The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

Learning Fractals by Gradient Descent

Cheng-Hao Tu*, Hong-You Chen*, David Carlyn, Wei-Lun Chao

Department of Computer Science and Engineering, The Ohio State University
{tu.343, chen.9301, carlyn.1, chao.209} @osu.edu

Abstract

Fractals are geometric shapes that can display complex and
self-similar patterns found in nature (e.g., clouds and plants).
Recent works in visual recognition have leveraged this prop-
erty to create random fractal images for model pre-training.
In this paper, we study the inverse problem — given a target
image (not necessarily a fractal), we aim to generate a fractal
image that looks like it. We propose a novel approach that
learns the parameters underlying a fractal image via gradient
descent. We show that our approach can find fractal param-
eters of high visual quality and be compatible with different
loss functions, opening up several potentials, e.g., learning
fractals for downstream tasks, scientific understanding, etc.

Introduction

A fractal is an infinitely complex shape that is self-similar
across different scales. It displays a pattern that repeats for-
ever, and every part of a fractal looks very similar to the
whole fractal. Fractals have been shown to capture geometric
properties of elements found in nature (Mandelbrot and Man-
delbrot 1982). In essence, our nature is full of fractals, e.g.,
trees, rivers, coastlines, mountains, clouds, seashells, etc.

Despite its complex shape, a fractal can be generated via
well-defined mathematical systems like iterated function sys-
tems (IFS) (Barnsley 2014). An IFS generates a fractal image
by “drawing” points iteratively on a canvas, in which the
point transition is governed by a small set of 2 x 2 affine
transformations (each with a probability). Concretely, given
the current point v(*) € R2, the IFS randomly samples one
affine transformation with replacement from the set, and uses
it to transform v*) into the next point v(*+1), This stochastic
step is repeated until a pre-defined number of iterations T’
is reached. The collection of {v(?),--- (™)} can then be
used to draw the fractal image (see Figure 1 for an illustra-
tion). The set of affine transformations thus can be seen as
the parameters (or ID) of a fractal.

Motivated by these nice properties, several recent works
in visual recognition have investigated generating a large
number of fractal images to facilitate model (pre-)training,
in which the parameters of each fractal are randomly sam-
pled (Kataoka et al. 2020; Anderson and Farrell 2022). For

“These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2456

instance, Kataoka et al. (2020) sampled multiple sets of pa-
rameters and treated each set as a fractal class. Within each
class, they leveraged the stochastic nature of the IFS to gener-
ate fractal images with intra-class variations. They then used
these images to pre-train a neural network in a supervised
way without natural images and achieved promising results.

In this paper, we study a complementary and inverse prob-
lem — given a target image that is not necessarily a fractal,
can we find the parameters such that the generated IFS frac-
tal image looks like it? We consider this problem important
from at least two aspects. First, it has the potential to find
fractal parameters suitable for downstream visual tasks, e.g.,
for different kinds of image domains. Second, it can help us
understand the limitations of IFS fractals, e.g., what kinds of
image patterns the IFS cannot generate.

We propose a novel gradient-descent-based approach for
this problem (see section 6). Given a target image and the
(initial) fractal parameters, our approach compares the image
generated by the IFS to the target image, back-propagates
the gradients w.r.t. the generated image through the IFS, and
uses the resulting gradients w.r.t. the parameters to update the
fractal parameters. The key insights are three-folded. First,
we view an IFS as a special recurrent neural network (RNN)
with identity activation functions and stochastic weights. The
weights in each recurrent step (i.e., one affine transformation)
are not the same, but are sampled with replacement from
shared parameters. This analogy allows us to implement the
forward (i.e., image generation) and backward (i.e., back-
propagation) passes of IFS using deep learning frameworks
like PyTorch (Paszke et al. 2019) and TensorFlow (Abadi
et al. 2016). Second, the IFS generates a sequence of points,
not an image directly. To compare this sequence to the target
image and, in turn, calculate the gradients w.r.t. the gener-
ated points, we introduce a differentiable rendering module
inspired by (Qian et al. 2020). Third, we identify several chal-
lenges in optimization and propose corresponding solutions
to make the overall learning process stable, effective, and ef-
ficient. The learned parameters can thus lead to high-quality
fractal images that are visually similar to the target image. We
note that besides reconstructing a target image, our approach
can easily be repurposed by plugging in other loss functions
that return gradients w.r.t. the generated image.

We conduct two experiments to validate our approach.
First, given a target image (that is not necessarily a fractal),

Forward

—_—

w3 w©, v}

Rendering
<+ = Backward

y-axis »©

2(©

Fractal Parameters

S ={(4, € R¥? b, R?)}

Xx-axis

Iterative Function System (IFS)
2® = A®pE-D 4 p©®

»©

Every IFS iteration ¢, sample

(A, b®) from S

t=0 t=1

Point generation

[

) Rendered Target

U(49) v(so)} {vto) vUUU)} . .
, , image image
(50 (50) (299)

— —

- |- EEE i - -
(39 6D (300)

After 1000 GD steps Gradient calculation

t=50 t=51 t=300

Figure 1: Overview of our approach, which aims to learn the fractal parameters S so that the generated point sequence by IFS

(e, {00, ... (300

)}), after being rendered onto an image, is close to the target image. We learn S by gradient descent (GD).

As shown, after 1000 GD steps, we can learn high-quality S to generate images that are visually close to the target one.

we find the fractal parameters to reconstruct it and evaluate
our approach using the pixel-wise mean square error (MSE).
Our approach notably outperforms the baselines. Second, we
extend our approach to finding a set of parameters to approxi-
mate a set of target images. This can be achieved by replacing
the image-to-image MSE loss with set-to-set losses like the
GAN loss (Goodfellow et al. 2014). In this experiment, we
demonstrate the potential of finding more suitable fractal
images for downstream tasks than the randomly sampled
ones (Kataoka et al. 2020; Anderson and Farrell 2022).

Contributions. We propose a gradient-descent-based ap-
proach to find the fractal parameters for a given image. Our
approach is stable, effective, and efficient. It can be easily
implemented using popular deep learning frameworks. More-
over, it can be easily extended from finding fractal parameters
for image reconstruction to other purposes, by plugging the
corresponding loss functions. While we mainly demonstrate
the effectiveness of our approach using image reconstruction,
we respect think it is a critical and meaningful step towards
unlocking other potential usages and applicability of fractal
images in visual recognition and deep learning. The code is
provided at https://github.com/andytu28/LearningFractals.

Related Work

Fractal inversion. Finding the parameters of a given frac-
tal image is a long-standing open problem (Vrscay 1991;
Tacus and La Torre 2005; Kya and Yang 2001; Guérin and
Tosan 2005; Graham and Demers 2019). Many approaches
are based on genetic algorithms (Lankhorst 1995; Gutiér-
rez, Cofifio, and Ivanissevich 2000; Nettleton and Garigliano
1994) or moment matching (Vrscay and Roehrig 1989; Forte
and Vrscay 1995). Our approach is novel by tackling the
problem via gradient descent and can be easily implemented
using deep learning frameworks. In this paper, we mainly
focus on image reconstruction in the image/pixel space.

Fractal applications. Recent works leveraged fractals to
generate geometrically-meaningful synthetic data to facilitate
neural network training (Hendrycks et al. 2021; Baradad Ju-

2457

rjo et al. 2021; Ma et al. 2021; Anderson and Farrell 2022;
Kataoka et al. 2020; Gupta, O’Connell, and Egger 2021;
Nakashima et al. 2021). Some other works leveraged self-
similarity for image compression, for example, by partitioned
IFS (Fisher 1994), which resembles an image with other
parts of it (Pandey and Singh 2015; AL-Bundi and Abd 2020;
Jacquin et al. 1992; Al-Bundi, Al-Saidi, and Al-Jawari 2016;
Venkatasekhar, Aruna, and Parthiban 2013; Menassel, Nini,
and Mekhaznia 2018; Poli et al. 2022). Fractals have also
been used in scientific fields, like diagnostic imaging (Karpe-
rien et al. 2008), 3D modeling (Ullah et al. 2021), optical
systems (Sweet, Ott, and Yorke 1999), biology (Otaki 2021;
Enright and Leitner 2005), etc. In this paper, we study the in-
verse problem, which potentially benefits these applications.

Fractals and neural networks. Fractals also inspire neu-
ral network designs (Larsson, Maire, and Shakhnarovich
2016; Deng, Yu, and Long 2021) and help the understand-
ing of their underlying mechanisms (Camuto et al. 2021;
Dym, Sober, and Daubechies 2020). Specifically, some ear-
lier works (Kolen 1994; Tino and Dorffner 1998; Tino, Cer-
nansky, and Benuskova 2004) used IFS formulations to un-
derstand the properties of recurrent neural networks (RNNs).
These works are starkly different from ours. First, we focus
on fractal inversion. Second, we formulate an IFS as a special
RNN to facilitate solving the inverse problem via gradient de-
scent. We note that Stark (1991) formulated an IFS as sparse
feed-forward networks not for solving the inverse problem.

Inversion of generative models. Our problem is related
to the inversion of generative models, such as GANs (Zhu
et al. 2016; Xia et al. 2021). The goal is to find the latent rep-
resentation of GANs for any given image. Our problem has
some unique challenges since the fractal generation process
is stochastic and not directly end-to-end differentiable.

Background

We first provide the background about fractal generation via
Iterated Function Systems (IFS) (Barnsley 2014). As briefly
mentioned in section , an IFS can be thought of as “drawing”

[SEC

Algorithm 1: IFS generation process.
See section 6 for details.
Input :Fractal parameter S, # of iterations 7', an initial point
v©® e R?
fort < 1to 1 do
Sample (A b®)) from S
v® = ABE=1) 4 p®)
end
Output : {v¥ ...

o™}

points iteratively on a canvas. The point transition is governed
by a small set of 2 x 2 affine transformations S:

N

n=1"

S={(A, eR** b, eR*p, €R)} 1))

Here, an (A,,, b,,) pair specifies an affine transformation:
@

which transforms a 2D position v € R? to a new position.
The p,, in Equation 1 is the corresponding probability of each
transformation, i.e.,), p, = 1 and p, > 0,Vn € [N].
Given S, an IFS generates an image as follows. Starting
from an initial point v(°) € R?, an IFS repeatedly samples

Apv + by,

a transformation (A®), b®") from {(A,,b,)}_, with re-
placement following the probability {p, }2_,, and applies
v® = AWp(E=1) 4 p®) 3)

to arrive at the next 2D point. This stochastic process can
continue forever, but in practice, we set a pre-defined number
of iterations 7'. The traveled points {v(?), - .-, v(T)} are then
used to synthesize a fractal image. For example, one can
quantize them into integer pixel coordinates and render each
pixel as a binary (i.e., 1) value on a black (i.e., 0) canvas. We
summarize the IFS fractal generation process in Algorithm 1.
Due to the randomness in sampling (A(*), b(*)), one S can
create different but geometrically-similar fractal images. We
call S the fractal parameters.

Simplified parameters. We follow (Kataoka et al. 2020;
Anderson and Farrell 2022) to set p,, by the determinant
of the corresponding A,,. That is, p,, |det(A,)|. In the
following, we will ignore p,, when defining S:

S= {(An,bn)}ﬁ;l :)

End-to-End Learnable Fractals by Gradient
Descent

In this paper, we study the problem: given a target image,
can we find the parameters S such that the generated IFS
fractal image looks like it? Let us first provide the problem
definition and list the challenges, followed by our algorithm
and implementation.

Problem and Challenges

Problem. Given a gray-scaled image I € [0,1]
where H is the height and W is the width, we want to find the

HxW
9

2458

Algorithm 2: IFS generation process via the FE layer.
See subsection 6 for details.
Input :Fractal embedding {Sa, Sb}, # of iterations 7', an initial
point »(® € R?
4 Sample index sequence z = [z(l), e
fort < 1to T do
s | v =mat(Sal;, 2]V + Sl M)
¢ end
Output: {v'? ...

2],

o™}

fractal parameters S (cf. Equation 4) such that the generated
IFS fractal image I' € [0, 1]#*W is close to I. We note that
I may not be a fractal image generated by an IFS.

Let us denote the IFS generation process by I' = G(S),
and the image-to-image loss function by £. This problem can
be formulated as an optimization problem:

min £(G(S), T).

o)

We mainly consider the pixel-wise square loss £(I’,I)
| I’ — I|3, but other loss functions can be easily applied. We
note that G is stochastic, and we will discuss how to deal
with it in subsection 6.

Goal. We aim to solve Equation 5 via gradient descent
(GD) — as shown in Equation 3, each iteration in IFS is
differentiable. Specifically, we aim to develop our algorithm
as a module such that it can be easily implemented by modern
deep learning frameworks like PyTorch and TensorFlow. This
can largely promote our algorithm’s usage, e.g., to combine
with other modules for end-to-end training.

It is worth mentioning that while I’ depends on {p,, }_;
and {p,, }2__, depends on {A,,}N_, (cf. Equation 4), we do
not include this path in deriving the gradients w.r.t. { A,, }2_,.

Challenges. We identify challenges in achieving our goal.

* First, it is nontrivial to implement and parallelize the IFS
generation process (for multiple fractals) using modern
deep learning frameworks.

* Second, the whole IFS generation process is not imme-
diately differentiable. Specifically, an IFS generates a se-
quence of points, not directly an image. We need to back-
propagate the gradients from an image to the points.

* Third, there are several technical details to make the op-
timization effective and stable. For example, an IFS is
stochastic. The IFS generation involves hundreds or thou-
sands of iterations (i.e., T"); the back-propagation would
likely suffer from exploding gradients.

In the rest of this section, we describe our solution to each

challenge. We give an overview of our approach in Figure 1.

Fractal Generation as a Deep Learning Model

IFS as an RNN. We start with how to implement the IFS
fractal generation process as a deep learning model. We note
that an IFS performs Equation 3 for 7 iterations. Every itera-
tion involves an affine transformation, which is sampled with
replacement from the fractal parameters S. Let us assume

»(© e e (™)
{mat:@xtl>2) [; ; ; | hidden
I-» o(®q-8(@0-8 (@40
”””””””” g mat] I input
Sa S

Sampled sequence Z

i)

—_—
Iteration ¢

b
L

Fractal Embedding Layer

Mini-batch

=2 |
1
1

=y

1

t=3

(a)

locations on

rendered image

w.

.r.t. the point

Point

the image

~

Rendered
image

~

Gradients
w.r.t. the

Gradients

locations

Training steps

(b)

Figure 2: (a) Fractal embedding layer in subsection 6. We show a case of 7' = 3 and batch size = 2. The purple dashed lines
indicate the point transition (like the hidden vector in RNNs). (b) Differentiable rendering in subsection 6. We show that the
gradients w.r.t. the rendered image can be translated into 2D gradient vectors w.r.t. the IFS points, i.e., V,» £ € R? Vt €

{1,---,T} (zoom-in for better resolutions).

that S contains only one pair (A, b), then an IFS can essen-
tially be seen as a special recurrent neural network (RNN),
which has an identity activation function but no input vector:

v® = Av~Y 1 b (6)

Here, v(®) is the RNN’s hidden vector. That is, an IFS can
be implemented like an RNN if it contains only one transfor-
mation. In the following, we extend this notion to IFS with
multiple transformations.

IFS rearrangement. To begin with, let us rearrange the
IFS generation process. Instead of sampling an affine trans-
formation from S at each of the T IFS iterations, we choose
to sample all 7" of them before an IFS starts. We can do so
because the sampling is independent of the intermediate re-
sults of an IFS. Concretely, according to {p, }_,, we first
sample an index sequence z = [z(M) ... 2], in which
2 € {1,---, N} denotes the index of the sampled affine
transformation from S at iteration ¢. With the pre-sampled
z, we can perform an IFS in a seemingly deterministic way.
This is reminiscent of the re-parameterization trick commonly
used in generative models (Kingma and Welling 2013).

Fractal embedding layer. We now introduce a fractal em-
bedding (FE) layer, which leverages the rearrangement to
implement an IFS like an RNN. The FE layer has two sets
of parameters, S, € R**Y and S, € R?*", which record
all the parameters in S (cf., Equation 4). Specifically, the
n'™ column of S, (denoted as Su[:,n]) records the 2 x 2
parameters of A,;i.e., A, = mat(Sal:, n]), where mat is
a reshaping operation from a column vector into a matrix.
The n'" column of S, (denoted as Sy[:,n]) records b,,, i.e.,
b, = (Sb[:,n]). Let us define one more notation 1,() € RY,
which is an N-dimensional one-hot vector whose z(V ele-
ment is 1. With these parameters, the FE layer carries out the
IFS computation at iteration ¢ (cf. Equation 3) as follows

FE(Z(f) N U(t_l); {SA, Sb})

2459

= mat(SAlz(t))v(t_l) + Sblz(t)
=mat(Sal:, 2wV + Sy:, 2]
= AW E=1) 4 p®)
That is, the FE layer takes the index of the sampled affine
transformation of iteration ¢ (i.e., 2(*)) and the previous point
v~ as input, and outputs the next point v(*). To perform an
IFS for T iterations, we simply call the FE layer recurrently
for T' times. This analogy between IFS and RNNs makes it

easy to implement the IFS generation process in modern deep
learning frameworks. Please see Algorithm 2 for a summary.

(7

Extension to mini-batch versions. The FE layer can easily
be extended into a mini-batch version to generate multiple
fractal images, if they share the same fractal parameters S.
See Figure 2 (a) for an illustration. Interestingly, even if the
fractal images are based on different fractal parameters, a
simple parameter concatenation trick can enable mini-batch
computation. Let us consider a mini-batch of size 2 with
fractal parameters S; and Sz. We can combine S; and S
into one S, € R**(N) and one Sy, € R2*(ZN) | where the
number of columns in S and S}, are doubled to incorporate
the affine transformations in &1 and Sa. When sampling the
index sequence for each fractal, we just need to make sure
that the indices align with the columns of S and S, to
generate the correct fractal images.

Differentiable Rendering

The FE layer enables us to implement an IFS via modern
deep learning frameworks, upon which we can enjoy auto-
matic back-propagation to calculate the gradients VgL (cf.
Equation 5) if we have obtained the gradients V) £, Vt €
{1,--- ,T}. However, obtaining the latter is not trivial. An
IFS generates a sequence {v(®) ... v} of 2D points,
but it is not immediately clear how to render an image I’
such that subsequently, we can back-propagate the gradient
Vi L(I',I) to obtain V) L.

Concretely, VL is a 2D tensor of the same size as I,
where V /5, £ € R indicates if the pixel [h, w] of I’ should
get brighter or darker. Let us follow the definition in section 6:
IFS draws points on a black canvas. Then if V.,)L €
R < 0, ideally we want to have some IFS points closer to or
located at [h, w], to make I’ [h, w] brighter. To do so, however,
requires a translation of V (,,) £ < 0 into a “pulling” force

towards I’[h,w] for some of the points in {v(®) ... (1)}
To this end, we propose to draw the IFS points
{v© ... v onto I’ using an RBF kernel — every

point “diffuses” its mass to nearby pixels. This is inspired by
the differentiable soft quantization module (Qian et al. 2020)
proposed for 3D object detection. The rendered image I’ is
defined as

I'hw] =Y exp(~ H[h,w]T —p® 2/7),

he[Hl,we W], ®)
where 7 > 0 governs the kernel’s bandwidth. This module
not only is differentiable w.r.t. v(t), but also fulfills our re-

quirement. The closer the IFS points to [k, w| are, the larger
the intensity of I'[h, w] is. Moreover, if V /1, ,j £ < 0, then

3 I,a[f] agyg)w L will be a 2D vector positively proportional
to (v® — [h, U‘)JT). When GD is applied, this will pull v(®)
towards [h, w| ' . See Figure 2 (b) for an illustration. Since

I'[h, w] may have a value larger than 1, we clamp it back to
the range [0, 1] by min(I'[h, w], 1).

Objective and Optimization

In subsection 6 and subsection 6, we present an end-to-end
differentiable framework for learning S. In this subsection,
we discuss the objective function and present important tech-
nical insights to stabilize the optimization.

Objective function. As pointed out in the subsequent para-
graph of Equation 5, since an IFS is stochastic, the objective
function in Equation 5 is ill-posed. To tackle this, let us
rewrite the stochastic G(S) by G(S; z), in which we explic-
itly represent the stochasticity in G(S) by z: the sampled
index sequence according to S (see subsection 6). We then
present two objective functions:

Expectation: E,. s [L(G(S, 2),I)],
Fixed: E.cz [L(G(S, 2),I)],)

where z ~ S indicates that z is sampled according to S; Z
is a set of pre-sampled fixed sequences. For instance, we can
sample Z according to the initial S and fix it throughout the
optimization process. The Expectation objective encourages
every z ~ S to generate I. The learned S thus would easily
generate images I’ close to I, but the diversity among I’
might be limited. The Fixed objective is designed to alleviate
this limitation by only forcing a (small) set of fixed sequences
Z to generate I. However, since Z is pre-sampled, their
probability of being sampled from the learned S might be
low. Namely, it might be hard for the learned S to generate
images like I. We evaluate both in section 6.

"Following (Anderson and Farrell 2022), we linearly translate
and re-scale the points to fit them into the 4 x W image plane.

2460

14
W
G

without noise —— with noise

Training loss
o e e
9 vl @
B h 5

e
o
G

e

400 600
Training steps

e
o
)

0 200 800 1000

Figure 3: The training loss along the SGD steps w/ and w/o
adding random noise to fractal parameters S. We add a Gaus-
sian noise ~ A(0,0.1) to each element of S every 5 steps.
This makes the final loss lower and the optimization robust.
The shaded area is the standard deviation over random seeds.

Optimization. We apply mini-batch stochastic gradient de-
scent (SGD) to optimize the objectives w.r.t. S in Equation 9.
To avoid confusion, we use “iteration” for IFS generation, and
“step” for SGD optimization. The term “stochastic” refers to
sampling a mini-batch of z at every optimization step from
either S or Z, generating the corresponding fractal images
I’ by IFS, and calculating the average gradients w.r.t. S.

We note that, unlike neural networks that are mostly over-
parameterized, S has much fewer, usually tens of parameters.
This somehow makes the optimization harder. Specifically,
we found that the optimization easily gets stuck at poor local
minima. (In contrast, over-parameterized models are more
resistant to it (Du et al. 2019; Allen-Zhu, Li, and Liang 2019;
Arora et al. 2019).) To resolve this, whenever we calculate
the stochastic gradients, we add a small Gaussian noise to
help the current parameters escape local minima, inspired
by (Welling and Teh 2011). Figure 3 shows that this design
stabilizes the optimization process and achieves lower loss.

Reparameterized S. In the extreme case where S contains
only one affine transformation (A, b), recurrently applying
it multiple times could easily result in exploding gradients
when the maximum singular value of A is larger than 1 (Pas-
canu, Mikolov, and Bengio 2013). This problem happens
when S contains multiple affine transformations as well, if
most of the matrices have such a property. To avoid it, we
follow (Anderson and Farrell 2022) to decompose “each” A
in S into rotation, scaling, and flipping matrices

— [cos(8) —sin(0)] [o 0] [cos(¢p) —sin()] [d 0
A [sin(G) cos(60) } [01 02] [Siﬂ(¢) cos(¢)] [01 dl]’ (10)
N———
rotation scaling rotation flipping

where 01,09 > 0;dy,dy € {—1,1}. That is, A is reparame-
terized by {0, ¢, 01,02, d1, d2}. We note that Anderson and
Farrell (2022) used this decomposition to sample A. The pur-
pose was to generate diverse fractal images for pre-training.
Here, we use this decomposition for a drastically different
purpose: to stabilize the optimization of A. We leverage one
important property — max(o1, 02) is exactly the maximum
singular value of A — and clamp both o; and o5 into [0, 1]
to avoid exploding gradients.

>

€ ® (€ (F)

ALS ARG
NISTY Y
MEAEBE
AlALALA
alildlé
N
STRININ
R e
I (el Td '

MSE: 0.352 0.058 0.059 0.043 0.040

A A ¥

’

R

51/

(3

A
SV EETA - PITE

i

(A) € @ () (F)

/h/0/0/
H B E E
El1El El El
MHEHHM
<A
hd od o wa
TINIEIT
-
EIF K] B]

MSE: 0.326 0.148 0.200 0.123 0.130

W f

SNEHNZARS
NAKEXAERZN-

Figure 4: Image reconstruction examples. Left: FractalDB images. Right: MNIST (row 1-3), KMNIST (row 4-6), and FMNIST
images (row 7-9). (A): the target images. (B): an inverse encoder baseline. (C-F): variants of our approach (corresponding to the
“Index” column in Table 1). The last row shows two examples and the corresponding MSE.

Index| Method | Objective Clamp Noisy| FractalDB MNIST KMNIST FMNIST

3B) ‘ Inverse encoder ‘ - - - ‘ 0.3889 + 0.0000 0.1724 £ 0.0000 0.3016 £ 0.0000 0.3658 £ 0.0000

©) Fixed X X 1 0.0790 £ 0.0006 0.0475 £ 0.0012 0.1023 £0.0016 0.0692 4 0.0010

(D) Ours Fixed v X 0.0752 +0.0027 0.0312 £+ 0.0002 0.0979 £ 0.0008 0.0765 4+ 0.0034

(E) Expectation v X | 0.0630 & 0.0008 0.0223 £ 0.0004 0.0826 £ 0.0010 0.0547 4 0.0005

® Expectation v v/ |0.0617 +0.0009 0.0202 + 0.0005 0.0781 + 0.0015 0.0538 + 0.0006
|Ours (w/o Reparam. S)|Expectation v/ o Exploded Exploded Exploded Exploded

Table 1: Averaged MSE (mean4std over 3 runs) of image reconstruction on FractalDB/MNIST/KMNIST/FMNIST dataset.

Extension

Besides the pixel-wise square loss £(I’, I) = ||I' — I||3, our
approach can easily be compatible with other loss functions
on I'. The loss may even come from a downstream task.
In subsection 6, we experiment with one such extension.
Given a set of images I,,,L}J‘,,f:l, we aim to learn a set of
fractal parameters {S; } 5—1 such that their generated images
are distributionally similar to {,,}}/_,. We apply a GAN
loss (Goodfellow et al. 2014), which relies on training a
discriminator to tell real images from generated images.

Experiments

We conduct two experiments to validate our approach. These
include (1) image reconstruction: learning an IFS fractal
to reconstruct each given target image by gradient descent,

2461

using the mean squared error on pixels; (2) learning fractals
with a GAN loss: given a set of target images, extending our
approach to learn a set of fractal parameters that generates
images distributionally similar to the targets.

We note that we do not intend to compete with other state-
of-the-art in these tasks that do not involve fractals. Our
experiments are to demonstrate that our learnable fractals can
capture meaningful information in the target images. Please
see the supplementary material for more details and analyses.

Setups

Datasets. We first reconstruct random fractal images gen-
erated following FractalDB (Kataoka et al. 2020; Ander-
son and Farrell 2022). We then consider images that are not
generated by fractals, including MNIST (hand-written dig-
its) (LeCun et al. 1998), FMNIST (fashion clothing) (Xiao,

Rasul, and Vollgraf 2017), and KMNIST (hand-written char-
acters) (Clanuwat et al. 2018). For reconstruction, we use
32 x 32 binarized images as targets. For the GAN extension,
we use the training/test splits in the three non-fractal datasets.

Technical details about fractals. Throughout the experi-
ments, we sample v(?) and initialize S by the random proce-
dure in (Anderson and Farrell 2022). The number of transfor-
mations in S is fixed to N = 10, and we set 7" = 300 per image.
These apply to the FractalDB generation as well. To learn S
using our approach, we set 7 = 1 (RBF kernel bandwidth)
and apply an Adam optimizer (Kingma and Ba 2015).

Image Reconstruction and Ablation Study

In the image reconstruction task, our goal is to verify our
gradient descent-based method can effectively recover target
shapes. Specifically, given a target image, we learn an S using
our approach to reconstruct the target shape by minimizing
the mean squared error (MSE) between the generated and
the target images. Each S is learned with a batch size 50
and a learning rate 0.05 for 1K SGD steps. As we would
recover any given target, no training and test splits are con-
sidered. We generate 2K target images using FractalDB, and
randomly sample 2K target images from each MNIST/FM-
NIST/KMNIST. After S is learned, we generate 100 images
per S (with different sampled sequences z) and report the
minimum MSE to reduce the influence of random sequences.
We consider the following variants of our method:

» Using the Expectation objective or the Fixed objective

discussed in subsection 6.

* In differentiable rendering (see Equation 8), clamping each
pixel to be within [0, 1] or not.

* Applying the noisy SGD trick or not (see subsection 6).

* Learning the reparameterized S or the original IFS param-
eters S (see subsection 6).
Besides our variants, we include an inverse encoder base-
line similar to (Graham and Demers 2019) that learns a
ResNet18 (He et al. 2016) to predict the fractal parameters S
given an image (i.e., as a regression problem). We train such
a regressor on 20K different FractalDB images (using the
corresponding S as labels) and use it on the target images.
Quantitatively, the averaged MSE in Table 1 verifies our de-
sign choices of applying the Expectation objective, clamping
pixel values, and using noisy SGD. Notably, without reparam-
eterization, we can hardly learn S since the gradients quickly
explode. Qualitatively, Figure 4 shows some reconstruction
examples. Our approach works well on fractal shapes. Sur-
prisingly, we can also recover non-fractal images to a certain
extent. This reveals that IFS can be more expressive if the
parameters are learned in a proper way.

Learning Fractals as GAN Generators

As discussed in subsection 6, our approach is a flexible deep
learning module that can be learned with other losses besides
MSE. To demonstrate such flexibility, we learn fractals like
GANSs (Goodfellow et al. 2014) by formulating a set-to-set
learning problem — matching the distributions of images gen-
erated from fractals to the distributions of (real) target images.

2462

96| 84! 80
g o4 Sa2 gre
<92 <76
foo — Random | 3 32 Bz

= ZZ —— Learned 76 F72

T2 3 4 i3 3 4 o1 3 3 4

Steps (1K) Steps (1K) Steps (1K)
(a) MNIST (b) FMNIST (c) KMNIST

Figure 5: Learning fractals as GANs. We conduct linear eval-
uations using features pre-trained (for 0 ~ 5K SGD steps)
on the learned/random fractals. Test accuracy of means (lines)
and standard deviations (shades) over 10 runs are plotted.

Groundtruth
ours

Figure 6: Inversion on complex (fractal) images.

Specifically, we start from 100 randomly sampled fractals
S and train them on the target training set of MNIST/FM-
NIST/KMINIST in an unsupervised way using the GAN loss
with a discriminator (a binary LeNet (LeCun et al. 1998)
classifier). Next, we evaluate the learned fractals by using
them for pre-training (Kataoka et al. 2020).

We argue that if the learned fractals S can produce image
distributions closer to the targets, pre-training on the gen-
erated images should provide good features w.r.t. the (real)
target images. We expect pre-training on the images gener-
ated from the learned S to yield better features for the target
datasets, compared to pre-training on random fractals.

Concretely, we pre-train a 100-way classifier (using the
LeNet architecture again) from scratch. We generate 600
images from each S and treat each S as a pseudo-class fol-
lowing (Kataoka et al. 2020) to form a 100-class classifica-
tion problem. Then, we conduct a linear evaluation on the
pre-trained features using the real training and test sets.

Figure 5 shows the results, in which we compare pre-
training on the random fractals (gray lines) and on the learned
fractals (red lines), after every 1K SGD steps. As we pre-
train S with more steps, the learned fractals more accurately
capture the target image distribution, evidenced by the better
pre-trained features that lead to higher test accuracy. This
study shows the helpfulness of our method for pre-training.

Conclusion, Limitations, and Future Work

We present a gradient descent-based method to find the frac-
tal parameters for a given image. Our approach is stable,
effective, and can be easily implemented using popular deep
learning frameworks. It can also be extended to finding fractal
parameters for other purposes, e.g., to facilitate downstream
vision tasks, by plugging in the corresponding losses.

We see some limitations yet to be resolved and leave them
as our future work. For example, IFS itself cannot handle
color images. Our current approach is hard to recover very
detailed structures (e.g., Figure 6). We also plan to further
investigate our approach on 3D point clouds.

Acknowledgments

This research is supported in part by grants from the Na-
tional Science Foundation (IIS-2107077, OAC-2118240, and
OAC-2112606), the OSU GI Development funds, and Cisco
Systems, Inc. We are thankful for the generous support of the
computational resources by the Ohio Supercomputer Cen-
ter and AWS Cloud Credits for Research. We thank all the
feedback from the review committee and have incorporated
them.

References

Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. 2016.
{TensorFlow}: a system for {Large-Scale} machine learning. In
12th USENIX symposium on operating systems design and imple-
mentation (OSDI 16), 265-283.

AL-Bundi, S. S.; and Abd, M. S. 2020. A Review on Fractal
Image Compression Using Optimization Techniques. Journal of Al-
Qadisiyah for computer science and mathematics, 12(1): Page-38.

Al-Bundi, S. S.; Al-Saidi, N. M.; and Al-Jawari, N. J. 2016. Crowd-
ing optimization method to improve fractal image compressions
based iterated function systems. International Journal of Advanced
Computer Science and Applications, 7(7): 392-401.

Allen-Zhu, Z.; Li, Y.; and Liang, Y. 2019. Learning and general-
ization in overparameterized neural networks, going beyond two
layers. Advances in neural information processing systems, 32.

Anderson, C.; and Farrell, R. 2022. Improving Fractal Pre-Training.
In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), 1300-1309.

Arora, S.; Du, S.; Hu, W.; Li, Z.; and Wang, R. 2019. Fine-grained
analysis of optimization and generalization for overparameterized
two-layer neural networks. In International Conference on Machine
Learning, 322-332. PMLR.

Baradad Jurjo, M.; Wulff, J.; Wang, T.; Isola, P.; and Torralba, A.
2021. Learning to see by looking at noise. Advances in Neural
Information Processing Systems, 34: 2556-2569.

Barnsley, M. F. 2014. Fractals everywhere. Academic press.
Camuto, A.; Deligiannidis, G.; Erdogdu, M. A.; Gurbuzbalaban, M.;
Simsekli, U.; and Zhu, L. 2021. Fractal structure and generalization

properties of stochastic optimization algorithms. Advances in Neural
Information Processing Systems, 34.

Clanuwat, T.; Bober-Irizar, M.; Kitamoto, A.; Lamb, A.; Yamamoto,
K.; and Ha, D. 2018. Deep learning for classical japanese literature.
arXiv preprint arXiv:1812.01718.

Deng, Z.; Yu, H.; and Long, Y. 2021. Fractal Pyramid Networks.
arXiv preprint arXiv:2106.14694.

Du, S. S.; Zhai, X.; Poczos, B.; and Singh, A. 2019. Gradient
descent provably optimizes over-parameterized neural networks. In
ICLR.

Dym, N.; Sober, B.; and Daubechies, 1. 2020. Expression of fractals
through neural network functions. IEEE Journal on Selected Areas
in Information Theory, 1(1): 57-66.

Enright, M. B.; and Leitner, D. M. 2005. Mass fractal dimension
and the compactness of proteins. Physical Review E, 71(1): 011912.
Fisher, Y. 1994. Fractal image compression. Fractals, 2(03): 347-
361.

Forte, B.; and Vrscay, E. 1995. Solving the inverse problem for mea-

sures using iterated function systems: A new approach. Advances
in applied probability, 27(3): 800-820.

2463

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley,
D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Generative ad-
versarial nets. Advances in neural information processing systems,
27.

Graham, L.; and Demers, M. 2019. Applying Neural Networks
to a Fractal Inverse Problem. In International Conference on Ap-
plied Mathematics, Modeling and Computational Science, 157-165.
Springer.

Guérin, E.; and Tosan, E. 2005. Fractal inverse problem: approxi-
mation formulation and differential methods. In Fractals in Engi-
neering, 271-285. Springer.

Gupta, S.; O’Connell, T. P.; and Egger, B. 2021. Beyond Flat-
land: Pre-training with a Strong 3D Inductive Bias. arXiv preprint
arXiv:2112.00113.

Gutiérrez, J. M.; Cofiflo, A. S.; and Ivanissevich, M. L. 2000. An
hybrid evolutive-genetic strategy for the inverse fractal problem
of IFS models. In Advances in Artificial Intelligence, 467-476.
Springer.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning
for image recognition. In CVPR.

Hendrycks, D.; Zou, A.; Mazeika, M.; Tang, L.; Song, D.; and
Steinhardt, J. 2021. PixMix: Dreamlike Pictures Comprehensively
Improve Safety Measures. arXiv preprint arXiv:2112.05135.

Tacus, S. M.; and La Torre, D. 2005. Approximating distribution
functions by iterated function systems. Journal of Applied Mathe-
matics and Decision Sciences, 2005(1): 33-46.

Jacquin, A. E.; et al. 1992. Image coding based on a fractal theory
of iterated contractive image transformations. IEEE Transactions
on image processing, 1(1): 18-30.

Karperien, A.; Jelinek, H. F.; Leandro, J. J.; Soares, J. V.; Cesar Jr,
R. M.; and Luckie, A. 2008. Automated detection of proliferative
retinopathy in clinical practice. Clinical ophthalmology (Auckland,
NZ), 2(1): 109.

Kataoka, H.; Okayasu, K.; Matsumoto, A.; Yamagata, E.; Yamada,
R.; Inoue, N.; Nakamura, A.; and Satoh, Y. 2020. Pre-training
without natural images. In Proceedings of the Asian Conference on
Computer Vision.

Kingma, D. P.;; and Ba, J. 2015. Adam: A method for stochastic
optimization. In /ICLR.

Kingma, D. P.; and Welling, M. 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.

Kolen, J. F. 1994. Recurrent networks: State machines or iterated
function systems. In Proceedings of the 1993 Connectionist Models
Summer School, 203-210. Erlbaum Associates Hillsdale.

Kya, B.; and Yang, Y. 2001. Optimization of fractal iterated func-
tion system (IFS) with probability and fractal image generation.
International Journal of Minerals, Metallurgy and Materials, 8(2):
152-156.

Lankhorst, M. M. 1995. Iterated function systems optimization
with genetic algorithms. University of Groningen, Department of
Mathematics and Computing Science.

Larsson, G.; Maire, M.; and Shakhnarovich, G. 2016. Fractal-
net: Ultra-deep neural networks without residuals. arXiv preprint
arXiv:1605.07648.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proceedings of the
IEEE, 86(11): 2278-2324.

Ma, Y.; Hua, Y.; Deng, H.; Song, T.; Wang, H.; Xue, Z.; Cao, H.;
Ma, R.; and Guan, H. 2021. Self-Supervised Vessel Segmenta-
tion via Adversarial Learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 7536-7545.

Mandelbrot, B. B.; and Mandelbrot, B. B. 1982. The fractal geome-
try of nature, volume 1. WH freeman New York.

Menassel, R.; Nini, B.; and Mekhaznia, T. 2018. An improved
fractal image compression using wolf pack algorithm. Journal of
Experimental & Theoretical Artificial Intelligence, 30(3): 429-439.
Nakashima, K.; Kataoka, H.; Matsumoto, A.; Iwata, K.; and Inoue,
N. 2021. Can vision transformers learn without natural images?
arXiv preprint arXiv:2103.13023.

Nettleton, D. J.; and Garigliano, R. 1994. Evolutionary algorithms
and a fractal inverse problem. Biosystems, 33(3): 221-231.

Otaki, J. M. 2021. The Fractal Geometry of the Nymphalid Ground-
plan: Self-Similar Configuration of Color Pattern Symmetry Sys-
tems in Butterfly Wings. Insects, 12(1): 39.

Pandey, A.; and Singh, A. 2015. Fractal Image Compression us-
ing Genetic Algorithm with Variants of Crossover. International
Journal of Electrical, Electronics and Computer Engineering, 4(1):
73-81.

Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the difficulty of
training recurrent neural networks. In International conference on
machine learning, 1310-1318. PMLR.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan,
G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. 2019. Py-
torch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32.

Poli, M.; Xu, W.; Massaroli, S.; Meng, C.; Kim, K.; and Ermon,
S. 2022. Self-Similarity Priors: Neural Collages as Differentiable
Fractal Representations. arXiv preprint arXiv:2204.07673.

Qian, R.; Garg, D.; Wang, Y.; You, Y.; Belongie, S.; Hariharan, B.;
Campbell, M.; Weinberger, K. Q.; and Chao, W.-L. 2020. End-to-
end pseudo-lidar for image-based 3d object detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 5881-5890.

Stark, J. 1991. Iterated function systems as neural networks. Neural
Networks, 4(5): 679—690.

Sweet, D.; Ott, E.; and Yorke, J. A. 1999. Topology in chaotic
scattering. Nature, 399(6734): 315-316.

Tino, P.; Cernansky, M.; and Benuskova, L. 2004. Markovian archi-
tectural bias of recurrent neural networks. IEEE Transactions on
Neural Networks, 15(1): 6-15.

Tino, P.; and Dorffner, G. 1998. Recurrent neural networks with
iterated function systems dynamics. In IFAC Symposium on Neural
Computation.

Ullah, A.; D’Addona, D. M.; Seto, Y.; Yonehara, S.; and Kubo, A.
2021. Utilizing Fractals for Modeling and 3D Printing of Porous
Structures. Fractal and Fractional, 5(2): 40.

Venkatasekhar, D.; Aruna, P.; and Parthiban, B. 2013. Fast search
strategies using optimization for fractal image compression. Inter-
national Journal of Computer and Information Technology, 2(3):

437-441.

Vrscay, E. R. 1991. Iterated function systems: theory, applications
and the inverse problem. In Fractal geometry and analysis, 405-468.
Springer.

Vrscay, E. R.; and Roehrig, C. J. 1989. Iterated function systems
and the inverse problem of fractal construction using moments. In
Computers and Mathematics, 250-259. Springer.

Welling, M.; and Teh, Y. W. 2011. Bayesian learning via stochas-
tic gradient Langevin dynamics. In Proceedings of the 28th in-
ternational conference on machine learning (ICML-11), 681-688.
Citeseer.

Xia, W.; Zhang, Y.; Yang, Y.; Xue, J.-H.; Zhou, B.; and Yang, M.-H.
2021. GAN inversion: A survey. arXiv preprint arXiv:2101.05278.

2464

Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms.
ArXiv, abs/1708.07747.

Zhu, J.-Y.; Krihenbiihl, P.; Shechtman, E.; and Efros, A. A. 2016.
Generative visual manipulation on the natural image manifold. In
European conference on computer vision, 597-613. Springer.

