.  As shown in Figure 3a, treatment of 
(R)-1 with Zn(OAc)2 (4.0 equiv) caused little change in its 
fluorescence at 402 nm (λ1).  When L-Ser-TBA (10.0 equiv) was 
added to the (R)-4 (2.0 × 10−5 M) + Zn(OAc)2 (4.0 equiv) 
solution, there was a large fluorescence enhancement at 471 nm 
(λ2) (Figure 3a), however, D-Ser-TBA (Figure 3a) and 17 pairs of 
other amino acid enantiomers cannot produce significant 
fluorescence response under the same conditions (Figure 3b).  In 
Figure 3a, ef ([IL-I0]/[ID-I0]) was found to be 15 for the 
fluorescence response of (R)-4 toward serine at 471 nm.   
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Figure 3.  (a)  Fluorescence spectra of (R)-4, (R)-4 + Zn(OAc)2, 
(R)-4 + Zn(OAc)2 + L-Ser-TBA, and (R)-4 + Zn(OAc)2 + D-Ser-
TBA.  (b)  Fluorescence intensity of (R)-4 with Zn(OAc)2 and 18 
D-/L-amino acid-TBAs. [(R)-4: 2.0×10−5 M in CH3OH/0.8% 
CH2Cl2.  Zn(OAc)2: 4.0 equiv.  L-/D-amino acids:  10.0 equiv.  
Reaction time: 5 h at rt.  λ exc = 320 nm, slit 5/5 nm].  Adapted 
from Tetrahedron Lett. 2021, 66, 152803.  Wang, Y.; Tian, J.; 
Zhao, F.; Chen, Y.; Huo, B.; Yu, S.; Yu, X.; Pu, L.  Highly 
Chemoselective and Enantioselective Recognition of Serine by a 

Fluorescent Probe.  Copyright (2021), with permission from 
Elsevier.   
 

Figure 4 shows the effect of the concentration of serine on the 
fluorescent response of (R)-4.  When the concentration of L-Ser-
TBA increased from 0 – 10 equiv, the fluorescence intensity I471 

of (R)-4+Zn2+ increased greatly.  Then, the fluorescence 
decreased slowly when the concentration of L-Ser-TBA was over 
10 equiv.  Over the entire concentration range (0 – 20 equiv), D-
Ser-TBA caused only small change in fluorescence at 471 nm.  
Thus, this fluorescent probe can be used to determine the 
enantiomeric composition of serine.   
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Figure 4.  Plots of I471 for (R)-4 (2.0 × 10−5 M in CH3OH/0.8% 
CH2Cl2) + Zn2+ (4 equiv) in the presence of varying 
concentrations of D- and L-Ser-TBA (0 - 40 × 10−5 M).  (Reaction 
time:  5 h at rt.  λ exc = 320 nm, slit 5/5 nm).  Reprinted from 
Tetrahedron Lett. 2021, 66, 152803.  Wang, Y.; Tian, J.; Zhao, F.; 
Chen, Y.; Huo, B.; Yu, S.; Yu, X.; Pu, L.  Highly Chemoselective 
and Enantioselective Recognition of Serine by a Fluorescent 
Probe.  Copyright (2021), with permission from Elsevier.   

 
IV.  Selective Recognition of Histidine.   

Compound (S)-6 was synthesized from (S)-BINOL as shown 
in Scheme 4 for the recognition of histidine.23  It was proposed 
that treatment of (S)-6 with the chirality matched histidine in the 
presence of Zn2+ might generate the structurally rigid complex 7 
to give enhanced fluorescence.   
 
Scheme 4.  Preparation of probe (S)-6 and its proposed reaction 
with histidine and Zn(II) to form 7.   
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Figure 5a shows that upon excitation at 378 nm, the emission 

of compound (S)-6 was observed at 470 nm.  When it was treated 
with Zn2+, little change in fluorescence was observed.  Addition 
of D- or L-His decreased the fluorescence of (S)-6+Zn2+ (2.0 
equiv) at λ1 = 470 nm with no enantioselectivity (Figure 5a-d).  
However, when excited at 450 nm, D-His greatly enhanced the 
fluorescence (S)-6+Zn2+ (2.0 equiv) at λ2 = 560 nm and L-His 
caused only very small change for fluorescence at this wavelength 
(Figure 6a-d).  The ef [(ID–I0)/(IL–I0)] was found to be 24.3 at 10 
equiv D-His.   
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Figure 5.  (a)  Fluorescence spectra of (S)-6 (0.01 mM) + 
Zn(OAc)2 (2.0 equiv) with (a) D- and L-His (10.0 equiv).  (b)  
Fluorescence intensity at 470 nm versus the equivalence of D- and 
L-His [Slit: 5/5 nm.  Solvent:  DMF/1% pH 6.35 phosphate buffer 
(0.25 mM)] 
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Figure 6.  (a)  Fluorescence spectra of (S)-6 (0.01 mM) + 
Zn(OAc)2 (2.0 equiv) with D- and L-histidine (10.0 equiv).  (b)  
Fluorescence intensity at 560 nm versus the equivalence of D- and 
L-histidine [(λexc = 450 nm. Slit: 5/5 nm.  Solvent:  DMF/1% pH 
6.35 phosphate buffer (0.25 mM)] 

 
Both enantiomeric probes (S)- and (R)-6 were used to interact 

with histidine at various enantiomeric composition.  The 
fluorescence responses of (S)- and (R)-6 at λ2 give the expected 
mirror image relationship.   

The fluorescence responses of (S)-6+Zn2+ toward 17 pairs of 
common amino acid enantiomers (including D- and L-His) were 
investigated.  It showed that these amino acids caused 
fluorescence quenching at λ1 = 470 nm (λexc = 378 nm) with no 
enantioselectivity, and only D-histidine greatly enhanced the 
fluorescence at λ2 = 560 nm (λexc = 450 nm) but not L-His and 
other amino acid enantiomeric pairs (Figure 7).  That is, (S)-
6+Zn2+ has exhibited highly chemoselective and enantioselective 
fluorescent recognition of histidine.   
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Figure 7.  Fluorescence intensity at 560 nm of (S)-6 (0.01 mM) + Zn(OAc)2 (2.0 equiv) with 17 amino acids (10 equiv) [λexc = 450 nm.  
Slit: 5/5 nm.  Solvent:  DMF/1% pH 6.35 phosphate buffer (0.25 mM)]. 
 

Since nonenantioselective fluorescent quenching at 470 nm 
while excited at 378 nm was observed for (S)-6+Zn2+ in the 
presence of histidine, these fluorescence responses are only 
dependent on the concentration of this amino acid (Figure 8a) 
which can be used to determine the substrate concentration.  The 
fluorescent responses at 560 nm while excited at 450 nm are 

highly enantioselective and are dependent on both the 
enantiomeric composition of the amino acid and the total 
concentration of the two enantiomers (Figure 8b).  Combining 
Figure 8a and 8b led to the 3D plot Figure 8c which can be used 
to determine the enantiomeric composition of histidine by 
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measuring the fluorescence responses at the two emission 
wavelengths.   
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Figure 8.  Fluorescence response of (S)-6 (0.01 Mm) + Zn(OAc)2 
(2.0 equiv) toward histidine (0 - 13 equiv).  (a) I470 (λexc = 378 
nm) versus ee of histidine at varying concentration.  (b) I560 (λexc = 
450 nm) versus ee of histidine at varying concentration.  (c) I470 
versus I560 at varying [D-His]%.  [Solvent:  DMF/1% pH 6.35 
phosphate buffer (0.25 mM).  Slit: 5/5 nm] 

It was proposed that the fluorescence quenching at λ1 should 
be due to the consumption of (S)-6 upon reaction with D- and L-
His.  The highly enantioselective fluorescent response at λ2 can be 
attributed to the different stability of the Zn2+ complex 7 formed 
from the reaction of (S)-6 with the histidine enantiomers.  The 
more stable complex formed from the reaction of (S)-6+Zn2+ with 
D-His led to the observed large fluorescence enhancement at λ2.   
 
V.  Selective Recognition of Lysine.   

In order to use the water-insoluble probe (S)-8 to detect amino 
acids in aqueous solution, we have encapsulated it into the 
micelles of an amphiphilic diblock copolymer.24  The diblock 
copolymer polyethylene glycol–poly L-lactic acid (PEG–PLLA)  
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containing a hydrophilic PEG chain and a hydrophobic PLLA 
chain was prepared according to Scheme 5 which can form 
micelles in aqueous solution.  The micelle solution of (S)-8 (2.0 x 
10-5 M) with PEG-PLLA was prepared by addition of a DMF 
solution of (S)-8+PEG-PLLA to water followed by dialysis in 
water.  This micelle solution, named ML-S8, was used to interact 
with various L- and D-amino acids in the presence of Zn(OAc)2 in 
carbonate buffer solution (CBS, 25 mM, pH = 10.1).  As shown in 
Figure 9, D-Lys greatly enhanced the fluorescence of ML-S8 at 
528 nm but L-Lys did not.  Most of the other amino acids cannot 
generate significant fluorescence response and only smaller 
fluorescence enhancements were observed with tryptophan and 
arginine.  Thus, the micelle-based probe ML-S8 has exhibited 
chemoselective as well as enantioselective fluorescent recognition 
of L-Lys. 

 
Scheme 5.  Synthesis of mPEG-PLLA.   
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Figure 9.  Fluorescence intensity of micelle ML-S8 [2.0 x 10-5 M (S)-8] with Zn(OAc)2 (2.0 equiv) and D-/L-amino acids (10 equiv) in 
carbonate buffer solutions (25 mM, pH = 10.1).  Peak intensities at 528 nm were recorded at 5 oC after mixed at rt for 3 h and quenched 
with ice-water bath (λexc= 407 nm, slit 3/3 nm, int time 0.3 s.  Y axis:  fluorescence intensity minus that of ML-S8+Zn(II)/arbitrary unit.).  
Reprinted with permission from Org. Lett.  2019, 21, 4777.  Copyright {2019} American Chemical Society. 
 

The fluorescence spectra of ML-S8+Zn(OAc)2 with D-/L-Lys 
(10.0 equiv) are given in Figure 10a in which D-Lys greatly 

enhanced the fluorescence at 528 nm but L-Lys enhanced much 
less.  The enantioselective fluorescence enhancement ratio [ef = 

(S)-6 / 2 eq Zn(II)

(S)-6 / 2 eq Zn(II)
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(ID-I0)/(ID-I0). ID, IL and I0:  fluorescence intensity at 528 nm with 
and without D-/L-Lys respectively.] was 6.6.  Figure 10b plots the 
concentration effect of D- and L-Lys on the fluorescence of the 
micelle probe at 528 nm.  It shows that as the concentration of D-
Lys increased from 0 – 10 equiv, there was large fluorescence 
enhancement.  Then, the fluorescence enhancement became 
smaller.  L-Lys did not give significant fluorescence enhancement 
in the entire concentration range.   

 

 
(a) 

 
                                                 (b)        
Figure 10.  (a)  Fluorescence spectra of ML-S8 (2.0 x 10-5 M of 
(S)-8) with Zn(OAc)2 (2.0 equiv), Lys (10.0 equiv) in carbonate 
buffer solutions (25 mM) (using 20 mM Lys stock solution).  
Spectra were recorded at 5 oC after mixing at rt for 3 h.  (b)  
Fluorescence intensity at λ = 528 nm versus equivalency of D- 
and L-Lys. (λexc= 407 nm, slit 3/3 nm).  Adapted with permission 
from Org. Lett.  2019, 21, 4777.  Copyright {2019} American 
Chemical Society. 
 
 The diblock copolymer mPEG-PDLA was made from D-lactic 
acid (DLA) following the same procedure as in Scheme 5.  The 
micelles MD-R8 were prepared by using mPEG-PDLA and (R)-8.  
Although the micromolecular structure of MD-R8 is not the exact 
mirror image of ML-S8 due to the random conformations of the 
block copolymers in the micelles and the distributions of the 
micelle sizes, their fluorescence responses were close to a mirror 
image relationship.   

It was found that when (S)-8 was treated with L- or D-Lys in 
DMSO-d6/D2O solution, the terminal amine group of the amino 
acid reacted selectively with the aldehyde groups of the probe to 
give a diimine which could coordinate with Zn2+ to form a 
macrocyclic product 9.  It was proposed that the imine compound 
made of D-Lys might form a more stable Zn2+ complex than that 
made of L-Lys, leading to the greatly enhanced fluorescence and 
the chemoselective and enantioselective fluorescent recognition of 
lysine under the micelle conditions in aqueous solution.  In the 
absence of the diblock copolymer-based micelles, (S)-8 cannot be 
used in aqueous solution for the fluorescent recognition of amino 
acids.   
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VI.  Selective Recognition of Tryptophan.   

The micelle-based strategy in Section V was also used to 
design probe for the recognition of tryptophan in aqueous 
solution.  Scheme 6 shows the use of compounds 10 in 
combination with Zn2+ for the fluorescent recognition of 
tryptophan.25  Compounds 10a-d containing a Lewis basic site 
were prepared which upon reaction with tryptophan and Zn2+ 
inside the hydrophobic environment of the diblock copolymer 
mPEG-PDLA could generate complex 11 with an intramolecular 
hydrogen bonding interaction to give enhanced fluorescence in 
aqueous solution.   

 
Scheme 6.  Design of the fluorescent probes 10 for the selective 
recognition of tryptophan  
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 Compounds (S)-10a-d were encapsulated into mPEG-PLLA 
which were used to interact with the two enantiomers of 19 
common amino acids in the presence of Zn(OAc)2 in carbonate 
buffer solution (25 mM, pH = 10.1).  It was found that 
compounds (S)-10a and (S)-10c showed good chemoselective as 
well as enantioselective fluorescent response toward tryptophan.  
As shown in Figure 11, L-Trp enhanced the fluorescence of the 
micelles (S)-10a,c@PEG-PLLA at λ = 540 or 545 nm to a greater 
extent than D-Trp.  Other amino acids caused little fluorescence 
response on the micelle probes.   
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Figure 11.  Fluorescence responses of the micelle probes (a) (S)-
10a@PEG-PLLA and (b) (S)-10c@PEG-PLLA towards various 
amino acids [Conditions: 10 µM micelle probe, 2 equiv 
Zn(OAc)2, and 10 equiv amino acids in carbonate buffer solution 
(25 mM).  Peak intensities were used.  Spectra were taken after 3 
h of reaction at rt.  λex = 430 nm.  slit = 3/3 nm.] 
 
 Figure 12 shows the effect of the concentration of L- and D-
Trp on the fluorescence response of (S)-10c@PEG-PLLA.  L-Trp 
greatly enhanced the fluorescence of the micelle probe from 0 – 
20 equiv after which the fluorescence enhancement was saturated.   
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Figure 12.  Fluorescence intensity of (S)-10c@PEG-PLLA (10 
µM) and Zn(OAc)2 (2 equiv) at λ = 545 nm versus the 
stoichiometry of tryptophan.  (λex = 430 nm, slit = 3/3 nm, 
integration time = 0.1 s).    
 
 The enantiomeric probe (R)-10c was encapsulated in PEG-
PDLA for the fluorescent recognition of L- and D-Trp.  The 
fluorescence responses of (S)-10c@PEG-PLLA and (R)-
10c@PEG-PDLA toward L- and D-Trp at various enantiomeric 
compositions give mirror image like response at λ = 454 nm.   
 
6.  Summary and Outlook 
 In this article, several fluorescent probes that can conduct 
chemoselective as well as enantioselective recognition of certain 
amino acid enantiomers are discussed.  All of these probes exhibit 
large fluorescence enhancement in the presence of a specific 
amino acid enantiomer but little or non-fluorescence enhancement 
with the opposite enantiomer or other amino acids.  The probe 
(S)-1 contains two aldehyde groups at the 2.2’-position of its 1.1’-
binaphthyl structure.  It can be used to detect the L-enantiomers of 
glutamic acid and aspartic acid.  The chemoselectivity and 
enantioselectivity of this probe are attributed to a stereoselective 
double nucleophilic addition of the two carboxylate groups of 
these acidic amino acids to the two aldehyde groups of the probe.  
This reaction can generate a rigid macrocyclic structure to give 

greatly enhanced fluorescence.  The probe (R)-4 contains two 
arylethynyl units at the 3,3’-position of its 1,1’-binaphthyl core.  It 
shows greatly enhanced fluorescence upon interaction with L-Ser 
and Zn2+.  Condensation of the two aldehyde groups of (R)-4 with 
L-Lys to form a diimine product and the subsequent 
stereoselective chelate coordination with a Zn2+ center is proposed 
for the observed selective recognition of L-Lys.  The 
monoaldehyde compound (S)-6 shows greatly enhanced 
fluorescence upon reaction with D-His and Zn2+.  Stereoselective 
formation of a structurally rigid Zn2+ complex is proposed to 
explain the observed fluorescence enhancement.  The water-
insoluble dialdehyde probe (S)-8 can be used to detect amino 
acids in aqueous solution by using an amphiphilic diblock 
copolymer to encapsulate it into micelles.  In micelles, this probe 
shows chemoselective as well as enantioselective fluorescence 
enhancement with D-Lys in the presence of Zn2+.  In the presence 
of the same micelles, the monoaldehyde probes (S)-10a,c are 
capable of chemoselective and enantioselective recognition of L-
Trp in water with significant fluorescence enhancement.   
 All of these probes contain a 1,1’-binaphthyl core which 
provides the source of chirality as well as highly tunable 
fluorescence property.  In these probes, one or two electrophilic 
aldehyde groups are incorporated which can selectively react with 
the functional groups of a specific amino acid enantiomer.  In 
most of the cases, when the structure and chirality of a substrate 
match those of a probe, their reaction can generate a macrocyclic 
product with restricted rotation of the binaphthyl unit and other 
structural components.  Formation of such a structurally rigid 
product should have contributed to the observed chemoselective 
and enantioselective fluorescence enhancement.  No or very small 
fluorescence response was observed for the interaction of the 
structurally mismatched probes and substrates.  The strategies 
described in this work can be expanded to design fluorescent 
probes for selective recognition of other amino acids of interest.  
Further advancement of this research includes the development of 
amino acid probes with chemoselective as well as enantioselective 
fluorescent response at near IR excitation and emission 
wavelengths in aqueous solutions.  Such probes will be useful in 
fluorescent imaging of specific amino acid enantiomers in 
biological systems including humans, and contributing to disease 
diagnosis and treatment.   
 Currently, in the chiral analysis of amino acids, the most 
popular methods involve the use of chromatographic and 
electrophoretic techniques equipped with chiral stationary or 
mobile phases and coupled with mass spectrometry.  These 
methods have allowed precise detection and quantification of 
amino acid enantiomers in samples of diverse sources.8-10  Using 
molecular probes to conduct fluorescent chiral analysis of amino 
acids, however, has other advantages such as more readily 
available instrumentation, capability for high throughput parallel 
analyses, potential for in vivo/in vitro imaging, etc.  In recent 
years, the use of molecular probes in the circular dichroism (CD)-
based detection of amino acid enantiomers have also been 
developed.11  This technique involves the conversion of amino 
acid enantiomers to derivatives that have enhanced CD signals in 
the UV-vis absorption range.  Using this method will be less 
interfered by the presence of CD-silent achiral components in 
analytical samples.  Since fluorescence signals can often appear at 
much longer wavelengths than absorptions, the fluorescence-
based technique would have broader application in biological 
imaging such as in monitoring amino acids in humans and other 
animals.  The high sensitivity of fluorescence is also another 
advantage of the fluorescence-based chiral analysis. 
 Although the studies described in this article are limited to the 
analysis of individual amino acid samples at this stage, they have 
provided important information on the molecular interaction of 
the probes with various amino acid enantiomers which lays the 
foundation for further development of this technique.  With 
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continuous research effort in this area, practically useful methods 
for chemoselective as well as enantioselective fluorescent 
detection of specific amino acid enantiomers in various 
applications would be expected.   
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