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Abstract. — We prove that the 3-manifold obtained by gluing the complements of two

nontrivial knots in homology 3-sphere instanton L-spaces, by a map which identifies meridians

with Seifert longitudes, cannot be an instanton L-space. This recovers the recent theorem of

Lidman–Pinzón-Caicedo–Zentner that the fundamental group of every closed, oriented, toroidal

3-manifold admits a nontrivial SU (2)-representation, and consequently Zentner’s earlier result

that the fundamental group of every closed, oriented 3-manifold besides the 3-sphere admits a

nontrivial SL(2,C)-representation.

1. Introduction

A productive way to study 3-manifolds is to study homomorphisms from their
fundamental groups to simple non-abelian groups like SU(2). This strategy was used
by Kronheimer and Mrowka in their celebrated proof of the Property P Conjecture
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2 J.A. BALDWIN & S. SIVEK

[KM04]. More precisely, they proved that if K µ S
3 is a nontrivial knot, then there

is a nontrivial homomorphism
fi1(S3

1(K)) æ SU(2),
certifying that the surgered manifold is not a homotopy sphere. It is natural to
conjecture more generally that every homology 3-sphere Y ”≥= S

3 admits a nontrivial
homomorphism

fi1(Y ) æ SU(2).
This is a generalization of the Poincaré Conjecture, and is listed as [Kir97, Problem
3.105(A)] on Kirby’s famous problem list. Lidman, Pinzón-Caicedo, and Zentner
recently proved this conjecture for toroidal homology 3-spheres [LPCZ21], recovering
in the process Zentner’s beautiful result [Zen18] that the conjecture holds with
SL(2,C) in place of SU(2).

In this article, we take inspiration from Heegaard Floer homology to prove a result
in the instanton Floer setting, which we then use to give di�erent and simpler proofs
of the main results of [LPCZ21, Zen18], as described below.

An instanton L-space is a rational homology 3-sphere Y whose framed instanton
homology [KM11b, Sca15] has the smallest dimension possible over Q:

dim I
#(Y ) = |H1(Y ;Z)|.

The topological significance of this notion is that if Y is an integer homology 3-
sphere, then Y is not an instanton L-space if and only if the reduced instanton
homology Î(Y ) is nonzero [Sca15, Theorem 1.3], in which case there exists a nontrivial
homomorphism

fi1(Y ) æ SU (2).
(See also [BS18, Theorem 4.2].) Our main theorem is the following:

Theorem 1.1. — Let C be the splice of nontrivial knots – µ A and — µ B in
homology sphere instanton L-spaces, formed by gluing their complements by a map
that identifies meridians with Seifert longitudes. Then

dim I
#(C) > 1 + 4 · dim KHI (A, –, g(–)) · dim KHI (B, —, g(—)) > 5.

In particular, the homology sphere C is not an instanton L-space.

Here, KHI refers to a version of Floer’s instanton knot homology, defined in [KM10,
§7.6]. This theory was a key tool, for instance, in Kronheimer and Mrowka’s proof
that Khovanov homology detects the unknot [KM11a], and is conjectured to be
isomorphic to a version of Heegaard knot Floer homology (as mentioned below).

A Heegaard Floer analogue of Theorem 1.1, with coe�cients in Z/2Z rather than
Q, was first established by Hedden and Levine in [HL16], and later generalized by
Eftekhary [Eft15, Eft20] and then by Hanselman, Rasmussen, and Watson [HRW17].
Their approaches all used bordered Heegaard Floer homology or something similar.
By contrast, our proof of Theorem 1.1 is largely “theory-independent,” meaning
that it can be readily adapted to give alternative proofs of the corresponding results
in Heegaard Floer and monopole Floer homology as well. Indeed, the only tools it
requires to prove these results over a field F are a surgery exact triangle with F
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Instanton L-spaces and splicing 3

coe�cients, a suitable excision theorem, and an adjunction inequality. We remark
that the Heegaard Floer version over a field of characteristic zero would also follow
from Theorem 1.1 together with the conjectural isomorphisms

I
#(Y ;Q) ≥= ‰HF(Y ;Q) and KHI (Y, K, g(K);Q) ≥= [HFK (Y, K, g(K);Q),

which are special cases of [KM10, Conjecture 7.24].
The advantage of proving a result like Theorem 1.1 in the instanton Floer setting

has to do, of course, with the connection between framed instanton homology and the
fundamental group, highlighted above. In particular, Theorem 1.1 has as a corollary
the following result of Lidman, Pinzón-Caicedo, and Zentner, alluded to at the
beginning. Their proof used a di�erent version of instanton Floer homology, together
with arguments involving exact triangles, cabling, the pillowcase, and holonomy
perturbations.

Corollary 1.2 ([LPCZ21]). — There exists a nontrivial homomorphism fi1(Y ) æ
SU(2) for every closed, oriented, toroidal 3-manifold Y .

Corollary 1.2, in turn, recovers the result of Zentner below, whose original proof
involved extensive analysis of the pillowcase, holonomy perturbations, and degree-1
maps.

Corollary 1.3 ([Zen18]). — There exists a nontrivial homomorphism fi1(Y ) æ
SL(2,C) for every closed, oriented 3-manifold Y ”≥= S

3.

We remark that Hanselman, Rasmussen, and Watson proved [HRW17] something
more general than Theorem 1.1 in the Heegaard Floer setting. In particular, they
showed that the Heegaard Floer homology of any toroidal manifold (not necessarily
coming from a splice of knots in homology sphere L-spaces) has dimension at least
five (over Z/2Z). We conjecture that the analogous statement holds for framed
instanton homology:

Conjecture 1.4. — If Y is a closed, oriented, toroidal rational homology 3-
sphere, then dim I

#(Y ) > 5.

Moreover, toroidal manifolds which achieve the bound of five in Heegaard Floer
homology are classified in [HRW17]—they are certain splices of trefoils. It would be
interesting to try and prove that framed instanton homology is 5-dimensional as well
for these trefoil splices.

If Conjecture 1.4 holds, then a toroidal rational homology sphere Y with |H1(Y )| <

5 is not an instanton L-space. This would imply the following, by [BS18, Corollary
4.10]:

Conjecture 1.5. — There exists an irreducible homomorphism fi1(Y ) æ SU(2)
for every toroidal rational homology 3-sphere Y with |H1(Y )| < 5.

Combined with the classification of SU(2)-abelian Seifert fibered 3-manifolds in
[SZ19, Theorem 1.1], and the fact that fundamental groups of hyperbolic 3-manifolds
always admit irreducible SL(2,C)-representations, a proof of Conjecture 1.5 would
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4 J.A. BALDWIN & S. SIVEK

be enough to classify rational homology 3-spheres Y with |H1(Y )| < 5 which admit
irreducible homomorphisms

fi1(Y ) æ SL(2,C),
extending Zentner’s result for homology 3-spheres stated in Corollary 1.3.

We prove Theorem 1.1 and its two corollaries in §3, after a review of framed
instanton homology in §2. The proof of Theorem 1.1 relies on Theorem 3.1, which
we prove in §4 and may be of independent interest.

We thank Josh Greene, Matt Hedden, Adam Levine, and Tye Lidman for helpful
conversations in the course of this work, and to the anonymous referees, whose
feedback helped improve this paper. Thanks also go to Tye Lidman, Juanita Pinzón-
Caicedo, and Raphael Zentner for their lovely paper [LPCZ21], which inspired this
project.

2. Background

The following is a brief review of framed instanton homology, limited to the
background needed to follow the flow of our arguments. Instanton homology can be
defined over Z, but we will work with coe�cients in Q throughout. For more details,
see [KM10, §7].

Let Y be a closed, oriented 3-manifold, and ⁄ µ Y a multicurve in Y which is
admissible, meaning that it intersects some closed surface of positive genus in an
odd number of points. One can associate to this data an admissible SO(3)-bundle
over Y with second Stiefel–Whitney class Poincaré dual to ⁄, and then define a
corresponding instanton Floer homology group Iú(Y )⁄.

Suppose � µ Y is a closed, oriented surface of genus g > 0, and pt œ Y is a point.
These submanifolds induce commuting linear operators µ(�), µ(pt) on Iú(Y )⁄ whose
simultaneous eigenvalues are contained in the set

{(ir · 2k, (≠1)r · 2)},

for 0 6 r 6 3 and 0 6 k 6 g≠1. We let
Iú(Y |�)⁄ µ Iú(Y )⁄

denote the (generalized) simultaneous (2g≠2, 2)-eigenspace of these operators. These
groups depend only on the homology classes of � and ⁄ in H2(Y ;Z) and H1(Y ;Z/2Z),
respectively.

Now let Y be any closed, oriented 3-manifold, and ⁄ µ Y any multicurve. The
framed instanton homology of (Y, ⁄) is defined by

I
#(Y, ⁄) := Iú(Y #T

3)⁄fi⁄T ,

where ⁄T is a circle fiber in T
3 (note that ⁄fi⁄T is automatically admissible in Y #T

3).
We will use the notation I

#(Y ) or I
#(Y, 0) for I

#(Y, ⁄) when ⁄ is nullhomologous
mod 2. Given a closed, oriented surface � µ Y of genus g > 0, we define

I
#(Y, ⁄|�) := Iú(Y #T

3|�)⁄fi⁄T .
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Instanton L-spaces and splicing 5

By [BS22b, Lemma 2.5], we have the symmetry
(2.1) I

#(Y, ⁄|�) ≥= I
#(Y, ⁄|≠�)

relating the generalized (2g≠2) and (2≠2g)-eigenspaces of µ(�) acting on I
#(Y, ⁄).(1)

When g > 2, these extremal eigenspaces are disjoint, and we define
I

#(Y, ⁄)� := I
#(Y, ⁄|�) ü I

#(Y, ⁄|≠�).

Floer’s surgery exact triangle [Flo90] associates to a framed knot K µ Y an exact
triangle

· · · æ Iú(Y )⁄ æ Iú(Y0(K))⁄fiµ æ Iú(Y1(K))⁄ æ · · · ,

where µ is the image in Y0(K) of a meridian of K, provided that all three multicurves
are admissible. As discussed in [Sca15, §7.5], this gives rise to a surgery exact triangle
in framed instanton homology as well, which takes the form

· · · æ I
#(Y, ⁄) æ I

#(Y0(K), ⁄ fi µ) æ I
#(Y1(K), ⁄) æ · · ·

for any multicurves ⁄ and µ. We can always arrange, via a judicious choice of ⁄,
that these multicurves are nullhomologous mod 2 in their respective manifolds, as
in [BS21, §2.2], and so obtain an exact triangle of the form

· · · æ I
#(Y ) æ I

#(Y0(K)) æ I
#(Y1(K)) æ · · ·

The maps in these exact triangles are induced by the associated trace cobordisms,
equipped with SO(3)-bundles whose second Stiefel-Whitney classes are Poincaré dual
to certain surface cobordisms between the corresponding multicurves; see [ABDS20,
§2.3].

3. The proofs

Before proving Theorem 1.1, we introduce some notation and preliminary results.
One of these is the theorem below, whose proof we defer to §4.

Theorem 3.1. — Let S be a splice of nontrivial knots – µ A and — µ B in
homology spheres, formed by gluing their complements by a map that identifies the
Seifert longitudes. Then

dim I
#(S, ⁄)� = 4 · dim KHI (A, –, g(–)) · dim KHI (B, —, g(—)) > 4

for all ⁄, where � µ S is the union of minimal genus Seifert surfaces for – and —.

As remarked in the introduction, KHI (A, –) (and similarly KHI (B, —)) refers to
the instanton knot homology studied by Kronheimer and Mrowka [KM10, §7.6],
defined as the sutured instanton homology of the complement A \ N(–) with sutures
a pair of oppositely oriented meridians. It admits an “Alexander decomposition” into
summands indexed by integers i with |i| 6 g(–); the top summand KHI (A, –, g(–))
is nonzero, and it arises as the sutured instanton homology of the complement of a
genus-g(–) Seifert surface.

(1)
Indeed, I#

(Y, ⁄|≠�) is the (2≠2g, 2)-eigenspace of µ(�), µ(pt) since µ(≠�) = ≠µ(�).
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6 J.A. BALDWIN & S. SIVEK

The strategy behind our proof of Theorem 1.1 will involve relating the splice C to
a splice S of the form described in the theorem above, via surgery. We will then use
surgery exact triangles to show that the extremal subspace I

#(S, ⁄)� “persists" and
contributes at least four to the dimension of I

#(C).
Suppose – µ A is a knot in a homology sphere instanton L-space. Since dim I

#(A) =
1, the surgery exact triangle

· · · æ I
#(A) ≠æ I

#(Ai(–)) ≠æ I
#(Ai+1(–)) æ · · ·

implies that
dim I

#(Ai+1(–)) = dim I
#(Ai(–)) ± 1

for each integer i. In [BS21, §3] (see also [BS22a, Remark 6.3]), we proved that the
sequence

{dim I
#(Ai(–))}iœZ

either has one local minimum; or else it has two local minima at i = ±1, satisfying
dim I

#(A≠1(–)) = dim I
#(A1(–)).(2)

In the first case, we define ‹
˘(–) to be the unique i at which the local minimum is

achieved; in the second, we define ‹
˘(–) = 0. Note that ‹

˘(–) changes sign upon
reversing the orientation of A. The following is a combination of [BS22a, Theorem
6.1] and [BS21, Proposition 3.3]:

Proposition 3.2. — If ‹
˘(–) = 0 then for some ⁄,

dim I
#(A0(–), ⁄) ≠ 1 = dim I

#(A≠1(–)) = dim I
#(A1(–)).

If ‹
˘(–) ”= 0 then dim I

#(A0(–), ⁄) is independent of ⁄.

The upshot of this discussion is the lemma below. It follows immediately from
Proposition 3.2, and will be used shortly in the proof of Theorem 1.1:

Lemma 3.3. — Consider the surgery exact triangles:

· · · æ I
#(A) F≠1≠≠æ I

#(A≠1(–)) G0≠æ I
#(A0(–), ⁄) æ · · ·

· · · æ I
#(A) F0≠æ I

#(A0(–), ⁄) G1≠æ I
#(A1(–)) æ · · ·

The following hold:
• If ‹

˘(–) = 0, then for some ⁄, both G0 and F0 are injective.
• If ‹

˘(–) > 0, then for any ⁄, both F0 and F≠1 are injective.
• If ‹

˘(–) < 0, then for any ⁄, both G0 and G1 are injective. ⇤
Proof of Theorem 1.1. — Let – µ A and — µ B be as in the hypothesis of the

theorem. Then C is the homology sphere formed by gluing the knot complements
C = (A ≠ N(–)) fi (B ≠ N(—)),

via an orientation-reversing homeomorphism of their boundaries which identifies
meridians with Seifert longitudes. Note that the theorem is insensitive to the overall
(2)

We proved this for knots in the 3-sphere, but the only fact about S3
we used is that dim I#

(S3
) =

1. This is why we require A and B to be homology sphere instanton L-spaces: otherwise we cannot

guarantee that the sequences {dim I#
(Ai(–))}iœZ and {dim I#

(Bi(—))}iœZ behave as described.
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–̂

µ–

⁄–
“

—̂⁄—

µ—

A ≠ N(–) fi T
2 ◊ [0, 1] fi B ≠ N(—)

Figure 3.1. Performing 0-surgery on “ µ C with respect to its T
2 framing

compresses the torus to a sphere and produces A≠1#B≠1, because “ is isotopic
to a peripheral curve of slope ≠1 in each knot exterior. Doing +1-surgery instead
produces a splicing in which ⁄– and ⁄— are glued together, because the orange
curve is isotopic to the purple curve and thus bounds a disk.

orientation of C, so by possibly reversing the orientations of A and B we can (and
will) assume that either:

‹
˘(–) 6 0 and ‹

˘(—) 6 0, or(3.1)
‹

˘(–) < 0 and ‹
˘(—) > 0.(3.2)

We will henceforth use the shorthand
Ai = Ai(–) and Bi = Bi(—)

for surgeries on these knots. Let �– and �— be minimal genus Seifert surfaces for –

and —, and let –̂ and —̂ be pusho�s of these knots in �– and �—.
Let “ µ C be a curve on the splicing torus of slope ≠1 with respect to the usual

coordinate system inherited from A ≠ N(–). Note that 0-surgery on “ with respect
to its torus framing yields the connected sum
(3.3) C0(“) ≥= A≠1#B≠1.

Performing 1-surgery on “ amounts to changing the gluing map by a Dehn twist,
and yields another splice

S := C1(“)
of the form described in Theorem 3.1, in which the Seifert longitudes of – and — are
identified. See Figure 3.1 for a schematic of these surgeries. Let

� := �– fi �— µ S

be the closed surface of genus at least two obtained as the union of the Seifert
surfaces �– and �— along their boundaries.

Remark 3.4. — We have seen that C is related to both A≠1#B≠1 and S via
surgery. We have some understanding of the framed instanton homology of the latter
two manifolds thanks to Lemma 3.3 and Theorem 3.1. As mentioned earlier, our
strategy in proving Theorem 1.1 will be to use surgery exact triangles involving these
manifolds, and other surgeries in which � is compressed, to show that the extremal
eigenspaces of the framed instanton homology of S with respect to � contribute at
least four to the dimension of I

#(C).

TOME 1 (-1)



8 J.A. BALDWIN & S. SIVEK

We note that C can be described, dually, as +1-surgery on the connected sum
–̂#—̂ µ A≠1#B≠1,

as shown on the left in Figure 3.2; see [Sav02, §1.1.7] or [KLT21, Lemma 2.1]. This
perspective will be helpful in understanding the commutative diagrams that follow.

– — – —

S2

A ≠ D3 B ≠ D3

≠1≠1

+1

–̂ —̂

“

Figure 3.2. Left, a surgery description of C. We will hereafter indicate ≠1, +1,
and 0-surgeries using the colors red, blue, and green, respectively. Right, the
curves –̂, —̂, and “ in C shown in black.

The framed instanton homologies of C, C0(“), and C1(“) fit into a surgery exact
triangle, a portion of which is shown in the top row of the commutative diagram
below:

(3.4)

I
#(C) //

✏✏

I
#(A≠1#B≠1) e //

f
✏✏

I
#(S, ⁄C)

d
✏✏

I
#(A0#B, ⁄A) h // I#(A0#B≠1, ⁄A) g

// I#(A0#B0, ⁄A fi ⁄B),
depicted in terms of surgery diagrams in Figure 3.3.

= =

e

d

g

f

h

µ“

µ– µ– µ– µ—

Figure 3.3. Surgery descriptions of the manifolds in the commutative diagram
(3.4), and pictures of the meridians µ–, µ—, and µ“. We will no longer label the
boxes, but will imagine that they contain – and — as in Figure 3.2.

The vertical maps in the diagram (3.4) are induced by the trace of 0-surgery on –̂.
Here, ⁄A, ⁄B, ⁄C are mod 2 multiples

⁄A = n–µ–

⁄B = n—µ—

⁄C = n“µ“

of the meridians µ–, µ—, µ“ of –, —, “, respectively, subject to the mod 2 condition
n– + n— + n“ = 0.
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Instanton L-spaces and splicing 9

Moreover, by the Künneth formula for I
# of connected sums, and its naturality with

respect to maps induced by split cobordisms [Sca15, §7], if we let a, b, c denote the
cobordism maps in the surgery exact triangles

· · · æ I
#(A) æ I

#(A≠1) a≠æ I
#(A0, ⁄A) æ · · ·

· · · æ I
#(B) c≠æ I

#(B≠1) b≠æ I
#(B0, ⁄B) æ · · · ,

then we can think of f, g, h as

f = a ¢ id
g = id ¢ b

h = id ¢ c.

This setup in place, we now prove Theorem 1.1, taking the cases (3.1) and (3.2) in
turn.

First, assume we are in case (3.1), so that

‹
˘(–) 6 0 and ‹

˘(—) 6 0.

Then Lemma 3.3 implies that for some choice of ⁄A and ⁄B, both a and b, and
therefore f and g, are injective. It then follows from the commutativity of the
diagram (3.4) that d is injective on the image of e. On the other hand,

(3.5) I
#(S, ⁄C)� µ ker d

since d is induced by 0-surgery on –̂ µ S, which compresses �, and thus � is
homologous in the associated 2-handle cobordism to a surface of strictly smaller
genus. Therefore,

Im e fl I
#(S, ⁄C)� = 0.

Since dim I
#(C) > dim coker(e), we have

dim I
#(C) > dim I

#(S, ⁄C)� = 4 · dim KHI (A, –, g(–)) · dim KHI (B, —, g(—)) > 4,

by Theorem 3.1. Moreover, the leftmost inequality is strict since dim I
#(C) has the

same parity as ‰(I#(C)) = 1, proving the theorem in this case.
Next, assume we are in case (3.2), so that

‹
˘(–) < 0 and ‹

˘(—) > 0.

By Lemma 3.3, this implies that a and c, and therefore f and h, are injective for any
choice of ⁄A and ⁄B. This case will occupy the rest of the proof. Let us henceforth
take

⁄A = ⁄B = ⁄C = 0.

The commutative diagram (3.4) then becomes:

(3.6)

I
#(C) //

✏✏

I
#(A≠1#B≠1) e //

� _

f
✏✏

I
#(S)

d
✏✏

I
#(A0#B) � � h // I#(A0#B≠1)

g
// I#(A0#B0).
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10 J.A. BALDWIN & S. SIVEK

Our goal will be to once again show that
Im e fl I

#(S)� = 0,

from which the theorem will follow as before. Suppose, for a contradiction, that this
intersection contains a nonzero element e(x) for some

x œ I
#(A≠1#B≠1).

Then f(x) is nonzero since f is injective. Note by commutativity and (3.5) that
g(f(x)) = d(e(x)) = 0.

Exactness of the bottom row of (3.6) then implies that f(x) = h(y) for some nonzero
y œ I

#(A0#B).

The maps f and h also fit into the following diagram in which the rows are
portions of surgery exact triangles, and the vertical maps are induced by the trace
of ≠1-surgery on —̂:

(3.7)
I

#(A≠1#B) � � i //
� _

j
✏✏

I
#(A0#B) k //

� _

h
✏✏

I
#(A#B)

� _

l
✏✏

I
#(A≠1#B≠1) �

� f
// I#(A0#B≠1) m // I#(A#B≠1).

We claim that x is in the image of j. Note that j and l can be viewed as maps of
the form id ¢ c and are thus injective. A similar argument shows that i is injective
given that a is. Commutativity and the exactness of the bottom row of this diagram
implies that

l(k(y)) = m(h(y)) = m(f(x)) = 0.

Then k(y) = 0 since l is injective. Exactness of the top row then implies that y = i(w)
for some nonzero

w œ I
#(A≠1#B).

Then
f(j(w)) = h(i(w)) = h(y) = f(x),

which implies that j(w) = x, as claimed, since f is injective.
The map j from (3.7) also fits into the following commutative diagram with e from

(3.6):

(3.8)

I
#(A0#B0)

p

✏✏

I
#(C+1) //

✏✏

I
#(A≠1#B) n //

� _

j
✏✏

I
#(S+1)

o
✏✏

I
#(C) // I#(A≠1#B≠1) e // I#(S)

in which the lower vertical maps are induced by the trace of ≠1-surgery on —̂; the
middle row is a portion of the surgery exact triangle associated to 0 and 1-surgery
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Instanton L-spaces and splicing 11

on a copy of “ on the splicing torus in C+1 with respect to its torus framing; and
the rightmost column is part of the surgery triangle associated to ≠1 and 0-surgery
on —̂ µ S+1, as in Figure 3.4.

=

j o

p

n

e

Figure 3.4. Surgery descriptions of the manifolds in the diagram (3.8).

We can write
n(w) = z + r,

where
z œ I

#(S+1)�

is a linear combination of elements in the extremal eigenspaces of µ(�) acting on
I

#(S+1), and r is a linear combination of elements in the other eigenspaces. By
commutativity,

o(z) + o(r) = o(n(w)) = e(j(w)) = e(x) œ I
#(S)�.

Since the map o respects the eigenspaces of µ(�), it follows in exactly the same way
as (3.5) that o(r) = 0, which implies by exactness that r = p(s) for some

s œ I
#(A0#B0).

To complete the proof, we study the element u(r) in the following diagram involving
n:

(3.9)

I
#(A0#B0)

p

✏✏

I
#(C+1) //

✏✏

I
#(A≠1#B) n //

� _

q

✏✏

I
#(S+1)

u
✏✏

I
#(A0#B+1, µ–) // I#(A0#B, µ–) � � v // I#(A0#B0, µ– fi µ—),

in which the rows are portions of surgery exact triangles corresponding to 0- and
1-surgery on copies of “. In the manifolds on the bottom row, this copy of “ is
isotopic to —, so this row can be viewed as the exact triangle corresponding to 0-
and 1-surgery on —, as indicated in Figure 3.5. The lower vertical maps are induced
by the trace of 0-surgery on –̂.
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=

=

=

u

p

n

v

q

µ–—

µ– µ–µ– µ—

Figure 3.5. Surgery descriptions of the manifolds in the diagram (3.9).

The map q is of the form a
Õ ¢ id, where a

Õ is the map in the surgery exact triangle

· · · æ I
#(A) æ I

#(A≠1) aÕ
≠æ I

#(A0, µ–) æ · · · .

Since ‹
˘(–) < 0, Lemma 3.3 implies that a

Õ, and therefore q, is injective. Similarly,
we can view v as a map of the form id ¢ t, where t is the map in the surgery exact
triangle

· · · æ I
#(B) t≠æ I

#(B0, µ—) ≠æ I
#(B1) æ · · ·

Since ‹
˘(—) > 0, Lemma 3.3 implies that t, and hence v, is injective. It follows that

v(q(w)) is nonzero. By commutativity of (3.9),
v(q(w)) = u(n(w)) = u(z) + u(r).

Note that u(z) = 0 by the same argument as in (3.5): namely, that u respects the
eigenspaces of µ(�), we have

z œ I
#(S+1)�,

and 0-surgery on –̂ µ S+1 compresses �. Thus, u(r) is nonzero. On the other hand,
u(r) = u(p(s)),

and the composition
(3.10) I

#(A0#B0)
p≠æ I

#(S+1) u≠æ I
#(A0#B0, µ– fi µ—)

is identically zero since, as we will show momentarily, the composite cobordism
contains a 2-sphere V with self-intersection 0 on which the restriction of the SO(3)-
bundle is nontrivial [BS21, Proof of Proposition 3.3], a contradiction.

The sphere V is depicted in Figure 3.6, as the union of an annulus V“ µ S+1 with
disks V– and V—, where V– is the core of the 2-handle attachment that induces the
map u, and V— is the co-core of the 2-handle attachment that induces p. The mod 2
class

[µ– fi µ—] œ H1(A0#B0;Z/2Z)
is represented by the meridional curve µ–— shown in Figure 3.5. This curve bounds
a properly embedded disk D in the cobordism inducing the map u, obtained by
pushing the interior of the meridional disk bounded by µ–— in the surgery diagram
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into the interior of the cobordism. The second Stiefel-Whitney class of the SO(3)-
bundle on the composite cobordism is Poincaré dual to D; see [ABDS20, §2.3]. The
evaluation of this class on V is therefore given by the mod 2 intersection number
of V with D. But this is equal to the mod 2 intersection number of V with µ–—, as
indicated in Figure 3.6, which is 1. ⇤

V“

V—

V–

µ–—

D

Figure 3.6. The 2-sphere with trivial self-intersection in the cobordism corre-
sponding to the composition in (3.10). It is formed as the union of an annulus
V“ with disks V– and V—. It intersects µ–—, and thus D, in one point.

Proof of Corollary 1.2. — If Y is not a homology sphere, then there is a non-
trivial homomorphism from fi1(Y ) to SU (2) factoring through H1(Y ). We may thus
assume that Y is a homology sphere, in which case it can be expressed as the
splice of nontrivial knots K1 µ Y1 and K2 µ Y2 in homology spheres, in which
the complements are glued by a map that identifies meridians with Seifert longi-
tudes. There is a fi1-surjective map from Y to each Yi, so if some fi1(Yi) admits
a nontrivial SU (2)-representation then so does fi1(Y ). We may thus assume that
neither fi1(Y1) nor fi1(Y2) admits a nontrivial SU (2)-representation. Then these Yi

are instanton L-spaces, as explained in the introduction, so Theorem 1.1 tells us
that Y is not an instanton L-space. But this in turn implies that fi1(Y ) admits a
nontrivial homomorphism to SU (2). ⇤

Proof of Corollary 1.3. — As in the previous proof, we may assume Y is a homol-
ogy sphere. We can further assume Y is prime, in which case Y is hyperbolic, Seifert
fibered, or toroidal, by geometrization. If Y is hyperbolic then the holonomy repre-
sentation fi1(Y ) æ PSL(2,C) lifts to a nontrivial representation fi1(Y ) æ SL(2,C)
[CS83, Proposition 3.1.1]. If Y ”≥= S

3 is Seifert fibered then fi1(Y ) admits a nontrivial
homomorphism to SU (2), and hence to SL(2,C) [FS90]; see also [BS18, Theorem
5.1]. Finally, if Y is toroidal then fi1(Y ) admits a nontrivial homomorphism to SU (2),
and hence SL(2,C), by Corollary 1.2. ⇤
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4. The framed instanton homology of a longitudinal splice

The goal of this section is to prove Theorem 3.1. We will assume familiarity with
sutured instanton homology at the level of [KM10]. All sutured manifolds in this
section are assumed to be balanced with nonempty sutures.

Given a sutured manifold M = (M, “) and a positive integer k, let M(k) be the
sutured manifold obtained by removing k 3-balls from the interior of M and adding a
circle on each of the resulting 2-sphere boundary components to the suture “. Recall
that

I
#(Y ) ≥= SHI (Y (1))

for any closed 3-manifold Y . We start with the preliminary lemma below.

Lemma 4.1. — For any two sutured manifolds M and N ,
dim SHI (M#N) = dim SHI (M) · dim SHI (N(1)).

Proof. — Note that M#N is obtained from MÛN(1) ≥= MÛS
3(1)#N by attaching

a contact 1-handle. Since such attachments preserve sutured instanton homology
[BS16, §3.2], we have

SHI (M#N) ≥= SHI (M Û N(1)) ≥= SHI (M) ¢ SHI (N(1)),
proving the lemma. ⇤

Corollary 4.2. — For any sutured manifold M and positive integer k,
dim SHI (M(k)) = 2k · dim SHI (M).

Proof. — Note that (S1 ◊ S
2)(1) can be obtained by attaching a contact 1-handle

to S
3(2), so

dim SHI (S3(2)) = dim SHI ((S1 ◊ S
2)(1)) = dim I

#(S1 ◊ S
2) = 2.

Since M(k) ≥= M(k ≠ 1)#S
3(1), Lemma 4.1 says that

dim SHI (M(k)) = dim SHI (M(k ≠ 1)) · dim SHI (S3(2)) = 2 · dim SHI (M(k ≠ 1)),
and the corollary follows by induction. ⇤

Corollary 4.3. — For any nontrivial knot – in a closed, oriented homology
sphere A,

dim KHI (A, –, g(–)) > 1.

Proof. — Let � be a minimal genus Seifert surface for –, and let A(�) be the
sutured manifold obtained from A by removing a neighborhood of – and then of �,
with suture consisting of one curve isotopic to ˆ�. Then

KHI (A, –, g(–)) ≥= SHI (A(�)).
Sutured instanton homology is nonzero for any taut sutured manifold [KM10, Theo-
rem 7.2]. Since � has minimal genus, the only way A(�) can fail to be taut is if it is
not prime. In this case, we can write

A(�) = A(�)Õ#Y,
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where A(�)Õ is a taut sutured manifold and Y is a homology sphere. Then

A(�)(1) = A(�)Õ#Y (1),

whence Lemma 4.1 and Corollary 4.2 tell us that

dim SHI (A(�)) = (1/2) · dim SHI (A(�)(1))
= (1/2) · dim SHI (A(�)Õ) · dim SHI (Y (2))
= dim SHI (A(�)Õ) · dim SHI (Y (1)) = dim SHI (A(�)Õ) · dim I

#(Y ),

which is nonzero since A(�)Õ is taut and ‰(I#(Y )) = 1. ⇤
We will require one more lemma before proving Theorem 3.1.

Lemma 4.4. — Let Y be a closed, oriented 3-manifold. Let � be a closed, oriented
surface in Y of genus at least two, and ⁄ a multicurve in Y which intersects some
surface of positive genus disjoint from � in an odd number of points. Suppose (Y Õ

, ⁄
Õ)

is obtained by cutting (Y, ⁄) open along � and regluing by a homeomorphism of �
which preserves � fl ⁄. Then

Iú(Y |�)⁄
≥= Iú(Y Õ|�)⁄Õ .

Proof. — When � fl ⁄ consists of an odd number of points, this is simply excision.
In general, it su�ces to consider the case in which the regluing homeomorphism is
a positive Dehn twist along an essential curve “ µ �. In this case, Y

Õ is the result
of ≠1-surgery on “ µ Y . Consider the exact triangle relating the Floer homologies
of Y , Y≠1(“) ≥= Y

Õ, and Y0(“):

· · · æ Iú(Y )⁄
f≠æ Iú(Y Õ)⁄Õ ≠æ Iú(Y0(⁄))⁄ÕÕfiµ æ · · · ,

where µ is a meridian of “. The maps in this triangle respect the eigenspaces of the
operators µ(�) and µ(pt). On the other hand, 0-surgery on “ compresses �, which
implies that

Iú(Y0(⁄)|�)⁄ÕÕfiµ = 0.

It follows that f restricts to an isomorphism from Iú(Y |�)⁄ to Iú(Y Õ|�)⁄Õ . ⇤
This immediately implies the corollary below, since I

#(Y, ⁄|�) = Iú(Y #T
3|�)⁄fi⁄T .

Corollary 4.5. — Let Y be a closed, oriented 3-manifold. Let � be a closed,
oriented surface in Y of genus at least two, and ⁄ a multicurve in Y . Suppose (Y Õ

, ⁄
Õ)

is obtained by cutting (Y, ⁄) open along � and regluing by a homeomorphism of �
which preserves � fl ⁄. Then

I
#(Y, ⁄|�) ≥= I

#(Y Õ
, ⁄

Õ|�).

Proof of Theorem 3.1. — Let – µ A and — µ B be as in hypothesis of the theorem.
Let S be any splice formed by gluing the complements

S = (A ≠ N(–)) fi (B ≠ N(—))

via an orientation-reversing homeomorphism of their boundaries which identifies the
Seifert longitudes of these knots. Let � be the closed surface in S of genus at least
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16 J.A. BALDWIN & S. SIVEK

two obtained as the union of minimal genus Seifert surfaces �– µ A ≠ N(–) and
�— µ B ≠ N(—) for – and —. Since A and B are homology spheres,

H1(S;Z/2Z) ≥= Z/2Z,

generated by the meridian µ of –, say. Then ⁄ = 0 or µ. We will first show that
(4.1) I

#(S, 0|�) ≥= I
#(S, µ|�).

Then we will show by an excision argument that
(4.2) dim I

#(S, µ|�) = 2 · dim KHI (A, –, g(–)) · dim KHI (B, —, g(—)).
Theorem 3.1 will then follow immediately from (4.2) together with (2.1) and Corollary
4.3.

Let A(�–) and B(�—) be the standard sutured complements of the Seifert surfaces
�– µ A and �— µ B. Each has vertical boundary an annular neighborhood of the
suture,

ˆvA(�–) ≥= ˆvB(�—) ≥= (ˆ�– = ˆ�—) ◊ [0, 1],
while their horizontal boundaries are given by

ˆhA(�–) = �– Û �–

ˆhB(�—) = �— Û �—.

The manifold obtained by cutting S open along � can alternatively be viewed as
the result

S̄ = A(�–) fi B(�—)
of gluing A(�–) and B(�—) along their vertical boundaries. We can view

ˆS̄ = �1 Û �0,

as the disjoint union of two identical copies of �, so that S is obtained from S̄ by
gluing �1 to �0 by the identity.

There is another convenient way to think about S̄ and S. Consider the manifolds
A

Õ = A(�–) fi (�— ◊ [1/2, 1])
B

Õ = B(�—) fi (�– ◊ [0, 1/2]),
obtained by gluing their constituent pieces by homeomorphisms

ˆ�— ◊ [1/2, 1] æ ˆvA(�–)
ˆ�– ◊ [0, 1/2] æ ˆvB(�—).

The boundaries of A
Õ and B

Õ can each be viewed as consisting of two identical copies
of �,

ˆA
Õ = �1 Û �1/2

ˆB
Õ = �0 Û �1/2,

so that S̄ is obtained by gluing A
Õ to B

Õ according to the identity on �1/2, and S is
obtained by additionally gluing �1 to �0 by the identity, as indicated in Figure 4.1.

Pick essential curves c– µ �– and c— µ �—, and let ” be a curve in �– which
intersects c– transversely in one point. Since A is a homology sphere and ” has
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A(�–) B(�—)
A(�–) �— ◊ I

B(�—)�– ◊ I
�1/2

�1

�0

�1

�0

A(�–) �— ◊ I

B(�—)�– ◊ I

Ā

B̄

S S

�1/2

�1/2

�1

�0

≥=

Figure 4.1. Left, S obtained from A(�–) fi B(�—) via the identification �1 ≥ �0.
Middle, S obtained from A

Õ fi B
Õ by identifying �1 ≥ �0. Right, Ā Û B̄ obtained

from A
Õ Û B

Õ via identifications �1 ≥ �1/2 and �1/2 ≥ �0.

linking number zero with –, the curve ” is homologically trivial in A ≠ N(–) and
hence in S, so
(4.3) I

#(S, 0|�) ≥= I
#(S, ”|�).

Let S
Õ be the manifold obtained by gluing A

Õ to B
Õ by a homeomorphism ˆA

Õ æ ˆB
Õ

sending
c— ◊ {1} ‘æ c– ◊ {0}

c— ◊ {1/2} ‘æ c– ◊ {1/2},

so that the cylinders
c— ◊ [1/2, 1] µ A

Õ

c– ◊ [0, 1/2] µ B
Õ

glue to form a torus T µ S
Õ which intersects the curve ” in a single point. Note that

S
Õ can be obtained by cutting S along �0 ≥ �1 and �1/2 and regluing. Therefore,

(4.4) I
#(S, ”|�) ≥= I

#(S Õ
, ”|�),

by Corollary 4.5.
Now consider the 3-torus T

3 = T
2 ◊ S

1 containing the curve
⁄ = pt ◊ S

1 µ T
3
.

Let c µ T
2 be an essential curve, and d µ T

2 ◊ pt a curve intersecting c ◊ pt
transversely in one point. There is a cobordism
(4.5) (S Õ

, ”) Û (T 3
, d fi ⁄) æ (S Õ

, ” fi ⁄)
associated to cutting (S Õ

, ”) and (T 3
, d fi ⁄) open along the tori

T µ S
Õ

c ◊ S
1 µ T

3

and regluing by a homeomorphism which connects these pieces, as illustrated in
Figure 4.2. By excision [KM10, Theorem 7.7] and the computation Iú(T 3|T 2)dfi⁄

≥= Q
of [KM10, Proposition 7.8], this cobordism induces an isomorphism
(4.6) I

#(S Õ
, ”|�) ≥= I

#(S Õ
, ”|�) ¢ Iú(T 3|T 2)dfi⁄ æ I

#(S Õ
, ” fi ⁄|�).

Since ⁄ intersects � in one point, another application of Corollary 4.5 tells us that
(4.7) I

#(S Õ
, ” fi ⁄|�) ≥= I

#(S, ” fi ⁄|�) ≥= I
#(S, ” fi µ|�),
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18 J.A. BALDWIN & S. SIVEK

where the second isomorphism comes from the fact that ⁄ and µ both represent the
generator of H1(S;Z/2Z) ≥= Z/2Z. Finally,

(4.8) I
#(S, ” fi µ|�) ≥= I

#(S, µ|�),

since ” is nullhomologous in S. Combining (4.3)-(4.8) proves the isomorphism (4.1).

SÕ T 3 SÕ

c– c
” d

⁄ ⁄

”

Figure 4.2. A schematic of the cobordism (4.5). The cutting and regluing occurs
in the product of the gray region with S

1. The torus T µ S
Õ is swept out by c–,

and ⁄ is swept out by the points indicated on these surfaces.

To prove (4.2), we form S by gluing A
Õ to B

Õ as described above. There is a
cobordism

(S, µ) æ (Ā, µA) Û (B̄, µB),
associated to cutting S open along �1/2 and �1 ≥ �0 and regluing, where

Ā = A
Õ
/(�1 ≥ �1/2)

B̄ = B
Õ
/(�0 ≥ �1/2)

are the closed 3-manifolds obtained from each of A
Õ and B

Õ by gluing their boundary
components together by the identity, as in Figure 4.1, and µ– µ Ā and µ— µ B̄

intersect � µ Ā and � µ B̄ in one point, respectively. By excision, this cobordism
induces an isomorphism

I
#(S, µ|�) = Iú(S#T

3|�)µfi⁄T æ Iú(Ā#T
3|�)µ–fi⁄T ¢ Iú(B̄|�)µ—

,

but the tensor product on the right is, by definition [KM10, §7], precisely

SHI (A(�–)(1)) ¢ SHI (B(�—)),

which, by Corollary 4.2, has dimension

2 · dim SHI (A(�–)) · dim SHI (B(�—))
= 2 · dim KHI (A, –, g(–)) · dim KHI (B, —, g(—)),

as desired. ⇤

Remark 4.6. — One can prove the Heegaard Floer homology analogue of The-
orem 3.1 by a couple of di�erent arguments. One can, for instance, simply mimic
the argument above, using Lekili’s excision result for Heegaard Floer homology in
[Lek09].
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