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Abstract

Interpretation of resolved polarized images of black holes by the Event Horizon Telescope (EHT) requires
predictions of the polarized emission observable by an Earth-based instrument for a particular model of the black
hole accretion system. Such predictions are generated by general relativistic radiative transfer (GRRT) codes,
which integrate the equations of polarized radiative transfer in curved spacetime. A selection of ray-tracing GRRT
codes used within the EHT Collaboration is evaluated for accuracy and consistency in producing a selection of test
images, demonstrating that the various methods and implementations of radiative transfer calculations are highly
consistent. When imaging an analytic accretion model, we find that all codes produce images similar within a
pixel-wise normalized mean squared error (NMSE) of 0.012 in the worst case. When imaging a snapshot from a
cell-based magnetohydrodynamic simulation, we find all test images to be similar within NMSEs of 0.02, 0.04,
0.04, and 0.12 in Stokes I, Q, U, and V, respectively. We additionally find the values of several image metrics
relevant to published EHT results to be in agreement to much better precision than measurement uncertainties.

Unified Astronomy Thesaurus concepts: Supermassive black holes (1663); Radiative transfer simulations (1967);
Astronomy software (1855)

1. Introduction

In 2019, the Event Horizon Telescope (EHT) Collaboration
published images of the central black hole (BH) in the galaxy
M87 (hereafter M87*), which measured and interpreted the total
intensity of radio emission in two bands near 230 GHz (Event
Horizon Telescope Collaboration et al. 2019a, 2019b,
2019c, 2019d, 2019e, 2019f, hereafter EHTC I, EHTC II, EHTC
III, EHTC IV, EHTC V, EHTC VI ). In 2021, additional results
were released measuring the degree and distribution of linear
polarization across the image of M87*, measured via the Stokes
parameters Q and U (Event Horizon Telescope Collaboration
et al. 2021a, 2021b, hereafter EHTC VII, EHTC VIII). Linear
polarization results are also expected of the central Milky Way
BH Sgr A* accompanying total-intensity results published in 2022
(Event Horizon Telescope Collaboration et al. 2022a, 2022b,
2022c, 2022d, 2022e, 2022f).
In order to interpret polarized observations, the collaboration

generated models of the accreting plasma around M87*, usually
with general relativistic magnetohydrodynamic (GRMHD) simu-
lations. Simulated images were generated from the models via
general relativistic radiative transfer (GRRT) calculations in order
to predict the emission visible from Earth from the generated
plasma state (EHTC V; see also Wong et al. 2022). The total-
intensity images produced by various GRRT codes were validated
against analytically defined tests in Gold et al. (2020) and found to
be in good agreement. That paper also compared the output of
certain pairs of codes, but not all codes, when imaging GRMHD
simulation data.

The interpretation of the linear-polarimetric EHT image
performed in EHTC VIII also used synthetic images. Polarimetric

images are more complicated than total-intensity images, as they
predict the linear and circular polarization parameters (Stokes Q,
U, V ) in addition to the total intensity (Stokes I). Predicting
polarized emission involves solving the coupled polarized
radiative transfer equations, which can introduce significant
additional computational problems, such as the treatment of rapid
Faraday rotation and the need to parallel transport the linear
polarization direction through curved spacetime. The additional
complexity merits a separate comparison of polarized radiative
transfer schemes present in several of the codes compared in Gold
et al. (2020). That comparison is presented in this paper.
This paper provides brief descriptions of the codes compared,

specifications of the tests performed, and measurements of code
error (where available) or similarity as a group, compared against
parameter changes and estimated detector accuracy.
The paper is structured as follows. In Section 2 we briefly

describe all codes participating in the comparison study. In
Section 3 we define three test problems used to compare the
codes. In Section 4 we define a metric to evaluate light curves
and image similarities and present the results of the
comparisons. The discussion of the results and limitations of
the examined ray-tracing radiative transfer schemes is given in
Section 5. We conclude our study in Section 6.

2. Participating Codes

2.1. BHOSS

The BHOSS code (Younsi et al. 2012, 2020) numerically
integrates, for an arbitrary input spacetime metric tensor, the
geodesic equations of motion coupled with the covariant
polarized radiative transfer equations. The solution of the
polarized radiative transfer equations is achieved via parallel
propagation of a pair of mutually orthogonal basis 4-vectors
that define the observer’s frame. A fourth-order Runge–Kutta–
Fehlberg method with fifth-order error estimate and adaptive
step size control, hereafter RKF4(5), is typically used. In
regions of higher Faraday depth, an RKF8(9) method is used,

151 NASA Hubble Fellowship Program, Einstein Fellow.
152 NSF Astronomy and Astrophysics Postdoctoral Fellow.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.
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and when the transfer equations are particularly stiff, a
variable-order implicit RKF integrator is employed.

2.2. ipole

The ipole code153 (Noble et al. 2007; Mościbrodzka &
Gammie 2018) is a publicly available ray-tracing scheme for
covariant polarized GRRT. ipole splits the radiative transfer
problem into two steps. In the fluid frame it evolves the Stokes
parameters taking into account synchrotron emission, absorp-
tion, and Faraday effects and using an analytic solution to the
polarized transfer equations with constant coefficients. Currently
two analytic solvers are implemented in the code (Landi
Degl’Innocenti & Landi Degl’Innocenti 1985, and the one
presented in Appendix A of Mościbrodzka & Gammie 2018).
Analytic solvers make ipole solutions numerically stable even
for plasma with large optical or Faraday depths. In the
coordinate frame, the parallel transport of the Stokes parameters
is accomplished by transport of coherency matrix rather than
Stokes parameters themselves. Hence, ipole radiative transfer
is coordinate and metric independent. ipole has been tested
against another polarized ray-tracing code grtrans (see
method paper Mościbrodzka & Gammie 2018 and the next
subsection) and against a polarized Monte Carlo radiative
transfer scheme (see Mościbrodzka 2020 and Appendix A of this
work). ipole was used in EHTC VIII for calculating polarized
images of models with accelerated electrons.

2.3. ipole-IL

ipole-IL,154 usually also called ipole but suffixed in
this comparison for clarity, is a fork of the original ipole
code described above, with features designed for treating
libraries of GRMHD snapshot files, particularly from
iharm3D as a part of the PATOKA pipeline (Wong et al.
2022). It maintains the same transport scheme implemented in
ipole but adds robustness features such as reorthogonaliza-
tion of tetrad basis vectors and additional limiting cases for the
analytic solutions and fits. It also adds compatibility with a
number of different GRMHD codes and supports calculating
emission from different electron energy distribution functions.

2.4. grtrans

The grtrans code155 (Dexter & Agol 2009; Dexter 2016)
solves the polarized radiative transfer equations along null
geodesics in a Kerr spacetime. The radiative transfer equations
are integrated either numerically (Hindmarsh 2019) or with
quadrature methods (Landi Degl’Innocenti & Landi Degl’In-
nocenti 1985; Rees et al. 1989). The quadrature methods are
the most accurate and efficient for calculations of polarized
radiative transfer in Faraday thick problems and are used for
the test problems discussed here.

2.5. Odyssey

The Odyssey code (Pu et al. 2016) is a public GPU-based
code156 that solves the unpolarized radiative transfer equation
along null geodesics from the observer to the source (observer-
to-source) in Kerr spacetime. In Pu & Broderick (2018), to

implement the polarization computations and fit the need for
solving the Stokes parameters along the null geodesic from the
source to the observer (source-to-observer), a two-stage scheme
is proposed: (i) during the observer-to-source stage, unpolarized
radiative transfer is computed backward in time; and (ii) inverse
the time direction and trace the same geodesic during the source-
to-observer stage, and simultaneously solve the four Stokes
parameters. As a result, there are four additional ordinary
differential equations (ODEs; related to the Stokes parameters)
to be solved in the second stage compared to the first stage. By
controlling the time direction directly in the code, there is no
need to save the photon path during the observer-to-source stage
for the use of the source-to-observer stage. However, the caveat
is that solving the additional four Stokes parameters during the
source-to-observer stage can be computationally costly, and the
Runge–Kutta scheme may fail when complicated Faraday
coefficients are introduced in a given problem.
In this work, to improve its speed and the stability, we

improve the polarization scheme of Odyssey with the
following: (i) a two-stage scheme is still adopted, without
solving the four ODEs for Stokes parameters during the second
(source-to-observer) stage; and (ii) instead, during the second
stage, the Stokes parameters are solved along the geodesics
with an implicit method (Pihajoki et al. 2018; Bronzwaer et al.
2020). In this new scheme, the accuracy of the polarization
computation is automatically controlled by the accuracy of the
geodesic computation. The modifications significantly improve
the computational speed. For example, it takes about a second
(including the time for reading GRMHD simulation data) for
Odyssey to finish the computation for the GRMHD snapshot
test problem (Section 3.3).

2.6. RAPTOR

The RAPTOR code (Bronzwaer et al. 2018, 2020)157 is a
public code that numerically integrates the equations of motion of
light rays in arbitrary spacetimes and then performs polarized
radiative transfer calculations along the rays. The code uses an
adaptive Runge–Kutta–Fehlberg scheme to integrate the geodesic
equation where the Christoffel symbols either can be provided
analytically or are numerically computed on the fly by using a
fourth-order centered finite-difference method. To integrate the
polarized radiative transfer equation, RAPTOR uses a hybrid ImEx
integration scheme that switches to an implicit integrator in case
of stiffness, in order to solve the equation with optimal speed and
accuracy for all possible values of the local optical/Faraday
thickness of the plasma. The code uses an adaptive camera grid to
optimize run time by adding resolution where needed (Davelaar &
Haiman 2022) and can produce virtual reality visualizations
(Davelaar et al. 2018). The code is fully interfaced with the
nonuniform grid (adaptive mesh refinement) data format of the
BHAC code (Davelaar et al. 2019). Radiative transfer coefficients
are provided for the thermal electron distribution, but also the κ
and power-law distributions.

3. Test Problems

Three test problems were used to evaluate the codes. The
problems were chosen to reflect tests already present in the
literature, highlighting specifically the aspects of code
performance related to polarized transport. A previous

153 Current version is available at https://github.com/moscibrodzka/ipole.
154 https://github.com/AFD-Illinois/ipole
155 https://github.com/jadexter/grtrans
156 https://github.com/hungyipu/Odyssey 157 https://github.com/jordydavelaar/raptor
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comparison (Gold et al. 2020) evaluated many of the same
codes for similarity and accuracy in producing total-intensity
images. An additional goal was to verify data product similarity
when imaging the output of GRMHD simulations, a test
evaluated only for certain pairs of codes considered in Gold
et al. (2020). The tests are described here from least to most
complex, with each testing a larger subset of code features.

3.1. Comparison to Analytic Result

The first test problem is a straightforward integration of the
nonrelativistic polarized transfer equation using constant
coefficients, chosen for the availability of an analytic solution
from Landi Degl’Innocenti & Landi Degl’Innocenti (1985),
allowing direct evaluation of code accuracy, in addition to code
similarity. The test here is taken directly from Dexter (2016),
with coefficients as listed in Mościbrodzka & Gammie (2018).

In the Stokes basis I, Q, U, V, the nonrelativistic polarized
radiative transfer equation is

⎛
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In the test, this equation is integrated twice with different
subsets of nonzero coefficients. This minimizes the complexity
of the analytic comparison functions, isolating any bugs in
treating emission and absorption from those in Faraday rotation
and conversion. The coefficients for each integration are given
in Table 1.

3.2. Thin-disk Model

The second test problem consists of imaging emission from a
thin opaque disk aligned to the midplane of a near-maximally
spinning BH, as described in Novikov & Thorne (1973). This
involves solving the geodesic equation in two contexts: first in
tracing lines of sight from the camera through the Kerr metric,
and second in parallel-transporting the direction of linearly
polarized emission from the disk back to the camera. This test
closely mirrors a figure from Schnittman & Krolik (2009),
which is reproduced as a test in Dexter (2016).
The thin-disk test does not include any diffuse emission, that

is, all transport coefficients jS, αS, ρS= 0 uniformly for all
Stokes parameters S. Instead, the initial Stokes parameters are
set as a boundary condition at the first midplane crossing of
each geodesic when traced backward from the camera. As in
Schnittman & Krolik (2009), the total flux F is taken from Page
& Thorne (1974), and the intensity at the desired frequency Iν

is obtained by calculating an effective temperature and
assuming a blackbody distribution diluted by a hardening
factor n= 1.8:

⎛⎝ ⎞⎠ ( )
s

ºT
F

, 2eff

1 4

( · ) ( )=n nI
n

B n T
1

, 3
4 eff

where F is the total emitted power per area of the thin disk and
Bν(T) is the blackbody function of the temperature T and the
emitted frequency ν in the fluid frame.
The emitted intensity and horizontal polarization fraction in

the outgoing direction are determined by assuming scattering
from a semi-infinite atmosphere, as in Chandrasekhar (1960),
Table 24, with the direction of linear polarization pointing
along the plane of the disk. Emission is enabled only between
rISCO and Rout= 100rg, where rg is the system gravitational
radius GMBH/c

2, with G the gravitational constant and c the
speed of light. The fluid orbital angular velocity

f

u
u
t is assumed

to be Keplerian:

( )
*

=
+

fu
u r a

1
, 4

t 3 2

where a* is the dimensionless form of the BH angular
momentum J, a*≡ Jc/GM2 with −1� a*� 1. As the test will
need to be implemented in many different codes, we simplify
the original problem from Schnittman & Krolik (2009) by
observing at only a single frequency rather than summing over
a range. The full set of parameters used for this image is

( )* =a 0.99 5a

· ( )= =M M
c
G

10 1.477 10 cm 5bBH
6

2

( )=D 0.05 pc 5csource

· ( )  = » - -M M M0.1 2.218 10 yr 5dEdd
9 1

( )n =h 1keV, 5e

where these parameters define observation at a single frequency
ν of a BH of mass MBH at distance Dsource, characterized by a
Kerr spacetime with BH spin parameter a*, and accreting at
rate M . Following Dexter and Schnittman,  ºM

c
L

Edd 2
Edd.

Example output from this test run with ipole-IL is shown
in Figure 1. As no circularly polarized emission or Faraday
conversion occurs in the problem, the Stokes V flux remains
exactly zero.

3.2.1. Camera

In this and the following test, the camera tetrad is
constructed such that a geodesic at the center of the camera’s
field of view (FOV) would have zero angular momentum kf.
The polar angle θcam is defined relative to the BH angular

Table 1
Constant Coefficients for the Analytic Comparison Test Integrations

jI jQ jU jV αI αQ αU αV ρQ ρU ρV

Emission/Absorption 2.0 1.0 0.0 0.0 1.0 1.2 0.0 0.0 0.0 0.0 0.0
Rotation 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 10.0 0.0 −4.0

Note. These mirror values in Mościbrodzka & Gammie (2018). See Section 3.1.
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momentum vector. This is identical to the camera definition
from Gold et al. (2020).
The camera is placed at radius 104 rg in both tests, to reduce

the discrepancy between pinhole and planar cameras. Note that
Rcam is in this case and in practice much smaller than
Dsource—so long as Rcam is large enough to eliminate camera
effects, the image intensity is invariant with distance.

The FOV of each test is given in two forms: DX, the in-plane
distance from one edge of the imaged material to the other in
gravitational radii rg, and FOV, the angular size from Earth in
microarcseconds (μs).

Pixels on each image correspond to evenly spaced geodesics,
starting from each pixel center. That is, an image with an FOV
of 80 μs to a side and a resolution NX of 80 pixels would be
calculated using geodesics originating at −39.5 to 39.5 μs
away from the FOV center, spaced 1 μs apart in each cardinal
direction. All images in these tests are square, with equal FOV
from west to east and north to south.

For the thin-disk test, the camera parameters are

( )q = 75 6acam

( )=NX 80 pixels 6b
( )= rDX 40 6cg

( )m=FOV 78.99 as. 6d

3.3. GRMHD Snapshot

The last test consists of imaging the relativistic thermal
synchrotron emission at 230 GHz from one snapshot from a
GRMHD simulation. This test exercises all aspects of the code,
as well as code-specific choices, such as interpolation of fluid
state recorded at discrete locations and calculation of the
transport coefficients via fitting functions. The standard
snapshot file used for this test is taken from a SANE simulation
with spin a* = 0.9375, performed using iharm3D (Prather
et al. 2021) with a resolution of 288× 128× 128 cells in r, θ,
and f respectively. Except for the coordinate system, this
simulation exactly reflects the simulations performed with

iharm3D as a part of the library used in EHTC V and EHTC
VIII, as described in Wong et al. (2022). Not all GRRT codes
can read all GRMHD output, as coordinate systems and fluid
state descriptions can differ from code to code—thus, not every
polarized radiative transfer code used in the EHTC can be
directly compared with this test. The iharm3D format is
chosen since it is readable by a majority of codes used in the
EHTC, and in particular those codes relevant to studies
in EHTC VIII.
The snapshot is taken at 4500 rg/c after simulation start, well

into the run’s quiescent period. The file is available upon
request for testing future codes. Since it involves creating an
image from just one snapshot of the simulation, the test makes
the assumption of “fast light,” i.e., that the fluid is static as light
propagates from emission to observer.
The parameters of this test are chosen to reflect values for

M87*, specifically those used in creating the libraries of
simulated images used in EHTC V, EHTC VIand EHTC VIII,
hereafter the “EHT image libraries.” These are

( )= ´M M6.2 10 7aBH
9

( )=D 16.9 Mpc 7b

( )n = 230 GHz. 7c

The camera is defined as in Section 3.2.1, with parameters
chosen to reflect the angle of the M87* jet and the FOV
observed by the EHT:

( )q = 163 8acam

( )f = 0 8bcam

( )m=FOV 160 as 8c

( )= rDX 44.17 8dg

( )=NX 160 pixels. 8e

In addition to the system parameters above, imaging a
GRMHD simulation necessarily involves setting another scale
factor that determines the density of accreting material and the
strength of magnetic fields. It is expressed here as a mass unit,
, which gives units to the unscaled density values from a
simulation, ρcode:

( )r r=

r

. 9
g

CGS 3 code

 is not known a priori, but it is highly correlated with the
total image brightness. Thus, it is scaled so as to match the total
image flux density to the observed compact flux density,
usually by employing an iterative solver.
In the EHT image libraries, was fit such that images taken

over the course of a full simulation would produce an average
of 0.5 Jy of compact flux density (see Wong et al. 2022 for
details). For this test, the sample image is fit alone using
ipole-IL such that it produces 0.50 Jy when imaged with
totally unpolarized transport, or about 0.47 Jy of Stokes I flux
density when imaged using polarized transport. The value of
 and the corresponding accretion rate M used for the test are
listed below:

· ( )= 1.672 10 g 10a26

· · ( ) = =- - -M M M8.644 10 yr 6.285 10 , 10b5 1 7
Edd

where MEdd is defined as earlier in this work.

Figure 1. Example output of the thin-disk problem: the top left panel shows
total flux with overplotted polarization direction vectors scaled by the linear
polarization fraction, and the other panels show fluxes of Stokes Q, U, and V at
each pixel (the Stokes Q, U, and V images). In this test Stokes V remains
identically zero as expected.
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Accretion flows around M87* are strongly suspected to be two-
temperature, with little thermal coupling between the ions and
electrons (Mahadevan & Quataert 1997; Ryan et al. 2017;
Sadowski et al. 2017). Since GRMHD simulations evolve only a
single fluid with a single temperature, when simulating images the
internal energy must be split between the ions and electrons based
on a model. While this process is not well constrained, it is
generally documented which electron distribution is being
assumed, and the electron energy distribution model is standar-
dized between codes when similar performance is expected.

Thus, for simplicity, in this test we set the electron
temperature to a fixed ratio of 1/3 of the ion temperature,
derived from the single-fluid GRMHD parameters by holding
the total internal energy constant (see EHTC V):

( )
r

=T
m u

k

2

15
, 11e

p

where u and ρ are the local fluid internal energy and rest-mass
density per unit volume, respectively, and mp and k are the
proton mass and Boltzmann constant, respectively. Note that
this is equivalent to the so-called “Rhigh” model of EHTC V
with Rlow= Rhigh= 3. In splitting the total internal energy
rather than setting the fluid and ion temperatures equal, it
differs slightly from the original statement of the Rhigh model in
Mościbrodzka et al. (2016).

The emission, absorption, and rotation coefficients are
calculated based on the electron temperature (or more broadly,
the electron energy distribution) using fitting functions
approximating the full synchrotron emission calculations,
which are expensive to compute. Codes in this comparison
used a few different sets of fitting functions; further discussion
is found in Section 5.3 and Appendix B.

Finally, as in EHTC V and commonly in the literature,
emission is tracked only from regions of the simulation with
σ≡ B2/ρ< 1. Regions with higher sigma (largely the polar
“jet” regions) can overproduce emission if included, due to hot

material in the jet inserted by numerical floors to preserve
stability of GRMHD algorithms.
Example output for the GRMHD snapshot test from

ipole-IL is provided in Figure 2.

4. Results

4.1. Analytic Comparison Results

Results for the analytic integration tests from RAPTOR,
Odyssey, ipole, and ipole-IL are shown in Figure 3.
Raw output is plotted in the left panels, and differences from
the analytic result are plotted in the right panels. This test
verifies that the default accuracy parameters of each code allow
them to match an analytic solution to within acceptable errors.
Note that this is not a good measure of relative code accuracy
or convergence—for convergence tests, see the accompanying
code papers cited in Section 2.
Note that the results from two integrators are shown for

RAPTOR as the “RK4” and “IE” variants. In normal
integration, RAPTOR uses the “RK4” integrator, reserving the
“IE” integrator for the few zones where Faraday rotation is too
strong to take steps of an appropriate size with an explicit
scheme (Bronzwaer et al. 2020).
In addition, the ipole scheme (also used in ipole-IL) is

semianalytic: it uses the analytic solution for constant
coefficients whenever it evolves the nonrelativistic polarized
radiative transfer equations. Thus, ipole and ipole-IL will
perform this test less accurately when taking more steps: a
single step of any size would be exactly accurate, but multiple
steps accrue round-off error.

4.2. Metrics

In the following two imaging tests, no exact result is available
by which to evaluate code accuracy directly; rather, we evaluate
consistency between all codes, both in overall image structure and
in several metrics used to compare models with EHT results. In
particular, we will use the definitions from EHTC VIII, computed
over simulated images and used to compare models to the
observed EHT result. These summary statistics include the total
flux density F, image-integrated or “zero-baseline” linear and
circular polarization fractions |m|net and vnet, and the average
linear polarization fraction over the resolved image 〈|m|〉. For an
image represented as a vector of emitted flux per pixel in each
Stokes parameter Ij, Qj, Uj, Vj over each pixel j, these values are
defined as
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Additionally, EHTC VIII used a complex coefficient
reflecting the degree and angle of azimuthally symmetric linear
polarization, β2 (see Palumbo et al. 2020). It is calculated by
first centering the image, e.g., with rex (EHTC IV), and then

Figure 2. Example output from ipole-IL running the GRMHD snapshot
test. The image was produced using the parameters listed in Section 3.3, with
the accretion rate parameter fit so as to produce about 0.5 Jy of total flux
density at 230 GHz to match EHT observations.

8

The Astrophysical Journal, 950:35 (23pp), 2023 June 10 Prather et al.



taking the inner product of the complex linear polarization
P=Q+ iU with a rotationally symmetric function:
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where ρ/f are polar coordinates in the image plane, measured
from/about the image center. This metric is expected to be useful
only for images with a relatively low observer angle, as they will
be more symmetric; thus, it is computed and compared only for
the GRMHD snapshot test, which uses the low observer angle
i= 17° expected for M87* and used for libraries of simulated
images of that object.

The quantities 〈|m|〉 and β2 are sensitive to image resolution. In
order to mirror EHT measurements and reflect how simulated
images were used in EHTC VIII, a circular Gaussian blur with an
FWHM of 20μas was applied to all images before computing
either resolution-dependent quantity.

In addition to the quantities used for direct comparison
in EHTC VIII, we measure a point-source linear polarization
direction or electric vector position angle (EVPA) east of
due north on the sky, and thus in our Stokes convention
defined as

⎛
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As this metric is potentially volatile for images with low net
linear polarization, and a corresponding measurement has not
been made to which we might compare, we follow EHTC VIII
in omitting this as a comparison metric—rather, we use it only
in image summaries.
When evaluating image similarity, we use the normalized

mean squared error (NMSE):
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å
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j j

j
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where Aj and Bj are the intensities of a particular Stokes
parameter in two images at pixel j. Regardless of exact
nomenclature, all NMSE values listed in this work and in Gold
et al. (2020) use this normalization and are thus comparable.
Note that this definition of the NMSE is not symmetric under

the ordering of A and B, and in particular as images get dimmer,
NMSE(I, 0)= 1, whereas NMSE(0, I)=∞ . As it is normalized
against the sum of squared pixel intensities, the NMSE becomes
more volatile when evaluating dimmer images.
The NMSE was one of two metrics used to gauge similarity

in Gold et al. (2020). We omit the other, the structural
dissimilarity (DSSIM), since for the case of very similar
images, values of the DSSIM are highly correlated with the
NMSE (see Appendix C).

4.3. Thin-disk Test Results

Each code’s output for the thin-disk test is plotted in
Figure 4. The images are visually indistinguishable except in a

Figure 3. Comparison of integrator results for the analytic tests, plotting the relevant Stokes parameters against the dimensionless affine parameter λ, equivalent to
length in this nonrelativistic test. Output from all codes overlaps to within line widths in the left panes.
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few particular pixels, and this similarity is borne out in the
comparison metrics. Stokes V is omitted from plots and
comparisons for this test, as all codes produce exactly zero
Stokes V across the entire image.

Recall that this test involves accurate evaluation of the
geodesic equation and accurate parallel transport of the linear
polarization vector from emission to camera. As the codes’
similarity in tracing geodesics was evaluated extensively in
Gold et al. (2020), we focus here on demonstrating the latter
through comparison of the resulting Stokes Q, U images and
the relevant image-integrated metrics. Table 2 lists total fluxes

and net polarization parameters for each image in the test.
Figure 5 presents comparisons of each metric between each
pair of images.

4.4. GRMHD Snapshot Test Results

Results for the GRMHD snapshot test for ipole, ipole-
IL, grtrans, Odyssey, and RAPTOR are listed in Table 3
and presented in Figures 6 and 7. Results are formatted
similarly to the results of the thin-disk test, with the addition of
a Stokes V component and circular polarization fraction in
images and tables and the addition of the rotationally
symmetric linear polarization coefficient β2 in tables of
integrated values.
Except for the total flux density, the color bars in Figure 7

reflect the 1σ values used to make cuts when evaluating models
in EHTC VIII.

5. Discussion

5.1. Comparison to Observational Constraints

The values for each comparison metric used as cuts in EHTC
VIII are listed in Table 4. The table values are based on 1σ
ranges for measurements of the same quantities in EHT data,
described in EHTC VII. These ranges provide a comparison to
evaluate code interchangeability—if the differences between
codes are substantially less than the range of measurement
uncertainties, the analysis is agnostic to the choice of code
employed. The 1σ ranges listed are also used as the color bar
ranges in the colored table listings in Figure 7.
This comparison provides evidence that model evaluations

as in EHTC VIII remain similar regardless of which of the
included codes is employed. As recorded in Table 4, maximum
code variation is universally less than 30% of the detector 1σ
range: in |m|net (0.21% vs. 1.5% ), vnet (0.08% vs. 0.4%), 〈|m|〉
(0.70% vs. 2.5%), ∣ ∣b2 (0.0026 vs. 0.015), and ∠β2 (3.4° vs.
17°). In any analysis based on cuts, code differences can shift a
few particular images into or out of the final consideration.
However, at these uncertainties no image from outside the 1σ
detector uncertainty would be consistent with the central
observed value.
Broadening the comparison to different images and models

shows promising similarities. Appendix D presents distribu-
tions of the image differences between ipole-IL and
grtrans when run over thousands of snapshots of a very
different model from the example: they show a wide variance
but a smaller difference on average than in the example image,
suggesting that image differences, at least between these codes,

Figure 4. Full set of images produced for the thin-disk problem, in which codes
produced an image from an analytic prescription for an opaque thin disk. The
Stokes parameters I, Q, U are plotted separately, with Stokes V omitted, as it is
uniformly zero.

Table 2
Image-integrated Values for the Thin-disk Test

Code Flux (Jy) |m|net (%) 〈|m|〉 (%) EVPA (deg)

ipole 6.841e+06 2.3341 2.378 88.123
ipole-IL 6.8699e+06 2.3224 2.3707 87.974
grtrans 6.8227e+06 2.3246 2.3709 88.01
RAPTOR 6.8689e+06 2.3265 2.3726 88.025
Odyssey 6.7338e+06 2.3527 2.3971 88.146
BHOSS 6.6949e+06 2.3439 2.3845 88.131

Note. vnet is omitted since it is uniformly zero, and β2 magnitude and angle are
omitted since the image is not symmetric and thus the magnitude is very small.
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are mostly stochastic, further suppressing any potential effect
on a cuts-based analysis as in EHTC VIII.

5.2. Potential Measurement of System Parameters

To translate the NMSE into a measure of code accuracy in
testing model parameters, we define an “error budget” for each
Stokes parameter, consisting of the largest NMSE between
code results: 0.02 in I, 0.04 in Q and U, and 0.13 in V.
Assuming perfect detector accuracy and modeling, this error
characterizes which images are too similar to be effectively
distinguished above code-to-code variations.

We then translate this error budget into constraints on the
input parameters MBH, , Rhigh, and the viewing angle by
varying these parameters around the nominal values and
calculating the resulting NMSE versus the nominal image,
using ipole-IL. As illustrated in Figure 8, the required
parameter changes are very modest; that is, the possible

constraints on system parameters are very precise. In imaging
the example model, codes agree well enough to constrain the
mass of M87* to within 0.4% (2.5× 107 Me),  to 9%
(1.5× 1025), the observer angle to 0.8°, and the Rhigh parameter
to within 0.18. These values are dependent on the base image—
in particular, constraints on Rhigh will also depend on Rlow,
which was set differently in this case than for images
in EHTC VIII.

5.3. Caveats and Limitations

There are a few caveats and limitations of the ray-tracing
calculations presented in this work worth mentioning and
improving in the future. Most glaringly, all ray-tracing codes
use phenomenological postprocessing models of the electron
energy distribution. In particular, this comparison adopts a
fixed ratio of ion to electron temperature, which is not well
motivated by EHT results. More accurate temperature

Figure 5. Left column: tables comparing the absolute differences between the images produced by each pair of codes running the thin-disk test. The values themselves
are provided in Table 2. Since the differences are symmetric, the table takes only the upper triangular portion of the comparison. Right column: tables comparing the
NMSE between each pair of images, as defined in Section 4.2. To aid in comprehension, table cells are colored by value. Circular polarization is omitted; see test
description in Section 3.2.

Table 3
Image-integrated Values for the GRMHD Snapshot Test

Code Flux (Jy) |m|net (%) vnet (%) 〈|m|〉 (%) EVPA (deg) ∣ ∣b2 ∠β2 (deg)

ipole-IL 0.47976 1.5232 0.64637 31.264 −78.241 0.28165 −20.307
ipole 0.47335 1.5904 0.62402 31.27 −77.243 0.28171 −20.622
RAPTOR 0.49396 1.6057 0.67381 31.893 −77.797 0.28346 −21.31
grtrans 0.45346 1.5135 0.69909 31.197 −77.647 0.28063 −17.903
Odyssey 0.46671 1.3928 0.70068 31.54 −71.432 0.28325 −20.713

Note. Definitions for all values are given in Section 4.2. Note that the EVPA is not used as a comparison metric in Figure 7.
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prescriptions including cold electrons in the accretion disk
dramatically increase Faraday rotation when viewed from the
equator, scrambling the emission angle over regions of the
image. Scrambled emission does not affect the total-intensity
image, nor the measurable quantities in this comparison (except
∠β2, which only makes sense to measure for face-on images

with low Faraday scrambling). Detailed study of code behavior
in imaging Faraday-scrambled regions is left for future work.
All ray-tracing codes use synchrotron emissivities/absorp-

tivities/rotativities in analytic forms that are fit formulae to
synchrotron emissions integrated over (most often thermal)
electron distribution function. The fit functions may differ from

Figure 6. Comparison of images produced of the GRMHD test problem, in which codes produced an image given a simulated fluid snapshot, mirroring the analysis
pipeline used in, e.g., EHTC V and EHTC VIII. The Stokes parameters I, Q, U, V are plotted separately, with separate color bars.
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code to code and from the true emissivity and therefore
introduce a small error to the integration. We discuss this issue
in more detail in Appendix B. Other caveats concern the
common assumption that the electrons are distributed iso-
tropically, which may not be a good approximation for
collisionless plasma surrounding Sgr A* and M87*.
Calculations presented in this work assume the infinite speed

of light (so-called fast-light approximation), while in reality the
light propagation timescale is comparable to the plasma
dynamical timescale near the even horizon of the BH. Any
future comparison of ray-tracing codes should include finite
light propagation time effects. In such future comparison
another source of error could be the time interpolations
between GRMHD model time slices.
Finally, the linear polarization and the EVPA are sensitive to

the external Faraday screen made of mildly or nonrelativistic
electrons (which in practice could be located thousands of rg
away from the BH). Any inconsistencies in choosing the outer

Figure 7. Tables comparing each pair of images in the GRMHD snapshot test. Left column, bottom row: tables comparing all six image metrics used in EHTC VIII.
Note that except for total flux density, all comparisons are absolute: that is, images with vnet of 0.4% and 0.8% would be listed with a difference of 0.4% points. Right
column: tables listing the NMSE between each pair of images. See Section 4.2 for the definitions of all comparison metrics and Figure 5 for a description of table
layout.

Table 4
Detector Uncertainty Compared Against Code Uncertainty in Observed

Parameters

Parameter 1σ Code Uncertainty Uncertainty/σ

|m|net 1.35 % 0.21 % 0.16
vnet 0.4 % 0.08 % 0.20
〈|m|〉 2.5 % 0.70 % 0.28
∣ ∣b2 0.015 0.0026 0.17
∠β2 17° 3.4° 0.20

Note. The “1σ” column lists the 1σ detector uncertainty of each parameter, as
estimated in EHTC VII and used as an allowable range when womparing
models in EHTC VIII. The measurement of 〈|m|〉 was an upper bound; this
upper bound was doubled to select the cut value. The “Code Uncertainty”
column lists the greatest observed difference between codes when computing
each parameter, and the final column lists this value as a proportion of the 1σ
value.
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boundary of the ray-tracing integration may introduce dis-
crepancies in the linear polarization maps. The latter is not a
specific caveat of the ray-tracing itself, but it is a limitation
when comparing models to observations.

6. Conclusions

In each of the tests conducted for this comparison, the
several GRRT codes used within the EHT Collaboration have
produced sufficiently similar results that they are functionally
interchangeable for the collaboration’s uses. This is true both
when measured in terms of image similarity (NMSE) and when
measured directly in terms of the image metrics used to
compare simulated polarized images to the EHT result
in EHTC VIII.

Using their default accuracy parameters, codes match the
analytic result for the case of constant transport coefficients to
better than 1 part in 10−5. They agree to within NMSE of 0.015
when imaging an analytically defined problem requiring
parallel transport of the polarization vector.

In the more complex task of interpolating, translating, and
imaging GRMHD output, codes agree to within an NMSE of
0.13 at worst, when measuring specifically the circular
polarization map (NMSE of 0.045 in linear polarization, 0.02
in total intensity). Based on image similarity, the choice of
imaging code will matter in model comparisons only when

trying to determine the BH mass to within 0.4%, accretion rate
within 9%, or observer angle to within 0.8°. These values
significantly outclass both the detection and modeling
uncertainties available in the near future.
When measured with the image metrics used for model

comparison in EHTC VIII, all comparison images agree to
much better precision than the detector uncertainty. Further,
much of the difference that does appear is shown to be
stochastic in nature. Thus, the choice of code is verified directly
to have little effect on the analysis performed in that paper.
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Appendix A
Comparison of Polarized Spectra from Imaging and Monte

Carlo Radiative Transfer Methods

In all imaging ray-tracing codes radiative transfer equations
are solved along null geodesics that terminate at a “camera” at
some large distance from the supermassive BHs and where a
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polarization map at a chosen observing frequency is con-
structed. By integrating Stokes parameters over entire images
made for different frequencies, one can also construct a
polarized synchrotron spectral energy distribution of any
model. However, instead of comparing model spectra from
the discussed imaging codes, here we carry out an alternative
comparison. Namely, we compare spectra produced by the
ipole code to polarized spectra generated via Monte Carlo
scheme radpol. In the Monte Carlo code the polarized
radiative transfer integration scheme is conceptually distinct
from all discussed imaging codes (for detailed description see
Mościbrodzka 2020). Showing a convergence of two different
approaches is an independent validation of emission produced
by imaging codes. Hence, we compare spectra produced by
ipole and radpol codes using the plasma model setup
described in Section 3.3 (the test withlow). In Figure 9, we
show radio−millimeter spectra of Stokes I luminosity,
fractional linear polarization, and circular polarizations. The
relative difference between luminosities is less than 10%,
except for high-frequency emission. Both codes show con-
sistent amplitude of fractional linear and circular polarizations
and agree on handedness of circular polarization.

Appendix B
Effect of Polarized Emissivity and Rotativity Fits

The emission, absorption, and rotation coefficients of a fluid
are well determined for a particular distribution of electron
energies. However, the integrations involved are numerically
expensive; since the coefficients must be calculated at every
step when integrating the radiative transfer equations, fitting
functions have been developed to approximate the coefficients
quickly. A few sets of such fitting functions exist applicable to
our regime: one outlined in Dexter (2016), the other in Pandya
et al. (2016) and Marszewski et al. (2021).
The differences between these functions at various points

within a representative set of input parameters are given in their
respective papers, but we wish to provide some intuition
concerning the differences these functions make in practice,
and consequently whether fitting accuracy might be a driving
factor in code differences.
All of the images in this comparison were created using the

coefficient fits from Dexter (2016). Substituting the coefficient
fits from Pandya et al. (2016) produces results more dissimilar
than the disagreement between codes on three metrics: the net

Figure 9. Comparison of luminosity, fractional linear, and circular polarizations across synchrotron spectrum produced by ipole and radpol codes using SANE
simulation with the same parameters. Both radiative transfer schemes show consistent amplitude of fractional linear and circular polarizations and agree on handedness
of circular polarization.
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circular polarization at 0.13 points rather than 0.08 points, and
average linear polarization fraction at 1.8 points rather than 0.7
points, and the ∣ ∣b2 coefficient at 0.016 rather than 0.0026. This
is due to significant differences between the fits in computing
the emission coefficient for circularly polarized light, jV.

Unlike most emission coefficients, Faraday rotation coeffi-
cient ρV does not go to zero with low temperature—therefore,
the low-temperature behavior of fitting functions is important.
In particular, the expression from Dexter (2016) for ρV should
not be used at low temperature Θe< 1, since it can produce a
catastrophic cancellation not matching the desired limiting
behavior of one of its quotients. Due to this instability, most
codes either switch to the Shcherbakov fit at low temperature
(e.g., grtrans) or use the Shcherbakov fit exclusively (e.g.,
ipole-IL). As illustrated in Table 5, these approaches
produce nearly identical results, different by an NMSE less
than 10−5 in the worst case.

In addition, both the expressions from Shcherbakov (2008)
and Dexter (2016) involve Bessel functions, which are
tempting to approximate by assuming that emission is
exclusive to the regime Θe> 1 in order to avoid unnecessary

computation. However, this approximation produces clearly
incorrect limiting behavior for ρV at low temperature. Thus, the
Faraday rotation is misapplied, producing too little rotation in
the EVPA, or in some cases, rotation in the wrong direction. In
the sample image this is a minor effect due to an overall small
Faraday rotation, but it can severely affect SANE disks seen
from larger observer angles.

Appendix C
Comparison between Image Difference Metrics

In addition to the NMSE, several other metrics could be used
to gauge image dissimilarity between codes. Three additional
metrics were evaluated in the context of this comparison: the
normalized mean linear error (NMLE), structural dissimilarity
(DSSIM), and inverse zero-normalized cross-correlation
(DZNCC). These are defined as follows:
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Table 5
Comparison of Changes to the ipole-IL Result under Different Emission Coefficient Fitting Functions

ipole-IL Image Run... NMSE I NMSE Q NMSE U NMSE V Δ|m|net (%) Δ〈|m|〉 (%) Δvnet (%) ∣ ∣bD 2 Δ∠β2 (deg)

...with Pandya jS 4.7e-05 0.0055 0.0059 0.0087 0.0246 1.78 0.127 0.0168 0.353

...with Dexter ρV 1.4e-09 2.6e-06 2.1e-06 6.8e-06 −0.00746 0.0186 −0.0031 0.000131 0.00225

...with approximate Kn(x) 3.9e-08 5.6e-05 2.5e-05 0.00014 −0.000404 0.0239 −0.00524 0.000123 −0.00336

Note. Each row lists a change made to the default emissivity values and the resulting differences between the new image and the one used in the comparison.
Substituting emissivities from Pandya et al. (2016) changes the result by more than the overall level of code agreement, whereas substituting the rhoV fit from Dexter
(2016) changes almost nothing about the image. Approximating the Bessel functions Kn does not badly affect this image but can be a substantial source of error in
images with higher Faraday rotation.

Figure 10. Each Stokes parameter of the ipole-IL image result for the high- GRMHD snapshot test, evaluated against each other code using four different
metrics (all normalized): the mean linear error (MLE), mean squared error (MSE), structural dissimilarity (DSSIM), and inverse zero-normalized cross-correlation
(DZNCC).
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where μX is the average pixel value of an image and σX is the
standard deviation of the pixel values.

In this comparison, most images were very similar—for this
limited case, the various similarity metrics were found to
correlate strongly in ordering of similarity between all images,
and usually even in relative magnitude, as shown in Figure 10.
The absolute values of the constraint metrics mean little
without the context of Section 5.2, so any particular metric
could fill the role of a similarity gauge to compare to image
variation from other sources.

Appendix D
Comparison of Images over Full GRMHD Run

While the GRMHD snapshot file used for the test in
Section 3.3 reflects the simulations and imaging parameters
used in practice by the EHTC in studies of M87*, there is
always the chance that the snapshot itself is a particularly
simple case, not reflective of average code differences in
practice. Furthermore, in characterizing the impact of code
differences on metric-based model comparisons, it would be
useful to have an idea of what portion of code differences in
metrics are due to systematic errors, versus stochastic products
of limited accuracy parameters or sampling differences.

To measure the variation in results of this test over a typical
variety of GRMHD states, two codes with substantially
different algorithms, ipole-IL and grtrans, were com-
pared across 2000 snapshots of a GRMHD simulation used in
generating the EHT image libraries. This particular simulation
represented a magnetically arrested disk (MAD) state about a
BH of spin a* = 0.9375, and the 2000 snapshots shown
represent the entire quiescent portion of the simulation from
5000 rg/c to 15,000 rg/c. Details of the initial conditions,
resolution, etc., are available in Wong et al. (2022).

Figure 11 compares the total unpolarized flux computed by
ipole-IL and grtrans over the entire window. Figure 12
provides histograms of the differences in all image-integrated
values over the window, along with Gaussian functions following
their means and standard deviations. Table 6 lists the mean (i.e.,
average difference) and standard deviation (i.e., span of

Table 6
Mean Values and Standard Deviations of the Distributions in Figure 12

Variable μ σ μ/σ
DFlux
Flux

(%) −0.197 0.841 0.234

Δ|m|net (%) −0.0627 0.27 0.232
Δ〈|m|〉 (%) −0.0182 0.206 0.0884
Δ|v|net (%) 0.00168 0.0116 0.145

∣ ∣bD 2 −0.00178 0.00361 0.493
Δ∠β2 (deg) −0.0757 1.31 0.0576

Note. The last column lists the proportion μ/σ, which can be taken as an
estimate of the relevance of systematic versus stochastic errors in describing
differences between these codes.

Figure 11. Comparison of total flux density computed by ipole-IL and
grtrans over 10,000 rg/c of an MAD GRMHD simulation. The top panel
shows the total (Stokes I) flux density produced by each code, and the bottom
panel shows the absolute difference in flux densities.

Figure 12. Histograms comparing image metrics between corresponding
images over the entire window. Each histogram is computed with a total of 50
bins across the domain shown, with any values outside the range added to the
final bins.
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differences) between codes in each metric. The parameters 〈|m|〉
and ∠β2 appear to be almost entirely stochastic. Flux, |m|net, and
vnet are approximately a quarter systematic, and ∣ ∣b2 is half
systematic (though the error itself is minuscule).
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