
Applied Mathematics Letters 141 (2023) 108624

R
R
2
A
A

N
B
L

∂

w
t
n

s
N
b

h
0

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Long-time H1-stability of BDF2 time stepping for 2D
Navier–Stokes equations

L. Rebholz a,∗, F. Tone b

a School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
b Department Mathematics and Statistics, University of West Florida, Pensacola, FL 32514, USA

a r t i c l e i n f o

Article history:
eceived 30 November 2022
eceived in revised form 13 February
023
ccepted 14 February 2023
vailable online 16 February 2023

Keywords:
avier–Stokes equations
DF2 scheme
ong-time stability

a b s t r a c t

In this paper we study the H1-stability for all positive time of the BDF2 scheme
for the 2D Navier–Stokes equations. More precisely, we discretize in time using
the backward differentiation formula (BDF2), and with the aid of the discrete
Gronwall lemma and of the discrete uniform Gronwall lemma we prove that the
numerical scheme admits this stability.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

We prove herein new analysis results for the BDF2 temporal discretization of the Navier–Stokes (NS)
equations of viscous incompressible fluids. The NS equations are given on a domain Ω ⊂ R2 with boundary
Ω of class C2 by

ut + (u · ∇)u − ν∆u + ∇p = f, (1.1)
div u = 0, (1.2)

here u is the velocity, p is the pressure, ν is the kinematic viscosity and f represents body forces applied
o the fluids. We complete these equations with the given initial condition u(x, 0) = u0(x), and with the
on-slip boundary condition u|∂Ω = 0 for simplicity.

The BDF2 temporal discretization is a widely used time stepping method in NS simulations due to its
econd order accuracy and attractive stability properties. It is the main temporal discretization method for
S and related systems in the deal.II finite element software [1], and appears in many highly cited papers and
ooks on numerical methods for NS e.g. [2–4]. Improvements to it are still being developed including discrete
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egularizations [5,6], variable time step sizes [7], and blending BDF2 and BDF3 [8], and its understanding
hrough rigorous numerical analysis is also still being researched and improved [9,10]. Hence new theoretical
esults for BDF2 time stepping for NS are of potential wide interest in the CFD community.

In this note we prove long-time H1 stability of BDF2 time stepping for the 2D NS equations. Long-time
L2 stability of BDF2 for NS has long been known both in 2D and 3D, see e.g. the proof in [10] which
requires a very mild data-dependent restriction on the time step size, and this stability is expected since it
is a discrete analogue of the (non-discretized) NS energy inequality. Long-time H1 stability of BDF2 for NS
s not expected in 3D with modern analysis tools, since such a proof is thought to also imply uniqueness of
eak NS solutions and thus solve the Clay Prize problem. In 2D, long-time bounds exist on the (unique)
S solution at the PDE level, and thus one hopes that a stable and accurate time stepping scheme would
lso yield long-time H1 stability. However, such results seem quite difficult to prove, and results in this
irection are quite recent and include long-time H1 stability for a BDF2-finite element scheme for the NS in
elocity–vorticity form [11], for NS in usual velocity–pressure form with backward Euler time stepping [12]
nd for Crank–Nicolson [13] and then extended to general second order [14], and backward Euler with the
S vorticity-stream-function formulation [15].
The purpose of this note is to close the gap and prove long-time H1 stability for BDF2 time stepping

or 2D NS in usual velocity–pressure form with the restriction of only ∆t ≤ Cν−1. Our results show that
umerical instabilities in the analogous 3D scheme must come precisely from the vortex stretching term.
e point out that known higher order stability results for Crank–Nicolson or general second order methods

n [13,14] require ∆t < O(h2); while the overall proof techniques they use are similar to ours in that they
oth utilize Gronwall and uniform Gronwall, our analysis takes explicit advantage of the extra positivity
f BDF2 to remove the CFL condition. While no time step restriction is needed for the H1 stability in the
elocity–vorticity scheme in [11], using such a scheme in practice can be more expensive and also may require
ccess to vorticity boundary conditions. Our results are extendable to mixed Dirichlet/Neumann boundary
onditions, but other types could create technical difficulties that require separate analyses.

. Mathematical preliminaries

For the mathematical setting of the problem, we consider the following spaces:

V =
{

v ∈ H1
0 (Ω)2, div v = 0

}
, (2.1)

H =
{

v ∈ L2(Ω)2, div v = 0, v · n = 0 on ∂Ω
}

, (2.2)

here n is the unit outward normal on ∂Ω .
We denote by ∥ ·∥ and (·, ·) the norm and inner product of L2 and we recall the Poincaré inequality: there

xists cP > 0 depending only on the size of the domain and satisfying

∥u∥ ≤ cP ∥∇u∥, ∀ u ∈ V. (2.3)

The weak formulation of the Navier–Stokes equations is obtained by multiplying (1.1) by a test function
∈ V and integrating by parts over Ω , using Green’s formula, viz.,:

d

dt
(u(t), v) + ν(∇u(t), ∇v) + b(u(t), u(t), v) = (f(t), v) ∀ v ∈ V, (2.4)

here
b(u, v, w) :=

∑ ∫
Ω

ui(x)∂vj

∂xi
(x)wj(x) dx = (u · ∇v, w). (2.5)
i,j=1,2

2
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The form b is trilinear continuous on H1(Ω)2 and enjoys the following properties [16–18]:

|b(u, v, w)| ≤ cb∥u∥1/2∥∇u∥1/2∥∇v∥∥w∥1/2∥∇w∥1/2 ∀ u, v, w ∈ V, (2.6)
|b(u, v, w)| ≤ cb∥u∥1/2∥∇u∥1/2∥∇v∥1/2∥∆v∥1/2∥w∥ ∀ u ∈ V, v ∈ H2(Ω)2 ∩ V, w ∈ H, (2.7)

b(u, v, v) = 0, ∀ u, v ∈ V, (2.8)

Our analysis will be greatly simplified by utilizing the G-stability framework, as in [19]. Hence, we define
here the G-matrix

G =
[

1/2 −1
−1 5/2

]
,

and its associated G-norm

∥x∥2
G = (x, Gx) = |b|2 + |2b − a|2

2 , for any x = [a, b]T ∈ R2.

It is well-known from [19] that the L2-norm and the G-norm are equivalent in the following sense: there
xist cl > 0 and cu > 0 such that

cl∥χ∥ ≤ ∥χ∥G ≤ cu∥χ∥. (2.9)

e also recall from [19] that if a, b, c are in L2(Ω), then

(3c − 4b + a, c) = ∥[b, c]T ∥2
G − ∥[a, b]T ∥2

G + ∥a − 2b + c∥2

2 . (2.10)

3. H1 stability of BDF2 for Navier–Stokes

We consider now the BDF2 temporal discretization of (2.4): Given u−1 and u0 in V , find un ∈ V for
= 1, 2, . . . satisfying

1
2∆t

(3un+1 − 4un + un−1) − ν∆un+1 + [(2un − un−1) · ∇]un+1 = fn+1. (3.1)

We seek to obtain uniform bounds on ∥∇un∥.
We assume that f ∈ L∞(R+; H) and we set ∥f∥∞ := ∥f∥L∞(R+;H). We also assume that the initial

conditions are bounded as follows, where c = O(1) is a constant:

∥u0∥ ≤ ∥u0∥, ∥∇u0∥ ≤ c∥∇u0∥
∥u−1∥ ≤ ∥u0∥, ∥∇u−1∥ ≤ c∥∇u0∥

We adopt the following convention: ci denote constants that depend only on the parameters such as cP ,
ν, etc; Ki depends in addition on u(t∗) at some specified time t∗ and on the forcing f ; κi are bounds on the
time step ∆t and may depend on u0 and f . We also set χn = [un−1, un]T , ∇χn = [∇un−1, ∇un]T , for any
n = 1, 2, . . ..

In proving the main result, we will need a couple of preliminary lemmas. We begin with recalling the
following result from [10].

Lemma 1. If 0 < ∆t ≤ 8c2
P

νc2
l

, then ∀ n ≥ 0,

∥χn∥2
G + ν

4∆t∥∇un∥2 ≤
(

1 + νc2
l

4c2
P

∆t

)−n (
∥χ0∥2

G + ν

4∆t∥∇u0∥2
)

+ 4c4
P

ν2c2 ∥f∥2
∞

[
1 −

(
1 + νc2

l

4c2 ∆t

)−n
]

,

(3.2)
l P

3
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nd there exists K1 = K1(∥u0∥, ∥∇u0∥, ∥f∥∞) = ∥χ0∥2
G + 2c2

P
c2

l

∥∇u0∥2 + 4c4
P

ν2c2
l

∥f∥2
∞ such that

∥χn∥2
G ≤ K1, ∀ n ≥ 0, (3.3)

and

ν∆t
n∑

j=i

∥∇uj∥2 ≤ K1 + (n − i + 1)∆t
c2

P

ν
∥f∥2

∞ , ∀ i = 1, . . . , n. (3.4)

Corollary 3.1. If

0 < ∆t ≤ 4c2
P

νc2
l

=: κ1, (3.5)

hen

∥χn∥2
G ≤ 2ρ2

0, ∀ n ≥ N0 := ⌊T0/∆t⌋, (3.6)

here ρ0 := 2c2
P

νcl
∥f∥∞ and

T0 = T0(∥∇u0∥, ∥f∥∞) := 8c2
P

νc2
l

ln
2c2

u∥u0∥2 + c2
P

c2
l

∥∇u0∥2

ρ2
0

. (3.7)

roof. From the bound (3.2) on ∥χn∥2
G, we infer that

∥χn∥2
G ≤

(
1 + νc2

l

4c2
P

∆t

)−n (
∥χ0∥2

G + ν

4∆t∥∇u0∥2
)

+ ρ2
0,

nd using assumption (3.5) on ∆t and the fact that 1 + x ≥ exp(x/2) if x ∈ (0, 1) we obtain

∥χn∥2
G ≤ exp

(
−n∆t

νc2
l

8c2
P

)(
∥χ0∥2

G + ν

4∆t∥∇u0∥2
)

+ ρ2
0.

or n∆t ≥ T0, the above inequality implies conclusion (3.6) of the corollary. □

We now seek to obtain uniform bounds for ∥χn∥G in H1. In order to do this, we will first use the discrete
ronwall lemma to derive an upper bound on ∥∇χn∥G, n ≤ N , for some N > 0, and then we will use

he discrete uniform Gronwall lemma to obtain an upper bound on ∥∇χn∥G, n ≥ N . We begin with some
reliminary inequalities.

emma 2. For every ∆t ≤ κ1 and for every n ≥ 1, we have

∥∇χn+1∥2
G − ∥∇χn∥2

G ≤ c1

ν3 K1∆t
(
4∥∇un∥2 + ∥∇un−1∥2) ∥∇χn+1∥2

G + 2
ν
∆t∥f∥2

∞. (3.8)

Proof. We multiply (3.1) by −2∆t∆un+1, integrate by parts using Green’s formula, and then apply (2.10)
to obtain

∥∇χn+1∥2
G − ∥∇χn∥2

G + ∥∇un+1 − 2∇un + ∇un−1∥2

2 + 2ν∆t∥∆un+1∥2

n n−1 n+1 n+1 n+1 n+1
(3.9)
− 2∆tb(2u − u , u ,∆u ) = −2∆t(f ,∆u ).
4
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Using property (2.7) of the trilinear form b and recalling (3.3), Young’s inequality and utilizing the
-norm, we have the following bound of the nonlinear term,

2∆tb(2un − un−1, un+1,∆un+1)
≤ 2 cb ∆t ∥2un − un−1∥1/2∥2∇un − ∇un−1∥1/2∥∇un+1∥1/2∥∆un+1∥3/2

≤ ν

2∆t∥∆un+1∥2 + 27c4
b

2ν3 ∆t∥2un − un−1∥2∥2∇un − ∇un−1∥2∥∇un+1∥2

≤ ν

2∆t∥∆un+1∥2 + c1

ν3∆t∥χn∥2
G(4∥∇un∥2 + ∥∇un−1∥2)∥∇χn+1∥2

G

≤ ν

2∆t∥∆un+1∥2 + c1

ν3∆tK1(4∥∇un∥2 + ∥∇un−1∥2)∥∇χn+1∥2
G.

(3.10)

We bound the right-hand side of (3.9) by Cauchy–Schwarz,

2∆t(fn+1,∆un+1) ≤ 2∆t∥fn+1∥∥∆un+1∥ ≤ ν

2∆t∥∆un+1∥2 + 2
ν
∆t∥fn+1∥2. (3.11)

elations (3.9)–(3.11) imply

∥∇χn+1∥2
G − ∥∇χn∥2

G + ∥∇un+1 − 2∇un + ∇un−1∥2

2 + ν∆t∥∆un+1∥2

≤ c1

ν3∆tK1(4∥∇un∥2 + ∥∇un−1∥2)∥∇χn+1∥2
G + 2

ν
∆t∥fn+1∥2,

(3.12)

and from here (3.8) follows right away. □

Lemma 3. For every ∆t ≤ κ1 and for every n ≥ 1, we have

∥∇χn+1∥2
G ≤ K2∥∇χn∥2

G + 2
ν

∥f∥2
∞, (3.13)

here K2 = K2(∥u0∥, ∥∇u0∥, ∥f∥∞) = 2(1 + c5
ν4 K2

1 ), with K1 being given in Lemma 1.

roof. Multiplying (3.1) by 2∆t(3un+1 − 4un + un−1) in L2(Ω)2, and recalling (2.10) we obtain

∥3un+1 − 4un + un−1∥2 + 2ν∆t

[
∥∇χn+1∥2

G − ∥∇χn∥2
G + ∥∇un+1 − 2∇un + ∇un−1∥2

2

]
+ 2∆tb(2un − un−1, un+1, 3un+1 − 4un + un−1) = 2∆t(fn+1, 3un+1 − 4un + un−1).

(3.14)

Using the Cauchy–Schwarz inequality, we majorize the right-hand side of (3.14) by

2∆t(fn+1, 3un+1 − 4un + un−1) ≤ 2∆t∥fn+1∥∥3un+1 − 4un + un−1∥

≤ ∥3un+1 − 4un + un−1∥2

2 + 2∆t2∥fn+1∥2.
(3.15)

Using (2.8) and (2.6), we bound the nonlinear term as follows:

2∆tb(2un − un−1, un+1, 3un+1 − 4un + un−1)
= 2∆tb(2un − un−1, un+1, 2(un+1 − un) + un+1 − 2un + un−1)
= −4∆tb(2un − un−1, un+1, un) + 2∆tb(2un − un−1, un+1, un+1 − 2un + un−1)

≤ νc2
l ∆t∥∇un+1∥2 + νc2

l ∆t∥∇un∥2 + ν

2∆t∥∇un+1 − 2∇un + ∇un−1∥2

+ c2

ν3∆t∥2un − un−1∥2∥2∇un − ∇un−1∥2∥un∥2

+ c3

ν3∆t∥2un − un−1∥2∥2∇un − ∇un−1∥2∥un+1 − 2un + un−1∥2

≤ ν∆t∥∇χn+1∥2
G + ν

2∆t∥∇un+1 − 2∇un + ∇un−1∥2

+ c4
∆t(∥un+1∥2 + 5∥un∥2 + ∥un−1∥2)∥χn∥2 ∥∇χn∥2 .

(3.16)
ν3 G G

5
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Relations (3.14)–(3.16) yield

∥3un+1 − 4un + un−1∥2

2
+ ν∆t∥∇χn+1∥2

G − 2ν∆t

(
1 +

c4

2ν4 (∥un+1∥2 + 5∥un∥2 + ∥un−1∥2)∥χn∥2
G

)
∥∇χn∥2

G

+
ν

2
∆t∥∇un+1 − 2∇un + ∇un−1∥2 ≤ 2∆t2∥fn+1∥2,

rom which (3.13) follows right away. □

In order to prove the uniform boundedness of ∥∇χn∥G we will make use of the following two lemmas,
hose proofs can be found in [20] or [12]:

emma 4. Given ∆t > 0 and positive sequences ξn, ηn and ζn such that

ξn ≤ ξn−1(1 + ∆tηn−1) + ∆tζn, for n ≥ 1, (3.17)

e have, for any n ≥ 2,

ξn ≤

(
ξ0 +

n∑
i=1

∆tζi

)
exp
(n−1∑

i=0
∆tηi

)
. (3.18)

emma 5. Given ∆t > 0, positive integers n0, N , positive sequences ξn, ηn and ζn such that

ξn ≤ ξn−1(1 + ∆tηn−1) + ∆tζn, for n ≥ n0, (3.19)

and given the bounds

N+k0∑
n=k0

∆tηn ≤ a1,

N+k0∑
n=k0

∆tζn ≤ a2,

N+k0∑
n=k0

∆tξn ≤ a3, (3.20)

for any k0 ≥ n0, we have ξn ≤
(

a3
N∆t + a2

)
ea1 , ∀n ≥ N + n0.

We are now able to prove the main result:

Theorem 1. Let u0 ∈ V and un be a solution of the numerical scheme (3.1). Also, let ∆t be such that
∆t ≤ κ1. Then there exists K6

(
∥∇u0∥, ∥f∥∞

)
, such that

∥∇un∥ ≤ K6
(
∥∇u0∥, ∥f∥∞

)
, ∀n ≥ 0. (3.21)

Moreover, there exists K5 = K5
(
∥f∥∞

)
, such that

∥∇un∥ ≤ K5
(
∥f∥∞

)
, ∀n ≥ N + N0 + 2, (3.22)

where N0 := ⌊T0/∆t⌋, with T0 being given in (3.7).

Remark 3.1. The time step restriction in Theorem 1 is ∆t ≤ κ1 = O(ν−1). Hence this is a data dependent
time step restriction, but moreover since ν < 1 in most practical problems of interest, this restriction is
automatically satisfied even with ∆t ≤ O(1). The dependence of K5 and K6 is exponential in the inverse
of ν, i.e. exponential in the Reynolds number, which is common in higher order stability results due to the

use of the uniform Gronwall inequality [12–14].

6



L. Rebholz and F. Tone Applied Mathematics Letters 141 (2023) 108624

P

L
G
(

w

T

4

a
s
I
b

D

A

2

roof. Let T > 0 be arbitrarily fixed and let ∆t ≤ κ1. We set N := ⌊T/∆t⌋.
In order to derive a uniform bound for ∥∇χn∥G for all n ≥ 1, we will apply (the discrete Gronwall)

emma 4 to obtain a bound valid for n = 1, . . . , N + N0 + 1, and then we will apply (the discrete uniform
ronwall) Lemma 5 to obtain a bound valid for n ≥ N + N0 + 2. In doing so, we first notice that using

3.13), (3.8) yields

∥∇χn+1∥2
G ≤

(
1 + c1

ν3 K1K2∆t
(
4∥∇un∥2 + ∥∇un−1∥2)) ∥∇χn∥2

G

+ 2
ν
∆t
[
1 + c1

ν3 K1
(
4∥∇un∥2 + ∥∇un−1∥2)] ∥f∥2

∞,
(3.23)

hich we rewrite in the form
ξn ≤ ξn−1(1 + ∆tηn−1) + ∆tζn, (3.24)

with

ξn = ∥∇χn∥2
G, ηn = c1

ν3 K1K2
(
4∥∇un∥2 + ∥∇un−1∥2) ,

ζn = 2
ν

[
1 + c1

ν3 K1
(
4∥∇un∥2 + ∥∇un−1∥2)] ∥f∥2

∞.
(3.25)

Recalling (3.4), Lemma 4 gives

ξn = ∥∇χn∥2
G ≤ K2

3
(
∥∇u0∥, ∥f∥∞, T + T0 + κ1

)
, ∀n = 1, . . . , N + N0 + 1, (3.26)

for some continuous function K3
(
·, ·, ·

)
, increasing in all its arguments.

We now apply Lemma 5, with n0 = N0 + 2. In computing the sums a1, a2 and a3 that appear there, we
note that since all those sums are taken for n ≥ N0 + 2 and since, by hypothesis, ∆t satisfies condition (3.5)
of Corollary 3.1, we can replace K1, the bound on ∥χn∥2

G, by 2ρ2
0, whenever the former appears. We thus

obtain
ξn = ∥∇χn∥2

G ≤
(a3

T
+ a2

)
ea1 =: K2

4 (T, ∥f∥∞), ∀n ≥ N + N0 + 2, (3.27)

and recalling (2.9), we have (3.22). Combining (3.27) with (3.26) and (2.9), we obtain conclusion (3.21).
hus, the theorem is complete. □

. Conclusions

Long-time H1-stability is established for BDF2 time stepping for the 2D Navier–Stokes equations with
very mild time step restriction ∆t ≤ Cν−1 with C independent of h. While the results are for 2D, they

how that any instability in the analogous 3D scheme must come precisely from the vortex stretching term.
mportant future work includes extending these results to multiphysics flow problems and to other types of
oundary conditions.
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