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ABSTRACT

Biogeochemical proxy records from Icelandic lake sediment track large-scale shifts in North Atlantic
Holocene climate and highlight the impact that North Atlantic Ocean- and atmospheric circulation has
on Iceland’s climate and environment. Following Early Holocene warmth, centennial-scale climate
change is superimposed on millennial-scale cooling, culminating in the transition to the Little Ice Age
(~1300—1900 CE). Although the long-term cooling trend is presumably driven by variations in Earth’s
orbit and the concomitant decline in Northern Hemisphere (NH) summer insolation, the centennial-scale
variability has been linked to the strength of the Atlantic Meridional Overturning Circulation (AMOC),
volcanism coupled with sea ice/ocean related feedbacks, internal modes of atmospheric variability, and
plausibly variations in solar irradiance. One manifestation of these regional climate changes on Iceland is
the intensification of soil erosion, resulting in the degradation of ecosystems and landscape. In recent
millennia, persistent and severe soil erosion has also been linked to human impact on the environment
following the settlement ~870 CE, rapid population growth, introduction of livestock and the poorly
consolidated nature of tephra dominated soils. Lake proxy composite records suggest that although
event-dominated landscape instability and soil erosion from the Early to Middle Holocene were likely
triggered by large volcanic eruptions, the landscape was capable of recovering. However, a threshold was
reached ~5 ka BP, resulting in a state change whereby the Icelandic landscape could no longer fully
recover from cold-events and/or tephra fall. Landscape sensitivity to climate further intensified at ~1.5 ka
BP as identified by regime shift analysis. Hence, widespread and irreversible soil erosion began several
centuries before the acknowledged settlement of Iceland, with a second acceleration ~1250 CE. A 2 ka
fully coupled climate transient simulation using CESM1.1 shows a ~0.5 °C reduction in summer tem-
perature around Iceland in the first millennium CE, consistent with increased landscape instability and
soil erosion in Iceland. A second phase of persistent summer cooling in the model occurs after 1150 CE,
with stronger cooling after 1450 CE, reaching a maximum shortly after 1850 CE, ~1 °C lower than at the
start of the simulation. Our results suggest that natural variations in regional climate and volcanism are
likely responsible for soil erosion prior to human impact, with intensification of these processes
following settlement particularly during the cooling associated with the Little Ice Age. Given that the
conclusions drawn in this review diverge from the standard paradigm of human-induced soil erosion
history in Iceland, research should continue to focus on this complex question from multiple disciplines.
In particular, a combination of emerging biogeochemical techniques (e.g. lipid biomarkers and ancient
DNA) may be best poised to test and quantify the relative roles of natural environmental variables and
human settlement in the history of soil erosion on Iceland.
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Fig. 1. Overview map of the Northern North Atlantic region. Stippled purple line delineates the instrumental (1870—1920 CE) sea ice edge position after Divine and Dick (2007).
Green circles mark local regions of deep-water formation in the Labrador (Lab.) and GIN (Greenland, Iceland, and Norway) Seas. Warm Atlantic currents are marked in red: NAC =
North Atlantic Current, IC = Irminger Current, NIIC = North Iceland Irminger Current. Cold Arctic currents are marked in blue: EGC = East Greenland Current, EIC = East Iceland
Current. Marine sediment cores mentioned in the text are also marked and abbreviated (i.e. MD99-2269 = 2269 and RAPiD-35-COM = 35-COM).

1. Introduction

The largest variable on decadal to centennial timescales that
impacts sub-Arctic and Arctic climate is the transport of heat and
moisture from lower latitudes by the ocean-atmosphere system to
the Polar regions (Wunsch, 1980). Northward flowing warm and
saline surface waters release heat to the atmosphere, become
denser and eventually sink, forming part of the Atlantic Meridional
Overturning Circulation (AMOC, Buckley and Marshall, 2016). This
system accounts for approximately one third of the heat flux to the
Arctic and is known to vary in response to changes in the North
Atlantic (NAO) and Arctic Oscillation (AO) and with important im-
pacts on atmospheric patterns and weather in this part of the
Northern Hemisphere (NH, Wunsch, 1980; Auger et al., 2019). The
incursion of freshwater and sea ice can also impact the AMOC’s
efficiency, as observed during the Great Salinity Anomaly of the
1960s CE (Dickson et al., 1988; Mysak and Power, 1992; Serreze
et al,, 1992). Not only does Iceland lie within the North Atlantic
region most strongly affected by the northward heat transport of
AMOC (Fig. 1), but also within the periphery of the strongest
contemporary warming (IPCC, 2013; Moffa-Sanchez and Hall,
2017). Hence, Iceland represents an important outpost to monitor
the past climate variability of the sensitive North Atlantic region.

Recent high-resolution records of paleoceanography and sea ice
around Iceland (Giraudeau et al., 2004; Moros et al., 2006; Solignac
et al., 2006; Bendle and Rosell-Melé, 2007; Justwan et al., 2008;
Sicre et al., 2008a, 2008b; Knudsen et al., 2004; Jiang et al., 2015;
Moossen et al., 2015; Cabedo-Sanz et al., 2016; Kristjansdottir et al.,
2017; Harning et al., 2020a), glacier history (Flowers et al., 2007,
2008; Larsen et al., 2011; Harning et al., 2016a, 2016b, 2018a;
Anderson et al., 2018, 2019), and terrestrial climate proxy records
from lake sediment (Axford et al., 2007, 2009; Geirsdottir et al.,
2009a, 2009b, 2013, 2019; Larsen et al., 2012; Blair et al., 2015;
Eddudéttir et al., 2015, 2016, 2020; Harning et al., 2018a, 2020b)
draw a complex yet comprehensive picture of regional climate

during the Holocene (last 11.7 ka BP'). Collectively, they reflect the
large-scale shifts detected in North Atlantic marine reconstructions
and highlight the impact that North Atlantic Ocean- and atmo-
spheric circulation has had on Iceland’s climate throughout its pre-
instrumental history. Although the primary NH summer insolation
forcing has been monotonic, continuous Holocene reconstructions
of relative summer temperature change in multiple Icelandic lakes
show a non-linear response (e.g. Geirsdottir et al., 2013, 2019). This
centennial-scale variability has been linked to variations in solar
irradiance, the strength of the AMOC, volcanism coupled with sea
ice/ocean related feedbacks and internal modes of atmospheric

variability (e.g. Wanner et al., 2011; Miller et al., 2012; Olafsdottir
et al., 2013; Harning et al., 2018a). Prior work has focused on de-
tailing various manifestations of these regional stepwise cooling
events during the Holocene, such as the episodic expansion of the
cryosphere and reduction in lake productivity and shrub cover (e.g.
Geirsdottir et al., 2013, 2019; Cabedo-Sanz et al., 2016; Eddudéttir
et al.,, 2016). However, less explored throughout the Holocene is
how the intensification of soil erosion is related to the impact of
tephra fall and natural changes in climate (e.g. Larsen et al., 2011;
Christensen, 2014; Eddudéttir et al., 2016).

Soil formation and soil erosion at higher latitudes depends on
interaction of a number of forces, including climate, landscape,
composition, organisms and time. In Iceland, explosive volcanic
eruption with tephra production and aeolian and fluvial activities
influence both soil formation (“thickening of soil”) and soil erosion.
The primary source of material is within the active volcanic zones
of Iceland and the glaciofluvial sandur areas where tephra and fine-
grained sediment accumulation takes place (e.g. Arnalds, 2000;
Arnalds et al, 2001, 2010; Hallsdottir, 1987, 1995). Due to the
richness in volcanoclastic materials (mineral fragments and ash),

1 All ages discussed are presented in calibrated C kiloyears (ka) before present
(BP), where present is equal to 1950 CE.
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the soil is primarily classified as Andosol and by nature lacks
cohesion. The lack of cohesion makes the soil more vulnerable to
aeolian and fluvial erosional processes than most other soil types
(e.g. Arnalds, 2013; Arnalds et al., 2016) and often results in
remobilization and thickening of soil in one place and concurrent
erosion in another (e.g. Gunnarsdottir, 2018). Soil remobilization
has through the years affected much of Iceland’s ecosystem and has
been a determining factor in soil formation and fertility (e.g.
Gisladottir, 2001). Although vascular vegetation cover plays an
important role in preventing soil mobilization (Arnalds, 2013;
Cutler et al., 2016), plants can be killed and efficiently removed
following volcanic ash deposition as a result of suffocation,
impaired photosynthesis, abrasion and/or acidification (e.g. Mack,
1981; Grattan and Pyatt, 1994; Grattan and Gilbertson, 2000).

In recent millennia, persistent and severe soil erosion has been
linked to anthropogenic activities after the settlement of Iceland
(~870 CE). The impacts of rapid population and livestock growth
with sheep foraging seasonally at all elevations compromised the
vegetation cover such that fine grained soil material became more
easily accessible to wind, rain and fluvial, rill and gully erosional
activity (e.g. Arnalds, 2000; Arnalds et al., 2001; Hallsdottir, 1987,
1995). It is reasonable to assume that with human colonization
came additional landscape modification to facilitate agricultural
and pastoral enterprises, which also may have contributed to the
observed landscape destabilization. However, temporal trends in
landscape instability and erosion in Iceland are not well known due
to a scarcity of well-dated, continuous records, and little is known
about these processes before human settlement. Observations of
severe soil erosion in recent centuries leave a lingering question
regarding the role of human activities versus natural forcing such as
climate and volcanism as the factors behind the extensive soil
erosion still apparent across Iceland. Better characterization of the
erosional and landscape instability trends in Iceland is thus needed
to provide such long-term perspective to help understanding the
causes and consequences of soil erosion.

Here, we briefly review the Holocene history of climate, vege-
tation (with a focus on Betula), volcanism and human impact on
Iceland’s landscape as interpreted from high resolution lake sedi-
ment records. By comparing the Holocene evolution of glacier ex-
pansions, vegetation and landscape instability with reconstructed
and modeled summer temperatures, volcanism and the acknowl-
edged arrival of settlers, we aim to deconvolve the climate impact
on soil erosion versus anthropogenic activity. We take advantage of
several normalized and composited high-resolution proxy records
from seven Icelandic lakes that reflect relative diatom productivity
and temperature variations (biogenic silica, BSi) and organic matter
source and erosional activity (C/N and bulk §'3C) (Geirsdéttir et al.,
2013, 2019). In order to statistically identify abrupt and persistent
changes within our landscape stability proxy records, we per-
formed an analysis that targets mean regime shifts in individual
time series and look to a recent 2 ka fully coupled climate transient
simulation using CESM1.1, with forcing data from Paleoclimate
Modeling Intercomparison Project Phase 4 working group (PMIP4),
including insolation, volcanic aerosols, land-cover, and greenhouse
gas levels (Zhong et al., 2018). Finally, we review the most recent
development regarding the use of novel biogeochemical toolsets
and discuss how we can possibly make use of these emerging
analytical techniques to better disentangle the past impacts of
climate, volcanism and humans on the Icelandic landscape.
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2. Materials and methods
2.1. Lakes that form the composite

The seven lakes that form the high-resolution composite proxy
records lie along a transect spanning the temperature and precip-
itation gradient from south to northwest Iceland (Fig. 2). The lakes
represent a range of catchment styles, including lowland/coastal
lakes (Torfdalsvatn, TORF; Haukadalsvatn, HAK; Vestra-Gislholts-
vatn, VGHV; Skorarvatn, SKR), highland lakes (Hvitarvatn, HVT;
Arnarvatn Stéra, ARN; Trollkonuvatn, (TRK), and they span eleva-
tions between 30 and 540ma.s.l. (Table 1, see Supporting Infor-
mation Text S1 for more details). The lakes vary in surface area
(0.2—28.9 km?) and lake depth (3—83 m) (Table 1, Fig. S1). In most
years, the lakes are ice covered from November to April, although
early winter thaws and/or late season ice cover may occur. All lakes
occupy glacially scoured bedrock basins and contain a high-
resolution Holocene record with sediment thickness ranging from
2.5 m (SKR) to > 20 m (HVT). Vestra Gislholtsvatn (VGHV), Arnar-
vatn Stéra (ARN), Torfdalsvatn (TORF), Haukadalsvatn (HAK), and
Skorarvatn (SKR) have not received glacial meltwater since Early
Holocene and preserve organic-rich sediments deposited
throughout the remainder of the Holocene. In contrast, Hvitarvatn
(HVT) and Trollkonuvatn (TRK) are glacial lakes that have received
glacial meltwater when ice margins reoccupied lake catchments
during the Middle to Late Holocene.

The vegetation around most of the lakes is characterized by
shrub heath, with low-lying plants and mosses dominating the
shallow soils (Fig. S1). The one exception is VGHV, the southern-
most lake, which today is predominately surrounded by large
planted hayfields. However, shrub heath grows near bedrock out-
crops on elevated areas around VGHV, whereas fen/mires prefer
locations where water can accumulate in lower elevation areas.
Three of the lakes — VGHV, HVT, and ARN — lie within the current
active volcanic zone of Iceland and therefore contain and preserve
more frequent and thicker tephra layers compared to the other four
lakes that all lie distal to the main volcanic zones (Fig. 1).

Based on historical accounts it is assumed that at least three lake
catchments (VGHV, HAK, TORF) were influenced by early human
settlement (~870 CE) and their livestock. The remaining four lake
catchments (SKR, TRK, ARN and HVT) are located in more remote
areas and would have been less accessible during the early decades
following human settlement.

2.2. Selected paleoclimate records

Our primary goal when reconstructing Holocene climate evo-
lution is to test whether changes on decade-to-century scales are
regionally coherent (e.g., Geirsdottir et al., 2013). This effort re-
quires continuous records from different catchments where
consideration is given to the large number of highly resolved
climate proxies derived from each of the seven lake sediment re-
cords. Originally, Geirsdottir et al. (2013) composited six different
normalized climate proxies in high sedimentation-rate cores from
two lakes: the glacial lake Hvitdrvatn and the non-glacial, lowland
lake Haukadalsvatn. Despite the different catchment-specific pro-
cesses that characterized each lake’s catchment, the composite
proxy records show remarkably similar stepped changes toward
colder states after the Middle Holocene. The common signal in
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Fig. 2. Overview map of Iceland. The 7 lakes used in our proxy composite time series are marked in the red, and other important lake and marine sites mentioned in the text are
marked in yellow and blue, respectively. The base map describes the severity of modern soil erosion of non-glaciated regions (after Arnalds et al., 2001).

Table 1

High-resolution and continuous Holocene paleoenvironmental lake sediment records from Iceland. MS = magnetic susceptibility, TOC = total organic carbon, BSi = biogenic
silica, and IRD = ice-rafter debris. Lakes marked with an asterisk are included in our 7-lake proxy composites. See Fig. 2 for site locations.

Lake Elevation Lat Long Lake Lake Max Basal age  Proxies References
@  © catchment area area depth  (cal ka BP)
(km?) (km?)  (m)

Skorarvatn (SKR) 183 66.26 —22.32 1.2 0.2 25 103 MS, density, TOC, BSi, C/N, 313¢, Harning et al. (20164, b, 2018a, b,
* alkenones, brGDGTs 2020b)

Trollkonuvatn 366 66.14 —22.05 9.4 13 164 9 MS, density, TOC, BSi, C/N, 5'3C Harning et al. (20164, b, 2018a, b)
(TRK) *

Torfdalsvatn 52 66.06 —20.38 2.76 0.4 5.8 12 MS, density, TOC, BSi, C/N, 3'3C, 8'°N,  Axford et al. (2007); Geirsdottir
(TOREF) * chironomids et al. (2019)

Hvitarvatn (HVT) 422 64.64 —19.84 820 28.9 83 103 Grain size, IRD, varve thickness, MS, Larsen et al. (2011, 2012, 2015)
* density, TOC, BSi, C/N, 5'3C, diatoms

Arnarvatn Stéra 540 64.96 —20.33 61 4 3 105 MS, density, TOC, BSi, C/N, 5'3C Gunnarson (2017); Geirsdottir
(ARN) * et al. (2019)

Haukadalsvatn 32 65.05 —21.63 172 33 42 103 MS, density, TOC, BSi, C/N, 3'*C Geirsdottir et al. (2009b, 2013)
(HAK) *

Vestra 61 63.93 —20.52 4.2 1.57 15 >10.3 MS, density, TOC, BSi, C/N, 3'3C, 3'°N,  Hallsdéttir and Caseldine (2005);
Gislholtsvatn pollen Blair et al. (2015)
(VGHV) *

Bardalakjartjorn 413 65.42 —19.87 n/a 0.1 0.9 103 MS, density, TOC, C/N, pollen, macrofossil Eddudéttir et al. (2016)
(BARD)

Stéra Vidarvatn 151 66.24 —15.84 nfa 24 48 >10.3 MS, TOC, BSi, C/N, chironomids Axford et al. (2007, 2009)
(SVID)

Litla Vidarvatn 142 66.24 —15.81 n/a 0.2 25 >10.3 MS, TOC, BSi, C/N, chironomids Axford et al. (2007)
(LVID)

Légurinn (LOG) 20 65.25 —14.42 n/a 53 112 103 Grain size, varve thickness, MS, TOC, BSi, Striberger et al. (2011, 2012);

C/N, diatoms, chironomids Gudmundsdéttir et al. (2016)
Hestvatn 49.5 64.02 —20.71 n/a 6.8 60 >10.3 Pollen This study

different catchments indicates that the climate proxies in the
sediment records reliably reflect past climate change in Iceland. In

2019, Geirsdéttir et al. added five new Icelandic lake sediment re-
cords and tested whether the two-lake composite could be
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replicated in other lakes across Iceland. First, they generated a
single multi-proxy composite record for each lake by applying the
same methodology as in Geirsdottir et al. (2013). Before calculating
each regional mean record, all individual proxy records were
standardized over the whole record/period. The Analyseries soft-
ware (Paillard et al., 1996) was used to resample each proxy time
series to the same 20-year increment, which reflects the minimum
resolution within the dataset and permits a reliable comparison of
the records with each other. The multi-proxy composites for each
lake reduce proxy specific signals within each lake, while ampli-
fying those signals that are recorded by most or all proxies. By
isolating each individual lake composite record, the signal of
catchment-specific processes within each lake record is preserved,
which validates our comparison between different catchments to
test for a regional, Iceland-wide signal (Geirsdottir et al., 2019).
Compared to the previous two-lake composite (Geirsdottir et al.,
2013), the seven-lake composite is nearly identical, which in-
dicates that all lakes experienced similar climatic histories with
relatively minor superimposed catchment-specific processes.
Furthermore, the results from factor analyses show that commu-
nalities, a measure of shared information (Davis, 1986; Aabel, 2016),
is high indicating that in addition to an all-proxy composite, a
simple composite of BSi (relative spring/summer warmth; e.g.,
Geirsdottir et al., 2009b) and C/N (cold or erosional activity) can
disentangle the catchment responses (C/N) to climate change and
the temperature forcing (BSi) (Fig. 3, S2 and S3; Geirsdottir et al.,
2019).

Here, we rely on the BSi and C/N composite records that were
previously presented by Geirsdottir et al. (2019), and we add a bulk
313C composite record derived from the same seven lakes (Figs. 2
and 3, Table 1). From each of these well-dated lake sediment re-

cords, in addition to the sediment record from Lake Logurinn (LOG,
Fig. 2, Gudmundsdottir et al., 2016), we have also compiled a
composite tephra layer frequency (TLF) record (Fig. 3) to evaluate
the impact of local tephra fall on the catchment environments. For
the composite TLF record, we exclude other high-resolution lakes
records that only account for marker tephra layers used for chro-
nological constraint (Table 1, Axford et al., 2007; Eddudéttir et al.,
2016). In terms of proxy interpretations, BSi is a proxy for algal
(diatom) productivity (Conley and Schelske, 2001), and assuming
little change in the overall sedimentation rate, BSi reflects quali-
tative changes of spring/summer lake temperature in Iceland
(Geirsdottir et al., 2009b), as seen elsewhere in the Arctic (McKay
et al., 2008). In Iceland, modern end-member studies have shown
that bulk C/N and 3'3C values provide information on organic
matter provenance where terrestrial material generally exhibits
higher C/N and more depleted §'3C values (Fig. 4a, Wang and
Wooller, 2006; Skrzypek et al., 2008; Langdon et al., 2010;
Florian, 2016). The anti-correlation of our composite C/N and 3'>C
records (Fig. 3), demonstrates that during the Holocene, the lakes
received progressively more terrestrial organic matter (soil and
plants), which we interpret to reflect increased soil erosion
(Fig. 4b).

Along with our proxy composites, we aim to compare with a
variety of other high-quality Holocene climate archives (Fig. 2). In
this regard, we focus on sediments that have accumulated in ma-
rine troughs (particularly MD99-2269, Fig. 2) and glacially scoured
terrestrial basins/lakes and capture continuous and high-resolution
(decadal to centennial) records of past environmental change (e.g.
Andrews et al., 2000; Geirsdéttir et al., 2009a, 2013, 2019).
Although there are numerous records from terrestrial peat and soil
records, these archives often miss the period directly following
deglaciation due to the lag associated with the timing of peat and
soil formation (e.g. Hallsdottir, 1995), and stacked soil sequences
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can be discontinuous due to erosional processes (e.g. Dugmore
et al,, 2009). In terms of paleovegetation, peat records can also be
complicated by over-representation of peat-specific taxa compared
to lakes that capture an integration of the regional flora (Hallsdottir,
1995). Although a wide variety of pollen records currently exist
from Icelandic sedimentary archives (Table S1 and Fig. S4), only one
has been published that features a continuous and well-dated lake
record since local deglaciation (Bardalekjartjorn (BARD), Fig. 2,
Eddudottir et al., 2016). To supplement this north Iceland vegeta-
tion record, we present a previously unpublished and continuous
pollen record from the lake Hestvatn (HST) in south Iceland (see
Supporting Information Text S2). Given pollen’s efficient wind
dispersal (e.g. Birks and Birks, 2000), we interpret both records to
reflect regional rather than local changes in vegetation. In this way,
the pollen records also reflect average depictions of the Icelandic
ecosystem and are therefore compatible with our proxy
composites.

The bulk of the proxy records presented here derive from
ecological assemblages and biogeochemical indicators that hold
seasonal biases. For those that derive from photosynthetic organ-
isms that require sunlight as their energy source for biological
production, that season is generally spring and/or summer as the
dark polar winter and sea/lake ice-cover hinders biosynthesis. Key
examples include diatom-derived proxies, such as the sea ice
biomarker IP,5 (Belt, 2018) and biogenic silica (BSi, McKay et al.,
2008), haptophyte-derived alkenones (Rodrigo-Gamiz et al., 2015;
Longo et al., 2018), and birch treeline (Korner and Paulsen, 2004;
Jonsson, 2005). Others such as glycerol dialkyl glycerol tetraethers
(GDGTs) are biosynthesized by ammonia oxidizing marine Thau-
marchaeota or heterotrophic bacteria that do not require sunlight
or oxygen (Schouten et al, 2013). As a result, biosynthesis in
darkness and under ice cover is possible. In the marine realm
around Iceland, GDGTs correlate best with annual and winter
subsurface temperatures (Rodrigo-Gamiz et al., 2015; Harning
et al., 2019b), whereas recent work from the high latitudes (and
altitudes) demonstrates a stronger relationship between lacustrine
branched GDGTs (brGDGTs) and summer temperature (Shanahan
et al., 2013; Peterse et al., 2014; Deng et al.,, 2016; Cao et al,,
2020). The specific seasonality of biological proxies assessed in
this review have been locally calibrated with surface sediment
calibrations (Rodrigo-Gamiz et al., 2015; Harning et al., 2019b) and
independent alkenone and BSi-derived proxies (brGDGTs, Harning
et al., 2020b), as well as by comparison to overlapping instrumental
records (BSi, Geirsdottir et al.,, 2009b). As we cannot cover all the
limits and assumptions of each proxy used in this review, we
encourage the reader to explore the cited literature (and references
therein) to inform their own understanding and interpretations
(e.g. Axford et al., 2011).

Various chronological toolsets are available to constrain Ice-
land’s marine and terrestrial sedimentary records. '*C ages are one
of the most common tools but can be hampered by variable and
poorly constrained C reservoir corrections (AR) in the marine
realm (e.g. Eiriksson et al., 2004), and by the delivery of old
terrestrial carbon to the lake sediments via aeolian and fluvial
erosion as well as geothermal-derived CO, in groundwater
(Sveinbjornsdéttir et al., 1998; Ascough et al., 2007; Geirsdottir
et al., 2009b; Torres et al., 2020). If present, aquatic macrophytes
offer the most reliable option for *C-based age control in Icelandic
lakes, especially since the basaltic bedrock precludes hardwater
effects. The abundance of compositionally distinct marker tephra
layers (volcanic ash) from Icelandic eruptions offer an invaluable
tool to correlate geologic records as they circumvent many poten-
tial 'C-related issues (e.g. Thorarinsson, 1944; Larsen and
Eiriksson, 2008). However, caution must be exercised as
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the Settlement Series tephra layer.
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range up to 205.

compositional similarities and sometimes poor supporting age
constraint can complicate seemingly secure tephra correlations
(e.g. Harning et al., 2018b, 2019a; Oladéttir et al., 2020). Paleo-
magnetic secular variation (PSV), based on the remanent magne-
tization of undisturbed lake sediment, has been used to securely
date tephra layers as well as provide age models for high-resolution
records by synchronizing to well-dated marine sediment core
(MD99-2269, Fig. 2) from the North Iceland Shelf (Olafsdéttir et al.,
2013; Geirsdottir et al., 2013; Harning et al., 2019a). In this way, PSV
records can offer the potential for high-resolution regional syn-
chronization between different archives, including land and sea,
from which an assessment of leads and lags between primary
insolation forcing and changes in ocean-atmosphere circulation can
be derived (e.g. Olafsdottir et al., 2013). Third and finally, varve
chronologies (annual sediment laminations), supported by marker
tephra layer identifications, have been used where both clastic
sedimentation and seasonality are high, such as for the lake
Hvitdrvatn (HVT), adjacent to Langjokull in the central highlands
(Fig. 2, Larsen et al., 2011, 2015). All records assessed in this review
feature age control with a minimum spacing of <2000 years.

2.3. Statistical analyses

In order to objectively determine persistent step shifts within
our composite proxy time series and best compare with other local
and regional paleoclimate records, we performed Sequential T-test
Analysis of Regime Shifts (STARS) (Fig. 3, Rodionov, 2004, 2006).
The algorithm was tuned to detect regime shifts on centennial
timescales by setting the cutoff length to 60, and we report the
timing of shifts identified at the 95% confidence level (p < 0.05). The
regime shift index (RSI) reflects the relative significance of regime
shifts where higher values are more significant. The timing of
regime shifts is best interpreted as approximate (+100 years), as
their timing and magnitude are affected by the chosen confidence
level and cutoff length (e.g. Rodionov, 2006; Seddon et al., 2014).

2.4. CESM1.1 past2k simulation

An additional dataset for regional temperatures is from the
CESM1.1 past2k simulation that has 1° resolution in the ocean and

the sea ice and 2° resolution in the atmosphere (Zhong et al., 2018).
The CESM1.1 is a state-of-the-art global climate model that has
been widely used in numerical simulations of the Earth’s past,
present and future climate (Hurrell et al., 2013). The past2k simu-
lation successfully reproduces major phenomena revealed by paleo
proxies, e.g. Arctic-wide cooling from 1 CE to 1900 CE and the
following sharp rise in temperature, the warm Medieval episode
from 950 CE to 1250 CE, the Little Ice Age from 1300 CE to 1850 CE,
and abrupt cooling in response to major explosive eruptions.

3. A brief review of Late Glacial and holocene climate, soil and
vegetation evolution

3.1. Late Glacial (~22—11.7 ka BP)

During the last glacial maximum (LGM, ~28 to 22 ka BP), Iceland
lay beneath the Icelandic Ice Sheet (IIS) that extended to the shelf
break, reaching at least two km in thickness at the ice divide
(Olafsdéttir, 1975; Egloff and Johnson, 1979; Boulton et al., 1988;
Norddahl, 1991; Syvitski et al., 1999; Andrews et al., 2000;
Geirsdottir et al., 2002; Andrews and Helgadéttir, 2003; Hubbard
et al.,, 2006; Licciardi et al.,, 2007; Spagnolo and Clark, 2009;
Patton et al., 2017). A series of records from '“C-dated marine shelf
sediments indicate that lateral retreat of the marine-based ice sheet
margins occurred between 18.6 and 15 ka BP followed by a cata-
strophic collapse of marine ice shelves between 15 and 14.7 ka BP
under rapidly rising sea level and loss of grounding lines (Syvitski
et al., 1999; Andrews et al., 2000; Jennings et al., 2000; Ingolfsson
and Norddahl, 2001; Geirsdéttir et al, 2002; Norddahl and
Ingdlfsson, 2015) and likely exacerbated by the reinvigoration of
deepwater convection and the AMOC forced under generally
increasing NH summer insolation (Fig. 5a—c). Following the rapid
disintegration of the marine-based components of the IIS
(Ingolfsson and Norddahl, 2001; Norddahl and Ingélfsson, 2015;
Patton et al., 2017), coastal regions emerged between 14.7 and 13.8
ka BP during the Bglling-Allered warmth, offering new habitats for
terrestrial and aquatic vegetation. However, local colonization of
plants was likely stunted by the Younger Dryas, a millennial-scale
cold interval (12.9—11.7 ka) characterized regionally by reduced
AMOC strength (Fig. 5b—d, Broecker, 2006; Ritz et al., 2013;
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Fig. 5. Regional records of Icelandic deglaciation and forcing mechanisms. a) Northern Hemisphere (60°N) summer insolation (Berger and Loutre, 1991), b) changes in deepwater
convection inferred from the offset of benthic-planktic (B—P) foraminifera 'C ages in marine sediment core MD99-2284 (Muschitiello et al., 2019), c) AMOC anomaly reconstructed
from the LOVECLIM model (Ritz et al., 2013), d) Renland Ice Cap 5'30 using the most recent Greenland Ice Core Chronology 2005 (GICCO5, Vinther et al., 2008), e) detrital carbonate
record for freshwater (FW) from Hudson Bay from marine sediment core MD99-2236, Labrador Sea (Jennings et al., 2015), f) PgIP,5 biomarker record for seasonal sea ice cover from
marine sediment core MD99-2272, north of Iceland (Xiao et al., 2017), g) Late Glacial to Early Holocene glacier history in terms of modeled ice sheet area (Patton et al., 2017) and
glacier advances (colored boxes) dated with 'C at Borgarfjordur (Sigfiisdéttir et al., 2018, 2019), Fjlétsdalur (Norddahl et al., 2019), the Btidi moraines and Hestvatn (Geirsdottir et al.,
1997, 2000) and Eyjafjordur (Norddahl and Pétursson, 2005), and dated with 3°Cl CRN and lake sediment records at Drangajokull (Brynjolfsson et al., 2015b; Harning et al., 2018a).
No geomorphic evidence exists for the 8.2 ka BP advances of Drangajokull and Langjokull, but they have been simulated with numerical glacier models (Flowers et al., 2008;
Anderson et al., 2018). See Fig. 2 for locations of glacier site locations. h) Betula nana pollen concentration from the lake Torfdalsvatn (Rundgren, 1995, 1998) using a revised C-
based age model (see Supporting Information Text S3). Timing of rapid Icelandic Ice Sheet (IIS) collapse marked with gray band (Norddahl and Ingélfsson, 2015). Belling-Allerad and
Younger Dryas as inferred from Renland 3'80 record (Vinther et al., 2008) and marked with red and blue bands, respectively.
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Muschitiello et al., 2019). On the North Iceland Shelf, marine proxy
records from foraminifera assemblages illustrate that although
Arctic Water dominated at this time, warm Atlantic Water also
periodically reached the North Iceland Shelf (Eiriksson et al., 2000;
Knudsen et al., 2004) that likely led to high-amplitude and rapid
changes in surface waters as reflected in sea ice and open water
biomarker records (Fig. 5f, Xiao et al., 2017). Glacial marine deposits
and ice-rafted debris (IRD) in raised marine sediment sections in
southwest and south Iceland also suggest outlet glaciers from the
main IIS advanced into the sea at this time (Geirsdottir and
Eiriksson, 1994; Geirsdottir et al., 1997, 2000; 2002, 2009;
Knudsen et al., 2004). Recent geomorphic evidence and limiting '4C
ages further support large-scale readvances of the IIS in the west
(Borgarfjorour) and east (Fljotsdalur) during the Younger Dryas
(Fig. 5g) (Sigfasdottir et al., 2018, 2019; Norddahl et al., 2019).
Collectively, these records suggest that although some coastal re-
gions were likely ice-free, the highly unstable climate variability
associated with the Younger Dryas cold event may have limited the
colonization of vascular plants, such as Betula, until ~12 ka BP
(Fig. 5h, Rundgren, 1995; see revised chronology in Supporting
Information Text S3).

3.2. Early Holocene (11.7—8.2 ka BP)

Following maximum NH summer insolation at ~11 ka BP, marine
sediment proxy records from West and North Iceland Shelf (e.g.
sites MD99-2256, MD99-2264 and MD99-2269, Fig. 2) reflect the
dominance of warm Atlantic surface waters and restricted drift ice
(Fig. 6b—g; Moros et al, 2006; Olafsdéttir et al, 2010;
Kristjansdottir et al., 2017; Harning et al., 2020a). The widespread
presence of the G10ka Series tephra layers in Icelandic sedimentary
records suggests that the IIS was in rapid retreat across the high-
lands of Iceland by ~10 ka BP (Stotter et al., 1999; Caseldine et al.,
2003; Johannsdéttir, 2007; Geirsdoéttir et al.,, 2009a; Harning
et al., 2018), and the transition from glaciolacustrine to organic
sediment in lake records show that Iceland became nearly ice-free
by ~9 ka BP (Caseldine et al., 2003; Larsen et al., 2012; Striberger
et al., 2012; Harning et al., 2016b, 2018b). Once Betula colonized
the newly exposed landscape, molecular evidence from modern
plants suggests that multiple colonization events followed
(Anamthawat-Jénsson, 2011), with wind, sea ice, driftwood, and
birds representing the most likely dispersal vectors (Rundgren and
Ingolfsson, 1999; Alsos et al., 2016a). Despite general warmth,
subsequent episodes of climate variability, such as the Preboreal
cooling (Fig. 5), and the deposition of large amounts of tephra from
the G10ka Series (e.g. Oladéttir et al., 2020) likely played a role in
the postglacial development of Iceland’s ecosystem (Rundgren,
1995). The deposition of the thick G10ka Series (>10 c¢m) dis-
rupted the succession of plant evolution (Hallsdoéttir, 1995;
Rundgren, 1998; Eddudottir et al., 2015) and only after a period of
resultant landscape instability did Juniperus succeed in establishing
itself (Hallsdéttir and Caseldine, 2005). As the soil continued to
develop in the millennia following deglaciation, pollen and mac-
rofossils records from north Iceland suggest that Betula woodland
(dominated by B. pubescens) was established below 500 m asl by
9.2 ka BP in relatively dry areas (Hallsdottir, 1995; Hallsdottir and
Caseldine, 2005; Wastl et al., 2001; Caseldine et al., 2006;
Eddudottir et al., 2015, 2016) whereas sedges dominated in damp
habitats (Caseldine et al., 2006).

Increasing lake diatom productivity (BSi) and relative stable
soils (low C/N) interpreted from our composite support generally
warm summers until ~8.8 ka BP, before reversals in these proxies
reflect a widespread climate deterioration (i.e. reduced lake pro-
ductivity and increased soil erosion) that persisted until 7.9 ka BP
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(Geirsdottir et al., 2009, 2013, 2019; Larsen et al., 2012; Harning
et al., 2018a, 2020b). Similar to these environmental proxies, the
succession of Juniper to Betula is also interrupted from ~8.8 to 8.0 ka
BP in north Iceland, as recorded by pollen and macrofossils in lake
sediments (e.g. Hallsdottir, 1995; Hallsdottir and Caseldine, 2005;
Eddudottir et al., 2015, 2018). This 8.8 to 7.9 ka BP time window
includes the well-known 8.2 ka event (Barber et al., 1999; Alley and

Agustdéttir, 2005; Rohling and Pilike, 2005; Thornalley et al., 2009,
2010) as well as several additional freshwater pulses that all orig-
inated from the decaying Laurentide Ice Sheet (Figs. 1, 5e and 6)
(Jennings et al., 2015) that drove local oceanographic cooling via a

slowdown of the AMOC (e.g. Olafsdottir et al., 2010; Quillmann
et al,, 2012; Moossen et al., 2015). Atmospheric sulfate injection
from volcanic eruptions may have also contributed to the pro-
longed nature of cooling observed in Iceland. The Greenland ice
cores sulfate record suggests increased NH volcanic activity
beginning at ~8.7 ka BP (Mayewski et al., 1997; Kobashi et al., 2017),
which may have been compounded by the Thjérsa fissure eruption
at ~8.6 ka BP (Fig. 7h) — the world’s largest known Holocene lava
flow (Thordarson et al., 2003; Geirsdottir et al., 2012). A combina-
tion of empirical and modeling evidence suggests that periodic
readvances of residual ice (or reformation) of Icelandic ice caps
occurred ~9.3 and 8.2 ka BP (Flowers et al., 2008; Brynjolfsson et al.,
2015a; Anderson et al., 2018; Harning et al., 2018a). Both of these
rapid cooling punctuations are matched by regime shifts in the C/N
record that indicate transient episodes of enhanced landscape
instability and soil erosion superimposed over general warmth
(Fig. 7c and d).

3.3. Middle Holocene (8.2—4.2 ka BP)

During the Holocene Thermal Maximum (HTM) ~8 to 6 ka cal BP
(Figs. 6 and 7), a recent Holocene lake temperature reconstruction
derived from lipid biomarkers quantifies summer warmth up to
~3.2 °C above modern in northwest Iceland (Fig. 7b, Harning et al.,
2020b). These temperatures are independently supported by ice
cap modeling simulations of Langjokull and Drangajokull tuned to
local geologic constraints (3 °C above modern, Flowers et al., 2008;
Anderson et al., 2018), and therefore, provide additional support for
peak HTM warmth in Iceland. Although earlier work from
chironomid-inferred temperature are available (Caseldine et al.,
2006; Axford et al., 2007, 2009; Langdon et al., 2010) these re-
cords are hampered by a number of variables, such as carbon
content of lake sediment (Langdon et al, 2008), soil erosion
(Lawson et al., 2007), limited taxonomic resolution (Axford et al.,
2009), and poor chronological constraint (Caseldine et al., 2006)
that collectively make interpretations difficult. Further qualitative
evidence of HTM summer warmth comes from contemporaneous
peaks in lake diatom productivity reflected in our BSi composite
(Fig. 7c) as well as benthic diatom assemblages from the lakes
Hvitarvatn and Logurinn (Black, 2008; Larsen et al., 2012;
Striberger et al., 2012). This prevailing summer warmth was
conducive to the development of soils and vegetation that generally
prevented the mobilization of terrestrial material into lakes
(Caseldine et al., 2006; Larsen et al., 2012; Geirsdéttir et al., 2013;
Eddudéttir et al., 2015, 2016; Harning et al., 2018a; Tinganelli et al.,
2018) as recorded by relatively low and stable C/N values in our
composite (Fig. 7d).

Paleovegetation records from north (Bardalekjartjorn, BARD)
and south (Hestvatn, HST) Iceland show that the stable soils of the
HTM also coincided with the expansion of Betula woodlands
(Fig. 7e—f), which are believed to have reached their maximum
distribution and elevation (between 400 and 500 m asl) by 7.4 ka BP
(Hallsdottir, 1995; Wastl et al., 2001; Caseldine et al., 2006;
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Fig. 6. Select Holocene paleoceanographic records from North Iceland Shelf marine sediment core MD99-2269. a) Northern Hemisphere (60°N) summer insolation (Berger and
Loutre, 1991), b) 3'30 of planktic foraminifera Nps (Kristjansdottir et al., 2017), ¢) foraminifera assemblage and alkenone UK, derived SST (Kristjansdottir et al., 2017; Harning
et al., 2020a), where standard error is 1.3 °C for and 1.0 °C, respectively, d) GDGT-derived subT (Harning et al., 2020a), with a standard error of 0.4 °C (Harning et al., 2019b), e)
percent planktic foraminifera Nps, where higher values reflect colder Polar Water (Harning et al., 2020a), f) IP;s-inferred seasonal sea ice (Cabedo-Sanz et al., 2016), and g) percent
quartz record for drift ice (Moros et al., 2006). All records are oriented down for cold. Constraint on the HTMarine after Kristjansdottir et al. (2017) and on the presence of Arctic and

Polar Fronts after Harning et al. (2020a).

Eddudottir et al., 2016). Although not covering the Early Holocene
period, a Betula pollen record from a site south of the glacier
Hofsjokull at an altitude of about 600 m asl indicates that birch
forests may have existed in the vicinity prior to human settlement
(Hallsdottir, 1995). Analysis of Betula pollen grain morphology also
suggests the progressive introgression (hybridization) of two spe-
cies, B. nana (dwarf birch) and B. pubescens (mountain birch), may
have occurred during the HTM as reflected by the increased pro-
portion of non-triporate grains (Fig. 7g, Eddudottir et al., 2016),
which may have been advantageous in Iceland’s harsh sub-Arctic
environment (Thorsson et al., 2007). Additional peat and lake
sediment pollen records from Iceland suggest a similar process of

10

introgression during the Holocene (Karlsdéttir et al., 2009, 2012,
2014), although these records lack the age control needed to assess
spatio-temporal variability. When the Betula pollen records are
compared with quantitative biomarker-based temperature esti-
mates from Skorarvatn (SKR) in northwestern Iceland, notable
similarities emerge, such as the synchronous expansion of Betula
woodland and increasing MSAT at ~8 ka BP and subsequent
reduction in woodland cover and MSAT at ~6.5 ka BP (Fig. 7). These
similarities highlight the sensitivity of these taxa to heat (length
and temperature of growing season) and local climate as described
for other high latitude regions (e.g. Myers-Smith et al., 2011).

The environmental deterioration observed in the MSAT and
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Fig. 7. Holocene evolution of glaciers, lakes and vegetation in Iceland. a) Northern Hemisphere (60°N) summer insolation (Berger and Loutre, 1991) and the timing of topography-
controlled ice cap inception inferred from lake sediments (Larsen et al., 2012; Striberger et al., 2012; Harning et al., 2016a, 2018a; Geirsdottir et al., 2019), b) absolute MSAT derived
from alkenones and brGDGTs from Skorarvatn lake sediment, where gray lines denote the temperature calibration uncertainty (Harning et al., 2020b), ¢) BSi composite for diatom
productivity and qualitative summer temperature where bold line denotes 200-yr smoothing (Geirsdottir et al., 2019), d) C/N composite for landscape stability where bold line
denotes 200-yr smoothing (Geirsdottir et al., 2019), e) percent Betula pollen from lake sediments (BARD and HEST, Eddudottir et al., 2016; this study), f) Betula macrofossil
occurrence from Bardalakjartjorn (BARD) (B. nana and B. pubescens) (Edduddttir et al., 2016), g) percent non-tripolate Betula pollen from BARD lake sediment (Eddudéttir et al.,
2016), and h) 8-lake tephra layer frequency (TLF) record in 100-year bins (black) and volcanic sulfur emissions (Mt) from Icelandic fissure eruptions (Thordarson et al., 2003).
The blue dashed vertical lines in panels c and d reflect the regime shifts identified in each respective proxy time series that relate to cooler conditions (i.e. reduced productivity and
increased soil erosion, see Fig. 3).
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pollen records between 7 and 6 ka is also evident in our composite
records (Fig. 7). Whereas as the Betula pollen decreases through the
Middle Holocene (Fig. 7e), both the higher-resolution BSi and C/N
composite records gradually return to their pre-disturbance states
around ~6 ka (Fig. 7c—d). Although both decreasing Betula wood-
land and the lower resolution Skorarvatn MSAT record suggest
slightly decreasing summer temperatures during this interval, the
recovery seen in our composites records highlight the possibility of
additional climate forcing(s) as modulators. Common global and
regional mechanisms, such as total solar irradiance (e.g. Steinhilber
et al.,, 2009) and oceanographic conditions on the North Iceland
Shelf (Fig. 6) are relatively stable during this period, and therefore,
unlikely to be contributing factors. However, multiple fissure
eruptions from Katla and Veidivotn-Bardarbunga volcanic systems
are known to have occurred in the centuries preceding this event
(Fig. 7h, Thordarson et al., 2003) and our composite TLF record is
relatively high at this time. The impacts of these repetitive fissure
and/or explosive eruptions may have reduced vegetation cover
from tephra fall and/or induced local cooling from sulfur emissions
(e.g. Thordarson et al., 1996, 2001). In either or both cases, the local
volcanic eruptions stand as a possible mechanism for the observed
environmental deterioration.

During the HTM, flow speeds of the North Iceland Irminger
Current were at their maximum, importing a considerable volume
of warm water into the Nordic Seas (McCave and Andrews, 2019).
Flow speeds decreased dramatically after 5.5 ka BP (McCave and
Andrews, 2019), coincident with an increase in drift ice and sea
ice biomarker data (Moros et al., 2006; Cabedo-Sanz et al., 2016)
and decrease in SST and subsurface temperatures on the North
Iceland Shelf (Harning et al., 2020a) (Fig. 6). Foraminifera assem-
blage data also suggest that the surface waters on the North Iceland
Shelf were transitioning from Atlantic to Arctic/Polar Water in
origin in response to the general reduction in NH summer insola-
tion (Fig. 6, Harning et al., 2020a).

3.4. Late Holocene (4.2 ka BP to present)

Following the continued reduction of summer insolation across
the NH and summer temperature in Iceland, local Neoglaciation
(i.e. regrowth and/or expansion of the cryosphere) commenced at
~5 ka BP (e.g. Gudmundsson, 1997; Geirsdottir et al., 2019), with
widespread glacier and ice cap expansion occurring at ~4.5—4.0,
3.0, 2.3 and 1.5 ka BP (Fig. 7a—b and 8a, Stotter et al., 1999;
Geirsdottir et al., 2009a, 2019; Larsen et al., 2011; Striberger et al.,
2012; Harning et al., 2016b, 2018a; Fernandez-Fernandez et al.,
2019). This summertime cooling is further manifested in the
recurrent regime shifts identified in our composite BSi and C/N
records, which support stepwise reductions in lake diatom pro-
ductivity and increases in landscape instability (Fig. 7c—d). In
addition, pollen and macrofossil records suggest that Betula
woodlands in Iceland were in steady decline (or already limited in
the case of Hestvatn), becoming gradually replaced by dwarf shrub
heath dominated by Betula nana, Empetrum nigrum and Vaccinium,
as well as Cyperaceae grasses (Fig. 7e, Eddudottir et al., 2015, 2016).
The fact that lake productivity and soil stability never fully recov-
ered to their prior states following stepwise shifts highlights the
vulnerability and poor resilience of the Icelandic ecosystem to
climate changes during the Late Holocene (e.g. Geirsdottir et al.,
2013). Although the gradual decline in summer insolation and
summer temperature progressively lowered the glacier equilibrium
line altitude (ELA, Anderson et al., 2019), the episodic advances of
Icelandic glaciers and stepwise behavior of composite proxy re-
cords during the Late Holocene suggests that local to regional
mechanisms and feedbacks modulated the primary insolation
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forcing. Variations in the strength of AMOC, weakening of the
northward heat transport, and/or increasing influence of Polar
waters (and concomitant advection of sea ice) influence all our
locations and have been related to past cooling events (Trouet et al.,
2009, 2012; Lehner et al., 2013; Cabedo-Sanz et al., 2016; Moreno-
Chamarro et al., 2017; Zhong et al., 2018; Harning et al., 2019b).

The most pronounced changes in our composite records begin
~1.5 ka BP (i.e. 6th Century CE). From ~500 CE to 900 CE and again
from ~1250 CE to 1920 CE, we observe steady decreasing lake
productivity and relative summer temperatures (BSi, Fig. 8c) with a
corresponding and persistent shift toward increased landscape
destabilization and soil erosion (C/N, Fig. 8d). We presume that the
depletion of stable soil cover was also related to the continued
reduction of Betula woodland observed in a composite of 25 records
from Iceland (Fig. 8e, Streeter et al., 2015), possibly as a positive
feedback loop between the two processes. Quasi-persistent re-
ductions in summertime temperatures after ~500 CE are further
supported by enhanced glacial erosion from advancing glaciers, as
reflected in Langjokull and Drangajokull proglacial lake sediment
records (Fig. 8a, Larsen et al., 2011, 2013; Harning et al., 2016a,
2018a, 2020b) and moraines that document glacier advance/still-
stands on Trollaskagi in north Iceland (Stotter et al., 1999;
Fernandez-Fernandez et al., 2019), as well as a ~0.5 °C reduction in
summer temperature simulated in our CESM1.1 model simulation
for the North Atlantic (Fig. 8b, Zhong et al., 2018). The timing of
these intervals coincides with the well documented periods of
climate change commonly known as the Dark Ages Cold Period
(DACP), Medieval warmth and the Little Ice Age (LIA), which have
previously been associated with changes in solar activity (Shindell
et al.,, 2001; Steinhilber et al., 2009) and/or explosive volcanism
(Fig. 8j, Gao et al., 2008; Zhong et al., 2010; Miller et al., 2012; Sigl
et al., 2015; Biintgen et al., 2016; Slawinska and Robock, 2018).

The shift toward cooler conditions ~1.5 ka BP is consistent with
historical accounts of crop failures, famines, and dry cold fogs in
Europe and Asia in the 530s CE (e.g. Stothers and Rampino, 1983;
Rampino et al., 1988; Biintgen et al., 2016). The episodes of cooling
can also be linked to evidence from the North Iceland Shelf indi-
cating dominance of cooler Polar Waters (Fig. 8f, Sicre et al., 2011;
Wanamaker et al,, 2012; Jiang et al., 2015; Reynolds et al., 2016;
Harning et al., 2020a) and greater advection of sea ice (Fig. 8g,
Moros et al.,, 2006; Massé et al., 2008; Andrews et al., 2009;
Cabedo-Sanz et al., 2016; Harning et al., 2019) resulting from
widespread changes in North Atlantic circulation (Fig. 8i, Moffa-
Sanchez and Hall, 2017; Moffa-Sanchez et al.,, 2019). Although
Medieval warmth (~900—1200 CE) is observed in regional CESM1.1
summer temperatures (Fig. 8b), higher SSTs in some Icelandic
fjords (e.g. Moossen et al., 2015) and North Iceland Shelf records
(e.g. Sicre et al., 2011) as well as recessions of both Langjokull and
Drangajokull’s margins (Fig. 8a, Larsen et al., 2011; Harning et al.,
2016a), our composites do not indicate comparable warmth.
Instead, the regime shifts identified in the overall declining BSi and
increasing C/N composite records suggest that the Late Holocene
cooling that culminated in the LIA occurred in steps, and that the
background climate prevented these variables from returning to
their pre-disturbance states. These observations are consistent
with a second phase of persistent summer cooling in CESM1.1 after
1150 CE (Fig. 8b). The composite proxies suggest the coolest climate
of last 10 ka occurred in the late 1800s CE when Langjokull (Flowers
et al., 2007; Larsen et al., 2011, 2015), Drangajokull (Harning et al.,
2016a; Anderson et al., 2018; Brynjoélfsson et al., 2015b) and the
southern outlets of Vatnajokull (Hannesdottir et al., 2015) reached
their maximum glacier extents. At this time CESM1.1 simulates
summer temperatures ~1 °C lower than at the start of the experi-
ment (Fig. 8b, Zhong et al., 2018).
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In addition to natural climate changes and volcanism, the arrival
of human settlers reflects another variable that left a lasting mark
on the Icelandic environment. According to historical accounts
written in Iceland in the 12th and 13th Centuries CE and archeo-
logical research, Iceland was settled ~870 CE (Landnamabdk, i.e. The
book of Settlement). In many cases, the timing of settlement is
based on the occurrence of the Landnam tephra layer (a.k.a. Set-

tlement or VO tephra layer) below archeological remains, which
has been dated in a Greenland ice core to 871 + 2 CE (Gronvold
et al., 1995) and recently revised to 877 + 1 CE (Schmid et al.,
2017). Although at this time Iceland was described as having for-
ests extending from the shoreline to the mountains (e.g. Land-
namabok, i.e The book of Settlement; Smith, 1995, i.e The book of
Settlement; Vésteinsson, 1998, 2000), contemporary descriptions
of the state and extent of birch woodland at the time of settlement
are not available. Several estimates based on historical records,
pollen analyses, old place names and current distribution of
woodlands (Hallsdéttir, 1995; Kristinsson, 1995) have been made
regarding the vegetation cover at the time of settlement, and range

from 8% (Olafsdéttir, 2001) to almost 40% woodland cover
(Bjarnason, 1974). To create pastures for farming, it is assumed that
the settlers cut and burned some of the existing woodlands and
used the wood as building material, fodder, and fuel (e.g. Smith,
1995 and references therein, Tanner et al., 2015). Presumably lit-
tle action was taken to replenish the clear-cut woodlands, and with
the introduction of domestic livestock, natural regeneration was
inhibited (Arnalds, 1987). It is, however, noteworthy that the C/N
composite record indicates a relatively stable condition between
870 and 940 CE. Thus, the Landndm tephra layer does not seem to
have accelerated the rate of C/N in the composites, but the 940s CE
increase in C/N does coincide with the Eldgja eruption, which lasted
from 934 to 941 CE (Thordarson et al., 2001). With the subsequent
occupation and population expansion of humans and livestock in
Iceland, birch woodlands continued to be reduced compromising
the soil protection before reaching their postglacial minimum at
the beginning of 1900s CE (~1% of total land area, Aradottir and
Eysteinsson, 2005).

4. Resolving the evolution of vegetation and soil erosion
across Iceland

4.1. When did plants colonize Iceland following deglaciation?

Securely constraining the timing of plant colonization on Ice-
land is important as it allows us to understand the role of shrub
cover in both the development and stability of soils in the Early
Holocene postglacial environment. However, as of yet, this infor-
mation is lacking. The oldest dated Icelandic lake sediment comes
from Torfdalsvatn (TOREF, Fig. 2) and shows that a variety of pollen
grains from grasses, herbs and woody taxa were present by ~12 ka
BP, although of low concentrations (Bjorck et al., 1992; Rundgren,
1995, see Supporting Information Text S3) and can be obscured
by long-distant transport from southern sources (Birks and Birks,
2000, 2015; Birks, 2003; Williams et al., 2004; Caseldine et al.,
2006). Given that several other Early Holocene records from Ice-
land (>10 ka BP) also preserve overall low pollen concentrations, in
addition to “exotic” tree pollen (i.e. Pinus, Quercus, Corylus, Alnus,
and Ulmus) that have never been reported as macrofossils from
Iceland (Caseldine et al., 2006; Eddudoéttir et al., 2015), the first
appearance of pollen does not necessarily reflect local colonization.
Icelandic plant macrofossils records offer higher taxonomic reso-
lution and a more local signal over pollen, allowing for more secure
interpretations of past plant presence and absence (Fig. 7f,
Eddudottir et al, 2016). Although macrofossil add valuable
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information in paleoecological studies (Birks and Birks, 2000), their
sample size is generally low and rarely captures the full range of
vegetation (Anderson-Carpenter et al., 2011; Alsos et al., 2016b).

Recent analytical advances in sedimentary ancient DNA
(sedaDNA) preserved in lake sediment provide new and improved
paleoecological information (Pedersen et al., 2013; Parducci et al.,
2017; Alsos et al, 2018). Updated plant reference libraries
(Senstebg et al., 2010; Willerslev et al., 2014) enable sedaDNA to
provide more taxa than macrofossils (Alsos et al., 2016b) or pollen
(Niemeyer et al., 2017; Alsos et al., 2018; Edwards et al., 2018).
Moreover, the strong match between lake sediment DNA and
catchment vegetation surveys suggests sedaDNA has a local origin
(Niemeyer et al., 2017; Sjogren et al., 2017; Alsos et al., 2018;
Edwards et al., 2018) compared to foreign pollen grains in Iceland
whose sources are 1000s of km away. The preservation of sedaDNA
fragments is also higher in cool, high-latitude settings where
preservation is naturally improved relative to warmer, mid-latitude
sites (Parducci et al., 2017). As such, recent records from elsewhere
in the high-latitudes, such as Alaska, Arctic Canada, Svalbard and
Norway, have used sedaDNA to successfully address similar
research questions related to plant colonization and succession
(Pedersen et al., 2016; Alsos et al., 2016b, 2020; Crump et al., 2019;
Volstad et al., 2020). As the field continues to expand in terms of
analytical efficiency and taxonomic resolution, the community will
have a growing opportunity to test and apply this novel molecular
approach in Icelandic lake sediments to better constrain the colo-
nization and early evolution of plants on Iceland.

4.2. Does HTM warmth lead to more substantial woodland cover
and stable landscape?

Quantitative temperature reconstructions derived from lake
sediment proxies and glacier modeling simulations place peak
HTM summer warmth at ~3—4 °C above modern in Iceland
(Flowers et al., 2008; Anderson et al., 2018; Harning et al., 2020b).
Our evaluation of high-resolution and well-dated pollen records
from Bardalakjartjorn (BARD) (Eddudoéttir et al., 2016) and Hest-
vatn (HST) suggest that Betula woodlands closely followed the
trends in local summer temperature (Fig. 7) and were likely at their
maximum distribution, both in extent and altitude, at this time.
However, similar to the inherent limitations of pinpointing the
timing of plant colonization in Iceland’s postglacial landscape with
pollen, it is also difficult to draw firm conclusions about the extent
of Betula woodland due to pollen’s efficient aeolian-dispersal.
Kristinsson (1995) assumes that regions above 500—550 m asl
were above tree-line, and that regions between 300 and 500 m asl
often lacked woodland as well. It is also assumed Betula woodlands
were not favored towards stormy coastlines (e.g. Reykjanes and
Melrakkaslétta peninsulas) due to increased wind speeds and salt
aerosols (e.g. Jonsson, 2002; Holtmeier, 2003), along steep slopes
with loose material or periodically flooded areas along glacial rivers
(Kristinsson, 1995), as well as in the harsh environments along
Iceland’s volcanic zones due to frequent volcanic eruptions and ash
deposition. It is also uncertain whether Betula, which today is the
only indigenous tree that forms woodland in Iceland, remained the
sole woodland taxon throughout the Holocene. Pollen of rowan
(Sorbus aucuparia) has been found in Icelandic sediments dating
back 6 to 5 ka BP, but its presence is discontinuous and seldom
reaches 1% (Hallsdottir, 1995). The rare aspen (Populus tremula) is
also a minor component of woodland remnants in Iceland today,
but has not yet been found in pollen records (Hallsddttir, 1995).

In this light, sedaDNA recovered from well-dated lake sediment
records in Iceland offers improved opportunities to contribute to
our understanding of the timing, range and composition of
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woodland cover in Iceland during the HTM and subsequent
millennia. Recent analytical advances in the field of biogeochem-
istry, particularly lipid biomarkers, also provide improved toolsets
to quantify the corresponding evolution of temperature that would,
among other environmental variables, be responsible for changes
in their distribution (e.g. Castaneda and Schouten, 2011; Schouten
et al., 2013). However, before moving forward with these studies
in Iceland, local calibrations are needed. A number of recent studies
have demonstrated the importance of developing local calibrations
to reduce uncertainty and capture the nuances of local environ-
ments in biomarker-derived temperature estimates, such as for
GDGTs (e.g. Russell et al., 2018; Harning et al., 2019b; Feng et al.,
2019) and alkenones (e.g. D’Andrea et al., 2016; Longo et al,
2016). Moreover, studies such as these will also reveal the impact
that other environmental variables (e.g. pH, dissolved oxygen, nu-
trients, etc.) have on the lipid biomarker distributions that may
confound temperature derivations.

4.3. Do prior cold events and periods of tephra deposition
compromise vegetation cover and increase soil erosion?

Landscape destabilization is often triggered by local volcanism,
although the persistence of landscape instability likely reflects the
overarching state of summer climate. During the first 8 ka of our
composite C/N record, we observe short-term pulse-like landscape
instabilities, with more stable conditions in between (Fig. 3c). The
first of these pulses occurred during the Early Holocene following
deposition of the G10ka Series tephra when NH summer insolation
was already at its peak. In those cases where lacustrine sediment
has been found below the G10ka Series tephra, high autochthonous
diatom productivity demonstrates that strong summer insolation
allowed lake-based biota to become established immediately
following catchment deglaciation and before the time of the G10ka
tephra series deposition (e.g. Harning et al, 2016b, 2018a;
Gunnarson, 2017). The composite thickness of multiple tephra
layers within the G10ka tephra series had a drastic impact on
vegetational succession in Iceland for several decades to centuries,
with environmental instability sustained by sandstorms, soil
erosion and mudflows (Hallsdottir and Caseldine, 2005). However,
like our C/N composite, pollen records from north Iceland imply
that despite the ecosystem retrogression, the vegetation recovered
to a state similar to before the tephra deposition within ~100 years
(Rundgren, 1998; Hallsdéttir and Caseldine, 2005; Eddudottir et al.,
2015).

Similar to the timing of the G10ka tephra series deposition,
several other episodes of landscape disturbance occurred during
the warmer than present Early Holocene when soil had been
developing for several millennia. The multiple short-term fluctua-
tions between 9.3 and 8.2 ka BP indicated by the regime shift an-
alyses of our BSi and C/N composites coincide with cooling episodes
recognized in northern North Atlantic marine proxies and sea ice
records (e.g. Olafsdéttir et al, 2010; Quillmann et al, 2012;
Moossen et al., 2015; Jennings et al., 2015). Studies indicate that the
8.2 ka cool event may have lowered MSAT from between 1 and 3 °C
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over a couple of centuries across large parts of the NH (Matero et al.,
2017). In Iceland, Harning et al. (2020b) show similar relatively
lower MSAT between 9.2 and 8.1 ka BP, ranging from ~2 °C above
modern to 3.2 °C above modern after the event. The development
of Betula woodland, which had been expanding in North Iceland,
suffered a setback due to the transient episodes of cooling, partic-
ularly between ~8.8 and 8.0 ka BP, but recovered relatively quickly
thereafter (Hallsdéttir, 1995; Hallsdoéttir and Caseldine, 2005;
Eddudottir et al., 2015, 2018), similar to the recovery of soil stability
as indicated in our C/N record (Fig. 7). The landscape disturbance
observed around 6.7 ka BP in our C/N record started abruptly but
tapers off during the following 500 years, thereby returning to the
pre-disturbance states where organic matter is dominated by
aquatic sources (Fig. 7). It is suggested here that the resulting
landscape instability may relate to local cooling induced by mul-
tiple local fissure eruptions from Katla and Veidivotn-Bardarbunga
volcanic systems that are known to have occurred in the centuries
preceding this time of disruption.

The next major regime shift identified in the proxy composites
starts at 5.5 ka BP with a shift toward less aquatic productivity
related to increasingly cooler summers throughout the Late Holo-
cene. Consistent with an insolation forcing, the brGDGT MSAT from
northwest Iceland document a first-order cooling over this time
interval (Fig. 7b). Although several abrupt shifts identified in the
lake proxy composite may be related to local explosive volcanism
with tephra deposition influencing catchment stability, the lack of a
full recovery to pre-existing values after each perturbation suggests
generally cooler summer temperatures of the Late Holocene led to
decreased Betula woodland cover observed in pollen records
(Fig. 7e). Furthermore, evidence indicates increased periglacial ac-
tivity, and glacier growth in the highlands of Iceland at this time
(e.g. Larsen et al., 2011, 2012; Striberger et al., 2012). This could also
indicate that a certain threshold was reached around 5.5 ka BP,
which resulted in a change in state for the Icelandic landscape
compared to the HTM.

Principal component analyses conducted using high-resolution
multi-proxy records before and after significant Holocene tephra
fall events (Hekla T, 6.1 ka BP; Hekla 4, 4.2 ka BP; Katla N, 3.5 ka BP;
and Hekla 3, 3.0 ka BP) were used to compare ecosystem responses
between four of the seven lakes used in our composites
(Christensen, 2013). In all cases, the tephra ushered in irreversible
changes to the landscape starting at ~5.5 ka BP and intensified after
Hekla 4 (~4.2 ka BP). The background climate state at the time of
tephra fall influenced the length (decades to centuries) and
magnitude of ecosystem perturbations, with more severe re-
sponses in the cooler Late Holocene (Christensen, 2013). Rhyolitic
tephra layers (i.e. Hekla 4 and Hekla 3), which are normally thicker
than basaltic tephra layers, are most disruptive to the landscape
while basaltic tephra (i.e. Hekla T and Katla N) sometimes appear to
improve lake and catchment productivity (Christensen, 2013).
Furthermore, rhyolitic tephra deposition on relatively steep slopes
and with thin soils during episodes of decreasing summer tem-
peratures have the highest probability of producing sustained
transitions into less ecologically productive states. Smaller lakes

Fig. 8. Late Holocene paleoenvironmental records from Iceland and the North Atlantic. a) glacier advance records from Langjokull (annual varve thickness, Larsen et al., 2011) and
Drangajokull (threshold lake sediment records and dead vegetation, Harning et al., 2016a, 2018a), b) CESM JJA transient simulation temperatures over the North Atlantic where red
line denotes 100-yr smoothing (Zhong et al., 2018), ¢) BSi composite for diatom productivity (Geirsdottir et al., 2019), d) C/N composite for landscape stability (Geirsdottir et al.,
2019), e) Betula proportion composite from 25 lake and mire sites in 100-yr bins (Streeter et al., 2015), f) NIS Polar Water mass inferred from planktic foraminifera Nps (Harning
et al,, 2020a) and 'C reservoir offset (ARghey) from an absolutely-dated Arctica islandica shell record (gray, Wanamaker et al., 2012), g) GDGT subT record from MD99-2269 on the
NIS (Harning et al., 2020a) using the local Icelandic calibration (S.E. + 0.4 °C, Harning et al.,, 2019b), h) IP,5 seasonal sea ice record from MD99-2269 (Cabedo-Sanz et al., 2016), i)
difference in the 5'80 of Nps and T. quinqueloba from RAPiD-35-COM as an indicator of the relative presence of Atlantic waters in the Labrador Sea (LS, Moffa-Sanchez and Hall,
2017), j) radiative global volcanic forcing recorded in the polar ice sheets (GVF, Sigl et al., 2015). All records are oriented down for cold. The blue dashed vertical lines in panels
c and d reflect the regime shifts identified in each respective proxy time series that relate to cooler conditions (i.e. reduced productivity and increased soil erosion, see Fig. 3). The
Settlement tephra (i.e. acknowledged timing of human settlement) marked with vertical gray dashed line.
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with greater background primary productivity and relatively thick,
well-vegetated soils mantling low-relief catchments were more
resilient and able to return to pre-eruption states within 100 years
(Christensen, 2013).

For the Hekla 4 eruption, Eddudottir et al. (2017) suggested that
lowland areas with more substantial Betula woodland cover were
more resilient to tephra fall compared to higher elevations sites
that were already at the climatic/ecological limit for Betula. For the
lowland lake, increased flux of minerogenic material is recorded
following Hekla 4, in contrast to negligible changes in the pollen
record (Eddudéttir et al., 2015, 2017). Geirsdéttir et al. (2019)
discuss the potential regional climate and temperature changes
induced by the Hekla 4 eruption pointing out that even though the
great volume (~13.3 km?) of fine to very fine ash emitted may have
been capable of a significant impact on a local to regional scale
lasting from weeks to 3 years, its impact on atmospheric properties
and processes would have been negligible due to the low SO,
content. Although it produced an almost equally voluminous
tephra, the Hekla 3 tephra was notably coarser grained than Hekla 4
tephra (Stevenson et al., 2015) with perhaps less capability to
impact the atmosphere on a regional scale. In any case, these
studies collectively emphasise the impact of tephra fall on soil and
vegetation archives and underscore the importance of vegetation
cover in the event of heavy tephra fall.

For the Hekla 3 eruption, high-resolution proxy data from the
lake Hvitarvatn in the highlands of Iceland (419 m asl) reflect an
abrupt and prolonged (~100 year) perturbation in the wake of
tephra deposition (Larsen et al., 2011). The most probable mecha-
nism responsible for the sudden increase in terrestrial organic
matter following the deposition of the tephra is vegetation damage
due to abrasion and increased soil erosion within the catchment
(Larsen et al., 2011; Christensen, 2013). However, unlike the Hekla 4
tephra disturbances, the composite does not show a discrete
perturbation in C/N values, but instead a step shift in the back-
ground state of landscape instability lasting until ~1.5 ka BP (Fig. 7).
At this time, robust woody vegetation cover that would have sup-
ported soil stability was becoming gradually reduced as a result of
Late Holocene cooling (Fig. 7e, Eddudottir et al., 2016, 2020),
rendering the landscape more susceptible to perturbations in the
regional climate, such as increased advection of Arctic/Waters and
sea ice (Fig. 8). As the vegetation cover was reduced, the landscape
also became less resilient to periods of increased Icelandic tephra
deposition observed in our composite TLF record (Fig. 7h).

This reduced resilience to subsequent and continuing cooling
may explain the turning point in the proxy composites at ~1.5 ka BP
(~500 CE, Fig. 8d), i.e. from event-like soil erosion to irreversible
and persistent soil erosion. Recent reconstructions over the past
two millennia based on tree-ring chronologies (Biintgen et al.,
2016) suggest an unprecedented, long-lasting and spatially syn-
chronized cooling following a cluster of large volcanic eruptions in
536, 540 and 547 CE (Sigl et al., 2015), possibly sustained by ocean
and sea-ice feedbacks, as well as solar minima (Steinhilber et al.,
2009; Miller et al., 2012; McGregor et al., 2015). In addition, a
parallel increase in the amount of cold Arctic/Polar Water and sea
ice off North Iceland (Fig. 8f—h, Cabedo-Sanz et al., 2016; Harning
et al., 2020a) suggests oceanographic cooling could be a leading,
or at least complementary, factor. Similar explanations have been
given for the subsequent Little Ice Age cooling, which started be-
tween 1200 and 1300 CE, culminating ca 1870 in Iceland and likely
helped sustain the already severe soil erosion across Iceland.

Our evaluation of composite lake sediment proxies for soil
erosion suggests that episodic soil erosional events that return to
pre-disturbance states are concentrated during times of relative
warmth whereas periods of soil erosion that cannot rebound to that
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pre-disturbance state occur during relatively cool periods of the
Holocene. Expanding the number of studied lake sites throughout
Iceland across the variable elevations and ecosystems that exist will
undoubtedly contribute to better understanding this pattern of
Holocene soil erosion that we observe. In this regard, there is also
opportunity to apply certain analytical techniques that can refine
organic matter source to lake sediment and more diagnostically
trace contributions of soil input. Recent work from Iceland shows
that brGDGT distributions derived from soil in the lake catchment
differ from those biosynthesized in the lake (Harning et al., 2020b),
similar to evidence from regions elsewhere around the globe (e.g.
Naeher et al., 2014; Martin et al., 2019). Similar promise exists in
studying the chain length distribution of n-alkane and n-alkanoic
acids produced by vegetation (e.g. Ficken et al., 2000; Gao et al,,
2011). However, before downcore application of these proxy tool-
sets, it is imperative to catalogue how both modern soil and plants
are represented in these parameters (e.g. Wang and Wooller, 2006).
Generating local catchment vegetation records from sedaDNA will
also allow the community to better characterize the local impacts of
tephra fall and climate change on ecosystem structure and better
assess its resilience to these processes under different background
climate states.

4.4. Is it possible to deconvolve the role of climate, volcanism and
human activity in Late Holocene soil erosion?

Previous studies have inferred a priori that soil erosion was
initiated by the settlement of Iceland, as a result of overgrazing and
deforestation (e.g. Thorarinsson, 1944, 1961; Dugmore and
Buckland, 1991; Dugmore and Erskine, 1994; Hallsdoéttir, 1995),
with climatic and volcanic forces also contributing at a secondary
level (Thoérarinsson, 1961; Gerrard, 1991). While not disagreeing
that settlement resulted in long-lasting impacts to the Icelandic
landscape (including soil erosion), modeling and empirical evi-
dence suggests that vegetation cover, particularly that of woody
vegetation that support soil stability, was already in steady decline

at this time (e.g. Olafsdottir et al., 2001; Streeter et al., 2015). This
progressive reduction in vegetation cover provides a mechanism by
which significant pre-settlement soil erosion could occur, and
decreasing summer temperatures, local oceanographic cooling and
increased tephra layer deposition provide feasible forcings. As
reviewed above, our composite records suggest event-dominated
landscape instability and soil erosion from the Middle to Late Ho-
locene likely related to large volcanic eruptions during orbitally-
forced high NH summer temperatures (Fig. 7). However, a certain
threshold was reached ~5 ka BP following reduced NH summer
insolation resulting in a more vulnerable environment to explosive
tephra producing volcanism, and again around ~500 CE, several
centuries before the acknowledged settlement of Iceland, when the
event dominated erosional activity change to increased and irre-
versible soil erosion (Fig. 8).

Although the majority of the earliest archeological sites are
dated to the latter part of the 9th century and the 10th century,
other sources suggest Iceland may have been inhabited earlier, at
least seasonally (e.g. Einarsson, 2015; Einarsson, 2017, Einarsson,
2017). Early Icelandic sagas (Islendingabok, i.e, The book of Ice-
landers) suggest that Papar (Irish Monks) may have been living in
parts of southeastern Iceland (the island of Papey), although
definitive archeological evidence is lacking (Eldjarn, 1989). Addi-
tional indications for an earlier period of settlement are turf walls
found below the Landndm tephra within Reykjavik and on Vest-
mannaeyjar, islands off the south coast, where excavations revealed
burnt peat and carbonized barley grains (e.g. Batt et al., 2015). As
barley is not indigenous to Iceland, settlers must have brought it in.
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The turf walls show that people resided in Iceland before the
Landnam tephra was deposited. However, there are no secure dates
that demonstrate whether settlement took place immediately or
many decades before the eruption responsible for the deposition of
the Landndm tephra layer (Vésteinsson and McGovern, 2012).
Consequently, the actual timing of initial settlement remains un-
certain, leaving the question open as to whether the changes we
observe in the soil record at ~500 CE correspond to earlier human
arrival or not. What is certain though is that some human settle-
ments were established immediately after 870 AD, and most
habitable land was occupied in the subsequent centuries.

Deconvolving the relative roles of climate, volcanism and hu-
man activity in soil erosion of the last two millennia remains a
challenge but can be better addressed with new molecular ap-
proaches. In addition to proxies such as carbonized barley grains
(Batt et al., 2015) and potentially coprophilous fungal spores
(however, also produced by birds, Eddudottir et al., 2015, 2020),
diagnostic biomarkers exist that can record human activity and its
effect on the local environment. Examples include fecal sterols of
omnivores that differ from plant sterols due to microbially-
mediated degradation pathways within the intestinal tracts of
higher mammals (e.g. Bull et al., 2002; Tyagi et al., 2007), and bile
acids that may be capable of distinguishing whether the fecal
material originates from ruminants or human sources (deoxycholic
vs lithocholic acid, Bull et al., 2002). Fire biomarkers, such as
polycyclic aromatic hydrocarbons (PAHs) formed during the
incomplete combustion of organic material (e.g. Simoneit, 2002;
Lima et al., 2005), may also be able to complement fecal sterols and
bile acids, especially given that their short atmospheric residence
time (hours to days) means they record local burning events
(Lammel et al., 2009; Denis et al., 2012). Recent research has
highlighted that various combinations of these molecular proxies
can effectively trace the timing of human arrival in lacustrine set-
tings (e.g. D’Anjou et al., 2012; Musa Bandowe et al., 2014;
Argiriadis et al., 2018; Vachula et al., 2019; Sear et al., 2020), and
therefore, hold promise for application in Iceland as well. Once
constrained, pairing these records with independent biomarker
and DNA-based reconstructions of climate and vegetation change
may provide the necessary tools to deconvolve the relative roles of
climate, volcanism and human activity in soil erosion in Iceland
during the last two millennia.

5. Conclusions

In this review, we discuss the impact of climate, vegetation,
volcanism and human settlement on Iceland’s Holocene landscape
as interpreted from proxies preserved in high resolution and well-
dated lake sediment records. Our synthesis suggests that land-
scapes that experienced episodes of soil erosion during times of
relative warmth (Early to Middle Holocene) returned to pre-
disturbance states, whereas periods of soil erosion that occurred
during relatively cool periods of the Late Holocene did not rebound
to their pre-disturbance state. Most of the soil erosion episodes that
occurred during times of relative warmth are likely related to large
fissure and/or explosive volcanic eruptions from Iceland. A
threshold reached around 5.5 ka BP during rapidly declining NH
summer insolation, resulted in a state change for the Icelandic
landscape compared to the HTM, with reduced resilience to dis-
turbances. As Late Holocene vegetation cover was progressively
reduced by decreasing summer insolation, local oceanographic
cooling, and increased tephra layer deposition, widespread and
irreversible soil erosion appears to have begun before human set-
tlement. With the subsequent occupation and population expan-
sion of humans and livestock in Iceland, woodland clearance and
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grazing continued to compromise the soil protection that continues
today.

Although considerable progress has been made in the devel-
opment of high-resolution and well-dated lake sediment records in
Iceland, this review brought forth several outstanding questions
that cannot be addressed with classic toolsets. These realizations
motivate us to not only continue working with more traditional
qualitative proxies, but to also take advantage of emerging
analytical techniques to quantify past rates of environmental
change we detail here. Among these new toolsets are sedaDNA that
can more accurately address past changes in local vegetation cover,
and lipid biomarkers that can quantify paleotemperature as well as
home in on past organic matter source changes related to soil
erosion. Before downcore application in lake sediment records, we
stress that local calibrations for the given proxy should be devel-
oped. The combination of these new paleoclimate approaches with
training sets that inform how the proxies behave in the local Ice-
landic environment will better position the community to decon-
volve the impacts of climate, volcanism and human settlement on
the history and origins of local and persistent soil erosion.
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