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The Internet of Food (loF) is an emerging field in smart foodsheds, involving the
creation of a knowledge graph (KG) about the environment, agriculture, food, diet,
and health. However, the heterogeneity and size of the KG present challenges for
downstream tasks, such as information retrieval and interactive exploration. To
address those challenges, we propose an interactive knowledge and learning
environment (IKLE) that integrates three programming and modeling languages to
support multiple downstream tasks in the analysis pipeline. To make IKLE easier to
use, we have developed algorithms to automate the generation of each language. In

addition, we collaborated with domain experts to design and develop a dataflow
visualization system, which embeds the automatic language generations into
components and allows users to build their analysis pipeline by dragging and
connecting components of interest. We have demonstrated the effectiveness of
IKLE through three real-world case studies in smart foodsheds.

nowledge graphs provide a powerful means to
Kcapture and integrate diverse linked knowl-
edge into a unified graph structure.! Many
knowledge graphs have been developed to support a
range of industrial and scientific applications, including
the Google Knowledge Graph, DBpedia,? and Wikidata.?
In the context of smart foodsheds, there is a growing
interest among researchers from industry, academia,
and government in building a semantic platform for the
Internet of Food (loF). The IoF represents a linked
domain knowledge of the environment, agriculture,
food, diet, and health.*'” By using the knowledge graph
to link food system stakeholders with data, cyberinfras-
tructure, Al, and other tools, the loF can improve the
current food system for increased food sustainability,
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health, justice, and delight. It also facilitates many
downstream tasks, such as information retrieval and
food flow data analysis in food systems.'”?°

The knowledge graphs in smart foodsheds face sev-
eral challenges for downstream tasks due to their mas-
siveness and heterogeneity. First, specialized food
vocabularies and ontologies used by different organiza-
tions require a unified environment for data exchange
and information sharing, but defining standardized
ontologies for different downstream tasks is not trivial.
Second, knowledge graphs are commonly built from
ontologies and represented as resource description
framework (RDF) triplets. Structured query languages
like SPARQL can query RDF triplets, but writing SPARQL
queries can be challenging for users unfamiliar with the
underlying ontologies. Hence, easy-to-use query meth-
ods are urgently needed. Finally, after retrieving relevant
information from knowledge graphs, identifying data
patterns is crucial to facilitate the decision-making pro-
cess. Automatic visualization generation can efficiently
reveal data patterns and draw meaningful insights.
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Many technologies and systems have been proposed
to address the individual challenge mentioned previously.
Protégé is the most popular ontology editor in the world
for ontology development. But it only focuses on the
ontology definition and does not address how to utilize it.
To query the knowledge graph, pretrained language mod-
els, such as BERT,®> GPT,® and RoBERTa,’ can be fine-
tuned with sequence-to-sequence tasks to translate nat-
ural languages to the SPARQL. While Neo4j allows users
to interact with data through visual interactions, it only
supports node-link diagrams for visualization. Thus, there
is a research gap in developing a unified environment
that addresses various challenges, including incorporat-
ing ontologies for data exchange, automated query gen-
eration, and visual analytics of knowledge graphs.

This work introduces an interactive knowledge and
learning environment (IKLE) to address the research
gap. The IKLE leverages three different languages,
including linked data modeling language (LinkML),
SPARQL, and Vega-Lite, to accomplish ontology build-
ing, query generation, and visualization recommenda-
tions while keeping users in the loop. Collaborating
with domain experts, a dataflow system is designed
and developed to demonstrate the flexibility of IKLE
for interactive exploration. The dataflow system mod-
ularizes each functionality into components, enabling
users to build their analysis pipeline according to their
skill level and verify the output of each step. We evalu-
ate the proposed method through case studies in the
smart foodshed literature. In short, the contributions
of this work can be summarized as follows:

> Modeling the knowledge graph interactions as a
combination of three programming and model-
ing languages and generating them on demand
based on user interactions.

> Proposing a general solution, IKLE of knowledge
graph (KG) interactions, which can be easily
extended and transferred to other domains.

» Designing a dataflow system that enables users
to build their analysis pipeline according to their
needs.

» Demonstrating the usefulness and effectiveness
of our system qualitatively through case studies
in smart foodsheds with input from domain
experts for further improvements.

Dataflow Visualization System

Dataflow systems allow users to create customized
functionality by building a dataflow diagram that out-
lines how components interact with each other. These
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systems can be divided into two main categories as
follows. General computational®' and visualization sys-
tems. For the purposes of this work, we focus on data-
flow systems that specialize in data manipulation and
visualization. VisFlow' is a web-based visualization
framework for tabular data, which employs a subset
data flow model, allowing interactive queries within
the data flow. Based on it, VisFlowj'? is an enhanced
subset-flow visualization system that integrates natu-
ral language processing techniques to facilitate multi-
view visualization. ExPlates’ is another system
developed to allow users to manipulate data and build
visual queries to explore multidimensional data. Vis-
composer™ is a programmable integrated develop-
ment environment to make visualization design easier
with its intuitive user interface. To the best of our
knowledge, while many existing dataflow systems ana-
lyze tabular data, few of them address the challenges
of KG exploration. This study proposes an IKLE for KG
exploration in smart foodsheds, which can be easily
extended to other domains.

KG Interaction

The KG has attracted much attention in both acade-
mia and industry recently. Various systems have been
built to facilitate subtasks of KG in different domains.
For the knowledge reasoning task, many clinical deci-
sion support systems incorporate KG to obtain valu-
able medical knowledge and diagnose evidence."” As
for link prediction, by modeling user-product interac-
tions with external knowledge as a KG, the recommen-
dation systems are trained to predict items of interest
for new coming users.'® Some commercial tools are
released to support querying and visualizing the KG,
such as Neo4;j,2 Gruff. In this work, we propose a gen-
eral environment to make progress on enabling a vari-
ety of tasks necessary for smart foodsheds, such as
cohering domain ontologies into application data
models through LinkML, SPARQL query generation,
and visualization of either raw data or output of
models.

Internet of Food

Originally, the concept of the IoF first appeared in 2011,
which is mainly concerned with issues related to how
technology impacts the food system. Later on, since
food systems are composed of a diverse range of
social and natural components, loF represents a
linked heterogeneous knowledge (KG) of data

2[Online]. Available: https://neo4j.com/
P[Online]. Available: https://allegrograph.com/products/gruff/
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describing these components coming from numerous
sources.? Recently, there are several works aiming at
analyzing KG in food systems but with different
focuses. For example, Rao et al.?® analyzed the resil-
ience of food networks at different geographic scales
via the technique of geospatial KG.”® Chen et al. uti-
lized a large-scale food KG to recommend food
according to dietary preferences and health guide-
lines. In this work, we develop a visualization system
to help users interactively explore the loF and thus
facilitate some potential downstream tasks, including
partner finder, information retrieval, resilience analy-
sis, etc.

First, we introduce the PPOD KG that we used in this
article, and then we formalize the problem we aim to
address.

Dataset

To address information inefficiencies in the food sys-
tem, experts first developed the ontology of PPOD, a
schema that describes the attributes and relation-
ships between People, Program, Organizations, and
Datasets. To instantiate this ontology with real data,
they built a PPOD KG using data from California and
Ohio as a first use case.

The PPOD KG ¢ is represented as a set of triplets
G = {(s,p,0)} that describes the relationships between
different entities in the food system.

Each triplet (s, p, 0) characterized the semantic rela-
tionships p between source entity s and object entity o.
For example, the triplet (“Cosumnes River Project,” “lea-
ding_organization,” “The Nature Conservancy”) means
that The Nature Conservancy is the leading organization
of the Cosumnes River Project. Entities in the triplets are
represented using either universal resource identifier
(URD) w € U or literal I € L. Each subject s must have a
unigue URI s € U, while each object o can be either URI
or literal 0 € (U U £). Entities represented as literal can
only be the tail of a triplet and are denoted as E;. Entities
with URIs can either be the head or tail of a triplet and
are denoted as Ey. These definitions are used consis-
tently throughout this article.

Problem Statement

The goal of this work is to improve information access
in smart foodsheds by leveraging visual analytics to
facilitate access to the PPOD KG. To achieve this, our
key tasks involve defining the ontology G, in a
machine-understood way, using G, and user query ¢
to retrieve information from the corresponding PPOD

KG G, and visualizing the resulting valid triplets ' =
(s,p,0|q) from G in an intuitive manner to aid decision-
making.

To gain a better understanding of the needs of domain
users in smart foodsheds, we held weekly meetings
with the domain experts of this project for over one
year. During these meetings, we derived the system'’s
requirements from the discussions as follows.

R1. Incorporating expert-defined ontologies: Our
system should enable users to easily load and utilize
different expert-defined ontologies for downstream
tasks, facilitating knowledge sharing as suggested by
our experts.

R2. Easy querying of KG: As pointed out by the
experts, structuring SPARQL queries from scratch can
be difficult for nonprogramming users. Thus, our sys-
tem should provide guidance to help users prepare
queries for retrieving information from KG. Specifi-
cally, it should be as follows:

> R2.1 Automatically generate SPARQL queries to
ease the burden on users who are unfamiliar with
the structured language’s schema and rules.

» R2.2 Allow users to fine-tune the automatically
generated queries to increase transparency and
trust in the system.

R3. Efficient data visualization: Designing an effec-
tive mapping from data to visual channels requires
specialized skills and resources that may not be read-
ily available to all users. Thus, our system should pro-
vide recommendations for data visualization to help
users easily understand and interpret the data.

R4. Personalized analysis pipeline building: Our
domain experts mentioned that users with different
backgrounds and skill levels might have varying needs,
and a system with a predefined pipeline cannot meet
all of these needs. Thus, our system should enable
users to build the analysis pipelines flexibly to serve a
broader audience and meet a wider range of needs.

The requirements have driven us to develop an IKLE to
support various interactions with the KG. In this sec-
tion, we first present an overview of IKLE and then
introduce each of its components in more detail.

Overview
The key challenge behind IKLE is how to leverage the
machine’s ability to handle various tasks and reduce
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the burden of domain users. We propose to identify
three key programming languages (PLs) that are
involved in KG interactions. One advantage of using
these PLs is that machines can process and under-
stand them, which enables us to automate each sub-
task. In summary, our method consists of four
components, summarized as follows:

» LinkML of ontology definition [see Figure 1(a)l:
We first describe the key design of the ontology,
which can be further parsed into an ontology
graph to help users to understand the KG struc-
ture (R1).

> SPARQL generation [see Figure 1(b)]: Users can
interact with the ontology graph and build the
query interactively, triggering the automatic gen-
eration of SPARQL (R2).

> Vega-Lite generation [see Figure 1(c)]: Once
users query data from KG, we automatically rec-
ommend visualization and create Vega-lite spec-
ification for chart rendering (R3).

» Dataflow system: A dataflow system that is
developed as an implementation of the IKLE. It
achieves high flexibility by allowing users to build
their own analysis pipeline (R4).

Ontology Design and Parse
The ontology defines the different types of entities
and their relationships with each other. This structural
information is critical for users to understand the
information provided by the KG and for machines to
generate SPARQL queries automatically (R1). How-
ever, it can be challenging to design an ontology
schema that 1) includes all necessary information for
creating queries; 2) can be easily parsed and visualized
for interactive queries; 3) has a clear structure that
can be adapted to other domains.

We have collaborated with domain experts to iden-
tify the key information required for the ontology,
resulting in the following data definition.

» Entity types (1'g): This defines the types of enti-
ties with URI E;, with each entity type T. € Tg
having a defined URI (T..URI) and a set of rela-
tions (T..rel) starting from T...

> Relation types (Tg): To reduce information
redundancy, each relation type T, is defined first
and referred to by a unique identifier when defin-
ing it in T..rel. T,.name provides the semantic
meaning of the relation, while T,.URI indicates
the relation type's URI. T,.targets defines the
targeting entity types of this relation type.

» Filters (F): A set of filter conditions on different
entity types T, are predefined by domain experts
to help users identify relevant information. Each
filter £ € IF contains an entity type T. and a set
of permissible entities with their URIs, denoted
ast = (T, {ul,u?, .., }).

LinkML is a flexible modeling language that speci-
fies data schema in YAML and can be translated to
other schema representation formats, such as JSON
or RDF. Due to such flexibility, we utilize LinkML to
describe the PPOD ontology, which can be parsed by
machines into a graph structure G, allowing users to
interact easily.

The ontology graph G, is constructed using a
parsing algorithm. Each node in G, represents an
entity type T., while the edge indicates the semantic
relationship T, between different entity types. The
input to the algorithm is a LinkML file that contains
three aspects of information: entity types T, relation
types Tg, and filters . For each entity type T. € T,
we iterate over its outgoing relations T..rel and check
whether it is connected to another entity type T.. If so,
we add the edge T. — T, and nodes T., T, to G,.. Since
only entities with URIs E; are defined in T, we create
a conceptual node literal in G,,,; to represent all literal
entities E;, e.g, the "email” of a “Person.” In addition,
we add an attribute, called filtered when adding nodes
T, into G,..;. The attribute indicates whether T, has def-
initions in the filter I and helps differentiate nodes

KG querier
®

Query Editor

Ontology Filter
B.SPARQI.
q/. »

- G

Front-End (VUE)

A. LinkM

YAML Loader

Table Loader (p)

Data [obj1, obj2...]

Data [obj1, obj2...]

Table Viewer &= Back-End

id title abstract 2 (F|aSk)

D

Knowledge=
able Visualizer graph &
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' I ‘\ Kubernetesdin
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FIGURE 1. Overview of our system and its architecture.
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with/without filtering conditions when visualizing the
ontology graph for users.

The resulting G, for PPOD is shown in Figure 2,
with literal entities E; aggregated into one conceptual
node and Ey that are not defined in I shown in gray
(o), while E;; that have predefined vocabularies in I
are colored in green (o). This allows users to select a
set of desired filtering conditions.

Querying KG
While building visual queries has been extensively
studied in the visualization literature, they cannot be
applied directly to smart foodsheds data because our
target users are not experienced in visual program-
ming and are more used to traditional interactive
methods. Moreover, according to our domain experts,
building queries from scratch is less effective than fil-
tering a subset of existing ontology. To better assist
users in building queries (R2), we employ a top-down
method that involves presenting the G, to users and
allowing them to select a subgraph g . through vari-
ous interactions such as clicking, brushing, and drag-
ging. SPARQL queries are generated based on the
selected subgraph & .
We have summarized common graph patterns of G/, ,
based on real-world use cases and provided example
queries in Table 1. Green nodes (e) represent entities with
filtering conditions, while gray nodes (e) do not. Dashed
lines indicate the existence of one/multiple filtering
nodes. For example, in the first row of the table, users
query organizations located in a specific ecoregion.
When generating the SPARQL queries based on
the G ., the main challenge lies in constructing the

ont’

ProjectType

GuidelineMandateType
CWHRHabitatType

EcoRegion
GovernmentLevelType
ProgramType oy
GuidelineMandate

Program

founty Literal
OrganizationActivity A,
atas

Project -
PogitionType
Orgdanization

OrganizationType

Role
UseCases
Integratedlissue
R Person
CommodityType
Componentissue

Tool

FIGURE 2. Ontology graph G, of PPOD KG.

WHERE clause due to the complexity of constraints. The
WHERE clauses should strictly follow the ontology while
also specifying the filtering conditions on entity types.
To address this challenge, we first define four types of
sub-queries in the WHERE clause and aggregate them
according to the entity types in G, . Declaration()
defines the entities E; through its URI to locate the
information of interest. In addition, Attribute() detects
which literal entities E; are connected to a specified
Ey and adds them to the WHERE clause. Relation()
defines the triplet relation (i.e., T. is connected to T,
through semantic relation T,). Filter() constrains T, to
a user-selected conditions . As indicated in the Algo-
rithm 1, we iterate over each edge (s,p,0) in the g, ,
(line;) and generate the query accordingly, depending
on whether the nodes s/o has filtering conditions
through an attribute filtered (lines g 14). If there is one
filtering node, the Filter() is required (line; 7). Other-
wise, we only need to define the subject s, object o
and its predicate p (lines_7).

Algorithm 1. SPARQL Generation

Input: User-selected ontology subgraph G
Output: SPARQL query @
1: for (s, p,0) € G, , do
2:  if !s.filtered & lo.filtered then
3 Q+=Declaration(s), Q+=Attribute(s)
4: Q+=Declaration(o), Q+=Attribute(o)
5: Q+=Relation(r)
6
7
8

/
ont

else if s.filtered & !o.filtered then
Q+=Declaration(o), @Q+=Attribute(o)
Q+=Relation(r)

9: Q+=Filter(s)
10:  else if !s.filtered & 0.filtered then
11: Q+=Declaration(s), Q+=Attribute(s)
12: Q+=Relation(r)
13: Q+=Filter(o)
14:  endif
15: end for

Visualization Recommendation

To gain informative insights from the KG, scanning
through the queried results row by row is much less
effective than visualizing the queried results with
proper visualization charts. We exploit rule-based visu-
alization recommendations to achieve better explain-
ability (R3). Taking the tabular data items as input, we
transform them to the Vega-Lite grammar, including
both visual elements specifications and data items.
The Vega-Lite specification can later be rendered as
charts and allow users to download them as figures.
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TABLE 1. Our system contains a list of components with predefined functions and input/output specifications. Ontology filter

contains common graph patterns of }'. and example queries of PPOD.

Type Name Description Diagram

Input: None.
Output: List of N objects, [0bj1, obja2, ..., 0bjN]-.
Usages: uploading local CSV files; loading existing CSV files on the Cloud.
Input: None.
Output: URL of LinkML.
Usages: loading the LinkML of a KG.
Input: YAML loader
* Output: SPARQL
* Usages: building the ontology with filters; generating the SPARQL
according to user interactions.
Example Query

Tabular loader Figure 4P3-C

Data loader

YAML loader

Figure 4P1-A

Figure 4P,-B’

Ontology filter

Graph Pattern_

Data analyzer

what (A) organization is located in (B) Great Valley ecoregion?

what (A) program provides funding for (B) project to solve (C) wildfire issues?

n

what (D) wetlands-focused (A) projects are lead by (B) organizations in the

(C) Central Coast ecoregion?

who are the (D) owners of (B) organizations that work on (E) fragmentation?

Input: SPARQL or None.

Query editor Output: SPARQL.

Figure 4P,-D

Usages: viewing/editing queries, i.e., SPARQL

Input: SPARQL

KG qurier

Output: List of N objects queried from KG, [obj1, ..., 0bjn]
Usages: executing SPARQL to an RDF knowledge graph.

Figure 4P,-C

Input: List of N objects.

Data Viewer Table viewer

Output: List of M objects (M < N).
Usages: displaying tabular data.

Figure 4P;-E

Input: List of objects.

Table visualizer

Output: List of objects and charts.
* Usages: generating Vega-Lite; rendering Vega-Lite specifications to generate Figure 4Pa-c2
images; allowing users to view/edit the Vega-Lite specifications.

Figure 4P>-cl

Note: Dashed lines indicate one or more filtering nodes.

We build the visualization recommendation module as
a python library® based on the implementation of
VizKG,"® which converts tabular data to charts using
Plotly.

The recommendation contains several steps. First,
to display the input data patterns properly, we identify
the data types of each column via regex matching.
Currently, the supported datatypes include numerical,
date, and categorical. Then, based on the mapping
rules,® we check the supported charts with their speci-
fied datatypes and identify valid charts as candidates.
The validated charts follow several rules. 1) The data
type of the input data must conform to the required
data types of the chart. 2) If there is more than one
conforming data type, we take a first-come-first-map

°[Online]. Available: https://github.com/ICICLE-ai/
Smartfoodshed_VA_Flow/tree/main/backend/AutoVega
9[Online]. Available: https://bit.ly/VizKG-MappingRules
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strategy. The supported chart types include histo-
grams, scatter plots, line charts, box plots, area charts,
maps, and donut charts.

Data Flow Visualization System

To create the IKLE, we develop a dataflow visualiza-
tion system that provides high flexibility and scal-
ability (R4).

User Interface

To enable users to build their analysis pipeline flexibly
and interactively, the system is designed with two
panels: a component list and an edit panel. The com-
ponent list contains multiple predesigned compo-
nents, which are categorized into three groups based
on their roles in the analytic process: data loader, ana-
lyzer, and viewer. Each component has predefined
functionalities and input/output specifications, as
indicated in Table 1. In addition, each component can


https://github.com/ICICLE-ai/Smartfoodshed_VA_Flow/tree/main/backend/AutoVega
https://github.com/ICICLE-ai/Smartfoodshed_VA_Flow/tree/main/backend/AutoVega
https://github.com/ICICLE-ai/Smartfoodshed_VA_Flow/tree/main/backend/AutoVega
https://bit.ly/VizKG-MappingRules
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be minimized or maximized to save space when neces-
sary [e.g., as shown in Figure 4(B) and (B')]. In the edit
panel, users can add components from the list and
drag and drop them to connect them with matched
input/output to build their analysis pipeline flexibly.

Data Loader

To begin the data analysis pipeline, the first step is
typically to load the data. To facilitate this process,
our system includes a set of data loaders that allow
users to specify data sources in various ways and flow
the data to subsequent components. One of these
data loaders is the tabular loader, which provides two
functions: 1) uploading a local CSV file to the cloud
and 2) utilizing an existing file on the cloud. In addition,
we have also incorporated feedback from domain
experts who have suggested that GitHub is a popular
platform for software development collaboration and
that it stores many public ontology definitions. To sup-
port this, we have included a YAML loader that ena-
bles users to load expert-defined ontologies through
GitHub URLs.

Data Analyzer

To support the different stages of the data analysis
pipeline, we have developed a diverse set of compo-
nents. These components are designed to perform
various tasks, including data processing, querying, and
analysis.

Ontology filters: Visualizing the ontology graph G
to users can help them understand the data structure of
KG and facilitate interactive visual query building. To
achieve this, we introduce ontology filters, which takes
YAML loader and user interactions as input and gener-
ates SPARQL queries as output. As shown in Figure 4(B),
the parsed ontology graph G,,,; from LinkML is visualized
on the right, while a list of dropdown selects correspond-
ing to filtering nodes (e) in G, is displayed on the left.
The user-selected subgraph G, , is highlighted in red and
triggers the SPARQL generation algorithm.

Query editors: To enhance transparency and
interactivity, users are encouraged to review and
refine the results of the SPARQL queries generated
by ontology editor. For this purpose, we introduce
query editors that can take inputs from either
ontology editor or user input and output the result-
ing queries on the editor for use in the subsequent
components.

KG queriers: To enable users to query KG, we
have designed KG queriers. Our design logic is
based on discussions with domain experts who
indicated that public resources are either hosted in
the graph database on the Cloud and offer a

SPARQL endpoint or stored as static turtle files in
GitHub. Therefore, we allow users to specify the
source of KG by either providing the SPARQL end-
point or a GitHub URL. In addition, KG queriers
takes SPARQL queries as another required input to
be executed on the specified KG.

Data Viewer

Table viewers-It is important to provide access to raw
data. Table viewer presents data in row and column for-
mat, allowing users to search and filter the data.

Table visualizers are proposed to render the auto-
matically generated Vega-Lite specifications. It also
allows users to save and download the charts as SVG
or PNG files. In addition, they allow users to edit the
generated Vega-Lite specification to further refine the
visualizations.

System Architecture

Figure 1(B) illustrates the overall architecture of our
system. The frontend interface is implemented as a
series of web applications using HTML, CSS, and Java-
script with the Vuejs framework. The backend is
implemented with Node.js and Flask. When users cre-
ate the components in the interface, the correspond-
ing API requests are sent to the backend to execute
the algorithm. We deploy our system using the Pods
service provided by the Texas Advanced Computer
Center,® which provides easy ways to create and mon-
itor the pod's states.

We evaluated the performance of our SPARQL genera-
tion algorithm by comparing it with SPARQL queries
manually created by domain experts. To do this, we
invited an expert in semantic web technologies and
food ontology to generate different types of queries,
each with their corresponding SPARQL. The queries
were based on the four types of schemes we described.
The expert used the Gruff AllegroGraph interface to
build the SPARQL queries of PPOD, denoted as ¢'. We
then compared the querying results separately for our
generated queries g and ¢'. We found that our ¢ achieved
the same querying performance as ¢'. As an example for
qualitative comparison, we present ¢ and ¢ of the query
“Which non-profit organizations work on water quality
in Yolo or Solano counties?” The expert made query ¢ is
shown as follows.

°[Online]. Available: https://tapis-project.github.io/live-docs/?
service=Pods
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SELECT DISTINCT ?node_variable_1

WHERE {

VALUES ?county {

<http://www.wikidata.org/entity/Q109709>

<http://www.wikidata.org/entity/Q108083> }
node_variable_1 rdf:type foaf:Organization;
<http://www.w3.org/ns/orgiclassification>
<https://raw.githubusercontent.com/adhollander/
FSLschemas/main/CA_PPODterms. tt1#oty_cf5070>;
<https://raw.githubusercontent.com/adhollander
/FSLschemas/main/fsisupp.owl#inCounty> ?county;
<https://raw.githubusercontent.com/adhollander
/FSLschemas/main/fsisupp.owl#FSI_000239>
<https://raw.githubusercontent.com/adhollander
/FSLschemas/main/sustsourceindiv. rdf#C10303>. }

Our algorithm generates the following SPARQL
queries.

PREFIX dcterms: http://purl.org/dc/terms/

PREFIX core: http://vivoweb.org/ontology/core#

PREFIX rdfs: http://www.w3.0rg/2000/01/rdf -schema#

PREFIX fsls: https://raw.githubusercontent.com
/adhollander/FSLschemas/main/fsisupp.owl#

PREFIX fsli: https://raw.githubusercontent.com
/adhollander/FSLschemas/main/sustsourceindiv. rdfi#

SELECT *

WHERE {

?organization dcterms:title ?organization_title.

?organization rdfs:label ?organization_label.

?organization a foaf:Organization.

?organization fsls:FSI_000239 ?componentissue.

Filter (?componentissue IN(fsli:CI0303)).
Torganization fsls:inCounty ?county.

Filter (?county
IN(<http://www.wikidata.org/entity/Q108083>,
<http://www.wikidata.org/entity/Q109709>)).

?organization org:classification ?organizationtype.

Filter (Porganizationtype IN(fslp:oty_cf5070)).

}

It is clear to see we use prefixes to replace long
label names, which can make queries more readable,
especially when the same prefix is used multiple times
in the WHERE clause.

EFFECTIVE NETWORK ANALYTICS

We have conducted a systematic comparison between
our system and the seven most related systems that we
have introduced in the related works section.

To ensure the comparison is comprehensive and
convincing, we have carefully designed five tasks to test
each system, as shown in Figure 3. 1) Information display
evaluates the information display capability of each sys-
tem. This task checks whether the system can efficiently
present information with sufficient details. 2) Data visu-
alization and graph visualization assesses whether the
system supports effective data visualization. It involves
mapping data to visual channels and providing recom-
mendations for data visualization to help users under-
stand the data more easily. 3) Graph exploration and
efficient query examines whether the system supports
efficient graph query. It includes providing guidance on
generating queries automatically based on user interac-
tion and enabling users to fine-tune queries interactively.
4) Flexible IR pipeline evaluates whether the system sup-
ports users in complex information-retrieving tasks with
a customized retrieval pipeline. 5) Gain insights tests the
system’s ability to generate insights that assist users in
solving real-world tasks.

The comparison is shown in Figure 3. In conclusion,
our systematic comparison of IKLE with seven other
existing visual analytics systems has shown that IKLE
not only meets but also exceeds the requirements of the
five tasks we designed. Our system efficiently presents
information with sufficient details, supports effective
data visualization, facilitates efficient graph visualization
and query, supports complex graph information retrieval
tasks with a flexible retrieval pipeline, and provides great
insight finder ability. We are confident that our findings
demonstrate the unique strengths of IKLE and its poten-
tial as a valuable tool for KG exploration and analysis.

To demonstrate the usefulness of our system in smart
foodsheds, we present the results of applying our sys-
tem in real-world scenarios.

VisFlow VisComposer  VizKG Neo4j  GraphPolaris  VisQL AllegroGraph IKLE
Information Display [ J [ J ([ o [ ([ J ([ J [
Data Visualiztion & Graph Visualization [ ] () () () o o ( } [ ]
Graph Exploration & Efficient Query o o o o ([ O () O
Flexible IR Pipeline [ J o O @) O O @) [
Gain Insights (] () O O o O o [ }

FIGURE 3. Performance evaluation between IKLE with seven related systems for KG.
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FIGURE 4. Three pipelines in case studies. (P,): finding partners in smart foodsheds using PPOD. (A) YAML loader to load LinkML
of PPOD. (B) Minimized view and (B") maximized view of ontology filter; (b1, b2) user-selected filters; (b3) user-brushed query graph
G .- (C) KG querier to execute SPARQL on PPOD. (D) Code editor to display the generated SPARQL. (E) Table viewer displays the
queried data. (P): Information retrieval from MAKG. (A) Query editor to write the SPARQL. (B) KG querier specified with the
MAKG endpoint; (¢, o) table visualizer to reveal the data patterns from results. (P): State-level resilience and influence in the
US agricultural multicommodity flow network in 2012 and 2017.

Finding Partners in Smart Foodsheds

Alice wants to identify potential collaborators who are
leaders on water pollution issues in the food system.
She uses our system to search the PPOD KG for relevant
information. The analysis pipeline is shown in Figure 4
(P;). She began by using a YAML loader [see Figure 4
(P;-A)] to load the LinkML files of PPOD. She then con-
nected it to an ontology filter [see Figure 4(P-B)] to

construct queries. In the ontology filter, she selected the
related filtering conditions on the left dropdown list,
including “wastes & pollution,” “water” under the inte-
grated issues [see Figure 4(P;-b,)] and “advisor,” “board
member,” “director,” and “elected official” under the posi-
tion type [see Figure 4(P;-b;)]. She then enabled the
lasso function and brushed a subgraph as G, on the

right panel [see Figure 4(P;-b3)]. Once the G, is
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changed, the output of the ontology filter will be
updated accordingly.

Alice trusted our automatic generation. Without
fine-tuning it, she connected the ontology filter directly
to a KG querier to perform the query. She added a table
viewer at the end of the pipeline to display the results.
When the SPARQL execution is finished in the KG que-
rier, the table viewer is automatically updated with the
results [see Figure 4(P;-E)], allowing Alice to find possi-
ble partners for collaboration. This shows that our sys-
tem can be used for partner finding and information
retrieval, which are important for the effective manage-
ment of food systems.

Information Retrieval

We present a case study to demonstrate the flexibility
and scalability of our system in retrieving information
from other knowledge bases. Jason, a Ph.D. student in
food science, uses our system to search for the latest
research in food literature using SPARQL queries. He
has some familiarity with RDF and SPARQL.

First, Jason dragged a query editor and wrote a
SPARQL query to identify study fields related to food
[see Figure 4(P,-A)]. He then connected to a KG que-
rier and input the endpoint of the Microsoft Academic
Knowledge Graph (MAKG) as the knowledge base [see
Figure 4(P,-B)]. He joined a table visualizer to explore
the results. As visualized in Figure 4(P-c;), Jason
found that the citations have decreased since 2018
but started to increase in 2020. He also saw that the
health food field had gained more attention since
2020, possibly due to the influence of the pandemic
on people’s work-life balance.

The table visualizer displayed the distribution of publi-
cation numbers in subfields [see Figure 4(P,-c,)], allowing
Jason to see the most popular fields were food preserva-
tion, functional food, and fermentation in food process-
ing. This case study demonstrates that our system can
retrieve information from various knowledge bases and
can be customized to meet user needs.

Resilience Analysis

Due to the high flexibility of our system, users can also
load the tabular data and visualize the data patterns.
Quantifying the resilience of the food flow network is
an important task in the food system to identify poten-
tial security issues. Our expert, Jasper, proposed a
novel way to measure the resilience of the US multi-
commodity flow network.?’ He wants to use our sys-
tem to explore computed resilience scores to gain
valuable insights.
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The constructed analysis pipeline is visualized in
Figure 4(P;). Jasper first computed resilience for each
state (node) in the agricultural multicommodity flow
network in 2012 and 2017 and loaded it through a data
loader. He then connected it to a data visualizer. From
the node-level resilience results [see Figure 4(P3-A)],
Jasper observed that the states along the east coast,
west coast, and midwest have higher resilience than
states in other geographic regions. He inferred that
this was because these states had a midrange flow of
products—not too big or too small, making them more
resilient to disruption risks. This alerted him to the
potential brittleness of supply chains that relied
heavily on some states and the lack of food access in
others.

Similarly, he calculated the import/export influ-
ence of each state on the entire food flow spatial net-
work in 2012 and 2017. As shown in Figure 4(P;-B), he
identified that many top agricultural-producing states
had import/export influence on the network, such as
Texas, California, and the mid-west states. He could
see the importance of these states to North American
and global supply chains and that geographic concen-
tration increased from 2012-2017. This led Jasper to
ask further questions about regional differences in
crops produced and markets served and the relation-
ship these states had to ports for import/export
markets.

We conducted free-form interviews with domain
experts to gather their feedback on the system, asking
them about their likes and dislikes and for any sugges-
tions they had. Overall, they agreed that the system
makes it easier for users to complete complex tasks
and achieve their goals efficiently. E1 noted that the
system has great potential to democratize access to
data visualization and promote the coproduction of
knowledge. They also highlight the system’s ability to
incorporate KG and tabular data, which is particularly
useful for small and medium-scale practitioners, like
independent grocers. E1 also mentioned that the sys-
tem is valuable for scientists who may not be familiar
with Al, as it provides access to high-quality visualiza-
tions of data patterns. In the PPOD case study, the
system demonstrated its potential by showing the
value of developing a food systems ontology foundry
for aligning databases and facilitating federated
learning. Another expert E2 expressed excitement
about the system’s potential to benefit a wide range
of users and looked forward to its continued develop-
ment and success. E3 expressed interest in using the



system to explicitly map a wide range of sustainability
activities taking place in working landscapes, poten-
tially providing valuable insights into how to better
manage and sustain these landscapes.

In this article, we introduce an IKLE to support various
interactions with KG in smart foodsheds. To establish
this intelligent environment, we collaborated with
domain experts to design a novel dataflow system.
Furthermore, the three case studies manifest their
usefulness to policymakers and practitioners working
in smart foodsheds under various scenarios. It also
demonstrates that our system can be easily extended
to other domains, making it a useful tool for a wide
range of applications.
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