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Aring-like accretion structure in M87
connectingits blackhole and jet
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The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet
formation'?. Event Horizon Telescope observations of M87 in 2017, at awavelength of
1.3 mm, revealed aring-like structure, which was interpreted as gravitationally lensed
emission around a central black hole’. Here we report images of M87 obtained in 2018,
at awavelength of 3.5 mm, showing that the compact radio core is spatially resolved.
High-resolution imaging shows a ring-like structure of 8.4:%7 Schwarzschild radiiin
diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm
isalsolarger thanthatat 1.3 mm. This larger and thicker ring indicates a substantial
contribution from the accretion flow with absorption effects, in addition to the
gravitationally lensed ring-like emission. The images show that the edge-brightened
jetconnectsto the accretion flow of the black hole. Close to the black hole, the
emission profile of the jet-launching region is wider than the expected profile of a
black-hole-driven jet, suggesting the possible presence of a wind associated with the

accretion flow.

On 14-15 April 2018, we performed very-long-baseline interferom-
etry (VLBI) observations of M87 with the Global Millimetre VLBI Array
(GMVA) complemented by the phased Atacama Large Millimetre/
submillimetre Array (ALMA) and the Greenland Telescope (GLT) ata
wavelength of 3.5 mm (86 GHz; Supplementary Information section1).
The addition of the phased ALMA and GLT to the GMVA significantly
improved the north-south resolution (by a factor of around 4) and

baseline coverageinthe direction perpendicular to the M87jet. InFig.1,
we show the resulting maps of M87, with a triple-ridged jet emerging
fromaspatially resolved radio core, which appears as a faint ring, with
two regions of enhanced brightness in the northward and southward
sections of the ring (Supplementary Information sections 2-4).

The most important feature of the image in Fig. 1a is the spatially
resolved radio core. With the nominal resolution of our VLBl array, we

A list of affiliations appears at the end of the paper.
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Fig.1|High-resolutionimages of M87 at3.5 mm obtained on14-15 April
2018. a, Uniformly weighted CLEAN (ref. ) image. Thefilled ellipse in the
lower-left cornerindicates therestoring beam, whichis an elliptical Gaussian
fitted to the mainlobe of the synthesized beam (fullwidth at half-maximum =
79 pas x 37 pas; position angle = -63°). Contours show the source brightness in
the standard radio convention of flux density per beam. The contour levels
startat 0.5 mJy perbeamandincreaseinsteps of factors of 2. The peak flux
densityis 0.18 Jy perbeam.b, The central region of theimage as shownina, but
theimageis now restored witha circular Gaussian beam of 37 pas size (fullwidth
at half-maximum), corresponding to the minor axis of theellipticalbeamin a.
The peak flux densityis 0.12Jy per beam. The contour levels start at 0.4 mJy per
beamandincreaseinsteps of factors of 2. ¢, A magnification of the central
coreregionusingregularized maximum likelihood (RML) imaging methods.

see two bright regions of emission oriented in the north-south direc-
tion at the base of the northern and southern jet rails (Fig. 1a). Moti-
vated by an obvious minimum (null) in the visibility amplitudes
(Supplementary Figs.10 and 11), we applied newly developed imaging
methods that can achieve a higher angular resolution. This was done
with and without subtracting the outer jet emission, to have a robust
assessment of the parameters of the core structure (Supplementary
Information section 3). From these images and by comparing ring-and
non-ring-like modelfitsin the visibility domain, we conclude that the
structure seen with the nominal resolutionis the signature of an under-
lying ring-like structure with a diameter of 64*4 pas (Supplementary
Information sections 5-7), which is most apparent in slightly
super-resolved images (Fig.1b,c). Adopting adistance of D =16.8 Mpc
andablack hole mass of M = 6.5 x 10°M, (where M, is the solar mass)*,
this angular diameter translates to a diameter of 8.4*%; Schwarzs-

Relative dec (mas)

\ Brightness temperature (109 K)

0.10

0.05 0 -0.05 -0.
Relative RA (mas)

Contoursstartat 4% of the peak and increase insteps of factors of 2. The
solid blue circle of diameter 64 pas denotes the measured size of the ring-like
structureat3.5mm, whichis approximately 50%larger than the EHT 1.3-mm
ring with adiameter of 42 pas (dashed black circle)*. For each panel, the colour
map denotes the brightness temperature Tinkelvin, whichisrelated to the
flux density Sinjansky as givenin the equation T=21%(2k,Q) 'S, where Ais the
wavelength, k;is the Boltzmann constant and Qis the solid angle (shownona
square-rootscale). The CLEANimages are the mean of the best-fitting images
produced independently by team members, and the RML image is the mean
of the optimal set of SMILIimages (Supplementary Information section 3).
dec, declination; RA, right ascension. Scalebars, 0.5 mas (a), 0.2 mas (b) and
50 pas(c).

child radii (R, = 2GM/c?, where G is the gravitational constant, M the
black hole mass and c the speed of light). On the basis of imaging
analysis and detailed model fitting, we found that a thick ring
(width =20 pas) is preferred over a thin ring (Supplementary Informa-
tion). We note that the observed azimuthal asymmetry in the intensity
distribution along the ring-like structure may (at least partly) be due
to the effects from the non-uniform (u, v) coverage (Supplementary
Information section 4), which also would explain the north-south
dominance of the emissionin the ring. Moreover, this double structure
may also mark the two footpoints of the northern and southernridge
ofthe edge-brightened jet emission, whichis seen further downstream.
We note that previous GMVA observations’—without the inclusion of
ALMA and the GLT—had a lower angular resolution, which was insuf-
ficient to show the ring—jet connection, but it is seen in the present
images. We further note that the published 1.3-mm images did not
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Fig.2|RMLimages and modelimagesat3.5 mmand1.3 mm.a-f,RML
images (a,d) and modelimages (b,c,e,f) obtained at 3.5 mm (a-c)and 1.3 mm
(d-f).a, The3.5-mmimage obtained on14-15 April 2018 is the same as in Fig. 1c
butshownonalinearbrightnessscale.b,e, The thermal synchrotron model
fromthe accretion flow assumes synchrotron emission fromelectrons witha
Maxwellian energy distribution. c,f, The non-thermal synchrotron model from
thejetregionassumessynchrotron emission from electrons with apower-law
energy distribution.d, The1.3-mm EHT image obtained on11 April 2017,
reconstructed with the publicly available data® and imaging pipeline® using
the EHT-imaging library?. Note that the differences in the azimuthal intensity

reveal the inner jet emission because of (u, v)-coverage limitations® (see
also recent re-analysis results”®).

Thering-like structure observed at 3.5 mmdiffers fromthe one seen
at 1.3 mm. The ring diameter at 3.5 mm (64§ pas) is about 50% larger
than that at 1.3 mm (42 + 3 pas; ref. *). This larger size at 3.5 mm is not
caused by observational effects (for example, calibration or (u, v) cov-
erage) and is already obvious from the (u, v)-distance plot of the visi-
bilities (Supplementary Figs. 10 and 11). We note that the location of
the visibility minimum, which scales inversely with the ring size, at
3.5mmisataround2.3 GA (Supplementary Information section 6). At
1.3 mm, the first visibility minimum is seen at a significantly larger
(u, v) distance of about 3.4 GA for the Event Horizon Telescope (EHT)
data®. We find that the brightness temperature of the ring-like structure
at3.5 mmisapproximately 1-2 x 10*° K and the total compact flux den-
sity isroughly 0.5-0.6 Jy (Supplementary Table 2).

Thereported fine-scale structure of the M87 jet base is substantially
different from the classic morphology of radio-loud active galactic
nuclei, characterized by a compact, unresolved component (core),
from which a bright, collimated jet of plasma emanates and prop-
agates downstream. Figure 1 shows a spatially resolved radio core
with a ring-like structure and a triple-ridge jet structure'® emerging
to the west, with sharp gaps of emission between the ridges. Such a
triple-ridge structure has been seen on larger scales (z100R,) in pre-
vious observations®. The location of the central ridge, which has an
intensity of about 60% of that of the outer jet ridges, suggests the
presence of a central spine, which emerges from the ring centre. The
jetexpands parabolically along a position angle of approximately —67°
(Supplementary Information section 8), which is consistent with the
jetmorphology seen in previous studies®. Although previous images
at 7mm and 3.5 mm show some evidence for counterjet emission>",
we did not find any significant emission from a counterjet in this 2018
observation (upper limit of about 1 mJy per beam within 0.1-0.3 mas),
possibly owing to its low brightness and limitations in the dynamical
range.
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distributionin the two observed images are probably because of time variability
and/or blending effects with the underlyingjet footpoints. Although the
morphology of bothmodelsis consistent with the observationsat1.3 mm
(eandf), thelarger and thicker ring-like structure at 3.5 mm can be understood
by the opacity effect atlonger wavelengths?, preferentially explained by thermal
synchrotron absorption from the accretion flow region (b). For comparison,
reconstructed and simulated images are convolved with a circular Gaussian
beam of 27 pas (3.5 mm) and 10 pas (1.3 mm) and are shown in alinear colour
scale. Thebluecircle denotes the measured ring diameter of 64 pasat3.5 mm
and42pasatl.3 mm.

Because we observed a ring-like structure, it is natural to assume
thattheblack holeislocated atits centre. Given the measured bright-
ness temperature of about 10° K being typical for active galactic
nuclei cores, synchrotron emission is believed to be responsible for
the 3.5-mm ring-like structure. At 1.3 mm, it has been shown that the
emission is always strongly lensed into the observed ring shape, regard-
less of whether it originates near the equatorial plane associated with
theaccretion flow or the funnel wall jet (jet sheath)'. As shown below,
ourobservations at 3.5 mm can now constrain the spatial location and
energy distribution of the electrons that are responsible for the mil-
limetre emission.

The 2017 EHT observations have confirmed the nature of the accret-
ingblack holein M87 to bein the low-Eddington regime, whichis well
described by a radiatively inefficient accretion flow (RIAF)"'2. On the
basis of these studies, we model the spectral energy distribution and
morphology of the horizon-scale structure assuming the emission is
dominated either by the jet or by the accretion flow. This is done by
applyingageneralrelativistic radiative transfer to general relativistic
magnetohydrodynamic simulations for an RIAF surrounding arotat-
ingblack hole (Supplementary Information section 9). The boundary
betweentheaccretion flow andjetis defined as the surface where the
magnetic energy density equals the rest-mass energy density of the
fluid (thatis, b*/pc*=1; where bis magnetic field strength, p the plasma
mass density and c the speed of light). In the funnel region, where
b*/pc? > 1, synchrotron emission from electrons with a power-law
energy distributionis assumed. Otherwise, where b*/pc? < 1, synchro-
tron emission from electrons with a Maxwellian energy distribution
is considered.

The properties of the non-thermal synchrotron model (from the
jet) and the thermal synchrotron model (from the accretion flow)
are normalized to fit the core flux density at 1.3 mm observed by the
EHT™. For both models, the plasma around the black hole is opti-
cally thin at 1.3 mm. The resultant model images (Fig. 2e,f) are con-
sistent with the observed morphology in terms of flux density, ring
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Fig.3|Jetcollimation profile. Red filled circles mark the measured jet
transverse width for the observationsreported here. The error bars (10) are
withinthe symbols (see Supplementary Information section 8 for more details
onmeasuring the jet width). Grey filled squares, dots and triangles denote
previous measurements of the width on larger scales'®'>?%, for which a power-
law fit with a fixed power-law index of 0.58 is shown by the dashed line.
Thevertical dashed line marks the position at which the intrinsic half-opening
angle O of the fitted parabolicjet equals the jet viewing angle of 8, =17° (that s,
boundary condition for adown-the-pipe jet*’). The horizontal blue solid line
marks the measured diameter of the ring at 3.5 mm, whereas the horizontal
black dashed line marks the ring diameter measured withthe EHT at1.3 mm.In
eachcase, theshaded areadenotes the corresponding measurement uncertainty.
Thelight-grey-shaded area denotes the outermost streamlines of the envelope
of the parabolic jet from theoretical simulations (projected for 6, =17°; ref.*°)
thatare anchored at the event horizon® for arange of black hole spins
(dimensionless spin parameters,a=0.0-0.9). The lower and upper boundaries
ofthisshaded area correspond to the highest (@ = 0.9) and lowest (a = 0.0) spin,
respectively. As thejet footpointis anchored at the event horizon, some
flattening of the jet width profileis expected near the black hole. Thisis further
enhanced by geometrical projection effectsin the region where theintrinsicjet
half-opening angle (9) is larger than the jet viewing angle (8,). The quasi-
cylindrical shapeinregionlrequiressome changeinthe physical conditions to
connect theinnermost Blandford-Znajek jet from the event horizon to the
upstreamjet (regionI).

diameter and width (Fig. 2d). In both models, the ring-like structure
observed at 1.3 mm is dominated by lensed emission around the
black hole.

At 3.5 mm, the plasma in both models becomes optically thick
because of synchrotron self-absorption, resulting in a ring-like struc-
ture (Fig.2b,c), diameter of whichislarger thanthatat 1.3 mm. However,
owing to the different emissivity and absorption coefficients for ther-
mal and non-thermal synchrotron emission®, the diameter of the result-
ing ring-like structure at 3.5 mm for the non-thermal model (Fig. 2c)
would be smaller (30%) than our observed value. By contrast, the
thermalmodel (Fig.2b) is able to produce aring-like structure consist-
entwith the 3.5-mm observations (Fig. 2a), suggesting that the thermal
synchrotron emission from the accretion flow region plays animportant
partintheinterpretation of the 3.5 mm GMVA observations.

We note a marginal variability of the 1.3-mm flux density between
April 2017 and April 2018 (ref. *). With the assumption that the over-
all ring size (determined by the black hole) observed at 1.3 mm in
April 2017 did not change significantly®*’, a comparison of the 1.3-mm
and 3.5-mm images with the model predictions allows us to conclude
thatthelargerringsize at 3.5 mmindicates the detection of anaccretion
flow, whichis affected by synchrotron self-absorption (opacity) effects.

Our 2018 images allow us to study the jet collimation below the
roughly 0.8 mas (about100 R;) scalein detail (Fig. 3). We note achange
in the parabolic expansion near the ring (0.2 mas, region ), where
the measured jet width forms a plateau and becomes larger than the
parabolic jet profile seen further downstream (= 0.2 mas; regions I
and 111)>1677,

The observed parabolic shapeis consistent with ablack-hole-driven
jetthrough the Blandford-Znajek'® process'. We note that the Bland-
ford-Znajek jet model can produce a quasi-symmetric structure of
limb-brightened jet emissionif the black hole spinis moderately large
(a = 0.5), whereas the disk-driven jet model cannot®. Following previ-
ous studies', we examine the envelope of the Blandford-Znajek jet
(light-grey-shaded area, Fig. 3). The observed jet width in the inner-
most region (region lin Fig. 3), however, is larger than this expected
Blandford-Znajek jet envelope. We point out that awide opening angle
Blandford-Znajek jet launched fromastrongly magnetized accretion
flow (the so-called magnetically arrested disk)? may have difficulty in
explaining this excess jet width. Therefore, such width-profile flatten-
ing suggests an extra emission component outside the Blandford-
Znajek jet.

Inadditiontothejet, high-massloaded, gravitationally unbound and
non-relativistic winds have been found in RIAF simulations®*. They are
driven by the combination of centrifugal force* and gas and magnetic
pressure” and are considered as an essential component collimating
the Blandford-Znajek jetinto a parabolic shape'®*. Non-thermal elec-
tronsaccelerated by physical processes such as magnetic reconnection
and shocks presumably exist in the wind. The synchrotronradiation of
these non-thermal electrons may be responsible for this extraemission
component* outside the Blandford-Znajek jet.
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Data availability

The ALMAinternal baseline datacanberetrieved from the ALMA data
portal (https://almascience.eso.org/alma-data) under the project code
2017.1.00842.V. The calibrated VLBl dataused in this paper are used in
acontinuing project but can be made available on reasonable request
from the corresponding authors.

Code availability

Data processing and simulation softwares used in the paper, includ-
ing AIPS (http://www.aips.nrao.edu/index.shtml), DIFMAP (https://
sites.astro.caltech.edu/-tjp/citvib), SMILI (https://github.com/astros-
mili/smili) and the EHT-imaging library (https://github.com/achael/
eht-imaging), are publicly available. The perceptually uniform colour
maps for image visualization are available from the ehtplot library
(https://github.com/liamedeiros/ehtplot). The general relativistic
magnetohydrodynamic simulation and general relativistic radiative
transfer are performed with publicly available codes using HARM
(https://rainman.astro.illinois.edu/codelib) and ODYSSEY (https://
github.com/hungyipu/Odyssey).
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