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SUMMARY

A common concern when trying to draw causal inferences from observational data is that
the measured covariates are insufficiently rich to account for all sources of confounding.
In practice, many of the covariates may only be proxies of the latent confounding mecha-
nism. Recent work has shown that in certain settings where the standard no-unmeasured-
confounding assumption fails, proxy variables can be leveraged to identify causal effects.
Results currently exist for the total causal effect of an intervention, but little consideration
has been given to learning about the direct or indirect pathways of the effect through a
mediator variable. In this work, we describe three separate proximal identification results
for natural direct and indirect effects in the presence of unmeasured confounding. We then
develop a semiparametric framework for inference on natural direct and indirect effects,
which leads us to locally efficient, multiply robust estimators.

Some key words: Causal inference; Mediation; Semiparametric inference; Unmeasured confounding.

1. INTRODUCTION

The last few decades have seen the emergence of a literature on causal mediation analysis
(Robins & Greenland, 1992; Pearl, 2001; VanderWeele & Vansteelandt, 2009; Imai et al.,
2010; Tchetgen Tchetgen & Shpitser, 2012). This literature provides nonparametric defini-
tions of direct and indirect effects in terms of contrasts of potential outcomes, as well as
conditions necessary to identify and estimate these effects from data. Estimands that have
received particular focus are natural direct and indirect effects, which are useful for under-
standing the mechanism underlying the effect of a particular intervention as they combine
to produce the total causal effect.
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The majority of work on identification of natural direct and indirect effects assumes that
the measured covariates are sufficiently rich to account for confounding between the expo-
sure and outcome, the mediator and outcome and the exposure and mediator. In practice, it
is likely that many key confounding variables, e.g., disease severity, socio-economic status,
cannot be ascertained with certainty from the measured covariates. At best, some of the
measured covariates may be confounder proxies, e.g., mismeasured versions of the underly-
ing confounders. This insight has led to work on leveraging proxy variables to help remove
confounding bias in observational studies, with focus on the total effect of intervention.
Negative control exposures and outcomes are examples of such proxies (Lipsitch et al., 2010;
Shi et al., 2020); we refer to Shi et al. (2020) and Tchetgen Tchetgen et al. (2020) for further
examples in observational studies.

If we are able to collect data on a sufficient number of proxies, confounding bias
can sometimes be successfully removed in settings where standard analyses under a no-
unmeasured-confounding assumption would fail. Building on the results of Kuroki &
Pearl (2014), Miao et al. (2018) established nonparametric identification of the average
treatment effect under a ‘double negative control design’, where both a negative control
exposure and outcome are measured. Tchetgen Tchetgen et al. (2020) extended these results
to settings with time-varying exposures and potentially unmeasured confounders. For esti-
mation, they proposed proximal g-computation, a generalization of Robins’ parametric
g-computation algorithm (Robins, 1986). Under a proximal identification strategy, Cui et al.
(2023) developed semiparametric inference for the average treatment effect.

We consider identification and estimation of natural direct and indirect effects in the
presence of unmeasured confounding. As an example, we consider the Job Corps study
(Schochet et al., 2008). Beyond understanding the total effect of a job training intervention,
the investigators were also interested in whether the intervention reduced criminal activity
due to increased employment. It was possible that the association between program parti-
cipation, employment and criminal activity were subject to confounding by a latent factor,
such as motivation, that was only partially captured by the pretreatment covariates. In this
work, we establish sufficient conditions for nonparametric identification of mediation esti-
mands using a pair of proxy variables, giving three separate identification strategies. These
each rely on modelling and estimation of different combinations of ‘confounding bridge’
functions (Miao et al., 2018). To reduce sensitivity to model misspecification, we obtain the
efficient influence function under a semiparametric model for the observed data distribu-
tion, which leads us to estimators that are multiply robust. Our identification and estimation
results allow for continuous or discrete outcomes and mediators. As far as we are aware, this
is the first paper to use proxy variables for identification and inference for direct and indirect
effects, with the exception of Cheng et al. (2022). However, their identification strategy is
distinct from ours, as they relied on deep latent variable models. They also did not consider
semiparametric inference and the issues of efficiency and robustness explored here.

2. NONPARAMETRIC PROXIMAL IDENTIFICATION OF THE MEDIATION FUNCTIONAL
2.1. Preliminaries

We consider a setting where one is interested in the effect of a binary treatment 4 on
an outcome Y that is mediated via a single intermediate variable M. We use U to refer
to an unmeasured, potentially vector-valued confounding variable, which may be discrete,
continuous or a combination of both types. Let Y (a, m) refer to the potential outcome that
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Fig. 1. (a) Directed acyclic graph with measured confounder L. (b) Directed acyclic graph with treatment,
proxies and both measured and unmeasured confounders.

would be observed for someone if they were assigned to a given treatment at level ¢ and
mediator at mz; similarly, M (a) denotes the potential outcome for the mediator if treatment
had taken value a. Then the total average treatment effect of 4 on Y can be decomposed as

E{Y(D) = Y(0)} = E[Y{l, M(1)} — Y{1, M(0)}] + E[Y{1, M(0)} — Y{0, M(0)}].

The first term E[Y{l, M (1)} — Y{1, M(0)}] on the right-hand side of the equality is an
example of a natural indirect effect, and captures the expected mean difference in Y if all
individuals were assigned treatment 4 = 1, but the mediator was changed to the level
it would take with 4 = 0. The second term E[Y {1, M(0)} — Y{0, M (0)}] is a natural
direct effect, and captures the effect of setting 4 = 1 versus 4 = 0 if everyone’s media-
tor were at the level it would take with 4 = 0. Note that E[Y{1, M (1)}] = E{Y (1)} and
E[Y{0, M(0)}] = E{Y(0)}; results on nonparametric identification and inference for these
quantities in a proximal learning setting already exist in Tchetgen Tchetgen et al. (2020) and
Cui et al. (2023). We therefore focus on the mediation functional = E[Y {1, M (0)}] in the
remainder of the article.

In order to identify v when one has access to a measured, potentially vector-valued
covariate L, and supposing that M takes on values in S, then one typically invokes the
following conditional exchangeability assumptions: Y (a,m) 1. A | L for a = 0,1 and each
meS; Ml A| Lfora=20,1;and Y(a,m) 1L M(a) | A =a,L fora = 0,1 and each
m € S. In addition, the cross-world assumption Y (a,m) 1L M(d') | A = a, Lfora,d = 0,1
and each m € S is usually invoked (Robins & Richardson, 2010). It is known as such because
independence between the counterfactual outcome and mediator values is required to hold
across two different worlds of potentially conflicting values of treatment. If these hold, in
addition to standard positivity and consistency conditions (Robins, 1986), then ¢ can be
identified via the mediation formula (Pearl, 2001)

w://E(Y|A=1,m,l)dF(m|A=0,l)dF(l). (1)

If one were to interpret the causal diagram in Fig. 1(a) as a nonparametric structural
equation model with independent errors, then the above conditional independencies are
consistent with that diagram.

The cross-world assumption has been the subject of much controversy, given that it can
never be empirically verified or guaranteed by any study design. This has therefore led to an
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alternative way of conceptualizing natural direct and indirect effects via ‘treatment-splitting’
without reference to cross-world counterfactuals (Robins & Richardson, 2010; Robins et al.,
2021). In what follows, we adopt the more traditional cross-world framework for mediation
analysis, but expect that all of our results for identification of i carry over to the split-
treatment approach, which we leave to future work.

2.2. The proximal mediation formula

Figure 1(b) displays a setting where the previous conditional exchangeability and the
cross-world assumptions would not hold due to the presence of the unmeasured variable
U, which is a common cause of 4, M and Y. We now assume that the observed covari-
ates L can be divided into three buckets (X, Z, W). First, X is a common cause of 4, M
and Y. Then Z and W are proxy variables that are only associated with 4, M and Y via
an unmeasured common cause. The failure of conditional exchangeability means that an
analysis that would adjust for X, Z and W via X or conditioning on them in the mediation
formula would return biased results due to residual confounding from U. In what follows,
we therefore adopt a different approach for identification of v, based on leveraging the
proxy variables Z and W to learn about U. Before giving the first identification result, we
discuss the assumptions involved.

Assumption 1 (Consistency). Suppose that
(1) M(a) = M almost surely for those with 4 = a;
(i1)) Y(a,m) = Y almost surely for those with 4 = ¢ and M = m.

Assumption 2 (Positivity). Suppose that
(1) fmauxm| A, U, X) > 0almost surely for allm € S;
(i1)) Pr(4 =a | U, X) > 0 almost surely fora =0, 1.

Assumption 3 (Latent conditional exchangeability). Suppose that
(1) Y(am)1lL A | U,X fora=0,1andeachm € S;
(i) Y(a,m) L M(@a)| A=a,U,X fora=0,1and ecachm € S;
(iil) M@ 1L A| U,X fora=0,]1.

Assumption 4 (Latent cross-world assumption). Suppose that Y (a,m) 1L M(d") | U, X for
a,ad =0,1and eachm € S.

Assumptions 1-4 are similar to those made in standard mediation analyses, except that
they also allow for the existence of an unmeasured variable U. The following assumption
will directly enable us to leverage information from the proxy variables.

Assumption 5 (Exposure- and outcome-inducing proxies). Suppose that
1) ZUL Y(am)| A,M(a),U,X fora=0,1and eachm € S;

(i) Z1 M(a)| A, U,X fora=0,1;

(i) W1 M(a) | U, X fora=0,1;

(iv) WL (A4,Z) | M(a),U,X fora=0,1.

This assumption essentially requires that 4 and M have no direct causal effect on W, and
that Z hasno causal effect on M or Y. Also, Z and W are only associated via the unmeasured
common cause U. This assumption formally encodes what it means for Z and W to be
proxies, in the sense that they become uninformative about confounding conditional on U. It
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is compatible with the causal diagram in Fig. 1(b). However, there are many other diagrams
that may be compatible with Assumption 5, some of which are given in the Supplementary
Material. For example, Z can be a direct cause of 4, and W can cause Y. In general, this
assumption is not testable, given that it involves the unmeasured U.

Identification of the mediation functional requires existence of multiple ‘confounding
bridge’ functions (Miao et al., 2020). We also need to ensure that the confounding bridge
functions can be identified from the data, given that we have access to Z. Formalizing both
of these types of condition in general settings is subtle, since the confounding bridge func-
tion will be defined as the solution to an integral equation. We formalize them using the
completeness conditions below.

Assumption 6 (Completeness).
(1) For any square-integrable function g(u), if E{g(U) | Z =z, A=1,M =m, X = x} =
0 for any z, m and x almost surely, then g(U) = 0 almost surely.
(i) For any square-integrable function g(u), if E{g(U) | Z =z, 4 = 0, X = x} = 0 for
any z and x almost surely, then g(U) = 0 almost surely.

Completeness is a technical condition that arises in conjunction with sufficiency in the
theory of statistical inference. In causal inference, it has been invoked for identification in
the context of nonparametric regression with an instrumental variable (Newey & Powell,
2003), where it is used as an analogue of the rank and order conditions that arise in the
classical instrumental variable set-up. This assumption essentially means that any variation
in U is associated with a form of variation in Z, given 4 = 1, M and X, and given 4 = 0
and X. Further discussion of completeness in this context is given in the Supplementary
Material.

We are now in a position to give our first identification result.

THEOREM 1. Suppose that there exist confounding bridge functions hi(w, M, X) and
ho(w, X) that satisfy

EY[ZA=1,MX) = fhl(w,M,X)dF(W | Z,4=1,M,X), 2)

Eh(W,M,X)|Z,A=0,X}= /ho(w,X)dF(w | Z,A=0,X). 3)
Then, under Assumptions 1-6, it follows that

E(Y|U,A=1,M,X) :fhl(w,M,X)dF(w| U, Ad=1,M,X), 4)

E{hi(W,M,X)|U,4=0,X}= /ho(W,X)dF(W | U,4=0,X), (5)
and furthermore that E[Y{1, M (0)}] is identified as

U= // ho(w, x) dF(w | x) dF(x). (6)
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The proof of this result, as well as all others in this paper, is given in the Supplementary
Material. We name (6) the proximal mediation formula, since it generalizes Pearl’s funda-
mental mediation formula (1) to settings where key confounders are unmeasured. Similar
to the proximal g-formula in Tchetgen Tchetgen et al. (2020), (6) is expressed in terms of
nested bridge functions. Interestingly, although inferring natural direct and indirect effects
involves understanding the effects of the exposure on the mediator and the mediator on the
outcome, 1 can be identified without a need for additional proxy variables. Nevertheless,
compared with proximal identification of the average causal effect, additional restrictions
are placed on the exposure- and outcome-inducing proxies, in terms of their relationship
to M. For example, neither Z nor W are allowed to cause M. Such assumptions could be
relaxed by collecting data on separate proxies for each bridge function; we will investigate
this in future work.

Equations (2) and (3) refer to inverse problems that are known as Fredholm integral equa-
tions of the first kind. We refer to Miao et al. (2018) and Cui et al. (2023) for mathematical
conditions that ensure that these equations admit solutions. The solutions to these equations
are not required to be unique, as all solutions yield a unique value of vr. The identification
assumptions may nevertheless be adjusted in order to guarantee a unique solution. Unlike
Assumptions 1-6, the condition that (2) and (3) admit solutions is potentially empirically
verifiable.

2.3. Alternative identification strategies

In this section, we establish two alternative proximal identification results to the proximal
mediation formula, which rely on alternative assumptions regarding completeness and the
existence of relevant confounding bridge functions, which are given in the Supplementary
Material.

THEOREM 2. (i) Suppose that there exist confounding bridge functions hy(w, M, X) that
satisfy (2) and qo(z, X) that satisfies

1
fA=0|WwW,X)

= E{qo(Z,X) | W,4=0,X}. (7)
Under Assumptions 1-5 and 6(i) above and Assumption A.1.2 in the Supplementary Material,
it follows that both

1
fA4=0|U,X)

= E{qo(Z,X) | U,4=0,X} (®)
and (4) hold, and furthermore that E[ Y {1, M (0)}] is identified as

Y= // I(a = 0)qo(z, x)hy(w,m, x) dF(w, z,a,m | x) dF(x). 9)

(i1) Alternatively, suppose that there exist confounding bridge functions qo(z, X) that satisfy
(7) and q1(z, M, X) that satisfies

_ SA=0|W,.M,X) _ _
E@o(Z,X) | WA = 0. M. Xy 20— s = EaZ ML X) [ WA = 1M, X)
(10)
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Under Assumptions 1-5 and Assumptions A.1.1-A.1.2 in the Supplementary Material, it
follows that both

B fA=0]UMX) -
Elqo(Z.X) | Usd = 0. M. X) 25—y = Ui (Z M. X) | UoA = 1M, X)
(1)

and (8) hold, and that E[Y {1, M (0)}] is identified as

U= // I(a=1)qi(z,m,x)ydF(y,z,a,m | x) dF(x). (12)

We therefore have three results for proximal identification, each of which relies on two
confounding bridge assumptions. The strategy given in part (i) of the above theorem
relies on a combination of outcome- and treatment-inducing confounding bridge functions,
whereas the final strategy relies on two nested treatment-inducing confounding bridge func-
tions. Result (8) follows from Cui et al. (2023), and formal conditions for the existence of
solutions to (7) and (10) are given in that paper.

3. SEMIPARAMETRIC INFERENCE
3.1. The semiparametric efficiency bound

In this section, we consider inference for ¥ under the semiparametric model M, that
places no restrictions on the observed data distribution besides existence, but not necessar-
ily uniqueness, of bridge functions /| and /g that solve (2) and (3). Assumed existence of the
outcome bridge functions places restrictions on the tangent space. Under the additional reg-
ularity conditions described below, we can also obtain the semiparametric efficiency bound
under M.

Assumption 7 (Regularity conditions).

(1) Let T1: Ly(W, M, X) — Ly(Z,A = 1, M, X) denote the operator, given by T(g)
E{giW, M, X) | Z,A = 1, M, X}. At the true data generating mechanism, 77 i
surjective.

(i) Let To: Loy(W,M,X) — Ly(Z,A = 0,X) denote the operator, given by Ty(g)
Elg(W,M,X) | Z,A = 0,X}. Then at the true data generating mechanism, 7y i
surjective.

«»

2]

As noted in Ying et al. (2022), this condition relies on the functions Ly(W, M, X) being
rich enough such that any element in Ly(Z, 4 = 1,M,X) and L,(Z,A = 0,X) can be
generated via the conditional expectation map. Then we arrive at the following result.

THEOREM 3. Assume that there exist bridge functions hy and hy at all data laws that belong
to the semiparametric model Mp. Furthermore, suppose that at the true data law there exists
qo and q1 that solve (7) and (10), and that Assumption 6 holds, such that \ is unique. Then

IFy = I(A=Dq(Z, M, X){Y — (W, M, X)}
+1(A4 = 0)qo(Z, X){m (W, M, X) — ho(W, X)} + ho(W,X) —

is a valid influence function for W under Msp. Furthermore, the efficiency bound at the
submodel where Assumption T holds and all bridge functions are unique is E (IFI%,).
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3.2. Multiply robust estimation

We consider the setting where L is high dimensional, and parametric working models
for Ay, ho, qo and g1 may be useful as a form of dimension reduction. In that case, we
show that an estimator of i based on the efficient influence function is multiply robust,
in the sense that only certain combinations of these working models need to be correctly
specified in order to yield an unbiased estimator. To make this more concrete, consider
the following semiparametric models that impose certain restrictions on the observed data
distribution:

My (W, M, X) and ho(W, X) are assumed to be correctly specified,
Moy hi (W, M, X) and ¢go(Z, X) are assumed to be correctly specified,
Mz qi(Z, M, X) and ¢qo(Z, X) are assumed to be correctly specified.

Here, M, M> and M3 are all submodels of Ms,. The proposed approach will rely on
models for the confounding bridge functions, but we show that only one of M, M»> and
M3 needs to hold to ensure unbiased estimation of the target parameter.

We first consider how to obtain inference in the submodels M, M, and Mj. Let
h(W,M,X;B1) and hy(W,X;Bo) denote models for the respective bridge functions
h(W,M,X) and hy(W,X), indexed by finite-dimensional parameters 8; and SBy. Like-
wise, q1(Z, M, X;y1) and qo(Z, X; 1) are models for the bridge functions ¢ (Z, M, X) and
q0(Z, X) indexed by the finite-dimensional parameters y; and Y05 respectively. It follows
from Cui et al. (2023) that one can obtain estimates ,81, /80 and py of B1, Bo and yy as the
solutions to the respective estimating equations:

n
D ALY = hy (Wi, Mi, X BD)}er (Zi, Mi, Xi) = 0,
i=1

Z(l — Ap{h (Wi, M, Xi; B1) — ho(Wi, Xis Bo)yeo(Zi, Xi) = 0,
i=1

> {0 = 4)q0(Zi, Xis vo) — 1}do(Wi, X;) = 0.
i=1

The first two sets of equations can be solved sequentially. Here ¢ (Z;, M;, X;) is a function of
the same dimension as Bi, and ¢ (Zi, Xi) and do(W;, X;) are similarly defined. Although ﬂo
and hence hg(W, X; ,30) depends on [31, this dependence is suppressed to simplify notation.
The above estimating equations can be implemented using software for generalized method
of moments or, when models are linear, two-stage least squares. Interestingly, despite the
fact that (10) suggests that estimation of jp would require postulation of a model for
1/f(A = 0 | W,X), Cui et al. (2023) showed that this is not the case. The efficient
choices of ¢|(Z;, M;, X;), co(Z;, X;) and do(W;, X;) are all implied by results in the Appen-
dix of Cui et al. (2023). Since the resulting efficiency gain compared to using the choices
e1(Zis My, X)) = (1, ZE, My, XD, ¢o(Zi, Xp) = (1, Z, X])T and do(W;, Xi) = (1, WF, X])T
is likely to be modest in most situations (Stephens et al., 2014), we do not consider locally
efficient estimation of the nuisance parameters any further.

Since ¢; involves solving an integral equation (10) involving the ratio of propensity
score functions, the results from previous work do not extend to inference for y;. The
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following theorem then suggests how to obtain semiparametric inference under model M3,
and is more generally relevant for estimation of the average treatment effect in the treated
population.

THEOREM 4. All influence functions of regular and asymptotically linear estimators of yi
under the semiparametric model M3 are of the form

-y [{A(h(Z, M, X;y1) — (A = ADqo(Z, X;yo)tdi (W, M, X)

aq0(Z, X
—E{ 90(Z, X v0)

Y0
for some function d\(W, M, X) that is of the same dimension as y|, where

0q1(Z, M, X; y1)
Iy

V=E{ Adl(W,M,X)}

and (W, Z, A, X; yo) is the influence function for an estimator of yy.

This theorem indicates that inference for y; can be obtained without the need to model
either f(A =0 | W, M,X)orf(A=1| W,M,X), or their ratio. Indeed, it suggests an
estimation strategy for y|; namely, after obtaining yy as previously described, one can obtain
71 as the solution to the equations

n
> {4iq1(Zi, My, Xis 1) — (1= ADqo(Zi, Xi 90}, W, My, X)T = 0.

i=1

Consistent estimation of y; nevertheless relies on consistent estimation of yp. Given that
q1(Z, M, X;y1) and qo(Z, X; yp) are both confounding bridges for the treatment assignment
mechanism, this raises the question of how to postulate models for the two bridge functions
that are compatible. A brief discussion on model compatibility is given in §4 below, with
more detailed results given in the Supplementary Material.

Once we have strategies for estimating nuisance parameters indexing the bridge functions,
one can construct proximal outcome regression, hybrid and inverse probability weighting
estimators of y:

A 1 ¢ .
Yp-or = - > ho(Wi, Xi: 90),

i=1

A 1 ¢ . A
VP-hybrid = > (1= A4)qo(Zi, Xi; P (Wi, My, Xi; ),

i=1

. I ¢ 5
Vppw = - > Aiqi(Zi My, Xi: ) Y.

i=1

Then ¥p.oR is a consistent and asymptotically normal estimator under model M, &p_hybrid

is consistent and asymptotically normal under model M>, and @p_lpw 1s consistent and
asymptotically normal under model M3. Correctly specifying models for the different
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bridge functions may be challenging, since they are defined as solutions to integral equa-
tions, rather than the conditional expectations or probabilities more common in causal
inference, e.g., E(Y|A=1,L) or f(4=1|L). The development of a proximal multiply
robust estimator, which enables the relaxation of parametric modelling assumptions, is
therefore of interest.

THEOREM 5. Under typical regularity conditions,

. 1 <& . .
VpMR =~ > Aig1 (Zis Mis Xi pOLY; = by (Wi, M, Xiz 1)
i=1

+ (1 = A)qo(Zi, Xi; Do)ty (Wi, My, X3 Br) — ho(Wi, X5 70)} 4 ho( Wi, Xi; Do)

is a consistent and asymptotically normal estimator of W under the union model Mypjon =
My U My U Mas. Furthermore, Yp.mRr attains the semiparametric efficiency bound at the
intersection submodel M1 N My N M3 where Assumption 7 also holds.

Using standard M-estimation arguments, and the influence functions for the nuisance
parameter estimators, one can construct a nonparametric sandwich estimator of the stan-
dard error for &p_MR that is robust to potential model misspecification; an alternative
option is the nonparametric bootstrap. A weakness of our estimator is that, when Y is
binary, Y¥p.mr is not guaranteed to fall within the [0,1] interval. This is an important
topic for future work and could be remedied, e.g., by adapting the proposal in §5 of
Tchetgen Tchetgen & Shpitser (2012).

4. SIMULATION STUDIES

In order to evaluate the finite sample performance of the proposed estimators, we con-
ducted a simulation study. Specifically letting we generated data (Y, A, M, X, W,Z) by
X, U ~ MVN{(0.25,0.25,0)",Z}; f(4 = 1 | X, U) = expit{—(0.5,0.5)"X — 0.4U}; Z |
A, X, U~ N{02-0.524+(0.2,0.2)"X-U,1};; W | X,U ~ N{0.3+(0.2,0.2)TX-0.6U, 1}
and M | A, X, U ~ N{-0.34 —(0.5,0.5TX 4+ 0.4U, 1}, where X = (X7, X»)T and

031 Oxixy Oxu 025 0 0.05
S=|ogy 04 owu|=| 0 025 005
N 0.05 0.05 1

Finally, Y =2+ 24+ M +2W — (1, )'X — U + 2¢*, where €* ~ N(0, 1). Since W and
M are linear in X, U and the exposure, it follows that this data generating mechanism is
compatible with the following models for /1, /g:

hi (W, M, X; B1) = Bro+ BLwW + Bl X + BimM,
ho(W, X5 Bo) = Bo.o + BowW + By . X.

Furthermore, in the Supplementary Material, we also show that, when A follows a Bernoulli
distribution, given U and X, M is normally distributed, given U, A and X and Z ~ N (¢y +
€ U + €44+ €:X,02 ); then the choice of bridge functions

zlu,a,x

q0(Z,X) =1+ exp{—(0,0 + Y0.:Z + y0,xX)},
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Table 1. Simulation results from experiments 14
Experiment Estimator Bias MSE Coverage Mean length Med. length

1 Op.1pw 0.00 0.02 0.95 0.51 0.50
Op-hybrid 0.00 0.02 0.96 0.50 0.50
p.0r 0.00 0.02 0.96 0.50 0.50
Op-MR 0.00 0.02 0.95 0.51 0.50
2 Op_1pw 0.19 0.05 0.71 0.52 0.51
Opngoria  —0.15  0.04 0.82 0.52 0.52
Op.0r 0.00 0.02 0.95 0.50 0.50
[V 0.00 0.02 0.95 0.50 0.50
3 Op_1pw 0.38 0.16 0.30 0.60 0.59
Op-hybrid 0.00 0.02 0.95 0.50 0.50
Op.0r —0.14  0.04 0.81 0.52 0.51
Op.MR 0.00 0.02 0.95 0.51 0.50
4 Op.1pw —0.01 0.02 0.94 0.51 0.51
Op-nybria 021 0.06 0.66 0.53 0.53
Op.0r 0.17 0.05 0.72 0.52 0.51
Op-Mr —0.01 0.02 0.95 0.51 0.51

Bias, Monte Carlo bias; MSE, mean squared error; Coverage, 95% confidence inter-
val coverage; Mean length, average 95% confidence interval length; Med. length,
median 95% confidence interval length.

G (Z,M,X) =exp(y1,0 + V1,:Z + Y1.mM + y1,xX)
+1{q0(Z, X) — 1} exp{y1,0 + vo,:€a + V1,:(Z + w0, 707|uax)
+ Vl,mM + Vl,xX}

satisfies (7) and (10). Under the additional constraint that ¢, = _V172‘7_72|u 4> Which is
enforced here, it follows that the expression for ¢g; simplifies to

q1(Z, M, X) = qo(Z, X) exp(y1,0 + V1:Z + V1M + y1.xX).

Let dp.pr be the proximal doubly robust estimator of E{Y(0)} considered in Cui et al.
(2023). We considered four proximal mediation estimators of the natural direct effect
E{Y (1, MO0} — E{Y (0)}: Op- -OR = ‘//P OR — 8p-DR. Op-hybrid = Wp-hybrid — OP-DR, Op-1PW =
1//p_1pw —Sp.pr and Op.mr = wp_MR —p.pR. We evaluated the performance of the proposed
settings in settings where either all bridge functions were correctly modelled (experiment 1),
¢1 and g were misspecified (experiment 2), ¢; and Ay were misspecified (experiment 3) or
hy and hy were misspecified (experiment 4). We misspecified the models by including | X7 |!/>
and | X>|!/2 in the bridge function rather than X. We conducted simulations at n = 2000 and
repeated each experiment 1000 times.

The results are given in Table 1. As a benchmark, we also considered a naive nonprox-
imal estimator Oor s of the direct effect, based on linearly regressing ¥ on 4, M, Z, W
and X; its Monte Carlo bias was 0.5, with 95% confidence intervals that included the true
value only 29% of the time. When all bridge functions were correctly specified, the different
proximal estimators had comparable performance, with ép_OR and Op_Mr exhibiting slightly
greater efficiency compared with the other methods. Across the different mechanisms of
misspecification considered, we see that only the multiply robust estimator continues to have
low bias, with confidence intervals that possess approximately their advertised coverage.
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In a further set of simulation studies, we considered sensitivity of the different proposals
to changes in the confounding mechanism as well as violations of the structural assumptions
that underpin the methods. First, in experiment 5 we changed the above data-generating
mechanism such that f(4 = 1 | X,U), f(M | A,X,U) and f(Y | A, M, W,X,U) no
longer depended on U, to check how the methods performed when there was no unmea-
sured confounding. In this specific setting, to construct the benchmark estimator OoLs, We
adjusted for 4, M, X and W, but not Z, to avoid collider bias induced via an association
between A4 and U. In experiment 6, we considered violations of the exclusion restriction
Assumption 5.2, by generating ¥ = 2 +24 + M +2W — (1,1)'X — U — 0.5Z + 2¢*.
In experiment 7, we considered violations of the exclusion restriction Assumption 5.4, by
generating W from W | X, U, 4 ~ N (0.3 + (0.2,0.2)"X — 0.6U + 0.24, 1). In experiment
8, we looked at a near violation of the completeness conditions, where the coefficient for
U in the model for E(W | X, U) was reduced in strength to 0.05, such that W was only
weakly U-relevant and the conditional associations between W and Z were also weak. In
experiment 9, we reversed this such that Z was now only weakly U-relevant. Each of the
models used to construct the bridge functions included X, rather than the transformations
considered in experiments 2—4. Values of the parameters in the data-generating mechanism
were adjusted where necessary, to ensure that all bridge functions were correctly specified.
The results of experiments 5-9 are given in the Supplementary Material. We see that in set-
tings where conditional exchangeability holds, the proximal estimators perform similarly in
terms of bias compared with o1 s, but displayed a decrease in efficiency. When the exclusion
restrictions are violated, the proximal estimators performed similarly or slightly worse than
the naive, biased ordinary least-squares estimator. When Z or W are not U-relevant, we see
that the standard errors for the proximal estimators can dramatically inflate; this is unsur-
prising, given how common instrumental variable estimators perform when instruments are
weak/irrelevant. The proximal estimators also typically displayed considerably larger bias
than Op s, but smaller median bias. The multiply robust estimator Op.MR generally displayed
smaller mean and median bias compared with the other methods in experiments 8 and 9.

5. DATA ANALYSIS

In the Job Corps study, participants were randomized from November 1994 to Febru-
ary 1996 either to treatment, i.e., access to the Job Corps program, or to control, i.e., no
access. However, since individuals could choose whether to participate in the program or
not, we treat the exposure of interest as nonrandomized. The outcome of interest was the
number of arrests in the fourth year after assignment, and the mediator of interest was the
percentage of weeks employed in the second year. Although data on a rich set of covari-
ates were measured at baseline, it was nevertheless possible that unmeasured confounding
could lead to biased estimates of both direct and indirect effects. Investigators collected
information on factors that were known to be associated with duration in the program,
e.g., expectations of the program, interactions with recruiters. Huber et al. (2020) noted
that such variables may be strongly correlated with motivation, considered as an important
latent source of confounding. They therefore adjusted for these variables in the analysis in
the same way as standard measured confounders. In contrast, we treated these variables as
proxies of an unmeasured confounder, and changed the analysis accordingly. Similar to
Tchetgen Tchetgen et al. (2020), we restricted consideration to four potential proxies
strongly correlated with the expose and/or the outcome: time being spent spoken to by
the recruiter, worried about the Job Corps program, expected improvement in social skills
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Table 2. Results from the analysis of the Job Corps study
Estimand S-MR 95% CI P-MR 95% CI

E[Y{1,M0)}] —[Y{0,M(0)}] —-0.0107 —0.0341,0.0128  0.0057 —0.0699, 0.0813
E[Y{1,M(1)}] —[Y{0,M(1)}] —0.0110 —0.0345,0.0124 —0.0016 —0.0781, 0.0749
E[Y{I,M()}] - [Y{1,M(0)}] 0.0006 —0.0229,0.0241 —0.0088 —0.0314,0.0138
E[Y{0,M(1)}] —[Y{0,M(0)}]  0.0009 -0.0001,0.0019 —-0.0016 —0.0110,0.0078

S-MR, standard multiply robust estimator; P-MR, multiply robust estimators of
E[Y{l,M(0)}] and E[Y{0, M (1)}]; CI, confidence interval.

and whether the first contact by the recruiter was in the office or not. Since there was no
a priori understanding as to whether these were candidates for Z or W, we used the algo-
rithm described by Tchetgen Tchetgen et al. (2020) to assign them. This led to the first two
being used for Z, and the second two used for V.

Our sample consisted of 10 775 participants; further information on the sample is given
in Huber et al. (2020). There were 257 participants with missing data on Z who were
removed from the analysis. Linear and logistic models were postulated for the outcome
and exposure bridge functions, respectively. We considered both proximal inverse probabil-
ity weighting, hybrid, outcome regression and multiply robust estimators of E[ Y {1, M (0)}]
and E[Y{0, M(1)}]. We contrasted our estimator with a standard multiply robust approach
fs.mr based on the efficient influence function derived by Tchetgen Tchetgen & Shpitser
(2012), that is valid under conditional exchangeability-type assumptions; we again postu-
lated linear models for E(Y | A = a, M, X, Z, W) and E{E(Y | A = a, M, X,Z, W) |
A = a*, X,Z, W}, and a logistic model for the odds P(4 =1 | M, X,Z, W)/P(4A = 0 |
M, X,Z, W) and for P(4 = 1 | X,Z, W). All outcome regression models for the con-
founding bridge functions and otherwise were fitted separately in control and treatment
groups, to allow for treatment-mediator and treatment-covariate interactions. Since the set
of covariates measured at baseline was relatively high in dimension, we excluded variables
with amounts of missingness > 50%, or which had some missing values and were highly cor-
related with variables that were fully observed. For all other variables with missingness, we
used the missing indicator method as in Huber et al. (2020). Standard errors for all estima-
tors were calculated using sandwich estimators. In the Supplementary Material, following
the AGReMA statement on good practice for conducting and reporting mediation analysis
(Lee et al., 2021), we provide further information on the study and data analysis.

Results for the standard and proximal multiply robust approaches can be seen in Table 2.
The total effect estimate given by the standard approach was —0.01 (95% confidence inter-
val: —0.022, 0.002) and for the proximal approach, it was —0.003 (95% confidence interval:
—0.040, 0.033). The estimates of the direct and indirect effects yielded by both approaches
are also close to the null, and all 95% confidence intervals contain the null. The direct effect
estimates under the proximal approach tended to be closer to the null; and the indirect effects
were slightly larger in magnitude, although still very small. The results of the other esti-
mators can be found in the Supplementary Material; the multiply robust estimator fp.vr
tended to agree more closely with ép_hybrid, although there was not a large disparity between
the point estimates.

6. DiscussION

An advantage of doubly/multiply robust methods, used in combination with cross-
fitting, is that data-adaptive methods can be used to estimate nuisance parameters, yet their
potentially slow rates of convergence are not necessarily inherited by the estimator of the
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target parameter (Chernozhukov et al., 2018). A complication in proximal learning is that
the nuisances are defined as the solutions to integral equations. Progress in this direction is
described in Ghassami et al. (2022) and Kallus et al. (2022); it would thus be useful to extend
these ideas to mediation analysis. Another avenue for future work would be to extend the
results of identification and estimation to more general path-specific effects (Avin et al.,
2005; Shpitser, 2013), which are relevant in particular in settings when confounders of the
mediator-outcome relationship are affected by the exposure. In such cases the cross-world
assumption fails to hold, and standard natural effects are no longer identified. Finally,
an important topic more generally in proximal learning is the development of sensitivity
analysis methods. A simple way to check how sensitive results are to categorization of the
Z and W proxies is to permute the labels. The development of more advanced tools to
assess deviations from specific key assumptions, e.g., the exclusion restrictions involving the
proxies, is left to future work. Under the failure of certain assumptions, methods for par-
tial identification such as nonparametric bounds may also be useful (Robins, 1989; Manski,
1990).
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