Chemoselective and Enantioselective Fluorescent Identification of
Specific Amino Acid Enantiomers

Lin Pu

Department of Chemistry, University of Virginia, Charlottesville,
Virginia 22904, USA. E-mail: Ip6n@yvirginia.edu

Abstract

The enantiomers of chiral amino acids play versatile roles in biological systems including humans. They are also very useful in the
asymmetric synthesis of diverse chiral organic compounds. Therefore, identification of a specific amino acid and distinguishing it from its
enantiomer are of great importance. Although significant progress has been made in the development of fluorescent probes for amino
acids, most of them are not capable of conducting simultaneous chemoselective and enantioselective detection of a specific amino acid
enantiomer. In this article, several fluorescent probes have been designed and synthesized for chemoselective as well as enantioselective
recognition of certain amino acid enantiomers. (S)-1 shows greatly enhanced fluorescence in the presence of L-glutamic acid and L-
aspartic acid, but produces no or little fluorescent response toward their opposite enantiomers and other amino acids. (R)-4 in combination
with Zn?" shows greatly enhanced fluorescence in the presence of L-serine. (S)-6 is designed for the selective recognition of histidine.
Micelles made of an amphiphilic diblock copolymer are used to encapsulate the water-insoluble compound (S)-8 which shows
chemoselective as well as enantioselective fluorescence enhancement with L-lysine in the presence of Zn?* in aqueous solution. The same
micelles are also used to encapsulate several (S)-1,1°-binaphthyl-based monoaldehydes (5)-10 for the chemoselective and enantioselective
fluorescent recognition of L-tryptophan in the presence of Zn?' in aqueous solution. These findings have demonstrated that highly
selective fluorescent identification of a specific amino acid enantiomer can be achieved by incorporating certain functional groups at the
designated locations of the 1,1’-binaphthyls. The binaphthyl core structure of these probes provides both chirality source and highly
tunable fluorescence property. Matching the structure and chirality of these probes with those of the specific amino acid enantiomers can
generate structurally rigid reaction products and give rise to greatly enhanced fluorescence. The strategies of this work can be further
expanded to develop fluorescent probes for the specific identification of many amino acids of interests. It should facilitate the analysis of

chiral amino acids in various applications. The outlook of this research and its comparison with other methods are also discussed.

1. Introduction

Amino acids, specifically the L-enantiomers of a-amino acids,
are the building blocks of life.! They link together through amid
bonds to form proteins that are essential for all the life systems
including humans. Among 20 canonical amino acids used in the
protein syntheses of human body, only half of them can be
produced by humans and the other half are named essential amino
acids which need to be provided in daily diet. Besides L-amino
acids, their opposite enantiomers, D-amino acids, are also found
in humans, other animals, plants and microbes and exhibit various
biological functions.>¢ For example, D-aspartic acid and D-serine
in the B-amyloid protein of brains were obtained from patients
with Alzheimer’s disease.? The level of D-aspartic acid in human
lenses was found to increase with aging.> Other D-amino acids
such as D-alanine, D-glutamate, N-methyl-D-asparate, and D-
glutamine were found in brain to play important roles as
neurotransmitters and messenger molecules. Detection of D-
amino acids and understanding the mechanism of their functions
are important for the development of treatment for neurological
diseases such as amyotrophic lateral sclerosis, Alzheimer’s
disease and schizophrenia.* The ratio of the enantiomers of amino
acids in foods can be used to estimate the sample age and provide
quality control since D-amino acids can be generated under
certain food processing conditions or from the contamination of
microbes.’ Both enantiomers of amino acids are also extensively
used in organic synthesis including pharmaceutical production.’

In order to analyze the enantiomeric composition of chiral
amino acids, a number of methods have been used including
HPLC, GC and electrophoresis.®!? Optical methods such as UV-
vis absorption, circular dichroism and fluorescence spectrometry
have also been developed to distinguish the enantiomers of amino
acids.!""13 In our laboratory, we have conducted projects on the
design and synthesis of chiral molecular hosts for the
enantioselective  fluorescent recognition of chiral organic

compounds including a-hydroxy carboxylic acids, amines, amino
alcohols and amino acids because using fluorescence
spectroscopy has advantages of easily available instrument, fast
and on-site analysis, high throughput assay, remote sensing, etc.'*
1 In spite of the progress in the development of fluorescent
probes for amino acid analysis,'® simultaneous chemoselective as
well as enantioselective identification of a specific amino acid
enantiomer by using a fluorescent probe was rare.”’ Recently, we
have designed and synthesized several fluorescent probes that
have exhibited both high chemoselectivity and high
enantioselectivity in the recognition of amino acids. These probes
give greatly enhanced fluorescence in the presence of a specific
amino acid enantiomer and they are potentially useful in various
applications to distinguish one amino acid enantiomer from other
amino acids and chemicals. Herein, our study on the development
of fluorescent probes for chemoselective as well as
enantioselective recognition of free amino acids is discussed.

II. Selective Recognition of Glutamic Acid and Aspartic Acid.

We synthesized 2,2’-diformyl-1,1’-binaphthyl (S)-1 from (S)-
1,1°-bi-2-naphthol [(S)-BINOL] according to Scheme 1.2! When
(S)-1 was excited at 280 nm, it gave weak emissions at A = 340
nm and 410 nm. It was interacted with the tetrabutylammonium
(TBA) salts of 18 enantiomeric pairs of common amino acids, and
only L-Glu-TBA and L-Asp-TBA generated large fluorescence
enhancement at 365 nm (Figure 1). The TBA salts of these amino
acids were used for better solubility in methanol. All other amino
acid enantiomers including the opposite enantiomers D-Glu-TBA
and D-Asp-TBA produced no or little fluorescence response.
Figure 2 shows the fluorescence responses of (S)-1 toward L- and
D-Glu-TBA. In Figure 2a, (S)-1 (2.0 mM) in CH2Cl> was first
mixed with 5.0 equiv of L- or D-Glu-TBA at 300 K for 2 h and
then diluted to 2.0 x 10° M with methanol for fluorescence
measurement. Figure 2b shows that when the concentration of L-



Glu-TBA was increased from 0.5 to 5.0 equiv, the fluorescence
enhancement reached maximum (81 folds of the original
intensity), after which the fluorescence intensity started
decreasing while the concentration of L-Glu-TBA was increasing.
However, little fluorescence response was observed when the
concentration of D-Glu-TBA was increased from 0 to 8.0 equiv.
The maximum enantioselective fluorescence enhancement ratio
[ef = (IL — 1o)/(Ip — Io)] was 25 at 5.0 equiv of the amino acid. The
limit of detection (LOD) for L-Glu was 4.76 x 10 M.

Scheme 1. Synthesis of probe (5)-1.
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Figure 1. Fluorescent response at 365 nm, I3ss/lo, for the
interaction of (S)-1 (2.0 x 10> M) with 18 pairs of D-/ L-amino
acids (5 equiv) (Solvent: MeOH/CH2Clz2 = 99/1, v/v. Xexc = 280
nm, slits = 5/5 nm. Io: Fluorescence intensity of (S)-1 at 365 nm
in the absence of amino acids).
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Figure 2. (a) Fluorescence spectra of (S)-1 (2.0 x 10 M) with
(a) L- and D-Glu (5.0 equiv). (b) Fluorescence intensity at 365

nm versus the equivalent of L- and D-Glu.  (Solvent:

MeOH/CH2Cla = 99/1, v/v. Aexe = 280 nm. Slit: 5/5 nm)

The fluorescence responses of probe (S)-1 and its enantiomer
(R)-1 toward L- and D-Glu-TBA at various enantiomeric
composition show a mirror image relationship which confirms the
chiral recognition process. The enantiomeric composition of the
amino acid can thus be determined by the fluorescence
measurement.

No fluorescence response was observed when (S)-1 was treated
with 4-amino butyric acid. Reaction of (S)-1-with excess amount
of L-Glu-TBA over extended reaction time gave the diimine
product (S)-2 which gave only weak fluorescence (Scheme 2).
Thus, the stereoselective formation of the dihemiacetal adduct 3
was proposed to account for the chemoselective and
enantioselective recognition of the amino acid. The greatly
increased structural rigidity of 3 over (S)-1 should have
contributed to the greatly enhanced fluorescence. (S)-1 might not
be able to form a compound like 3 with D-Glu-TBA and other
amino acid enantiomers and thus cannot produce significant
fluorescence enhancement.

Scheme 2. A proposed mechanism for the reaction of (S)-1 with
L-Glu.
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III. Selective Recognition of Serine.

We designed and synthesized compound (R)-4 for the
chemoselective and enantioselective detection of serine as shown
in Scheme 3.2 This compound contains a chiral 1,1’-binaphthyl
unit with two freely rotating arylethynyl groups. The two
aldehyde groups of (R)-4 can condense with the amine group of
serine to form an imine product which upon coordination with a
Zn?* jon could give a macrocyclic Zn?" complex 5. This should
restrict the rotation of the arylethynyl units of (R)-4 as well as that
of its binaphthyl unit to give enhanced fluorescence. It was
proposed that when the chirality of the serine unit in 5 matches
that of the binaphthyl unit, more of this macrocycle could be
generated to give greater fluorescence enhancement than the
mismatched one. Other amino acids that cannot form a stable
Zn?* coordination like that in 5 will not be able to generate the
same fluorescence enhancement.

Scheme 3. Design of a fluorescent probe (R)-4 for selective
recognition of serine.
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The fluorescent response of (R)-4 toward the TBA slats of the
enantiomeric pairs of 18 common amino acids in the presence of
Zn(OAc): was investigated. As shown in Figure 3a, treatment of
(R)-1 with Zn(OAc)2 (4.0 equiv) caused little change in its
fluorescence at 402 nm (A1). When L-Ser-TBA (10.0 equiv) was
added to the (R)-4 (2.0 x 10 M) + Zn(OAc): (4.0 equiv)
solution, there was a large fluorescence enhancement at 471 nm
(A2) (Figure 3a), however, D-Ser-TBA (Figure 3a) and 17 pairs of
other amino acid enantiomers cannot produce significant
fluorescence response under the same conditions (Figure 3b). In
Figure 3a, ef ([IL-Io])/[Ip-Io]) was found to be 15 for the
fluorescence response of (R)-4 toward serine at 471 nm.
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Figure 3. (a) Fluorescence spectra of (R)-4, (R)-4 + Zn(OAc)a,
(R)-4 + Zn(OAc)2 + L-Ser-TBA, and (R)-4 + Zn(OAc)2 + D-Ser-
TBA. (b) Fluorescence intensity of (R)-4 with Zn(OAc)2 and 18
D-/L-amino acid-TBAs. [(R)-4: 2.0x10° M in CH3OH/0.8%
CH2Cla. Zn(OAc)2: 4.0 equiv. L-/D-amino acids: 10.0 equiv.
Reaction time: 5 h at rt. A exe = 320 nm, slit 5/5 nm]. Adapted
from Tetrahedron Lett. 2021, 66, 152803. Wang, Y.; Tian, J.;
Zhao, F.; Chen, Y.; Huo, B.; Yu, S.; Yu, X.; Pu, L. Highly
Chemoselective and Enantioselective Recognition of Serine by a

Fluorescent Probe.
Elsevier.

Copyright (2021), with permission from

Figure 4 shows the effect of the concentration of serine on the
fluorescent response of (R)-4. When the concentration of L-Ser-
TBA increased from 0 — 10 equiv, the fluorescence intensity 471
of (R)-4+Zn>" increased greatly.  Then, the fluorescence
decreased slowly when the concentration of L-Ser-TBA was over
10 equiv. Over the entire concentration range (0 — 20 equiv), D-
Ser-TBA caused only small change in fluorescence at 471 nm.
Thus, this fluorescent probe can be used to determine the
enantiomeric composition of serine.
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Figure 4. Plots of 471 for (R)-4 (2.0 x 107> M in CH30H/0.8%
CH:Cl) + Zn** (4 equiv) in the presence of varying
concentrations of D- and L-Ser-TBA (0 - 40 x 10> M). (Reaction
time: 5 h atrt. A exe = 320 nm, slit 5/5 nm). Reprinted from
Tetrahedron Lett. 2021, 66, 152803. Wang, Y.; Tian, J.; Zhao, F.;
Chen, Y.; Huo, B.; Yu, S.; Yu, X.; Pu, L. Highly Chemoselective
and Enantioselective Recognition of Serine by a Fluorescent
Probe. Copyright (2021), with permission from Elsevier.
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IV. Selective Recognition of Histidine.

Compound (S)-6 was synthesized from (S)-BINOL as shown
in Scheme 4 for the recognition of histidine.?> It was proposed
that treatment of (S)-6 with the chirality matched histidine in the
presence of Zn>" might generate the structurally rigid complex 7
to give enhanced fluorescence.

Scheme 4. Preparation of probe (S)-6 and its proposed reaction
with histidine and Zn(II) to form 7.
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Figure Sa shows that upon excitation at 378 nm, the emission
of compound (S5)-6 was observed at 470 nm. When it was treated
with Zn?*, little change in fluorescence was observed. Addition
of D- or L-His decreased the fluorescence of (S)-6+Zn?" (2.0
equiv) at A1 = 470 nm with no enantioselectivity (Figure 5a-d).
However, when excited at 450 nm, D-His greatly enhanced the
fluorescence (S)-6+Zn>" (2.0 equiv) at A2 = 560 nm and L-His
caused only very small change for fluorescence at this wavelength
(Figure 6a-d). The ef [(In—lo)/(I.—Io)] was found to be 24.3 at 10
equiv D-His.
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Figure 5. (a) Fluorescence spectra of (S)-6 (0.01 mM) +

Zn(OAc)2 (2.0 equiv) with (a) D- and L-His (10.0 equiv). (b)
Fluorescence intensity at 470 nm versus the equivalence of D- and
L-His [Slit: 5/5 nm. Solvent: DMF/1% pH 6.35 phosphate buffer
(0.25 mM)]
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Figure 6. (a) Fluorescence spectra of (S)-6 (0.01 mM) +
Zn(OAc)2 (2.0 equiv) with D- and L-histidine (10.0 equiv). (b)
Fluorescence intensity at 560 nm versus the equivalence of D- and
L-histidine [(lexc = 450 nm. Slit: 5/5 nm. Solvent: DMF/1% pH
6.35 phosphate buffer (0.25 mM)]

Intensity (a

Both enantiomeric probes (S)- and (R)-6 were used to interact
with histidine at various enantiomeric composition.  The
fluorescence responses of (S)- and (R)-6 at A> give the expected
mirror image relationship.

The fluorescence responses of (S)-6+Zn*" toward 17 pairs of
common amino acid enantiomers (including D- and L-His) were
investigated. =~ It showed that these amino acids caused
fluorescence quenching at A1 = 470 nm (Aexe = 378 nm) with no
enantioselectivity, and only D-histidine greatly enhanced the
fluorescence at A2 = 560 nm (Aexe = 450 nm) but not L-His and
other amino acid enantiomeric pairs (Figure 7). That is, (S)-
6+Zn>" has exhibited highly chemoselective and enantioselective
fluorescent recognition of histidine.
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Figure 7. Fluorescence intensity at 560 nm of (5)-6 (0.01 mM) + Zn(OAc)2 (2.0 equiv) with 17 amino acids (10 equiv) [Aexc = 450 nm.

Slit: 5/5 nm. Solvent: DMF/1% pH 6.35 phosphate buffer (0.25 mM)].

Since nonenantioselective fluorescent quenching at 470 nm
while excited at 378 nm was observed for (S)-6+Zn*" in the
presence of histidine, these fluorescence responses are only
dependent on the concentration of this amino acid (Figure 8a)
which can be used to determine the substrate concentration. The
fluorescent responses at 560 nm while excited at 450 nm are

highly enantioselective and are dependent on both the
enantiomeric composition of the amino acid and the total
concentration of the two enantiomers (Figure 8b). Combining
Figure 8a and 8b led to the 3D plot Figure 8¢ which can be used
to determine the enantiomeric composition of histidine by



measuring the fluorescence responses at the two emission
wavelengths.
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Figure 8. Fluorescence response of (S)-6 (0.01 Mm) + Zn(OAc)2

It was proposed that the fluorescence quenching at A1 should
be due to the consumption of (S)-6 upon reaction with D- and L-
His. The highly enantioselective fluorescent response at A2 can be
attributed to the different stability of the Zn?*" complex 7 formed
from the reaction of (5)-6 with the histidine enantiomers. The
more stable complex formed from the reaction of (S)-6+Zn?" with
D-His led to the observed large fluorescence enhancement at A».

V. Selective Recognition of Lysine.

In order to use the water-insoluble probe (S)-8 to detect amino
acids in aqueous solution, we have encapsulated it into the
micelles of an amphiphilic diblock copolymer.?* The diblock
copolymer polyethylene glycol-poly L-lactic acid (PEG-PLLA)
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containing a hydrophilic PEG chain and a hydrophobic PLLA
chain was prepared according to Scheme 5 which can form
micelles in aqueous solution. The micelle solution of (S)-8 (2.0 x
10 M) with PEG-PLLA was prepared by addition of a DMF
solution of (S)-8+PEG-PLLA to water followed by dialysis in
water. This micelle solution, named ML-S8, was used to interact
with various L- and D-amino acids in the presence of Zn(OAc): in
carbonate buffer solution (CBS, 25 mM, pH = 10.1). As shown in
Figure 9, D-Lys greatly enhanced the fluorescence of ML-S8 at
528 nm but L-Lys did not. Most of the other amino acids cannot
generate significant fluorescence response and only smaller
fluorescence enhancements were observed with tryptophan and
arginine. Thus, the micelle-based probe ML-S8 has exhibited
chemoselective as well as enantioselective fluorescent recognition
of L-Lys.

Scheme 5. Synthesis of mPEG-PLLA.
o
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Figure 9. Fluorescence intensity of micelle ML-S8 [2.0 x 10 M (S)-8] with Zn(OAc)2 (2.0 equiv) and D-/L-amino acids (10 equiv) in
carbonate buffer solutions (25 mM, pH = 10.1). Peak intensities at 528 nm were recorded at 5 °C after mixed at rt for 3 h and quenched

with ice-water bath (Aexe= 407 nm, slit 3/3 nm, int time 0.3 s. Y axis:

fluorescence intensity minus that of ML-S8+Zn(Il)/arbitrary unit.).

Reprinted with permission from Org. Lett. 2019, 21,4777. Copyright {2019} American Chemical Society.

The fluorescence spectra of ML-S8+Zn(OAc). with D-/L-Lys
(10.0 equiv) are given in Figure 10a in which D-Lys greatly

enhanced the fluorescence at 528 nm but L-Lys enhanced much
less. The enantioselective fluorescence enhancement ratio [ef =



(In-To)/(Ip-To). Ip, IL and To: fluorescence intensity at 528 nm with
and without D-/L-Lys respectively.] was 6.6. Figure 10b plots the
concentration effect of D- and L-Lys on the fluorescence of the
micelle probe at 528 nm. It shows that as the concentration of D-
Lys increased from 0 — 10 equiv, there was large fluorescence
enhancement. Then, the fluorescence enhancement became
smaller. L-Lys did not give significant fluorescence enhancement
in the entire concentration range.
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Figure 10. (a) Fluorescence spectra of ML-S8 (2.0 x 10 M of
(5)-8) with Zn(OAc)2 (2.0 equiv), Lys (10.0 equiv) in carbonate
buffer solutions (25 mM) (using 20 mM Lys stock solution).
Spectra were recorded at 5 °C after mixing at rt for 3 h. (b)
Fluorescence intensity at A = 528 nm versus equivalency of D-
and L-Lys. (Aexe= 407 nm, slit 3/3 nm). Adapted with permission
from Org. Lett. 2019, 21, 4777. Copyright {2019} American
Chemical Society.

The diblock copolymer mPEG-PDLA was made from D-lactic
acid (DLA) following the same procedure as in Scheme 5. The
micelles MD-R8 were prepared by using mPEG-PDLA and (R)-8.
Although the micromolecular structure of MD-R8 is not the exact
mirror image of ML-S8 due to the random conformations of the
block copolymers in the micelles and the distributions of the
micelle sizes, their fluorescence responses were close to a mirror
image relationship.

It was found that when (S)-8 was treated with L- or D-Lys in
DMSO-ds/D20 solution, the terminal amine group of the amino
acid reacted selectively with the aldehyde groups of the probe to
give a diimine which could coordinate with Zn?>" to form a
macrocyclic product 9. It was proposed that the imine compound
made of D-Lys might form a more stable Zn>* complex than that
made of L-Lys, leading to the greatly enhanced fluorescence and
the chemoselective and enantioselective fluorescent recognition of
lysine under the micelle conditions in aqueous solution. In the
absence of the diblock copolymer-based micelles, (S)-8 cannot be
used in aqueous solution for the fluorescent recognition of amino
acids.
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VI. Selective Recognition of Tryptophan.

The micelle-based strategy in Section V was also used to
design probe for the recognition of tryptophan in aqueous
solution.  Scheme 6 shows the use of compounds 10 in
combination with Zn?>* for the fluorescent recognition of
tryptophan.?>  Compounds 10a-d containing a Lewis basic site
were prepared which upon reaction with tryptophan and Zn?*
inside the hydrophobic environment of the diblock copolymer
mPEG-PDLA could generate complex 11 with an intramolecular
hydrogen bonding interaction to give enhanced fluorescence in
aqueous solution.

Scheme 6. Design of the fluorescent probes 10 for the selective
recognition of tryptophan
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Compounds (S)-10a-d were encapsulated into mPEG-PLLA
which were used to interact with the two enantiomers of 19
common amino acids in the presence of Zn(OAc): in carbonate
buffer solution (25 mM, pH = 10.1). It was found that
compounds (S)-10a and (S)-10¢ showed good chemoselective as
well as enantioselective fluorescent response toward tryptophan.
As shown in Figure 11, L-Trp enhanced the fluorescence of the
micelles (S)-10a,c@PEG-PLLA at A = 540 or 545 nm to a greater
extent than D-Trp. Other amino acids caused little fluorescence
response on the micelle probes.

I O
Em at 540nm Bl
20000
18000 -
16000 - oHo
14000 OO
= OH
S 12000 o N/
: oL
‘@ 10000 -
5 (s)-10a
=

Ala Val Leu Met Phe Tyr Trp Arg His Lys Asp Glu Ser Thr Asn GIn Cys Pro Gly

(@)



Em at 545nm

20000

CHO
15000 ~ OO
OH
(0] OH
O6
10000 +
(S)-10¢
5000 +
0+

LI S B S B BN DL BN S L B S B B L B B |
Ala Val Leu Met Phe Tyr Trp Arg His Lys Asp Glu Ser Thr Asn GIn Cys Pro Gly

(b)
Figure 11. Fluorescence responses of the micelle probes (a) (S)-
10a@PEG-PLLA and (b) (S)-10c@PEG-PLLA towards various
amino acids [Conditions: 10 puM micelle probe, 2 equiv
Zn(OAc)2, and 10 equiv amino acids in carbonate buffer solution
(25 mM). Peak intensities were used. Spectra were taken after 3
h of reaction at rt. Aex =430 nm. slit=3/3 nm.]
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Figure 12 shows the effect of the concentration of L- and D-
Trp on the fluorescence response of (S)-10c@PEG-PLLA. L-Trp
greatly enhanced the fluorescence of the micelle probe from 0 —
20 equiv after which the fluorescence enhancement was saturated.
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Figure 12. Fluorescence intensity of (S)-10c@PEG-PLLA (10
uM) and Zn(OAc)2 (2 equiv) at A = 545 nm versus the
stoichiometry of tryptophan. (Aex = 430 nm, slit = 3/3 nm,
integration time = 0.1 s).

The enantiomeric probe (R)-10c¢ was encapsulated in PEG-
PDLA for the fluorescent recognition of L- and D-Trp. The
fluorescence responses of (S)-10c@PEG-PLLA and (R)-
10c@PEG-PDLA toward L- and D-Trp at various enantiomeric
compositions give mirror image like response at A =454 nm.

6. Summary and Outlook

In this article, several fluorescent probes that can conduct
chemoselective as well as enantioselective recognition of certain
amino acid enantiomers are discussed. All of these probes exhibit
large fluorescence enhancement in the presence of a specific
amino acid enantiomer but little or non-fluorescence enhancement
with the opposite enantiomer or other amino acids. The probe
(S)-1 contains two aldehyde groups at the 2.2’-position of its 1.1°-
binaphthyl structure. It can be used to detect the L-enantiomers of
glutamic acid and aspartic acid. The chemoselectivity and
enantioselectivity of this probe are attributed to a stereoselective
double nucleophilic addition of the two carboxylate groups of
these acidic amino acids to the two aldehyde groups of the probe.
This reaction can generate a rigid macrocyclic structure to give

greatly enhanced fluorescence. The probe (R)-4 contains two
arylethynyl units at the 3,3’-position of its 1,1’-binaphthyl core. It
shows greatly enhanced fluorescence upon interaction with L-Ser
and Zn?*. Condensation of the two aldehyde groups of (R)-4 with
L-Lys to form a diimine product and the subsequent
stereoselective chelate coordination with a Zn?* center is proposed
for the observed selective recognition of L-Lys. The
monoaldehyde compound (S5)-6 shows greatly enhanced
fluorescence upon reaction with D-His and Zn?*. Stereoselective
formation of a structurally rigid Zn?* complex is proposed to
explain the observed fluorescence enhancement. The water-
insoluble dialdehyde probe (S)-8 can be used to detect amino
acids in aqueous solution by using an amphiphilic diblock
copolymer to encapsulate it into micelles. In micelles, this probe
shows chemoselective as well as enantioselective fluorescence
enhancement with D-Lys in the presence of Zn?*. In the presence
of the same micelles, the monoaldehyde probes (S)-10a,c are
capable of chemoselective and enantioselective recognition of L-
Trp in water with significant fluorescence enhancement.

All of these probes contain a 1,1’-binaphthyl core which
provides the source of chirality as well as highly tunable
fluorescence property. In these probes, one or two electrophilic
aldehyde groups are incorporated which can selectively react with
the functional groups of a specific amino acid enantiomer. In
most of the cases, when the structure and chirality of a substrate
match those of a probe, their reaction can generate a macrocyclic
product with restricted rotation of the binaphthyl unit and other
structural components. Formation of such a structurally rigid
product should have contributed to the observed chemoselective
and enantioselective fluorescence enhancement. No or very small
fluorescence response was observed for the interaction of the
structurally mismatched probes and substrates. The strategies
described in this work can be expanded to design fluorescent
probes for selective recognition of other amino acids of interest.
Further advancement of this research includes the development of
amino acid probes with chemoselective as well as enantioselective
fluorescent response at near IR excitation and emission
wavelengths in aqueous solutions. Such probes will be useful in
fluorescent imaging of specific amino acid enantiomers in
biological systems including humans, and contributing to disease
diagnosis and treatment.

Currently, in the chiral analysis of amino acids, the most
popular methods involve the use of chromatographic and
electrophoretic techniques equipped with chiral stationary or
mobile phases and coupled with mass spectrometry. These
methods have allowed precise detection and quantification of
amino acid enantiomers in samples of diverse sources.>!? Using
molecular probes to conduct fluorescent chiral analysis of amino
acids, however, has other advantages such as more readily
available instrumentation, capability for high throughput parallel
analyses, potential for in vivo/in vitro imaging, etc. In recent
years, the use of molecular probes in the circular dichroism (CD)-
based detection of amino acid enantiomers have also been
developed.!" This technique involves the conversion of amino
acid enantiomers to derivatives that have enhanced CD signals in
the UV-vis absorption range. Using this method will be less
interfered by the presence of CD-silent achiral components in
analytical samples. Since fluorescence signals can often appear at
much longer wavelengths than absorptions, the fluorescence-
based technique would have broader application in biological
imaging such as in monitoring amino acids in humans and other
animals. The high sensitivity of fluorescence is also another
advantage of the fluorescence-based chiral analysis.

Although the studies described in this article are limited to the
analysis of individual amino acid samples at this stage, they have
provided important information on the molecular interaction of
the probes with various amino acid enantiomers which lays the
foundation for further development of this technique. With



continuous research effort in this area, practically useful methods
for chemoselective as well as enantioselective fluorescent
detection of specific amino acid enantiomers in various
applications would be expected.
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