
686 | Nature | Vol 616 | 27 April 2023

Article

A ring-like accretion structure in M87 
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The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet 
formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 
1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed 
emission around a central black hole3. Here we report images of M87 obtained in 2018, 
at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. 
High-resolution imaging shows a ring-like structure of 8.4−1.1

+0.5 Schwarzschild radii in 
diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm 
is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial 
contribution from the accretion flow with absorption effects, in addition to the 
gravitationally lensed ring-like emission. The images show that the edge-brightened 
jet connects to the accretion flow of the black hole. Close to the black hole, the 
emission profile of the jet-launching region is wider than the expected profile of a 
black-hole-driven jet, suggesting the possible presence of a wind associated with the 
accretion flow.

On 14–15 April 2018, we performed very-long-baseline interferom-
etry (VLBI) observations of M87 with the Global Millimetre VLBI Array 
(GMVA) complemented by the phased Atacama Large Millimetre/
submillimetre Array (ALMA) and the Greenland Telescope (GLT) at a 
wavelength of 3.5 mm (86 GHz; Supplementary Information section 1). 
The addition of the phased ALMA and GLT to the GMVA significantly 
improved the north–south resolution (by a factor of around 4) and 

baseline coverage in the direction perpendicular to the M87 jet. In Fig. 1, 
we show the resulting maps of M87, with a triple-ridged jet emerging 
from a spatially resolved radio core, which appears as a faint ring, with 
two regions of enhanced brightness in the northward and southward 
sections of the ring (Supplementary Information sections 2–4).

The most important feature of the image in Fig. 1a is the spatially 
resolved radio core. With the nominal resolution of our VLBI array, we 
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see two bright regions of emission oriented in the north–south direc-
tion at the base of the northern and southern jet rails (Fig. 1a). Moti-
vated by an obvious minimum (null) in the visibility amplitudes 
(Supplementary Figs. 10 and 11), we applied newly developed imaging 
methods that can achieve a higher angular resolution. This was done 
with and without subtracting the outer jet emission, to have a robust 
assessment of the parameters of the core structure (Supplementary 
Information section 3). From these images and by comparing ring- and 
non-ring-like model fits in the visibility domain, we conclude that the 
structure seen with the nominal resolution is the signature of an under-
lying ring-like structure with a diameter of 64−8

+4 µas (Supplementary 
Information  sections 5–7), which is most apparent in slightly 
super-resolved images (Fig. 1b,c). Adopting a distance of D = 16.8 Mpc 
and a black hole mass of M = 6.5 × 109M☼ (where M☼ is the solar mass)4, 
this angular diameter translates to a diameter of 8.4−1.1

+0.5  Schwarzs-

child radii (Rs = 2GM/c2, where G is the gravitational constant, M the 
black hole mass and c the speed of light). On the basis of imaging 
analysis and detailed model fitting, we found that a thick ring 
(width ≳ 20 µas) is preferred over a thin ring (Supplementary Informa-
tion). We note that the observed azimuthal asymmetry in the intensity 
distribution along the ring-like structure may (at least partly) be due 
to the effects from the non-uniform (u, v) coverage (Supplementary 
Information section 4), which also would explain the north–south 
dominance of the emission in the ring. Moreover, this double structure 
may also mark the two footpoints of the northern and southern ridge 
of the edge-brightened jet emission, which is seen further downstream. 
We note that previous GMVA observations5—without the inclusion of 
ALMA and the GLT—had a lower angular resolution, which was insuf-
ficient to show the ring–jet connection, but it is seen in the present 
images. We further note that the published 1.3-mm images did not 
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Fig. 1 | High-resolution images of M87 at 3.5 mm obtained on 14–15 April 
2018. a, Uniformly weighted CLEAN (ref. 6) image. The filled ellipse in the 
lower-left corner indicates the restoring beam, which is an elliptical Gaussian 
fitted to the main lobe of the synthesized beam (fullwidth at half-maximum =  
79 µas × 37 µas; position angle = −63°). Contours show the source brightness in 
the standard radio convention of flux density per beam. The contour levels 
start at 0.5 mJy per beam and increase in steps of factors of 2. The peak flux 
density is 0.18 Jy per beam. b, The central region of the image as shown in a, but 
the image is now restored with a circular Gaussian beam of 37 µas size (fullwidth 
at half-maximum), corresponding to the minor axis of the elliptical beam in a. 
The peak flux density is 0.12 Jy per beam. The contour levels start at 0.4 mJy per 
beam and increase in steps of factors of 2. c, A magnification of the central  
core region using regularized maximum likelihood (RML) imaging methods. 

Contours start at 4% of the peak and increase in steps of factors of 2. The  
solid blue circle of diameter 64 µas denotes the measured size of the ring-like 
structure at 3.5 mm, which is approximately 50% larger than the EHT 1.3-mm 
ring with a diameter of 42 µas (dashed black circle)4. For each panel, the colour 
map denotes the brightness temperature T in kelvin, which is related to the  
flux density S in jansky as given in the equation T = λ2(2kBΩ)−1S, where λ is the 
wavelength, kB is the Boltzmann constant and Ω is the solid angle (shown on a 
square-root scale). The CLEAN images are the mean of the best-fitting images 
produced independently by team members, and the RML image is the mean  
of the optimal set of SMILI images (Supplementary Information section 3).  
dec, declination; RA, right ascension. Scale bars, 0.5  mas (a), 0.2 mas (b) and 
50  µas (c).
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reveal the inner jet emission because of (u, v)-coverage limitations6 (see 
also recent re-analysis results7,8).

The ring-like structure observed at 3.5 mm differs from the one seen 
at 1.3 mm. The ring diameter at 3.5 mm (64−8

+4 µas) is about 50% larger 
than that at 1.3 mm (42 ± 3 µas; ref. 4). This larger size at 3.5 mm is not 
caused by observational effects (for example, calibration or (u, v) cov-
erage) and is already obvious from the (u, v)-distance plot of the visi-
bilities (Supplementary Figs. 10 and 11). We note that the location of 
the visibility minimum, which scales inversely with the ring size, at 
3.5 mm is at around 2.3 Gλ (Supplementary Information section 6). At 
1.3 mm, the first visibility minimum is seen at a significantly larger  
(u, v) distance of about 3.4 Gλ for the Event Horizon Telescope (EHT) 
data9. We find that the brightness temperature of the ring-like structure 
at 3.5 mm is approximately 1–2 × 1010 K and the total compact flux den-
sity is roughly 0.5–0.6 Jy (Supplementary Table 2).

The reported fine-scale structure of the M87 jet base is substantially 
different from the classic morphology of radio-loud active galactic 
nuclei, characterized by a compact, unresolved component (core), 
from which a bright, collimated jet of plasma emanates and prop-
agates downstream. Figure 1 shows a spatially resolved radio core 
with a ring-like structure and a triple-ridge jet structure10 emerging 
to the west, with sharp gaps of emission between the ridges. Such a 
triple-ridge structure has been seen on larger scales (≳100Rs) in pre-
vious observations5. The location of the central ridge, which has an 
intensity of about 60% of that of the outer jet ridges, suggests the 
presence of a central spine, which emerges from the ring centre. The 
jet expands parabolically along a position angle of approximately −67° 
(Supplementary Information section 8), which is consistent with the 
jet morphology seen in previous studies5. Although previous images 
at 7 mm and 3.5 mm show some evidence for counterjet emission5,11, 
we did not find any significant emission from a counterjet in this 2018 
observation (upper limit of about 1 mJy per beam within 0.1–0.3 mas), 
possibly owing to its low brightness and limitations in the dynamical 
range.

Because we observed a ring-like structure, it is natural to assume 
that the black hole is located at its centre. Given the measured bright-
ness temperature of about 1010 K being typical for active galactic 
nuclei cores, synchrotron emission is believed to be responsible for 
the 3.5-mm ring-like structure. At 1.3 mm, it has been shown that the 
emission is always strongly lensed into the observed ring shape, regard-
less of whether it originates near the equatorial plane associated with 
the accretion flow or the funnel wall jet ( jet sheath)12. As shown below, 
our observations at 3.5 mm can now constrain the spatial location and 
energy distribution of the electrons that are responsible for the mil-
limetre emission.

The 2017 EHT observations have confirmed the nature of the accret-
ing black hole in M87 to be in the low-Eddington regime, which is well 
described by a radiatively inefficient accretion flow (RIAF)1,12. On the 
basis of these studies, we model the spectral energy distribution and 
morphology of the horizon-scale structure assuming the emission is 
dominated either by the jet or by the accretion flow. This is done by 
applying a general relativistic radiative transfer to general relativistic 
magnetohydrodynamic simulations for an RIAF surrounding a rotat-
ing black hole (Supplementary Information section 9). The boundary 
between the accretion flow and jet is defined as the surface where the 
magnetic energy density equals the rest-mass energy density of the 
fluid (that is, b2/ρc2 = 1; where b is magnetic field strength, ρ the plasma 
mass density and c the speed of light). In the funnel region, where 
b2/ρc2 > 1, synchrotron emission from electrons with a power-law 
energy distribution is assumed. Otherwise, where b2/ρc2 < 1, synchro-
tron emission from electrons with a Maxwellian energy distribution 
is considered.

The properties of the non-thermal synchrotron model (from the 
jet) and the thermal synchrotron model (from the accretion flow) 
are normalized to fit the core flux density at 1.3 mm observed by the 
EHT12. For both models, the plasma around the black hole is opti-
cally thin at 1.3 mm. The resultant model images (Fig. 2e,f) are con-
sistent with the observed morphology in terms of flux density, ring 
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Fig. 2 | RML images and model images at 3.5 mm and 1.3 mm. a–f, RML  
images (a,d) and model images (b,c,e,f) obtained at 3.5 mm (a–c) and 1.3 mm 
(d–f). a, The 3.5-mm image obtained on 14–15 April 2018 is the same as in Fig. 1c 
but shown on a linear brightness scale. b,e, The thermal synchrotron model 
from the accretion flow assumes synchrotron emission from electrons with a 
Maxwellian energy distribution. c,f, The non-thermal synchrotron model from 
the jet region assumes synchrotron emission from electrons with a power-law 
energy distribution. d, The 1.3-mm EHT image obtained on 11 April 2017, 
reconstructed with the publicly available data9 and imaging pipeline6 using  
the EHT-imaging library26. Note that the differences in the azimuthal intensity 

distribution in the two observed images are probably because of time variability 
and/or blending effects with the underlying jet footpoints. Although the 
morphology of both models is consistent with the observations at 1.3 mm  
(e and f), the larger and thicker ring-like structure at 3.5 mm can be understood 
by the opacity effect at longer wavelengths27, preferentially explained by thermal 
synchrotron absorption from the accretion flow region (b). For comparison, 
reconstructed and simulated images are convolved with a circular Gaussian 
beam of 27 µas (3.5 mm) and 10 µas (1.3 mm) and are shown in a linear colour 
scale. The blue circle denotes the measured ring diameter of 64 µas at 3.5 mm 
and 42 µas at 1.3 mm.
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diameter and width (Fig. 2d). In both models, the ring-like structure 
observed at 1.3 mm is dominated by lensed emission around the  
black hole.

At 3.5 mm, the plasma in both models becomes optically thick 
because of synchrotron self-absorption, resulting in a ring-like struc-
ture (Fig. 2b,c), diameter of which is larger than that at 1.3 mm. However,  
owing to the different emissivity and absorption coefficients for ther-
mal and non-thermal synchrotron emission13, the diameter of the result-
ing ring-like structure at 3.5 mm for the non-thermal model (Fig. 2c) 
would be smaller (≳30%) than our observed value. By contrast, the 
thermal model (Fig. 2b) is able to produce a ring-like structure consist-
ent with the 3.5-mm observations (Fig. 2a), suggesting that the thermal 
synchrotron emission from the accretion flow region plays an important 
part in the interpretation of the 3.5 mm GMVA observations.

We note a marginal variability of the 1.3-mm flux density between 
April 2017 and April 2018 (ref. 14). With the assumption that the over-
all ring size (determined by the black hole) observed at 1.3 mm in  
April 2017 did not change significantly3,15, a comparison of the 1.3-mm 
and 3.5-mm images with the model predictions allows us to conclude 
that the larger ring size at 3.5 mm indicates the detection of an accretion 
flow, which is affected by synchrotron self-absorption (opacity) effects.

Our 2018 images allow us to study the jet collimation below the 
roughly 0.8 mas (about 100 Rs) scale in detail (Fig. 3). We note a change 
in the parabolic expansion near the ring (≲0.2 mas, region I), where 
the measured jet width forms a plateau and becomes larger than the 
parabolic jet profile seen further downstream (≳ 0.2 mas; regions II 
and III)5,16,17.

The observed parabolic shape is consistent with a black-hole-driven 
jet through the Blandford–Znajek18 process19. We note that the Bland-
ford–Znajek jet model can produce a quasi-symmetric structure of 
limb-brightened jet emission if the black hole spin is moderately large 
(a ≳ 0.5), whereas the disk-driven jet model cannot20. Following previ-
ous studies19, we examine the envelope of the Blandford–Znajek jet 
(light-grey-shaded area, Fig. 3). The observed jet width in the inner-
most region (region I in Fig. 3), however, is larger than this expected 
Blandford–Znajek jet envelope. We point out that a wide opening angle 
Blandford–Znajek jet launched from a strongly magnetized accretion 
flow (the so-called magnetically arrested disk)21 may have difficulty in 
explaining this excess jet width. Therefore, such width-profile flatten-
ing suggests an extra emission component outside the Blandford–
Znajek jet.

In addition to the jet, high-mass loaded, gravitationally unbound and 
non-relativistic winds have been found in RIAF simulations22,23. They are 
driven by the combination of centrifugal force24 and gas and magnetic 
pressure23 and are considered as an essential component collimating 
the Blandford–Znajek jet into a parabolic shape19,25. Non-thermal elec-
trons accelerated by physical processes such as magnetic reconnection 
and shocks presumably exist in the wind. The synchrotron radiation of 
these non-thermal electrons may be responsible for this extra emission 
component24 outside the Blandford–Znajek jet.
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Data availability
The ALMA internal baseline data can be retrieved from the ALMA data 
portal (https://almascience.eso.org/alma-data) under the project code 
2017.1.00842.V. The calibrated VLBI data used in this paper are used in 
a continuing project but can be made available on reasonable request 
from the corresponding authors.

Code availability
Data processing and simulation softwares used in the paper, includ-
ing AIPS (http://www.aips.nrao.edu/index.shtml), DIFMAP (https://
sites.astro.caltech.edu/~tjp/citvlb), SMILI (https://github.com/astros-
mili/smili) and the EHT-imaging library (https://github.com/achael/
eht-imaging), are publicly available. The perceptually uniform colour 
maps for image visualization are available from the ehtplot library 
(https://github.com/liamedeiros/ehtplot). The general relativistic 
magnetohydrodynamic simulation and general relativistic radiative 
transfer are performed with publicly available codes using HARM 
(https://rainman.astro.illinois.edu/codelib) and ODYSSEY (https://
github.com/hungyipu/Odyssey).
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