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ABSTRACT ARTICLE HISTORY
Spatial clustering has been widely used for spatial data mining Received 14 August 2021
and knowledge discovery. An ideal multivariate spatial clustering Revised 11 March 2022
should consider both spatial contiguity and aspatial attributes. ~ Accepted 12 March 2022
Existing spatial clustering approaches may face challenges for dis-
covering repeated geographic patterns with spatial contiguity
maintained. In this paper, we propose a Spatial Toeplitz Inverse
Covariance-Based Clustering (STICC) method that considers both
attributes and spatial relationships of geographic objects for
multivariate spatial clustering. A subregion is created for each
geographic object serving as the basic unit when performing clus-
tering. A Markov random field is then constructed to characterize
the attribute dependencies of subregions. Using a spatial consist-
ency strategy, nearby objects are encouraged to belong to the
same cluster. To test the performance of the proposed STICC
algorithm, we apply it in two use cases. The comparison results
with several baseline methods show that the STICC outperforms
others significantly in terms of adjusted rand index and macro-F1
score. Join count statistics is also calculated and shows that the
spatial contiguity is well preserved by STICC. Such a spatial clus-
tering method may benefit various applications in the fields of
geography, remote sensing, transportation, and urban plan-
ning, etc.

KEYWORDS
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1. Introduction

A place typically has multiple features, such as environmental and socioeconomic vari-
ables. The spatial distribution of similar places may have the following two scenarios.
On the one hand, as stated by the first law of geography that ‘near things are more
related than distant things’, nearby places share similar characteristics (Tobler 1970,
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Goodchild 2004, Zhu et al. 2018). For example, due to the nature of spatial depend-
ence in geographic phenomena, two nearby meteorological stations may observe simi-
lar temperature, precipitation and humidity; two adjacent neighborhoods may have
the same urban functions (e.g. residential area, commercial area, or educational area),
because their socioeconomic characteristics are highly correlated (Yuan et al. 2015,
Gao et al. 2017, Xing and Meng 2018); On the other hand, some places located in dif-
ferent areas may have similar attributes. For instance, Italy and California, US, have the
same Mediterranean climate type; airports in two different cities are both transporta-
tion hubs. Hence, places that are not spatially adjacent to each other may still belong
to the same group since their attributes are quite similar. This phenomenon, there
exists places with similar attributes that are either nearby or far away, can be fre-
quently seen on the earth.

Uncovering such patterns, which can be named as a repeated geographic pattern
discovery (RGPD) problem, i.e. finding out repeated groups of similar places across
space and maintaining the spatial contiguity of geographic patterns within each sub-
cluster, requires multivariate spatial clustering (Murray and Estivill-Castro 1998, Miller
and Han 2009). Spatial clustering aims at partitioning spatial data into a series of
meaningful subgroups, and has played important roles in spatio-temporal data mining
and knowledge discovery (Duque et al. 2007, Aldstadt 2010, Liu et al. 2012). By identi-
fying spatial clusters, geographic objects with similar attributes or adjacent locations
are grouped into same clusters, and are dissimilar or distant from other clusters.
Detecting these clusters is necessary for a series of spatial analyses and GIS applica-
tions such as land use classification, cartographic generalization, public health, and soil
mapping (Ligiang et al. 2013, Wang 2020, Esri 2021).

In fact, most geographic phenomena have the following two dimensions of proper-
ties, repeated patterns in attributes (single vs. repeated), and spatial contiguity (iso-
lated vs. continuous). In this paper, repeated patterns refer to whether regions with
similar geographic phenomena/attributes (i.e. belong to the same cluster) could
appear in different locations; and the purpose of spatial contiguity is to assess whether
and to what degree the attributes of geographic objects are spatially dependent. It
should be noted that, for polygons, nearby geographic objects are their adjacent
neighbors with shared boundary; while for points, Delaunay triangulation or other
types of connectivity among points might be constructed first for obtaining their
neighboring points. Existing spatial clustering methods can be divided into the follow-
ing three categories: attribute-based clustering, regionalization-based clustering, and
density-based clustering, though there are several other taxonomies (Deng et al.
2011). These methods are suitable for single and continuous, or repeated and isolated
geographic pattern discovery. However, these methods may face challenges in han-
dling RGPD problem, i.e. discovering repeated patterns with spatial contiguity pre-
served. Ideally, a multivariate spatial clustering for solving the RGPD problem should
consider both spatial and aspatial attributes, that is, (1) geographic objects with similar
attributes are grouped together and such groups may occur repeatedly across the
space, (2) and nearby objects in physical space are encouraged to be assigned in the
same cluster to maintain spatial contiguity. The two-dimensional characteristics of geo-
graphic phenomena (repeated patterns in attributes and spatial contiguity) as well as
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their corresponding spatial clustering methods are plotted in Figure 1. In the following
paragraphs, we describe more details for each category of spatial clustering methods.
We also produce several example maps, as shown in Figure 2, based on a synthetic
dataset to help demonstrate the characteristics of potential outputs by using different
spatial clustering methods.

Attribute-based clustering methods, by definition, group geographic objects accord-
ing to their multiple attributes. One way to perform such kind of clustering analysis is
solely based on attributes while ignoring spatial relationships, such as K-Means
(MacQueen et al. 1967), BIRCH (Zhang et al. 1996), CURE (Guha et al. 1998), and SOM
(Self-organized Map) (Bagao et al. 2005). The underlying hypothesis of these algorithms
is that spatial dependence has been embodied by these multi-dimensional attributes

Continuous '

Regionalization-based

clustering

STICC
-
Density-based
clustering .
Attribute-based
Isolated clustering

Single Repeated

Figure 1. Characteristics of geographic phenomena and corresponding spatial clustering methods:
horizontal-axis represents repeated patterns, and vertical-axis illustrates the degree of spatial con-
tiguity. The translucent area represent the uncertainty of locations for clustering algorithms.

A Attribute-based Clustering B Regionalization-based Clustering C Expected Clustering

Cluster

URWN e

Figure 2. Example maps of spatial clustering results based on a synthetic dataset: (A) attributed-
based clustering approaches; (B) regionalization-based clustering approaches; (C) expected cluster-
ing approaches (e.g. the proposed STICC) for RGPD problem. There are five clusters of regions in
the study area expressed in different colors.
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and thereby the spatial structures can be discovered. Another commonly used solution
in practice is to treat spatial coordinates as two additional weighted attributes
(Webster and Burrough 1972, Murray and Shyy 2000). It has two limitations (Perruchet
1983). First, the importance of coordinates relies on the nature of phenomenon. It is
hard to decide how spatial and aspatial attributes should be combined and weighted
(Duque et al. 2007). Second, spatial relationships, such as distant, nearby, and adjacent,
which play key roles in the spatial analysis, are usually underestimated, as geography
might not be a dimension in the multidimensional space (Henriques et al. 2009).
When performing attribute-based clustering, a potential output map is shown in
Figure 2(A). Geographic objects belonging to the same cluster may be distributed
across space if without spatial contiguity consideration. For example, regions that
belong to cluster 2 (in green) may appear in multiple locations repeatedly across the
entire study area but the spatial contiguity has been destroyed. Hence, as suggested
in Figure 1, attribute-based clustering may discover repeated patterns of geographic
phenomenon, whereas the spatial contiguity of geographic patterns among different
parts of the cluster may not be well preserved.

Density-based clustering methods such as DBSCAN (Ester et al. 1996), OPTICS
(Ankerst et al. 1999), ENCLUE (Hinneburg et al. 1998), and ADCN (Mai et al. 2018), are
able to find out densely located geographic patterns by examining the number of
nearby geographic objects. They have been widely used in various GIS applications
such as hotspot detection (Pei et al. 2006, Chen et al. 2018, Kang et al. 2019), urban
areas of interest discovery (Hu et al. 2015, Liu et al. 2020), and taxi route and trajectory
classification (Pei et al. 2015, Deng et al. 2019, Moayedi et al. 2019, Liu et al. 2021).
Clusters of arbitrary shape can be discovered and the number of clusters need not to
be predefined in most cases. Because density-based clustering methods usually rely
on the geometric information rather than the attributes of objects (though several
studies have attempted to incorporate the object attributes into these methods (Liu
et al. 2012)), they are rarely used in finding groups of places with similar attributes.
For each cluster, geographic objects gather together, and the cluster only appears
once in space, while distant places with similar attributes cannot be allocated to the
same cluster. Even two distant clusters with similar attributes are detected correctly,
they are identified as two distinct groups. In addition, density-based clustering
encounters difficulties in finding evenly distributed groups. In short, density-based
clustering may not discover repeated spatial clusters, though relatively high spatial
contiguity is maintained for each cluster, as shown in Figure 1. It should be noted that
the clustering results using attribute-based clustering or density-based approaches
may also be influenced by the degree of spatial dependence of the input geographic
data. The output may still preserve the spatial contiguity to a certain degree. Such
uncertainties are indicated by the translucent area in Figure 1.

The last category is regionalization-based clustering methods. Such methods are
usually used for solving the p-regions problem, which is defined as the aggregation of
n small areas into p geographically connected regions (Duque et al. 2011). It can parti-
tion space into a set of clustered regions where geographic objects are spatially con-
nected inside those regions. Graph-based methods are commonly used for solving
such a problem such as SKATER (Assuncao et al. 2006, Aydin et al. 2018) and
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AUTOCLUST (Aldstadt 2010). The aggregated regions determined by the regionaliza-
tion-based methods are unique. Only nearby regions are aggregated to the same clus-
ter, while distant regions with similar attributes cannot be assigned into the same
cluster. As displayed in the example map in Figure 2(B), regions belonging to cluster 3
are spatially connected but only locate at the bottom of the map. The position of
regionalization-based methods is thereby determined as illustrated in the Figure 1.
Consequently, similar to density-based methods, spatial contiguity can be well-
preserved but no repeated spatial clusters are discovered by regionalization-
based methods.

In view of all of these challenges encountered in current spatial clustering methods,
we aim to develop a clustering method that can consider both spatial and aspatial
attributes of geographic objects. Such a method is expected to find repeated geo-
graphic patterns and maintain spatial contiguity simultaneously as shown in Figure 1.
In this paper, we develop a new method that addresses these issues, which is named
as Spatial Toeplitz Inverse Covariance-based Clustering (STICC). The algorithm is devel-
oped to achieve the balance between multi-dimensional attributes and spatial con-
tiguity of geographic objects with the following two characteristics. First, different
from other clustering methods that usually treat each geographic object individually,
we build off the algorithm using Markov random field (MRF) (Rue and Held 2005,
Koller and Friedman 2009), a powerful tool that models partial correlation between
different variables, to portray the dependencies of multi-dimensional attributes within
a specific cluster. It builds a subregion between a geographic object with its nearby
objects. Second, a spatial consistency strategy is used to encourage the nearby geo-
graphic objects to belong to the same cluster. Such a method is inspired by the
Toeplitz inverse covariance-based clustering (TICC) method proposed by Hallac et al.
(2017) which has been widely adopted in various multivariate time series clustering
applications. It should be acknowledged that different from the time series clustering
problem, the challenges of spatial clustering approaches are unique. A time-series
datum only contains one-dimensional timestamp values and thereby is naturally repre-
sented as a linearly ordered sequence, while the position of each spatial object is
expressed as two-dimensional coordinates and thus such a linearly ordered sequence
does not naturally exist for geographic objects.

The contribution of this paper is three-fold:

1.  We develop a novel spatial clustering method that considers not only the attrib-
utes of an object but also the spatial contiguity for multivariate repeated geo-
graphic pattern discovery (RGPD).

2. We validate the reliability and effectiveness of the proposed method through
experiments on both synthetic examples and real-world applications.

3.  We use the join count statistics to measure the spatial dependence of the cluster-
ing result for evaluating the performance of different clustering methods.

This article is structured as follows. In Section 2, we present the core idea of STICC
and offer key technical implementation details, including MRF, Toeplitz matrices, and
Toeplitz graphical lasso. In Section 3, we apply the method to two case studies to



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE @ 1523

validate its performance, including synthetic datasets and real-world classification
scenarios. The results for different clustering methods are compared and analyzed. We
make some discussions regarding hyperparameter selections of the proposed algo-
rithm and its implications for GeoAl studies, and acknowledge limitations and opportu-
nities for future work in Section 4. Finally, we summarize and draw conclusions in
Section 5.

2. Method

In this section, we first outline the preliminary and required notations. We then motiv-
ate and describe the formulation of the proposed clustering problem as a mixed com-
binatorial and continuous optimization problem, which involves different components
such as MRF, spatial Toeplitz matrix, and a penalty term to enforce spatial contiguity.
Lastly, we develop an expectation-maximization (EM)-style procedure to solve the opti-
mization problem.

It is worth noting that some part of the proposed method is inspired by the TICC
method developed by Hallac et al. (2017). However, as described in Section 1, the
technical challenges are different as the TICC method is based on time series data for
which a linearly ordered sequence naturally exists for the one-dimensional timestamp
values, while we focus on the spatial clustering problem for which a linearly ordered
sequence does not exist for the geographic objects expressed as two-dimensional
coordinates.

2.1. Preliminary

The multivariate spatial clustering problem can be formulated as follows: For a given
study area, clustering N geographic objects (such as points, polylines, and polygons)
into K groups. The D dimensional attributes of the geographic objects are defined as

T

X3 X1,17 X1,2 ... X1,D
T
X5 X2,1 X2,2 ... X2D
x=|.]=1 . : : s (m
x| X X X
N N1 XN2 .- XND

where x, € RP is a vector that corresponds to the nth multivariate geographic object,
and x,; refers to the ith attribute of the nth geographic object. Furthermore, each
geographic object x,, is associated with a pair of coordinates (centroids are used for
polygons), denoted as ¢, = (Cy,1,Cn,2)-

Due to the existence of spatial dependence, nearby geographic objects may share
similar characteristics and should be taken into account for spatial analysis. Hence, we
construct a subregion of each point that includes several of its nearest neighbors. All
objects in subregions are fed into the model for clustering. Generally, there are two
ways to define a subregion, using a search radius (symmetric) or k-nearest neighbors
(asymmetric) (Mai et al. 2018). For asymmetric definition of neighborhood, the nearest
neighbors of a geographic object might not always be symmetric. For instance, a
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Figure 3. The idea of the proposed STICC method: geographic objects are grouped into clusters
that are represented with different colors; a subregion is built for each geographic object with its
R-1 nearest neighbors (here subregion radius R=3); x, represents the center geographic object,
and x,(,’> indicates its rth nearest neighbor; each cluster is characterized by an MRF to express (1)
the interdependencies among attributes of different objects in the subregion (indicated by dashed
lines), and (2) intradependencies among attributes of a single object (represented by solid lines);
each attribute can be linked to all other attributes inside the MRF; each subregion is input into the
optimization problem of STICC to learn the structure of MRF.

point A’s nearest neighbor might be B, and the nearest neighbor of B might be
another point C while not A. Here, we adopt the latter one as the number of objects
in each subregion is fixed, and use the center geographic object as well as its nearest
(R—1) neighboring objects, that is a total of R objects, for constructing the subregion.
To avoid confusion, we use the term R as the ‘radius’ of subregions that is equivalent
to the number of geographic objects in each subregion, while we use K as the num-
ber of clusters to be detected. The nearest neighbors are determined according to the
spatial matrix calculated based on the pairwise distance among objects. For example,
R=1 denotes that only the object itself is used to construct the subregion while the
two nearest geographic objects of the center object are taken into account when
R =3 as shown in Figure 3.

We then concatenate each object x,, and its R — 1 nearest objects x,<,1), .. .,xﬁ,’H), sorted
in ascending order based on distance, into a vector; specifically, we write X, =
(x,,,xf,l), . .,x,(,Rfl)) € RPR as the subregion in which x,, is the centering geographic object.
In addition, denote by X,(,1) the nearest subregion of X,,. The proposed STICC performs clus-
tering on these stacked subregions but not on the set of all objects directly. This is differ-
ent from the case of TICC that focuses on time series data, because a linearly ordered
sequence naturally exists for time series and therefore the time window adopted by TICC
is symmetric. The concept of time window for time series is analogous to our definition of
subregions for spatial data, though the latter is not always symmetric.
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2.2. Spatial Toeplitz inverse covariance-based clustering

2.2.1. Representing dependencies among attributes with Markov random field
Places with similar attributes should be grouped into the same cluster. To represent
dependencies among multiple attributes of geographic objects, a Markov random field
(MRF) is constructed for each cluster, in which each node in the network corresponds
to an attribute (variable), and each edge indicates the dependency between different
attributes (variables). Each geographic object is represented as a layer in MRF. The
advantages of using MRF are two-fold.

First, edges in an MRF can be loosely interpreted as the partial correlations of a
given pair of variables conditioned on the remaining variables (Rue and Held 2005,
Koller and Friedman 2009). That is, any pair of variables in the network is non-adjacent
if their computed partial correlation is zero, which means that an edge exists between
two variables only if they are conditionally dependent given the remaining variables.
Therefore, MRF is a powerful tool for modeling dependencies between different varia-
bles, as partial correlations control for the effect of the potential confounding varia-
bles. This is unlike the standard correlation method that does not take confounders
into account.

Second, when using the MRF network, how a variable may affect other variables,
conditioning on the remaining variables, is illustrated through its adjacencies, which
provides interpretable insights to demonstrate the characteristics of clusters. For
instance, assume that we want to identify urban functional zones in cities, the MRF
structure of a cluster that is identified as ‘commercial regions’ in a city may illustrate
the partial correlations between two variables, e.g. the number of shopping malls and
the number of restaurants, in a subregion. Suppose in the MRF structure that we iden-
tify a high partial correlation between the number of shopping malls of the center
geographic object and the number of restaurants of its nearest geographic object.
This implies that after controlling all the other variables, such as number of residential
buildings, number of schools, number of hospitals, etc., these two variables are highly
correlated. It is worth noting that there is a distinction between this notion of partial
correlation and the standard correlation. The former one, as described, takes into
account the confounding variables, and therefore may be less susceptible to spurious
relationship.

As mentioned above, the subregions of each geographic object are constructed for
spatial clustering with consideration of spatial dependence, which serve as basic units
for the MRFs. Hence, such MRF structures could have multiple layers (i.e. each layer
represents a geographic object, and its multivariate values and their dependencies are
represented as graph nodes and edges respectively) defined by the number of objects
R in subregions. The edges of graphs are both within a layer and across different
layers, which correspond to the intradependencies and interdependencies of the
object attributes, respectively. An example is shown in Figure 3, in which the cluster’s
MRF contains three layers that represents the geographic object itself, the nearest
object, and the second nearest object, respectively. For each cluster identified, the par-
tial correlation structure of all geographic objects inside subregions of this cluster is
depicted. It should be noted that each subregion is grouped purely based on the attri-
bute dependency structure of the cluster to which the center geographic object
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belongs. Hence, the clusters are spatial-invariant. That is to say, when assigning each
geographic object to the cluster, the starting position of each subregion does
not matter.

For each cluster, since the dependencies between attributes (variables) are different
from other clusters, the MRF network structure is also different. For the kth cluster, we
define its structure of MRF using the inverse covariance matrix of a multivariate
Gaussian distribution, denoted as ©; € RPR*PF As described, the inverse covariance
matrix illustrates the conditional independency structures among attributes inside a
subregion. By definition, if the entry (), ; =0, then these two attributes i and j are
conditionally independent given the values of all other attributes in the subregion.

Next, we will introduce the specific structure of the inverse covariance matrix that
helps preserve spatial invariance, including the spatial Toeplitz matrix in Section 2.2.2
and a Toeplitz graphical lasso strategy to estimate the inverse covariance matrix in
Section 2.3.2.

2.2.2. Spatial Toeplitz matrix

To help preserve spatial invariance within a subregion, we restrict the inverse covari-
ance matrices to follow the block Toeplitz form (i.e. a special diagonal-constant matrix)
(Akaike 1973). In particular, the DR x DR inverse covariance matrix of each cluster is
defined as

0 NT 2)\T R—1)\T
- LV L ()
1 0 T\T :
Al AT @D
) (1 (0) . . :
o — | A A A : : ; , )

AT APy
AV AY Ay

(R-1) NIRRT 0
| Ay o AY A Al
where A,((O),A,gw, ...,A,(fH) € RP*P. Both intradependencies and interdependencies are

indicated by the Toeplitz matrix. The former refers to the sub-block Af(()) whose entry
(AIEO))i,j represents the partial correlation between attributes i and j in the same geo-
graphic object within the kth cluster. Additionally, the off-diagonal sub-blocks refer to
the relationships between the attributes of different geographic objects in the sub-
region. For example, suppose a geographic object x,, belong to the kth cluster. Then,
(A,((”),Ij indicates the relationship between the attribute i of x, and the attribute j of its
nearest neighbor xf,”; similarly, A"),1<r<R shows the edge structure between the
geographic object x,, and its rth nearest neighbor x,(,’). Using the block Toeplitz struc-
ture of the inverse covariance, we could characterize the relationships between mul-
tiple attributes across space with the spatial-invariance assumption that each
geographic object only depends on its (R—1) nearest neighbors regardless of its abso-
lute location. Note that such attribute dependencies may vary across space but we
assume it is relatively stable within each cluster.
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2.2.3. Overall optimization problem

After introducing the MRF and the Toeplitz matrix, the overall spatial clustering problem
can be defined as an optimization problem. The objective is to solve for these K inverse
covariances @ = {0y, ..., O} for all clusters, and the assignment sets for the geographic
objects P = {Py, ..., P} with P; C {1,2, ...,N}. It is termed as the spatial Toeplitz inverse
covariance-based clustering (STICC), which solves the following optimization problem:

sparsity
spatial consistency
K — log likelihood P PN
anin, > |3 \-£(06x) FB IR ) OO | B
" k=1 XnePy

where 7 denotes the set of DR x DR matrices that are symmetric block Toeplitz. For
each geographic object x,, recall that X, is defined as the subregion in which x, is the
center point. In the optimziation problem, each subregion X,, is assigned to one clus-
ter, and —L(0®y; X,,) denotes the negative log likelihood that the subregion X,, belongs
to the kth cluster. The cluster assignment of the subregion X,, is used as that of the
geographic object x,,.

Here, ﬂ{X,(,1)¢Pk} is a spatial consistency indicator function that determines if X,, and
its nearest subregion X,S” are in the same group, defined as

! 0, itX,x\" P,
ﬂ{x'(’ )¢Pk} B { 1, othnervr\;ise‘ ‘ @

p is a hyperparameter that controls the importance of this term. This penalty term
is used to encourage the neighboring subregions X, and X,(,1> to be assigned to the
same cluster, so that the spatial contiguity is maintained.

An /; penalty term ||A © O], ¢ is incorporated to enforce the sparsity on the off-diag-
onal entries of the inverse covariance matrices, where A € RPR*DR s a hyperparameter that
controls the sparsity level, and ® denotes the entry-wise product. This penalty term helps
enforce sparsity on the edges of the corresponding MRFs, since the non-zero entries in the
inverse covariance matrices correspond to the underlying structure of the MRFs. Note that
the sparsity assumption, or more specifically, the ¢; constraint, has been adopted and is
essential in many areas such as compressed sensing (Candes and Tao 2005, Donoho 2006),
linear regression (Tibshirani 1996, Zou 2006), and graphical model selection (Friedman et al.
2008, Aragam and Zhou 2015, Ng et al. 2020). This is especially useful for high-dimensional
tasks with a large number of variables and limited samples (Hastie et al. 2015), as is the
case in our multivariate spatial clustering.

Since we focus on the Gaussian inverse covariance matrices and assume that the
joint distribution of X,, follows a multivariate Gaussian distribution, the log likelihood
L(Ok; X,) is given by

1 1 DR
L(Ok; Xn) = =5 Xn—1) Oi(Xn—11e) + 5 log det®;——"log 2, (5)

where yy refers to the empirical mean of the kth cluster, and det®, denotes the deter-
minant of the matrix ®,.
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2.3. Cluster assignments and parameter updates

Algorithm 1 Overall steps for STICC

initialize cluster assignments P and cluster parameters @
while not stationarity

E-step: cluster assignments — P

M-step: parameter updates — @

endwhile

return P, ®

To solve the problem defined in Equation (3) that involves both combinatorial and
continuous optimization, we adopt an approach similar to the expectation-maximiza-
tion (EM) method that alternates between two steps: cluster assignments and cluster
parameters updates. As shown in Algorithm 1, the overall procedure of the STICC
algorithm is as follows:

1. Initialization: initialize cluster assignments P and cluster parameters ®. The for-
mer could be randomly initialized, or initialized using other clustering methods, if
available, such as K-Means or Gaussian mixture model.

2. E-step: compute the set of cluster assignments P for the geographic objects.

M-step: update cluster parameters Q.

4, If the algorithm converges, then stop; otherwise, repeat steps (2) and (3).

w

Further details of the E-step and M-step are described in the following sections.

2.3.1. E-step: cluster assignment with spatial consistency

In this step, we aim to assign each geographic subregion, X, ..., Xy, to one of the K
clusters given the fixed cluster parameters ®;,i = 1,2, ...,K (i.e. inverse covariances).
The number of clusters K should be assigned manually. In practice, K can be inferred
by using methods for unsupervised clustering such as silhouette score (Ogbuabor and
Ugwoke 2018), elbow method (Syakur et al. 2018), information criterion approach
(Kodinariya and Makwana 2013), and information-theoretic approach (Sugar and James
2003). Particularly, the optimization problem for assignment of subregions to clusters
is derived from the Equation (3) and given by

spatial consistency
K — log likelihood P
min > Y\ —L(Ok;Xy) + BU{xVep} /. (6)

P k=1 X,€Py
As described in Section 2.2.3, this formulation aims to maximize both the log likeli-
hood and the spatial consistency.
A naive approach to solve the above combinatorial optimization problem is by enu-

merating all possible assignments of the subregions to the clusters, which, however,
quickly becomes infeasible as there are K™ possible combinations, leading to
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Figure 4. Problem (6) can be converted to a minimum cost path finding task from subregion 1 to
N, where the node cost is the negative log likelihood of that point being assigned to a given clus-
ter, and the edge cost is determined by the function whether the nth geographic object and its
nearest neighbor belong to the same cluster; if so, then it is 0, otherwise, a penalty /3 is added.

exponential increase of running time in the number of geographic objects. To handle
this issue, we leverage a dynamic programming approach to solve the problem with a
running time O(KN), as illustrated in the Figure 4. Such a problem can be cast into a
minimum cost path finding task (Viterbi 1967) from subregion X; to Xy. As shown in
Figure 4, the node cost refers to the negative log likelihood —L(®;X,) of a specific
cluster that the geographic object is assigned to. We define the edge cost from the
node —L(®x;X,) to the destination node —L(®;Xy+1) to be h(X,,,X,(,”,Pk) that is
decided based on the cluster assignment of the nearest subregion to X, and formally
defined as

B X{1, Py = 4 O 1 XuuXa! € Py 7)
n B, otherwise.

For example, in terms of the subregion X;, if its nearest subregion X1(1> belongs to
the same cluster, then there is no additional cost except for the negative log likeli-
hood; otherwise, the penalty f should be added. The pseudocode for cluster assign-
ment is illustrated in Algorithm 2.

Algorithm 2 E-step: Cluster Assignment

Input: {X,}"_ : a set of N subregions;

{X,(,”}::1 : a set of N subregions that indicates the nearest neighbor of X,;

L(O; X,) : negative log likelihood of the subregion X, that belongs to cluster k, for
k=12 ..., Kandn=1,2,...,N;
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B>0 : penalty coefficient.
initialize FutureCostVals := list of N lists of K zeros.
forn=N-1,...,1do
m := index of X,<,1>
FutureCost := FutureCostVals[m, :]
LogLikelihoodVals := (£(©1;X\"), L(©x; X)), ..., L(Ok; X))
fork=1,...,Kdo
TotalVals = FutureCost + LogLikelihoodVals + f
TotalVals[k] = TotalVals[k] -
FutureCostVals[n, k] = min(TotalVals)
end for
end for
Path := list of N zeros.
forn=1,...,Ndo
m := index of X,<,1>
FutureCost := FutureCostVals[m, :]
LogLikelihoodVals := (£(©1;X\"), £(@2:X"), ..., L(©Ok; X))
TotalVals = FutureCost + LogLikelihoodVals + f
TotalVals[Path[n]] = TotalVals[Path[n]] - f
end for
return Path

As suggested by the objective function (6), setting f§ to O reduces to independently
assigning each subregion X;, ..., Xy to a certain cluster based on its log likelihood, which,
as explained in Section 1, is not desirable as it is not much different from attribute-based
clustering that does not adequately incorporate the geographic information. With the
increase of f5, nearby subregions are encouraged to be allocated to the same cluster to
keep the spatial contiguity. For the extreme case where B — oo, all subregions will be
grouped into the same cluster as the penalty term dominates entirely.

2.3.2. M-step: cluster parameter updates with Toeplitz graphical lasso

The other step is the parameter updates given the fixed cluster assignments P. It aims
to update parameters ®, of cluster k =1, ..., K. Here, we assume that the multivari-
ate Gaussian distribution of X,, has zero-mean, and rewrite the log likelihood term in
Equation (5) as

> L(Ok; Xn) = —|Pk|(log det® + tr(S,O%)) + C, (8)
Xn€Px
where |Py| indicates the number of geographic objects assigned to cluster k, Sy
denotes the empirical covariance of these objects, tr refers to tracing over the diag-
onal elements of the matrix, and C is a constant.
To update the parameter ®,, the optimization subproblem of the M-step can be
written as
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1
min  —log det®y + tr(5O) + —

A .
oeT 1P| 2 © Oll;, o 9)

The above problem, termed as the Toeplitz graphical lasso (Hallac et al. 2017), is
convey, as is the case in the typical setting of graphical lasso (Friedman et al. 2008).

A straightforward approach to solving this optimization problem is to use the
standard coordinate descent method developed by Friedman et al. (2008), which, how-
ever, may not scale up to large inverse covariances, especially since our EM-like pro-
cedure requires solving this problem up to tens or hundreds of times before
converging to a stationary solution. Other improved alternatives include the second-
order approach with quadratic approximations (Hsieh et al. 2014), or the alternating
direction method of multipliers (ADMM) (Boyd et al. 2010, Scheinberg et al. 2010). In
this work, we adopt the ADMM method, a distributed algorithm that solves an opti-
mization problem by decomposing it into smaller subproblems, each of which are eas-
ier to solve. Such a strategy is also used in the TICC algorithm (Hallac et al. 2017) and
more technical details can be found there.

3. Experiment

We have implemented the proposed STICC algorithm in Python. The PySal library is
used for constructing the spatial relationships, performing the k-nearest neighbor spa-
tial matrix, and constructing the Delaunay triangulation (Rey and Anselin 2010).
Following the reproducibility and replicability guidelines (Wilson et al. 2020), the code
for this project is open-sourced and available on a public repository on GitHub:
https://github.com/GeoDS/STICC. In the following sections, the developed STICC algo-
rithm is applied in two case studies, a synthetic experiment and a real-world scenario
to demonstrate how this method can be used in spatial clustering to provide mean-
ingful insights for repeated geographic pattern discovery.

3.1. Experiment set-up

In this section, we discuss the common settings of the two experiments, including
baseline methods and evaluation metrics. Both experiments are performed on a cloud
server with Ubuntu 16.04 system and Python 3.8 version.

3.1.1. STICC and baseline methods
There are two groups of clustering methods used in our experiments. The first group
includes a series of the proposed STICC clustering algorithms with different parameter
settings on R and f, so that we can explore the performance of the algorithm under
different conditions. We start with a fixed  and an increasing R value from R=1 to
R=4. When R=1, no nearby geographic objects are used for the construction of sub-
regions. Then, by picking up the best R, we test different f =0,1,3,5, respectively. It
should be noted that when =0, there is no spatial consistency strategy performed.
The second group contains the following six commonly used unsupervised cluster-
ing algorithms to serve as baseline approaches.
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1.  K-Means: The K-Means clustering algorithm with Euclidean distance in a multivari-
ate space (including only aspatial attributes in our experiments) (Anderberg 1973).

2. Spatial K-Means: It is an adaption of the K-Means that treats the coordinates of
each object as two attributes together with other aspatial attributes.

3. GMM: The Gaussian mixture model aims at representing the probability distribu-
tion of each object for clustering (Rasmussen 1999).

4. CURE: The clustering using representatives model that extends K-Means clustering
approach and is more robust to outliers, shape and size variances (Guha
et al. 1998).

5. DBSCAN: The density-based spatial clustering of applications with noise (Ester
et al. 1996).

6. Spatially Constrained Multivariate Clustering: The spatially constrained multivariate
clustering algorithm that uses minimum spanning tree and a strategy termed as
SKATER that can identify natural clusters and evidence accumulation to evaluate
the probability of cluster membership (Assuncao et al. 2006).

The first four methods are attribute-based clustering algorithms; DBSCAN algorithm
is a density-based clustering approach; and the spatially constrained multivariate clus-
tering approach is a regionalization-based approach. Therefore, the characteristics of
the three-category spatial clustering approaches can be depicted comprehensively and
compared with our proposed STICC method. All algorithms except GMM and spatially
constrained multivariate clustering are performed using a python package pyclustering
(Novikov 2019); the GMM is performed using the package sklearn; the spatially con-
strained multivariate clustering is executed in ArcGIS Pro 2.8. We use default settings
of each algorithm as they mainly require the number of clusters K only. A grid-search
strategy is performed for DBSCAN to infer optimal results, since this algorithm requires
two input parameters, namely the search radius and the minimum number of data
points minPts in each cluster.

3.1.2 Evaluation metrics

To evaluate the performances of all these above-mentioned clustering methods, we
use the following three metrics from different aspects: adjusted rand index (ARI),
macro-F1, and join count ratio. Generally, clustering is treated as an unsupervised
learning process. However, since we also know the ‘ground-truth’ results of the clus-
tering in our case studies, it can be seen as a supervised multi-class classification prob-
lem as well. The ARl and macro-F1 are good indicators in measuring the accuracy of
clustering results. While the join count ratio can be used to measure the spatial
dependence. Given that the STICC method and several baseline methods may acquire
the appropriate number of clusters K, we assign the ‘true’ number of clusters of each
dataset as K.

The ARI measures the similarity between two clustering results by counting pairs of
samples that are assigned with the same or different clusters (Steinley 2004). A value
between 0 and 1 is produced for each round of comparison between clustering
results. The higher the value, the more similar the two clustering results.
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Figure 5. The generated synthetic dataset with ten regions (Ry,Ry, ..., Ri0) that belong to
seven clusters.

The macro-F1 score has been widely used in the field of machine learning for meas-
uring algorithm performance (Fujino et al. 2008). The precision and recall of each clus-
ter are computed at first to infer the F1 scores. The average of all F1 scores for all
clusters are calculated as the macro-F1 score for making comparisons between the
STICC method with other baseline models. Such an index achieves the balance
between precision and recall. The macro-F1 score ranges from 0 to 1 as well. A value
near 1 indicates a better clustering result. To obtain the macro-F1 score, given that we
do not know the one-to-one cluster label matching between the ‘ground truth’ and
the output clustering results, all potential permutations are enumerated and the
macro-F1 score of each item is computed. The permutation with the highest macro-F1
score is used as the final clustering labels.

Researchers have made extensive use of the former two indices for measuring the per-
formance of clustering approaches. Recall that an ideal spatial clustering result may
achieve a balance between attribute similarity and spatial contiguity. Hence, a quantitative
examination of the degree of spatial contiguity that is preserved in clustering results is
necessary. In other words, how many nearby geographic objects tend to belong to the
same cluster. Inspired by the join count statistics (Dacey 1965, Cliff and Ord 1973), we
measure the proportion of connections where neighboring geographic objects belong to
the same cluster to all connections among adjacent geographic objects, which is termed
as textitjoin count ratio. For a pair of two neighboring geographic objects, their resulting
cluster labels might be the same or different. It should be noted that, for polygons, neigh-
boring geographic objects refer to adjacent polygons or lattices with shared boundaries;
while for points, Delaunay triangulation or other types of connectivity among points
should be constructed first, and neighboring points are considered as adjacent geographic
objects. We adopt the following equations to calculate the join count ratio:

J= Jsame + Jdiff (1 O)
J
Jratio = szf/me (1)

where Jgme is the value of join counts that neighboring objects belong to the same cluster,
Jaire indicates the value of join counts that neighboring objects belong to different clusters.
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Table 1. Settings of the generated synthetic dataset with five attributes.

Attribute A Attribute B Attribute C Attribute D Attribute E
Cluster In 0 In 0 " 0 I 0 I 0
1 4 1 1 3 80 20 1000 350 999 3
2 5 1 7 3 30 20 900 350 992 3
3 6 1 2 3 20 20 600 350 1005 3
4 1 1 3 3 100 20 700 350 1003 3
5 3 1 6 3 60 20 800 350 999 3
6 7 1 4 3 70 20 400 350 998 3
7 2 1 5 3 40 20 500 350 1008 3

Jiatio ranges from 0 to 1, and the higher the proportion of neighboring geographic objects
belonging to the same category, the higher spatial dependence of output results.

Such a measure may help us examine the spatial contiguity within each subregion
given the spatial dependency of attributes. We acknowledge that there are multiple
other measures used for examining spatial contiguity of geographic patterns, such as
Moran’s | and Geary's C. However, they are inappropriate for nominal data (e.g. cluster-
ing labels) in this work.

3.2. Synthetic experiment

3.2.1. Dataset Preparation

We first generate a synthetic point dataset with multiple attributes to test the per-
formance of our proposed STICC method. Inspired by previous works (Estivill-Castro
and Lee 2002, Nosovskiy et al. 2008, Liu et al. 2012, Mai et al. 2018), the spatial distri-
bution of points are generated as shown in the Figure 5 with the following character-
istics. According to the figure, regions R, and R, regions R, and R;,, and regions Rs
and Ro, belong to the same clusters, respectively, but they may locate in different
positions and are not spatially adjacent to each other (e.g. Rz and Ry, R, and Ryy).
These regions have diverse densities of points. For example, regions 4 and 8 have uni-
form point densities, while point densities fluctuate in regions 5 and 6; densities of
points in adjacent regions may be similar (e.g. regions 7 and 9) or different (such as
regions 7 and 8). Also, the minimum distances between two nearby regions can be
different. For instance, region 5 is closely connected (i.e. ‘touch’) with region 6 while is
not directly adjacent to region 2.

Though there are ten regions of points in total, they only belong to seven prede-
fined clusters according to their multiple attribute similarity. For each point, we gener-
ate five attributes as its multi-dimensional features. The attribute values of each point
in a specific cluster are randomly assigned in a certain range, and such a range follows
normal distributions with distinct settings of mean u and standard error 6. After ran-
domly generating these parameters for multiple times, similar conclusions can be
obtained from our further experiments. Hence, we only show one group of parameters
as an example in Table 1 for demonstrating the experiment settings. Table 1 provides
the means u and standard errors 0 of the normal distribution for the attribute value
range of objects in each cluster. Attribute values may overlap in different clusters due
to the settings of 0. Given that different attributes of one geographic object may have
diverse value ranges in the real world (e.g. the average temperature and the
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Table 2. Results of different clustering approaches on synthetic dataset (number of clus-
ters, K=7).

Cluster Adjusted
rand Join
R p index Macro-F1  count ratio
STICC 1 3 0.894 0.954 0.851
2 3 0.931 0.973 0.878
3 3 0.960 0.984 0.901
4 3 0.574 0.550 0.822
3 0 0.947 0.977 0.888
3 1 0.952 0.981 0.896
3 5 0.818 0.771 0.886
Baseline clustering methods K-Means 0.799 0.735 0.544
CURE 0.0006 0.053 .
Spatial K-Means 0.830 0.744 0.881
GMM 0.703 0.850 0.685
DBSCAN (radius = 1250, minPts = 25) 0.327 - 0.933
Spatially constrained multivariate clustering 0.629 0.546 0.936

population of a place are unrelated), we assign disparate settings of normal distribu-
tions to create these attributes. As suggested in Table 1, the attribute A ranges from 1
to 7 while the attribute D varies from 400 to 1000.

3.2.2. Clustering results

The comparison results of different clustering methods are shown in Table 2. Several
selected clustering results are displayed in Figure 6. To guarantee that model perform-
ances are compared under same conditions, we generate identical synthetic data for
each of the methods.

3.2.2.1. Accuracy. In accordance with the Table 2, our proposed STICC method signifi-
cantly outperforms all baseline clustering approaches in identifying such dispersed dis-
tributed similar subregions regarding both ARIs and macro-F1 scores. The STICC
method with different parameters achieves very high accuracy in most cases. The ARIs
of all experiments but one are higher than 0.81, and the macro-F1 scores in five out
of seven experiments are over 0.95 with STICC. The model with parameters R=3 and
p =3 performs the best. Its macro-F1 score reaches 0.984. Figure 6(A) shows the
results of STICC (R = 3, = 3). As shown in the figure, all clusters are correctly identi-
fied and the majority of points are classified to the correct group. Repeated clusters
(e.g. Rs and Ry, R, and R;g), even if located in different positions, are detected accur-
ately. Only a small proportion of points are labeled incorrectly (as indicated by the
macro-F1 score, more than 98% points are classified correctly).

As for the baseline approaches, when setting the number of clusters K=7, spatial
K-Means has the best ARI of 0.83 (0.13 less than the best STICC), and GMM has the
highest macro-F1 of 0.850 (0.134 less than the best STICC). Figure 6(B-D) depict the
results of those baseline clustering approaches. Results of K-Means show that most
clusters are identified (Figure 6(B)). However, regions 7 and 8 are grouped into the
same cluster incorrectly; regions 2 and 10, which belong to the same group, are mis-
classified. According to Figure 6(C), coordinates of points are treated as two attributes
when executing the spatial K-Means clustering, nearby points are encouraged to be
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Figure 6. Results of the synthetic dataset (seven clusters). (A) the proposed STICC method (with
r=3 and f=3; (B) K-Means; (C) spatial K-Means; (D) Gaussian mixture model; (E) DBSCAN (with
radius = 1250 and minPts = 25; (F) spatially constrained multivariate clustering.

grouped into the same cluster. In the synthetic dataset, such a method performs
worse than K-Means as regions 2 and 5 are misclassified into the same group. GMM,
as shown in Figure 6(D), generally detects all major clusters by attributes correctly.
However, in comparison with the STICC method, the clustered points are in a more
disordered way without good spatial contiguity. In terms of density-based clustering
algorithm (DBSCAN), according to Figure 6(E), it can only discover densely-located
point clusters based on locations but not attributes. Therefore, many points are not
assigned into any clusters but as noise points, resulting in a relatively low ARl and a
failure in getting a macro-F1 score as more than 7 clusters are obtained. For the
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spatially constrained multivariate clustering using ArcGIS Pro, such a method can
detect certain clusters (Figure 6(F)). When performing the clustering algorithms, the
Delaunay triangulations are constructed among points. Only topologically nearby
points are assigned into the same group and no repeated patterns are discovered.

3.2.2.1. Spatial contiguity. According to Table 2, the spatial contiguity (measured by
the join count ratio) is well maintained by our proposed STICC method. When R =
2,=3, and R=3,=0,1,3,5, the join count ratio of all these five experiments are
higher than that of the K-Means and GMM approaches. It should be noted that a
higher join count ratio is not necessarily to a higher ARl and macro-F1, as they meas-
ure different aspects of the model performance. For example, if we only compare the
K-Means algorithm and the spatially constrained multivariate clustering approach, the
latter one has a higher join count ratio value but with lower ARI and macro-F1 score.
It makes sense as illustrated in Figure 6(B,C). K-Means can identify correct clusters to a
certain degree, though there are some noise points that are misclassified; while spatial
K-Means incorrectly arrange the R, and Rs together, as coordinates of points in these
two regions are relatively similar. In addition, both DBSCAN and the spatially con-
strained multivariate clustering approach have relatively high join count ratio, which
indicates that the spatial contiguity is well preserved. However, the ARl and macro-F1
scores, which measure classification accuracy, are relatively low for these two methods.
This suggests that the join count ratio may only serve as a complement evaluation
metric of ARI and marco-F1 scores from different perspectives.

3.2.2.2. Parameters of STICC. We also try multiple combinations of R, B values to see
how these parameters affect clustering results based on our synthetic dataset. With the
increase of R and fixing the f3, in which more nearby points are used for constructing the
subregions, the accuracy of clustering approaches improves at first, and then drops when
R=4. When we fix the R nearest neighbors and change 5, we can observe similar pat-
terns (Table 2). The three indices increase at first and then drop when ff=5. A larger f§
forces more nearby objects to be assigned into the same group.

In summary, the STICC approaches perform better than the other three groups of
methods significantly in discovering repeated patterns of points with spatial contiguity
maintained, and achieve the balance between spatial and aspatial attributes of geo-
graphic objects with appropriate parameters.

3.3. Check-in point classification

We then evaluate the STICC method as well as other baseline approaches on another
real-world application: social media check-in point classification. The goal of this task
is to extract semantic information such as place types from geographic coordinates
and time stamps only. It is very useful for multiple applications such as trajectory priv-
acy protection (Rao et al. 2020), mobility pattern discovery (Soliman et al. 2017), and
community detection (Zhao et al. 2016).
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Figure 7. Results for home/work classification. (a) ground truth; (b) the proposed STICC method;
(c) K-Means.

3.3.1. Dataset preparation

Social media check-in datasets have been widely used for understanding and analyz-
ing users’ spatio-temporal activity patterns in location-based services (LBS). Users visit
a place (usually referred to as a point of interest, POI), check in at that location, and
post geotagged content. Our testing data are from Yang et al. (2014), which contain a
Foursquare check-in dataset in New York City processed based on global social media
check-in records. In this dataset, 118,316 social media check-in records from April 2012
to September 2013 were collected from Foursquare, containing 3628 unique POls and
500 users. For each check-in record, the time stamp (including time of day and day of
week), GPS coordinates of the POI, and its semantics represented by the POI catego-
ries are attached. We use the POI category provided in the original dataset as the
ground truth in this application. This task aims at identifying POl categories based on
temporal information of check-in records. Given that some POls have very limited vis-
its, only those with at least 10 check-in points are kept. We then extract days of the
week w € (1,7), and the hour h € (0,23) information from time stamps as two attrib-
utes of each point. Given that check-in points attached to one POI have the same GPS
coordinates, we add a random noise (following a uniform distribution) of every point
so that each of them is shifted to locate at a different position while still inside the
100-m radius of the center POIl. By doing so, the task becomes more challenging for
clustering algorithms to correctly differentiate check-in points in mixed groups of sam-
pling points. After that, we test the STICC method as well as other baseline
approaches to classify the category of check-in points on two tasks, home/work, and
home/work/gym identification. Again, the process is still an unsupervised learning
problem without labels and the identification of place types requires temporal infor-
mation (e.g. daytime vs. night time) after clustering. Existing studies have shown that
the day of the week and the hour play important roles in identifying various place
types (Wu et al. 2014, Rao et al. 2020). With only two attributes taken into account, we
explore to what degree correct types of places can be inferred. Only attribute-based
clustering methods are used for comparisons with STICC. Density-based clustering
methods can detect densely located point clusters. However, it does not identify the
semantics of each cluster. Regionalization-based clustering methods may only partition
the study area into two spatially adjacent groups. Hence, the latter two methods are
not appropriate for this application.
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Table 3. Results of different approaches for home and work classification (number of clus-
ters, K=2).

Cluster
R p Adjusted rand index Macro-F1 Join count ratio
STICC 1 3 0.390 0.806 0.829
2 3 0.355 0.792 0.804
3 3 0.433 0.823 0.834
4 3 0.495 0.844 0.860
4 0 0.445 0.823 0.822
4 1 0.464 0.834 0.841
4 5 0.514 0.850 0.871
Traditional clustering K-Means 0.085 0.321 0.493
CURE 0.015 0.578 0.700
Spatial-Kmeans 0.080 0.384 0.492
GMM 0.023 0.587 0.690

3.3.2. Clustering accuracy for home/work identification

Home and work location detection is one of the fundamental tasks for LBS in practice.
Here, we use different clustering algorithms and perform a binary ‘classification’ (K= 2)
to infer users’ home and work locations from their check-in data. The distributions of
users’ check-in points are plotted in Figure 7(A) with yellow dots indicate home loca-
tions and purple points refer to work locations. The clustering results of home/work
identification of several clustering methods are demonstrated in Table 3. It can be
inferred that the proposed STICC algorithm performs better than other baseline
approaches using the three quality measurements.

3.3.2.1. Accuracy. According to Table 3, the ARI values of the STICC with different par-
ameter settings are all over 0.35, and the macro-F1 scores are all higher than 0.79.
When R =4, =5, the STICC has the highest ARI, macro-F1 score, and join count
ratio. In comparison, the K-Means is the best model with the highest ARI of 0.085, and
GMM has the highest macro-F1 score of 0.587, both are far below the results from the
STICC algorithm. Three example maps are illustrated in Figure 7 to show the spatial
distributions of check-in ground truth, STICC, and K-Means clustering results, respect-
ively. According to these maps, our developed STICC algorithm identifies home/work
locations of most check-in points more correctly than the K-means, although there
exist some mixed home/work clusters in the northern part on the map.

3.3.2.2. Spatial contiguity. The join count ratio also illustrates that the STICC method
maintains the spatial contiguity relatively well. According to Table 3, join count ratios
are all greater than 0.80. Also, as shown in Figure 7(B), nearby check-in points are
mostly grouped into the same cluster, which also suggests that spatial contiguity is
well-preserved. In comparison, attribute-based algorithms cannot keep the spatial con-
tiguity well with relatively low join count ratio values (lower than 0.70).

3.3.2.3. Parameters of STICC. Since the model performs best when R =4, multiple f8
values are input into the STICC method to examine the resulting clustering maps for
the POI classification task. As shown in Table 3, as the number of objects in each sub-
region increases, the accuracy and join count ratio of the STICC method also show
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Table 4. Results of different approaches for home/work/gym classification (number of clus-
ters, K=3).

Cluster
R p Adjusted rand index Macro-F1 Join count ratio
STICC 1 3 0.289 0.476 0.700
2 3 0.204 0.482 0.647
3 3 0.269 0.500 0.672
4 3 0.298 0.508 0.700
4 0 0.251 0.495 0.641
4 1 0.273 0.502 0.669
4 5 0.335 0.510 0.712
Traditional clustering K-Means 0.041 0.352 0.675
CURE 0.077 0.294 0.597
Spatial-Kmeans 0.080 0.397 0.670
GMM 0.065 0.416 0.603

increasing trends. Also, if f§ increases, i.e. more nearby geographic objects are pushed
to be in the same group, all three quality measurements increase as well.

3.3.3. Clustering Accuracy for home/work/gym identification

We then conduct a follow-up experiment to perform multi-class ‘classification’ (K= 3) for
grouping and identifying home, work, and gym locations. Since only the temporal patterns
(hour and days of the week information) of check-in points are considered, it is an obstacle
for most clustering algorithms even just extending the experiment from binary classifica-
tion to three-class classification. Table 4 shows the three quality measurements of such a
task. As mentioned above, all potential cluster label matching permutations are enumer-
ated and the best results are reported here. Though the performances of all methods drop
substantially, our proposed STICC algorithm continues yielding best results.

Generally speaking, similar conclusions can be obtained in comparison with the
home/work classification task. As for ARI, the proposed STICC yields an ARI that is at
least 0.12 higher than any other methods. For macro-F1 scores, the STICC achieves the
highest when R =4, =5 which is higher than GMM (0.416) that performs the best
among all other clustering approaches. The resulting join count ratios of most STICC
algorithms are higher than 0.64 with the highest being 0.712, while K-Means has the
highest join count ratio with 0.675 among traditional clustering methods. It is worth
noting that when R = 4,3 = 0, the join count ratio is comparatively low due to the lack
of a spatial consistency strategy that forces nearby points to be in the same group.

Overall, both home/work and home/work/gym identification practices illustrate that
our proposed STICC algorithm shows promising results in POI category identification
problems inferred solely from hourly and days of the week. Our results also suggest
that it is necessary to consider nearby geographic observations in improving the
model performance.

4. Discussions
4.1. Influences of parameters

The developed STICC algorithm requires four input hyperparameters K, R, f, and 1,
which are manually determined. To get optimal results, fine tuning is required when
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Figure 8. Changes of metrics for the synthetic dataset with different R.

executing the algorithm. In this section, we briefly discuss the influence of these differ-
ent parameters on the algorithm performance and hope to provide basic guidance in
selecting hyperparameters.

K refers to the number of clusters into which the data points expect to be grouped.
If there are some labeled ground-truth data, such data can be used for helping deter-
mine the K value, as illustrated in the experiments shown in Section 3. However, clus-
tering algorithms are usually employed in solving unsupervised classification problems
where no ground-truth data are provided. Researchers may either need to manually
select the appropriate K relying on their experiences or based on the characteristics of
datasets, or need to use silhouette score (Ogbuabor and Ugwoke 2018), elbow
method (Syakur et al. 2018), information criterion (Kodinariya and Makwana 2013), or
information-theoretic (Sugar and James 2003) approaches to help determine the
appropriate K.

R specifies the radius size of subregions, that is the number of geographic objects
in each constructed subregion in our method. It also serves as the key parameter in
integrating spatial context into the clustering algorithm. The larger the R, the more
neighbors are taken into account in clustering; and if R=1, only the center point itself
is used. The hypothesis for constructing subregions is that spatial dependencies
among geographic objects within subregions are the same for a specific cluster and
might be different across clusters. Hence, choosing an appropriate R value depends
on the nature of the phenomenon being studied and the dataset. For example, R = 5
or 9 might be proper parameters for raster data (e.g. remote sensing images) consider-
ing the adjacency characteristics of image pixels (such as rook, bishop, and queen
cases). In general, a large R might be suitable when objects are highly relevant to their
neighbors. With a large R, more geographic objects are taken into consideration when
the STICC algorithm is executed, which also increases the spatial variances. On the
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Figure 9. Results of the synthetic dataset using STICC with different 5. (A) f=0, (B) f=3,
(Q) p=18.

contrary, a small R may be used for datasets with high spatial heterogeneity, in which
case fewer geographic objects should be taken into account. Here, we take the syn-
thetic dataset as an example to show how results change with the increasing R. We
perform our STICC algorithm with different R ranging from 1 to 10. As illustrated in
Figure 8, both ARl and macro-F1 scores increase and reach the peak at R=2 or R=3,
which means that taking several nearby geographic objects into account helps illus-
trate spatial dependencies within subregions; the two metrics then drop when R is
greater than 4. Thus, taking more nearby geographic objects into account may pro-
vide more complex spatial context information that could ‘confuse’ the model. In
terms of the join count ratio, it is relatively stable when R is less than 8, indicates that
spatial contiguity of the observations is well preserved, and decreases when R is
greater than 9. Note that this pattern is only observed based on our synthetic dataset.

The f§ controls the penalties of the spatial consistency strategy. The larger the f,
the more nearby points are grouped into the same cluster; while if =0, no such
strategy is carried out. An optimal  might be inferred using parameter tuning.
Such a parameter impacts on the spatial contiguity maintained in the results. Using
the abovementioned synthetic dataset (in Figure 5), we provide an example here
to show how clustering results change with different f. As illustrated in Figure 9,
three sub-figures illustrate clustering results with B =0,3,18, respectively. When f
is 0, no spatial consistency strategy is performed, and the points are relatively
messy as points with different classes mixed up. While with a relatively large
f =18, nearby geographic objects are grouped into the same cluster, such as
regions 7 and 9 (in purple) at the bottom, though they should belong to different
clusters based on their attributes.

Recall that the hyperparameter 4 controls the level of sparsity on the inverse covari-
ance matrices and can be used to prevent overfitting issues. Although the inverse
covariance matrix consists of a DR x DR matrix in its general form, we restrict all the
entries to a single value to save the hyperparameter search cost. In practice it could
be picked via cross-validation.

4.2. Clustering result interpretation

In this section, we discuss an approach for interpreting clustering characteristics. Since
the structure of each cluster outputted from STICC is represented as a multilayer MRF
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Table 5. Betweenness centrality of attributes in different clusters of the synthetic dataset.

Attribute A Attribute B Attribute C Attribute D Attribute E
Cluster 1 0.00 0.00 0.50 0.83 0.00
Cluster 2 0.00 0.00 0.50 0.83 0.25
Cluster 3 0.83 0.00 0.08 0.83 0.58
Cluster 4 0.42 0.00 0.25 0.58 0.92
Cluster 5 0.17 1.00 0.00 0.42 0.67
Cluster 6 0.83 0.42 0.17 0.58 0.00
Cluster 7 0.00 0.17 0.92 0.33 0.83

The higher the betweenness centrality, the more ‘important’ the variable is in determining the cluster.

network, network analysis approaches can be used for evaluating the properties of
each cluster. Betweenness centrality that assesses the number of shortest paths pass-
ing through the node has been frequently used as a measure of centrality in networks
(Crucitti et al. 2006). It emphasizes the importance of each node. Taking the synthetic
dataset as an example, the betweenness centrality score of each node in the output
MRF network is computed and shown in Table 5. According to the table, the between-
ness centrality of each attribute in each of the seven clusters is different. It can be
inferred that attributes C and D play important roles in cluster 1, while attributes A, D
and E are relatively important for cluster 3. Though for the synthetic dataset, no phys-
ical meanings are attached to each variable, using network analysis to examine MRF
networks provides possible ways in characterizing properties of each cluster. In add-
ition, not only the betweenness centrality might be used for cluster interpretation, but
also other network measures, such as degree centrality and closeness centrality, might
be utilized for different purposes.

4.3. Implications for GeoAl and spatially explicit model

The proposed STICC serves as an example of spatially explicit artificial intelligence
techniques for geographic knowledge discovery (Goodchild 2001, Janowicz et al.
2020). It shows how spatial thinking can be integrated into artificial intelligence, espe-
cially for the development of spatially explicit machine learning algorithms. We made
efforts to conceptualize ‘space’ from the following two aspects. On the one hand, by
performing k-nearest neighbor analysis, a subregion is designed for each geographic
object to model spatial dependencies among attributes using graph-based MRF. On
the other hand, a spatial consistency strategy is utilized by pairing the cluster of each
geographic object to its nearest neighbor. Such a strategy, as illustrated by the experi-
ment results, is helpful in maintaining spatial contiguity. If we take steps along these
paths, more spatial and aspatial perspectives might be integrated into this algorithm.
For instance, in addition to distant and near, other spatial relationships such as direc-
tion and scale can be modeled into the algorithm (Mai et al. 2018, Zhu et al. 2019).
Spatial matrices such as Gaussian kernel, fixed bandwidth, and distance lags that
express different spatial proxy relationships can be embedded into the STICC method
as well (Yan et al. 2017). In addition, recent studies regarding spatial clustering
approaches mainly focus on two directions, either modifying existing algorithms to
achieve better performances in classic spatial clustering tasks (Liu et al. 2019, Aydin
et al. 2021), or developing domain-specific algorithms for a specific field such as
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cartography (Wolf 2021), human mobility (Liu et al. 2021), and geodemography
(Grekousis 2021), while limited attention was paid on the proposed RGPD problem.
We believe that this work is just a beginning for solving the RGPD problem. There are
abundant spatial concepts that can be incorporated into the proposed algorithm so as
to promote the state-of-the-art methods in GeoAl.

4.4. Limitations and future work

Although our proposed STICC method has shown promising results and outperformed
other clustering methods in both case studies for solving the RGPD problem, we
acknowledge the limitations of the proposed method, on which we discuss here. As
shown in Figure 6, there are still some outliers in the results as several geographic
objects are not labeled correctly. There are two potential reasons: one is that the
selected parameters may not be appropriate; the other is that the algorithm may con-
verge early before reaching the global optimum. However, since all clustering
approaches have pros and cons, our proposed STICC approach has potentials to solve
a series of spatial clustering problems.

In addition, there are two potential directions that are worth exploration in the
future work. First, when constructing subregions for each geographic object, we only
employ k-nearest neighbors in this research. In fact, more approaches used for defin-
ing spatial adjacency relationships might be adapted in designing subregions. For
example, a pre-defined distance radius can be used for the definition of subregions,
i.e. geographic objects within a specific distance threshold are considered as neighbor-
hoods of the center geographic object for constructing subregions. Under such a cir-
cumstance, spatial weights may be further assigned to nearby geographic objects
according to inverse distance to construct a weighted neighborhood. Second, given
that the repeated geographic patterns are common, we believe that the proposed
STICC might be appropriate for a variety of domain applications, including but not
limited to climate type classification, semantic trajectory clustering, urban land use
detection, remote sensing image segmentation, etc. More experiments using this algo-
rithm and its variations will be conducted in our future work.

5. Conclusion

In this paper, we develop a novel method to discover repeated clusters of multivariate
geographic objects considering spatial contiguity. The proposed STICC approach takes
nearby geographic objects into account to construct subregions rather than treating
each object in isolation. Markov random fields are used for representing dependencies
among attributes inside subregions. Then, a spatial consistency strategy is used for
forcing nearby geographic objects to be assigned into the same group. An adapted E-
M strategy is used for cluster assignment and parameter updates. Two case studies
including a synthetic dataset and a set of POl category identification tasks prove that
our proposed method has yielded good results in solving the RGPD problem in com-
parison with other attribute-based, density-based, or regionalization-based clustering
methods. It could discover repeated clusters accurately while maintain spatial
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contiguity at the same time, which is more in line with the natural distribution pattern
of geographical objects. Recall the Figure 1, the STICC method achieves the balance
between repeated patterns and spatial contiguity. This new spatial clustering approach
can support many other applications in geography, remote sensing, transportation,
urban planning, and social sciences.
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