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1. Introduction

We prove herein new analysis results for the BDF2 temporal discretization of the Navier—Stokes (NS)
equations of viscous incompressible fluids. The NS equations are given on a domain 2 C R? with boundary
012 of class C? by

us + (u-V)u —vAu+ Vp = f, (1.1)
divu =0, (1.2)

where u is the velocity, p is the pressure, v is the kinematic viscosity and f represents body forces applied
to the fluids. We complete these equations with the given initial condition w(z,0) = ug(z), and with the
non-slip boundary condition u|sp = 0 for simplicity.

The BDF2 temporal discretization is a widely used time stepping method in NS simulations due to its
second order accuracy and attractive stability properties. It is the main temporal discretization method for
NS and related systems in the deal.II finite element software [1], and appears in many highly cited papers and
books on numerical methods for NS e.g. [2-4]. Improvements to it are still being developed including discrete
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regularizations [5,6], variable time step sizes [7], and blending BDF2 and BDF3 [8], and its understanding
through rigorous numerical analysis is also still being researched and improved [9,10]. Hence new theoretical
results for BDF2 time stepping for NS are of potential wide interest in the CFD community.

In this note we prove long-time H' stability of BDF2 time stepping for the 2D NS equations. Long-time
L? stability of BDF2 for NS has long been known both in 2D and 3D, see e.g. the proof in [10] which
requires a very mild data-dependent restriction on the time step size, and this stability is expected since it
is a discrete analogue of the (non-discretized) NS energy inequality. Long-time H' stability of BDF2 for NS
is not expected in 3D with modern analysis tools, since such a proof is thought to also imply uniqueness of
weak NS solutions and thus solve the Clay Prize problem. In 2D, long-time bounds exist on the (unique)
NS solution at the PDE level, and thus one hopes that a stable and accurate time stepping scheme would
also yield long-time H' stability. However, such results seem quite difficult to prove, and results in this
direction are quite recent and include long-time H' stability for a BDF2-finite element scheme for the NS in
velocity—vorticity form [11], for NS in usual velocity—pressure form with backward Euler time stepping [12]
and for Crank—Nicolson [13] and then extended to general second order [14], and backward Euler with the
NS vorticity-stream-function formulation [15].

The purpose of this note is to close the gap and prove long-time H' stability for BDF2 time stepping
for 2D NS in usual velocity-—pressure form with the restriction of only At < Cv~!. Our results show that
numerical instabilities in the analogous 3D scheme must come precisely from the vortex stretching term.
We point out that known higher order stability results for Crank—Nicolson or general second order methods
in [13,14] require At < O(h?); while the overall proof techniques they use are similar to ours in that they
both utilize Gronwall and uniform Gronwall, our analysis takes explicit advantage of the extra positivity
of BDF2 to remove the CFL condition. While no time step restriction is needed for the H' stability in the
velocity—vorticity scheme in [11], using such a scheme in practice can be more expensive and also may require
access to vorticity boundary conditions. Our results are extendable to mixed Dirichlet/Neumann boundary
conditions, but other types could create technical difficulties that require separate analyses.

2. Mathematical preliminaries

For the mathematical setting of the problem, we consider the following spaces:

V ={veHj)? divv =0}, (2.1)
H={veL*2)? divv=0,v-n=0o0n 02}, (2.2)
where n is the unit outward normal on 92.

We denote by |- || and (-, -) the norm and inner product of L? and we recall the Poincaré inequality: there
exists cp > 0 depending only on the size of the domain and satisfying

Jull < cp|[Vul, YueV. (2.3)

The weak formulation of the Navier—Stokes equations is obtained by multiplying (1.1) by a test function
v € V and integrating by parts over {2, using Green’s formula, viz.,:

d

7 (®),0) +v(Vu(t), Vo) + b(u(t), u(t),v) = (f(t),v) Yv €V, (2.4)

where

b(u, v, w) = Z /Quz(sc) g::jz (2)w;(z) dz = (u- Vo, w). (2.5)

i,j=1,2
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The form b is trilinear continuous on H'(£2)? and enjoys the following properties [16-18]:

b, v, w)| < epllull 2Vl V2V w2Vl V0w eV, (2.6)
b, v, w)| < epllul| 2 Vul| V2o |2 Av| P w]| Yu eV, ve HA(R2)P NV, w e H, (2.7)
b(u,v,v) =0, Yu,v eV, (2.8)

Our analysis will be greatly simplified by utilizing the G-stability framework, as in [19]. Hence, we define

o= 1]

here the G-matrix

and its associated G-norm

B+ [2b - af?

2
HiE”G - (.%'7G{L') 2 y

for any x = [a,b]T € R%.

It is well-known from [19] that the L?-norm and the G-norm are equivalent in the following sense: there
exist ¢; > 0 and ¢, > 0 such that
allxll < lixlle < eullxl- (2.9)

We also recall from [19] that if a,b, ¢ are in L?(§2), then

la — 2b+ c||?

(3¢ —4b+a,c) = [|[b,c]" 1% — Illa, ] IE + 5

(2.10)
3. H! stability of BDF2 for Navier-Stokes

We consider now the BDF2 temporal discretization of (2.4): Given u~! and v® in V, find u™ € V for
n=1,2,... satisfying

1
E(?)u"Jrl —4u"™ Fum ) — v AT [(2u" —u™ ) - Ve T = (3.1)
We seek to obtain uniform bounds on ||[Vu"||.
We assume that f € L>(Ry;H) and we set ||flloc == ||fllzoc(r,;m)- We also assume that the initial

conditions are bounded as follows, where ¢ = O(1) is a constant:

[l < Nluoll, VU] < el Vuo
lu™ 1 < Jluoll, [Va™| < ¢ Vuo]

We adopt the following convention: ¢; denote constants that depend only on the parameters such as cp,
v, etc; K; depends in addition on u(t.) at some specified time ¢, and on the forcing f; x; are bounds on the
time step At and may depend on uy and f. We also set x" = [u"~1,u"|T, Vx" = [Vu"~1, Vu"]T, for any
n=12,....

In proving the main result, we will need a couple of preliminary lemmas. We begin with recalling the
following result from [10].

8(:?;.
5 then¥n > 0,
1

Lemma 1. If0< At <
v , ve? - v

2 + Zanvar i < (14 2L ae) (100 + L anva))
1 e, 4

4ct ve? -
+fW&P{H;m)L
4c D

v2c?

(3.2)
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. 2c2 4
and there eaists Ky = K (Juoll, [Vuoll 1) = XN + 2R V601 + S 171 such that

IX"|& < K1, ¥n >0, (3.3)
and
- 7|2 : P2 ,
v Y|V < Ky (it DAEEfR L Vi=1on, (3.4)
j=i
Corollary 3.1. If
0< At < % = (3.5)
— I/Cl2 - Hl) .
then
IX"I1& < 205, Vn > No=[To/At], (3.6)
where pg == Vc’l’ I flleo and
201,02 4 € 02
s, 280 + 9]
Ty =T, L) = 2 . 3.7
b = ToIT 0l 1) = S5 ~ 5.7)

Proof. From the bound (3.2) on ||x"||%, we infer that

n ve v
Wl < (1 2 a) (1€l + A9l +
and using assumption (3.5) on At and the fact that 1 + z > exp(z/2) if = € (0,1) we obtain
n ver v
"1 < oxp (—natied ) (IN01R + 5 A9al) + 43
ch 4
For nAt > Ty, the above inequality implies conclusion (3.6) of the corollary. O

We now seek to obtain uniform bounds for ||x"||¢ in H'. In order to do this, we will first use the discrete
Gronwall lemma to derive an upper bound on [|[Vx"|g, n < N, for some N > 0, and then we will use

the discrete uniform Gronwall lemma to obtain an upper bound on |[Vx"|lg, n > N. We begin with some
preliminary inequalities.

Lemma 2. For every At < kq and for every n > 1, we have
n n ‘ n n— n 2
IVX"HIE = IVXIE < S5 KAt (4] V|2 + [[Va = H2) VX E + = AtF1% (3.8)

Proof. We multiply (3.1) by —2AtAu"*!, integrate by parts using Green’s formula, and then apply (2.10)
to obtain

n Vuntt — 2Vu™ + Vun 12 "
VX — IV + | : 200t A

— 2Ath(2u"™ — u" WM AT = —2A8(f7 T Autt).
4

(3.9)
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Using property (2.7) of the trilinear form b and recalling (3.3), Young’s inequality and utilizing the

G-norm, we have the following bound of the nonlinear term,
2Ath(2u™ — u™ L um T Ayt

< 2¢p At qun _ un—1||1/2||2vun _ vun—l||1/2‘Ivun+1||1/2||Aun+1”3/2

v n+1)2 270;;1 n n—12 n n—12 n+12
< §At\|Au I +ﬁAt||2u —u" | 12Vu” — Va2 || Ve |
14 C1 _
< §At\|AU”+1||2 + ;Atl\x”||?:(4||VU"||2 + Ve P VXTI
<

12 n C1 n n— n
S At Aum T 4 S ALK (4] + [V P VX
We bound the right-hand side of (3.9) by Cauchy—Schwarz,
2
DAH(F™H, Ay < 28] £ Aun | < 5 A Aut 2 4 S A
v

Relations (3.9)—(3.11) imply

[Vurt! — 2Vu™ + Vur 12
2

< S AEL T + [V T + 2 A,

IV HIE = VX" 1IE + + VAL Au 2

and from here (3.8) follows right away. O

Lemma 3. For every At < kq and for every n > 1, we have
2
IVX"HIE < Kol VXIIE + I
where Ky = Ka(|[uol], [[Vuoll, | flleo) = 2(1 + S K7), with K being given in Lemma 1.

Proof. Multiplying (3.1) by 2A¢(3u™*! — 4u™ 4+ u"~1) in L?(2)?, and recalling (2.10) we obtain

||vun+1 —9Vu" + vun—l HQ
2
+ 2Ath(2u" — u™ T 3um T — 4™ ™) = 248 3um T — 4w Y.

IBu" ™ — du™ + TP+ 2048 | [VX"THE = (IVXIIE +

Using the Cauchy—Schwarz inequality, we majorize the right-hand side of (3.14) by
QAL(F™ L Bum T — 4™ ) < 2A8 ||| 3u T — du™ +u |
- ||3un+1 — 4" + un71||2
- 2
Using (2.8) and (2.6), we bound the nonlinear term as follows:
2ALH(2u™ — u™ T ™ 3T — 4y 4" Y)
= 2Ath(2u™ — w7 u T 2w — ™) + T — 20" 4w
= —4At(2u™ — u" " u™ T u™) 4 2Ath(2u" — um T T W — 20" )

< v AL VU2 + v At| Va2 + %AtHVU"H — 2V + Va2

+ 2A82| 2.

+ 2 Atl2u" — w2V — Va2 a2
1%
+ %At\|2u” —u" 2|12V — Va2 e = 20 + w2
1%
< v AV + gAtHVu”“ — 2V 4 V|

cq _
+ 3 At P + 5l 1+ e P I IE VXIS

5
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Relations (3.14)—(3.16) yield

||3un+1 —Ayn +un—1H2
2
+ gAtHVu"“ —2Vu™ 4+ Va2 <2487 2,

n Cq n n n— n n
+ v A VX TG - 2vAt (1+ o (I TP 4 5l 1 + a1 %) H2c> VX" lI&

from which (3.13) follows right away. O

In order to prove the uniform boundedness of ||Vx"|¢ we will make use of the following two lemmas,
whose proofs can be found in [20] or [12]:

Lemma 4. Given At > 0 and positive sequences &, 1, and (, such that
En < &1 (L4 Alnnoy) + AtGn,  forn =1, (3.17)

we have, for anyn > 2,

n n—1
&n < (50 + Z At<i> exp <Z Atm) . (3.18)
=1 =0

Lemma 5. Given At > 0, positive integers ng, N, positive sequences &, N, and (, such that

é.n S gn—l(l + At’l’}n_l) + AtCn; fOT’ n Z no, (319)
and given the bounds
N+kg N+ko N+ko
> Aty < ay, > Aty < ay, > At <as, (3.20)
n:k‘o n:k‘o ’n:k’o

for any ko > ng, we have &, < (1\?215 + (12) e, VYn > N + nyg.
We are now able to prove the main result:

Theorem 1. Let ug € V and u™ be a solution of the numerical scheme (3.1). Also, let At be such that
At < ky. Then there exists Ko (||[Vuol, || fllo), such that

IVu™]| < Ko ([Vuol, [ flloc), ¥n > 0. (3.21)
Moreover, there exists K5 = K5 (|| fll), such that
V|| < Ks (I flloc)s V> N+ No+2, (3.22)
where Ng := |To/ At], with Ty being given in (3.7).

Remark 3.1. The time step restriction in Theorem 1 is At < k1 = O(v~1). Hence this is a data dependent
time step restriction, but moreover since ¥ < 1 in most practical problems of interest, this restriction is
automatically satisfied even with At < O(1). The dependence of K5 and Kg is exponential in the inverse
of v, i.e. exponential in the Reynolds number, which is common in higher order stability results due to the
use of the uniform Gronwall inequality [12-14].
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Proof. Let T > 0 be arbitrarily fixed and let At < k1. We set N = |T/At].

In order to derive a uniform bound for |Vx"||g¢ for all n > 1, we will apply (the discrete Gronwall)
Lemma 4 to obtain a bound valid for n = 1,..., N 4+ Ny + 1, and then we will apply (the discrete uniform
Gronwall) Lemma 5 to obtain a bound valid for n > N + Ny + 2. In doing so, we first notice that using
(3.13), (3.8) yields

19X 1% < (1+ S KAt (4 Va|? + [Tum 7)) (VX1

2 ‘ |2 n—12 2 (3.23)
+ A [T+ oK (49 2+ Ve ) | £
which we rewrite in the form
with
c -
& = VX"[18 = g K (4 V|2 + ([ Var %),
2 €1 n|2 n—1/2 2 (325)
Go = > 1+ 5Ky (49 | + IV 2) | 11
Recalling (3.4), Lemma 4 gives

& = IVX"IE < K3 ([IVuoll, I fllses T+ To + K1), Vn=1,...,N+No+1, (3.26)

for some continuous function Kj (~, ° ~), increasing in all its arguments.

We now apply Lemma 5, with ng = Ny + 2. In computing the sums a;, a2 and az that appear there, we
note that since all those sums are taken for n > Ny + 2 and since, by hypothesis, At satisfies condition (3.5)
of Corollary 3.1, we can replace K1, the bound on ||x"||%, by 2p2, whenever the former appears. We thus
obtain

a
&= IVX"IIE < (5 +a2) e = K3(T,|fll),  ¥n 2 N+No+2, (3:27)

and recalling (2.9), we have (3.22). Combining (3.27) with (3.26) and (2.9), we obtain conclusion (3.21).
Thus, the theorem is complete. [

4. Conclusions

Long-time H'-stability is established for BDF2 time stepping for the 2D Navier-Stokes equations with
a very mild time step restriction At < Cv~! with C independent of h. While the results are for 2D, they
show that any instability in the analogous 3D scheme must come precisely from the vortex stretching term.

Important future work includes extending these results to multiphysics flow problems and to other types of
boundary conditions.
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