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Abstract: In recent years, large convolutional neural networks have been widely used as tools for
image deblurring, because of their ability in restoring images very precisely. It is well known that
image deblurring is mathematically modeled as an ill-posed inverse problem and its solution is
difficult to approximate when noise affects the data. Really, one limitation of neural networks
for deblurring is their sensitivity to noise and other perturbations, which can lead to instability
and produce poor reconstructions. In addition, networks do not necessarily take into account the
numerical formulation of the underlying imaging problem when trained end-to-end. In this paper,
we propose some strategies to improve stability without losing too much accuracy to deblur images
with deep-learning-based methods. First, we suggest a very small neural architecture, which reduces
the execution time for training, satisfying a green AI need, and does not extremely amplify noise
in the computed image. Second, we introduce a unified framework where a pre-processing step
balances the lack of stability of the following neural-network-based step. Two different pre-processors
are presented. The former implements a strong parameter-free denoiser, and the latter is a variational-
model-based regularized formulation of the latent imaging problem. This framework is also formally
characterized by mathematical analysis. Numerical experiments are performed to verify the accuracy
and stability of the proposed approaches for image deblurring when unknown or not-quantified
noise is present; the results confirm that they improve the network stability with respect to noise. In
particular, the model-based framework represents the most reliable trade-off between visual precision
and robustness.

Keywords: neural networks stability; image deblurring; deep learning; inverse problem in imaging

1. Introduction

Image restoration is a discipline within the field of image processing focusing on the
removal or reduction in distortions and artifacts from images. This topic is of interest in a
wide range of applications, including medical imaging, satellite and aerial imaging, and
digital photography. In this last case, blurring on images is quite frequent and several
factors can cause it. To set some examples, Gaussian blur is caused by the diffraction of
light passing through a lens and it is more prevalent in images captured with low-aperture
lenses or in situations where the depth of field is shallow, whereas motion blur is due to
handheld camera movements or low lighting conditions and slow shutter speeds [1–3].
Furthermore, noise seriously affects images; it is usually introduced by the acquisition
systems.

Researchers have developed a number of algorithms for reducing blur and noise and
image restoration is a very active field of research where new methods are continuously
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being proposed and developed. Such methodologies can be classified into two main
categories: model-based and learning-based. The model-based techniques assume that the
degradation process is known and it is mathematically described as an inverse problem [4].
The learning-based methods learn a map between the degraded and clean images during
the training phase and use it to deblur new corrupted images [5].

1.1. Model-Based Mathematical Formulation
In model-based approaches, denoting by X the compact and locally connected subset

of Rn of the x
gt ground truth sharp images, the relation between x

gt 2 X and its blurred
and noisy observation y

d is formulated as:

y
d = Kx

gt + e, (P)

where K is the known blurring operator and e represents the noise on the image. We can
say that, with very high probability, ||e||  d. In this setting, the goal of model-based
image deblurring methods is to compute a sharp and unobstructed image x given y

d

and K, by solving the linear inverse problem. When noise is present, the problem (P) is
typically reformulated into an optimization problem, where a data fit measure, namely,
F , is minimized. Since the blurring operator K is known to be severely ill-conditioned, a
regularization term R is added to the data-fidelity term F to avoid noise propagation. The
resulting optimization problem is formulated as:

x
⇤ = arg min

x2X
F (Kx, y

d) + lR(x), (1)

where l > 0 is the regularization parameter. This optimization problem can be solved
using different iterative methods depending on the specific choices for F and R [1,6,7]. We
remark that F is set as the least-squares function in the case of Gaussian noise, whereas the
regularization function R can be tuned by the users according to the imaging properties
they desire to enforce. Recently, plug-and-play techniques that plug a denoiser, usually
a neural network, into an iterative procedure to solve the minimization problem have
been used [8–10]. The value of l can also be selected by automatic routines, image by
image [11,12]. These features make model-based approaches mathematically explainable,
flexible, and robust. However, a disadvantage is that the final result strongly depends on a
set of parameters that are difficult to set up properly.

1.2. Deep-Learning-Based Formulation
In the last decade, deep learning algorithms have been emerging as good alternatives to

model-based approaches. Disregarding any mathematical blurring operator, convolutional
neural networks (NNs) can be trained to identify patterns characterizing blur on images,
thus they can learn several kinds of blur and adapt to each specific imaging task. Large
and complex convolutional neural networks, called UNet, have been proposed to achieve
high levels of accuracy by automatically tuning and defining their inner filters and proper
transformations for blur reduction, without needing any parameter setting [13–16]. Indeed,
the possibility to process large amounts of data in parallel makes networks highly efficient
for image processing tasks and prone to play a key role in the development of new and
more advanced techniques in the future.

However, challenges and limitations in using neural networks are known from the
literature. Firstly, it is difficult to understand and precisely interpret how they are making
decisions and predictions, as they act as unexplainable black boxes mapping the input
image y

d towards x
gt directly. Secondly, neural networks are prone to overfitting, which

occurs when they become too specialized for the training samples and perform poorly
on new, unseen images. Lastly, the high performance of neural networks is typically
evaluated only in the so-called in-domain case, i.e., the test procedure is performed on
images sharing exactly the same corruption with the training samples, hence the impact
of unquantified perturbations (as noise can be) has been not widely studied yet. In other
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words, the robustness of NN-based image deblurring with respect to unknown noise is not
guaranteed [17–20].

1.3. Contributions of the Article
Motivated by the poor stability but high accuracy of NN-based approaches in solving

inverse imaging problems such as deblurring, this paper proposes strategies to improve
stability, maintaining good accuracy, acting similarly to regularization functions in the
model-based approach. Based on seeking a result showing a trade-off between stability and
accuracy, we propose to use a very small neural network in place of the UNet, which is less
accurate but is much more stable than larger networks. Since it has only a few parameters to
identify, it consumes relatively little time and energy, thus meeting the green AI principles.

Moreover, we propose two new NN-based schemes, embedding a pre-processing
step to face the network instability when solving deblurring problems, as in (P). The
first scheme, denoted as FiNN, applies a model-free low-pass filter to the datum, before
passing it as input to the NN. This is a good approach to be applied whenever an unknown
noise is present because it does not need any model information or parameter tuning. The
second scheme, called stabilized neural network (StNN), exploits an estimation of the noise
statistics and the mathematical modeling of both noise and the image corruption process.
Figure 1 shows a draft of the proposed frameworks, whose robustness is evaluated from a
theoretical perspective and tested on an image data set.

Figure 1. A graphical draft highlighting the introduction of pre-processing steps Fi and St defining
the proposed frameworks FiNN and StNN, respectively.

1.4. Structure of the Article
The work is organized as follows. In Section 2, we formulate the NN-based action as

an image reconstructor for the problem (P). In Section 3 we show our experimental setup
and motivate our work on some experiments, thus, we state our proposals and derive
their main properties in Section 4. Finally, in Section 5 we will report the results of some
experiments to test the methods and empirically validate the theoretical analysis, before
concluding with final remarks in Section 6.

2. Solving Imaging Inverse Problems with Deep-Learning-Based Operators

As stated in (P), image restoration is mathematically modeled as an inverse problem
which derives from the discretization of Fredholm integral equations; these are ill-posed and
the noise on the data is amplified in the numerically computed solution of y

d = Kx
gt + e.

A rigorous theoretical analysis of the solution of such problems with variational techniques,
which can be formulated as in Equation (1), has been performed, both in the continuous
and discrete settings, and regularization techniques have been proposed to limit the noise
spread in the solution [1,6].
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To our best knowledge, a similar analysis for deep-learning-based algorithms is not
present in the literature and it is quite mysterious how these algorithms behave in the
presence of noise on the data. In this paper, we use some of the mathematical tools defined
and proved in [20] and we propose here some techniques to limit noise spread. More details
about the proposed mathematical framework in a more general setting can be found in [20].

In the following, if not differently stated, as a vector norm we consider the Euclidean
norm. We first formalize the concept of the reconstructor associated with (P) with the
following definition.

Definition 1. Denoting by Rg(K) the range of K, we call Y d = {y
d 2 Rn; infy2Rg(K) ||y �

y
d||  d} the set of corrupted images according to d � 0. Any continuous function y : Y d ! Rn,

mapping y
d = Kx

gt + e (where ||e||  d with d � 0) to an x 2 Rn, is called a reconstructor.

The associated reconstructing error is

Ey(x
gt, y

d) := ||y(yd)� x
gt||. (2)

Definition 2. We quantify the accuracy of the reconstructor y, by defining the measure h > 0 as:

h = sup
xgt2X

||y(Kx
gt)� x

gt|| = sup
xgt2X

Ey(x
gt, y

0). (3)

We say that y is h�1-accurate [6].

We now consider a neural network as a particular reconstructor.

Definition 3. Given a neural network architecture A = (n, S), where n = (n0, n1, . . . , nL) 2
NL+1, nL = n, is the width of each layer and S = (S1,1, . . . , SL,L), Sj,k 2 Rnj⇥nk is the set of
matrices representing the skip connections, we define the parametric family XA

q of neural network
reconstructors with architecture A, parameterized by q 2 Rs, as:

XA
q = {yq : Y d ! Rn; q 2 Rs} (4)

where yq(y
d) = z

L is given by:
(

z
0 = y

d

z
l+1 = r(Wl

z
l + b

l + Âl
k=1 Sl,kz

k) 8l = 0, . . . , L � 1
(5)

and Wl 2 Rnl+1⇥nl is the weight matrix, and b
l 2 Rnl+1 is the bias vector.

We now analyze the performance of NN-based reconstructors when noise is added to
their input.

Definition 4. Given d � 0, the d-stability constant Cd
yq

of an h�1-accurate reconstructor is
defined as:

Cd
yq

= sup
x

gt2X
||e||d

Ey(xgt, y
d)� h

||e||2
. (6)

Since from Definition 4 we interestingly observe that the stability constant amplifies
the noise in the data:

||yq(y
0 + e)� x||2  h + Cd

yq
||e||2 8x 2 X , 8e 2 Rn, ||e||2  d, (7)

with y
0 the noiseless datum, we can give the following definition:
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Definition 5. Given d � 0, a neural network reconstructor yq is said to be d-stable if Cd
yq

2 [0, 1).

The next theorem states an important relation between the stability constant and the
accuracy of a neural network as a solver of an inverse problem .

Theorem 1. Let yq : Rn ! Rn be an h�1-accurate reconstructor. Then, for any xgt 2 X and for
any d > 0, 9 ẽ 2 Rn with ||ẽ||  d such that

Cd
yq

� ||K†
ẽ||� 2h

||ẽ|| (8)

where K† is the Moore–Penrose pseudo-inverse of K.

For the proof, see [20].
We emphasize that, even if neural networks used as reconstructors do not use any

information on the operator K, the stability of yq is related to the pseudo-inverse of
that operator.

3. Experimental Setting

Here, we describe our particular setting using neural networks as reconstructors for a
deblurring application.

3.1. Network Architectures
We have considered three different neural network architectures for deblurring: the

widely used UNet [21], the recently proposed NAFNet [22], and a green-AI-inspired 3L-
SSNet [23].

The UNet and NAFNet architectures are complex, multi-scale networks, with similar
overall structure but very different behavior. As shown in Figure 2, both UNet and NAFNet
are multi-resolution networks, where the input is sequentially processed by a sequence of
blocks B1, . . . , Bni , i = 1, . . . , L and downsampled after that. After L � 1 downsampling,
the image is then sequentially upsampled again to the original shape through a sequence
of blocks, symmetrically to what happened in the downsampling phase. At each resolution
level i = 1, . . . , L, the corresponding image in the downsampling phase is concatenated
to the first block in the upsampling phase, to keep the information through the network.
Moreover, a skip connection has also been added between the input and the output layer
of the model to simplify the training, as described in [23]. The left-hand side of Figure 2
shows that the difference between UNet and NAFNet is in the structure of each block.
In particular, the blocks in UNet are simple residual convolutional layers, defined as a
concatenation of convolutions, ReLU, BatchNormalizations, and a skip connection. On the
other side, each block in NAFNet is far more complex, containing a long sequence of gates,
and convolutional and normalization layers. The key property of NAFNet, as described
in [22], is that no activation function is used in the blocks, since they have been substituted
by non-linear gates, thus obtaining improved expressivity and more training efficiency.

The 3-layer single-scale network (3L-SSNet) is a very simple model defined, as sug-
gested by its name, by just three convolutional layers, each of them composed by a linear
filter, followed by a ReLU activation function and a BatchNormalization layer. Since by
construction the network works on single-scale images (the input is never downsampled
to low-resolution level, as is common in image processing), the kernel size is crucial to
increase the receptive field of the model. For this reason, we considered a 3L-SSNet with
width [128, 128, 128] and kernel size [9 ⇥ 9, 5 ⇥ 5, 3 ⇥ 3].
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Figure 2. A diagram representing the UNet and NAFNet architectures.

3.2. Data Set
As a data set for our experiments we choose the widely used GoPro [24], which is

composed of a large number of photographic images acquired from a GoPro camera. All
the images have been cropped into 256 ⇥ 256 patches (with no overlapping), converted into
grayscale, and normalized into [0,1]. We synthesize the blurring of each image according to
(P) by considering a Gaussian corrupting effect, implemented with the 11 ⇥ 11 Gaussian
kernel G defined as

Gi,j =

8
<

:
e
� 1

2
i2+j2

s2
G i, j 2 {�5, . . . , 5}2

0 otherwise
(9)

with variance sG = 1.3. The kernel is visualized in Figure 3, together with one of the GoPro
images and its blurred counterpart.

Figure 3. From left to right: ground truth clean image, blurring kernel, blurred corrupted image.

3.3. Neural Networks Training and Testing
To train the neural network for deblurring, the set of available images is split into train

and test subsets, with ND = 2503 and NT = 1111 images, respectively. Then, we consider a
set D = {(yd

i , x
gt
i ); x

gt
i 2 S}ND

i=1 for a given d � 0. Since we set a mean squared error (MSE)
loss function, an NN-based reconstructor is uniquely defined as the solution of:

min
yq2FA

q

ND

Â
i=1

||yq(y
d
i )� x

gt
i ||22. (10)

Each network has been trained by performing 50 epochs of the Adam optimizer with
b1 = 0.9, b2 = 0.9, and a learning rate of 10�3. We focus on the next two experiments.
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Experiment A. In this experiment, we train the neural networks on images only
corrupted by blur (d = 0). With the aim of checking the networks’ accuracy, defined as in
Section 2, we test on images without noise (in-domain tests). Then, to verify Theorem 1, we
consider test images with added Gaussian noise, with s = 0.025 (out-of-domain tests).

Experiment B. A common practice for enforcing network stability is noise injection [25],
consisting of training a network by adding noise components to the input. In particular,
we have added a vector noise e ⇠ N (0, s2 I), with s = 0.025. To test the stability of
the proposed frameworks with respect to noise, we test with higher noise with respect
to the training.

3.4. Robustness of the End-to-End NN Approach
Preliminary results obtained from experiment A are shown in Figure 4. The first row

displays the reconstructions obtained from the in-domain tests, where we can appreciate
the accuracy of all the three considered architectures. In the second row, we can see the
results obtained from the out-of-domain tests, where the noise on the input data strongly
corrupts the solution of the ill-posed inverse problem computed by UNet and NAFNet.
Confirming what was stated by Theorem 1, the best result is obtained with the very light
3L-SSNET, which is the only NN able to handle the noise.

UNet 3L-SSNet NAFNet

In
-D

o
m

a
in

O
u
t
-o

f-
D

o
m

a
in

Figure 4. Results from experiment A with the three considered neural networks. Upper row:
reconstruction from non-noisy data. Lower row: reconstruction from noisy data (d = 0.025).

4. Improving Noise-Robustness in Deep-Learning-Based Reconstructors

As observed in Section 3, merely using a neural network to solve an inverse problem
is an unstable routine. To enforce the robustness of yq reconstructors, we propose modify-
ing the deep-learning-based approach by introducing a suitable operator, defined in the
following as a stabilizer, into the reconstruction process.

Definition 6. A continuous functions f : Rn ! Rn is called a d-stabilizer for a neural network
reconstructor yq : Rn ! Rn if 8 e 2 Rn with ||e||  d, 9 Ld

f 2 [0, 1) and 9 e0 2 Rn with
||e0|| = Ld

f||e|| such that:
f(Kx + e) = f(Kx) + e

0. (11)

In this case, the reconstructor ȳq = yq � f is said to be d-stabilized. The smallest constant Ld
f for

which the definition holds is the stability constant Cd
f of f.
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Intuitively, applying a pre-processing f with Ld
f < 1 reduces the perturbation of the

input data by converting a noise of amplitude bounded by d to a corruption with norm
bounded by dLd

f. This intuition has been mathematically explained in [20]; Proposition 4.2,
where a relationship between the stability constant of the stabilized reconstructor ȳq and
the stability constant of yq has been proved. In particular, if ȳq = yq � f is a d-stabilized
reconstructor, Ld

yq
, Ld

f are the local Lipschitz constants of yq and f, respectively, then:

Cd
ȳq

 Ld
yq

Ld
f. (12)

As a consequence, if Ld
f < 1, then the stability constant of ȳq is smaller than the Lipschitz

constant of yq , which implies that ȳq is more stable to input perturbations.
We underline that the d-stabilizers f are effective if they preserve the characteristics

and the details of the input image y
d. In this paper, we focus on the two following proposals

of d-stabilizers f.

4.1. Stabilized Neural Network (StNN) Based on the Imaging Model
If the blurring operator K is known, it can be exploited to derive a d-stabilizer func-

tion f. We argue that information on K will contribute to improving the reconstruction
accuracy. Specifically, we consider an iterative algorithm, converging to the solution of (1),
represented by the scheme: (

x
(0) 2 Rn

x
(k+1) = Tk(x

(k); y
d)

(13)

where Tk is the action of the k-th iteration of the algorithm. Given a positive integer M 2 N
and a fixed starting iterate x

(0), let us define the d-stabilizer:

fM(yd) =
M�1
�
k=0

Tk(x
(k); y

d). (14)

By definition, fM maps a corrupted image y
d to the solution computed by the iterative

solver in M iterations.
In the following, we set as the objective function in (1) the Tikhonov-regularized

least-squared function that has been analyzed in our previous work [20]:

arg min
x2Rn

1
2
||Kx � y

d||22 + l||x||22. (15)

In the paper, we showed that the Tikhonov-regularized formulation makes it possible to
choose M such that Ld

fM
< 1. We are aware that we could also explore different Tikhonov-

like functions, such as ||Dx||22 (with D difference operator), but this is beyond the scope
of this paper. Hence, given d and FA

q , it is always possible to use fM as a pre-processing
step, stabilizing yq . We refer to ȳq = gq � fM as the stabilized neural network (StNN). In
the numerical experiments, we use as the iterative method for the solution of (15) the
conjugate gradient least squares (CGLS) iterative method [11]. Concerning the choice of the
regularization parameter l, we have chosen, for each experiment, the value minimizing
the average relative error over the training set.

4.2. Filtered Neural Network (FiNN)
The intuition that a pre-processing step should reduce the noise present in the input

data naturally leads to our second proposal, implemented by a Gaussian denoising filter.
The Gaussian filter is a low-pass filter that reduces the impact of noise on the high frequen-
cies [26]. Thus, the resulting pre-processed image is a low-frequency version of y

d and the
neural network yq 2 FA

q has to recover the high frequencies corresponding to the image
details. Let fG represent the operator that applies the Gaussian filter to the input. We will
refer to the reconstructor ȳq = yq � fG as filtered neural network (FiNN).
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Note that even if FiNN is employed to reduce the impact of the noise and consequently
to stabilize the network solution, its Ld

f constant is not smaller than one. In fact, for any
e 2 Rn with ||e||  d, it holds:

fG(Kx + e) = fG(Kx) + fG(e) (16)

as a consequence of the linearity of fG .

5. Results

In this section we present the results obtained in our deblurring experiments described
in Section 3. To evaluate and compare the deblurred images, we use visual inspection
on a selected test image and exploit the structural similarity index (SSIM) [27] on the
test set. Details on the implementation can be found in the GitHub repository at https:
//github.com/devangelista2/Ambiguity-in-solving-Inverse-Problems, accessed on 31
May 2023.

5.1. Results of Experiment A
We show and comment on the results obtained in experiment A, described in Section 3.3.

We remark that the aim of these tests is to measure the accuracy of the three considered
neural reconstructors and of the stabilizers proposed in Section 4 and verify their sensitivity
to noise in the input data. In a word, how these reconstructors handle the ill-posedness of
the imaging inverse problem.

To this purpose, we visually compare the reconstructions of a single test image by
the UNet and 3L-SSNet in Figure 5. The first row (which replicates some of the images of
Figure 4) shows the results of the deep-learning-based reconstructors, where the out-of-
domain images are clearly damaged by the noise. The FiNN and, particularly, the StNN
stabilizer drastically reduce the noise, producing accurate results even for out-of-domain
tests.

UNet 3L-SSNet
In-Domain Out-of-Domain In-Domain Out-of-Domain

N
N

Fi
N

N
St

N
N

Figure 5. Results from experiment A with UNet and 3L-SSNet.

https://github.com/devangelista2/Ambiguity-in-solving-Inverse-Problems
https://github.com/devangelista2/Ambiguity-in-solving-Inverse-Problems
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In order to analyze the accuracy and stability of our proposals, we compute the
empirical accuracy ĥ�1 and the empirical stability constant Ĉd

y, respectively defined as:

ĥ�1 =
⇣

sup
x2ST

||y(Kx)� x||2
⌘�1

(17)

and
Ĉd

y = sup
x2ST

||y(Kx + e)� x||2 � ĥ

||e||2
(18)

where ST ✓ X is the test set and e is a noise realization from N (0, s2 I), with ||e||2  d
(different for any datum x 2 ST).

The computed values are reported in Table 1. Focusing on the estimated accuracies, the
results confirm that NN is the most accurate method, followed by NAFNet and 3L-SSNet,
as expected. As a consequence of Theorem 1, the values of the stability constant Ĉd

y are
in reverse order: the most accurate is the least stable (note the very high value of Ĉd

y for
NN!). By applying the stabilizers, the accuracy is slightly lower but the stability is highly
improved (in most of the cases the constant is less than one), confirming the efficacy of the
proposed solutions to handle noise and, at the same time, maintain good image quality. In
particular, StNN is a stable reconstructor independent of the architecture.

Table 1. Estimated accuracy and stability constants for experiment A on out-of-domain test (input
images corrupted by noise with d = 2.56).

ĥ�1 Ĉd
y

NN FiNN StNN NN FiNN StNN

UNet 0.118 0.085 0.087 36.572 2.519 0.878
3L-SSNet 0.082 0.055 0.072 2.563 0.148 0.243
NAFNet 0.104 0.080 0.078 15.624 1.053 0.434

To analyze the stability of the test set with respect to noise, we have plotted in Figure 6,
for each test image, Ey(xgt, y

d)� ĥ vs. kek, where the reconstruction error is defined in (2).
With green and red dots we have plotted the experiments with stability constants less and
greater than one, respectively, and with the blue dashed line the bisect. We note that the
values reported in Table 1 for the empirical stability constant computed as supremum (see
Equation (18)) are not outliers but they are representative of the results of the whole test set.

5.2. Results of Experiment B
In this experiment, we used noise injection in the neural networks’ training, as de-

scribed in Section 3.3. This quite common strategy reduces the networks’ accuracy but
improves their stability with respect to noise. However, we show that the reconstructions
are not totally satisfactory when we test on out-of-domain images, i.e., when the input
images are affected by noise of different intensities with respect to the training.

Figure 7 displays the reconstructions obtained by testing with both in-domain (on the
left) and out-of-domain (on the right) images. Even if the NN reconstructions (column 4)
are not so affected by noise as in experiment A (see Figure 4), however, noise artifacts are
clearly visible, especially in UNet and NAFNet. Both the stabilizers proposed act efficiently
and remove most of the noise. We observe that the restorations obtained with FiNN are
smoother but also more blurred with respect to the ones computed by StNN.
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Figure 6. Results from experiment A. Plot of Ey(xgt, y
d)� h vs. kek for all the test images. The blue

dashed line represents the bisect.
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Figure 7. Results from experiment B. On the left, tests on images with the same noise as in the
training (d = 0.025). On the right, tests on images with higher noise than in the training (d = 0.075).

An overview of the tests is displayed by the boxplots of the SSIM values sketched
in Figure 8. The light blue, orange, and green boxes represent the results obtained with
the NN, FiNN, and StNN methods, respectively. They confirm that the neural networks’
performance worsens with noisy data (see the different positions of light blue boxes from
the left to the right column), whereas the proposed frameworks including FiNN and StNN
are far more stable.
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Figure 8. Boxplots for the SSIM values in experiment B. The light blue, orange, and green boxplots
represent the results computed by NN, FiNN, and StNN, respectively.

5.3. Analysis with Noise Varying on the Test Set
Finally, we have analyzed the performance of the methods when the input image y

d is
corrupted by noise kek from N (0, s2 I), with s varying.

In Figure 9, we plot, for one image in the test set, the absolute error between the
reconstruction and the true image vs. the noise standard deviation s. In the upper row, the
results from experiment A (we remark that in this experiment we trained the networks on
non-noisy data) are shown. The NN error (blue line) is out of range for very small values
of s for both UNet and NAFNet, whereas the 3L-SSNet is far more stable. In all the cases,
the orange and green lines shows that FiNN and StNN improve the reconstruction error. In
particular, StNN performs best in all these tests.

Concerning experiment B (in the lower row of the figure), it is very interesting to note
that when the noise is smaller than the training one (corresponding to s = 0.025), the NN
methods are the best performing for all the considered architectures. When s ' 0.05 the
behavior changes and the stabilized methods are more accurate.
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UNet 3L-SSNet NAFNet

Figure 9. Plots of the absolute error vs. the variance s of the noise for one image in the test set.
Upper row: experiment A. Lower row: experiment B.

6. Conclusions

Starting from the consideration that the most popular neural networks used for image
deblurring, such as the family of convolutional UNets, are very accurate but unstable
with respect to noise in the test images, we have proposed two different approaches
to obtain stability without losing too much accuracy. The first method is a very light
neural architecture, called 3L-SSNET, and the second one is to stabilize the deep learning
framework by introducing a pre-processing step. Numerical results on the GoPro dataset
have demonstrated the efficiency and robustness of the proposed approaches under several
settings, encompassing in-domain and out-of-domain testing scenarios. The 3L-SSNet
overcomes UNet and NAFNet in every test where the noise on the test images exceeds
the noise on the training set, combining the desired characteristics of execution speed
(from a green AI perspective) and high stability. The FiNN proposal increases the stability
of the NN-based restoration (the values of its SSIM do not change remarkably in all the
experiments), but the restored images appear too smooth and a few small details are lost.
The StNN proposal, exploiting a model-based formulation of the underlying imaging
process, achieves the highest SSIM values in the most challenging out-of-domain cases,
confirming its great theory-grounded potential. It represents, indeed, a good compromise
between stability and accuracy. We finally remark that the proposed approach can be
simply extended to other imaging applications modeled as an inverse problem, such as
super-resolution, denoising, or tomography, where the neural networks learning the map
from the input to the ground truth image cannot efficiently handle noise in the input data.
It can be also applied to color images, by simply using a kernel K which defines the blur on
the three RGB channels and by adapting the neural network to handle color images.

This work represents one step further in shedding light on the black-box essence of
NN-based image processing.
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