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SUMMARY

A common concern when trying to draw causal inferences from observational data is that

the measured covariates are insufficiently rich to account for all sources of confounding.

In practice, many of the covariates may only be proxies of the latent confounding mecha-

nism. Recent work has shown that in certain settings where the standard no-unmeasured-

confounding assumption fails, proxy variables can be leveraged to identify causal effects.

Results currently exist for the total causal effect of an intervention, but little consideration

has been given to learning about the direct or indirect pathways of the effect through a

mediator variable. In this work, we describe three separate proximal identification results

for natural direct and indirect effects in the presence of unmeasured confounding. We then

develop a semiparametric framework for inference on natural direct and indirect effects,

which leads us to locally efficient, multiply robust estimators.

Some key words: Causal inference; Mediation; Semiparametric inference; Unmeasured confounding.

1. Introduction

The last few decades have seen the emergence of a literature on causal mediation analysis

(Robins & Greenland, 1992; Pearl, 2001; VanderWeele & Vansteelandt, 2009; Imai et al.,

2010; Tchetgen Tchetgen & Shpitser, 2012). This literature provides nonparametric defini-

tions of direct and indirect effects in terms of contrasts of potential outcomes, as well as

conditions necessary to identify and estimate these effects from data. Estimands that have

received particular focus are natural direct and indirect effects, which are useful for under-

standing the mechanism underlying the effect of a particular intervention as they combine

to produce the total causal effect.

©c The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust.
All rights reserved. For permissions, please email: journals.permissions@oup.com
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2 O. Dukes, I. Shpitser AND E. J. Tchetgen Tchetgen

The majority of work on identification of natural direct and indirect effects assumes that

the measured covariates are sufficiently rich to account for confounding between the expo-

sure and outcome, the mediator and outcome and the exposure and mediator. In practice, it

is likely that many key confounding variables, e.g., disease severity, socio-economic status,

cannot be ascertained with certainty from the measured covariates. At best, some of the

measured covariates may be confounder proxies, e.g., mismeasured versions of the underly-

ing confounders. This insight has led to work on leveraging proxy variables to help remove

confounding bias in observational studies, with focus on the total effect of intervention.

Negative control exposures and outcomes are examples of such proxies (Lipsitch et al., 2010;

Shi et al., 2020); we refer to Shi et al. (2020) and Tchetgen Tchetgen et al. (2020) for further

examples in observational studies.

If we are able to collect data on a sufficient number of proxies, confounding bias

can sometimes be successfully removed in settings where standard analyses under a no-

unmeasured-confounding assumption would fail. Building on the results of Kuroki &

Pearl (2014), Miao et al. (2018) established nonparametric identification of the average

treatment effect under a ‘double negative control design’, where both a negative control

exposure and outcome are measured. Tchetgen Tchetgen et al. (2020) extended these results

to settings with time-varying exposures and potentially unmeasured confounders. For esti-

mation, they proposed proximal g-computation, a generalization of Robins’ parametric

g-computation algorithm (Robins, 1986). Under a proximal identification strategy, Cui et al.

(2023) developed semiparametric inference for the average treatment effect.

We consider identification and estimation of natural direct and indirect effects in the

presence of unmeasured confounding. As an example, we consider the Job Corps study

(Schochet et al., 2008). Beyond understanding the total effect of a job training intervention,

the investigators were also interested in whether the intervention reduced criminal activity

due to increased employment. It was possible that the association between program parti-

cipation, employment and criminal activity were subject to confounding by a latent factor,

such as motivation, that was only partially captured by the pretreatment covariates. In this

work, we establish sufficient conditions for nonparametric identification of mediation esti-

mands using a pair of proxy variables, giving three separate identification strategies. These

each rely on modelling and estimation of different combinations of ‘confounding bridge’

functions (Miao et al., 2018). To reduce sensitivity to model misspecification, we obtain the

efficient influence function under a semiparametric model for the observed data distribu-

tion, which leads us to estimators that are multiply robust. Our identification and estimation

results allow for continuous or discrete outcomes andmediators. As far as we are aware, this

is the first paper to use proxy variables for identification and inference for direct and indirect

effects, with the exception of Cheng et al. (2022). However, their identification strategy is

distinct from ours, as they relied on deep latent variable models. They also did not consider

semiparametric inference and the issues of efficiency and robustness explored here.

2. Nonparametric proximal identification of the mediation functional

2.1. Preliminaries

We consider a setting where one is interested in the effect of a binary treatment A on

an outcome Y that is mediated via a single intermediate variable M. We use U to refer

to an unmeasured, potentially vector-valued confounding variable, which may be discrete,

continuous or a combination of both types. Let Y(a,m) refer to the potential outcome that
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Proximal mediation analysis 3
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Fig. 1. (a) Directed acyclic graph with measured confounder L. (b) Directed acyclic graph with treatment,
proxies and both measured and unmeasured confounders.

would be observed for someone if they were assigned to a given treatment at level a and

mediator at m; similarly,M(a) denotes the potential outcome for the mediator if treatment

had taken value a. Then the total average treatment effect of A on Y can be decomposed as

E{Y(1) − Y(0)} = E[Y{1,M(1)} − Y{1,M(0)}] + E[Y{1,M(0)} − Y{0,M(0)}].

The first term E[Y{1,M(1)} − Y{1,M(0)}] on the right-hand side of the equality is an

example of a natural indirect effect, and captures the expected mean difference in Y if all

individuals were assigned treatment A = 1, but the mediator was changed to the level

it would take with A = 0. The second term E[Y{1,M(0)} − Y{0,M(0)}] is a natural

direct effect, and captures the effect of setting A = 1 versus A = 0 if everyone’s media-

tor were at the level it would take with A = 0. Note that E[Y{1,M(1)}] = E{Y(1)} and

E[Y{0,M(0)}] = E{Y(0)}; results on nonparametric identification and inference for these

quantities in a proximal learning setting already exist in Tchetgen Tchetgen et al. (2020) and

Cui et al. (2023). We therefore focus on the mediation functional ψ = E[Y{1,M(0)}] in the

remainder of the article.

In order to identify ψ when one has access to a measured, potentially vector-valued

covariate L, and supposing that M takes on values in S, then one typically invokes the

following conditional exchangeability assumptions: Y(a,m) ⊥⊥A | L for a = 0, 1 and each

m ∈ S; M(a) ⊥⊥A | L for a = 0, 1; and Y(a,m) ⊥⊥M(a) | A = a,L for a = 0, 1 and each

m ∈ S. In addition, the cross-world assumption Y(a,m) ⊥⊥M(a′) | A = a,L for a, a′ = 0, 1

and eachm ∈ S is usually invoked (Robins &Richardson, 2010). It is known as such because

independence between the counterfactual outcome and mediator values is required to hold

across two different worlds of potentially conflicting values of treatment. If these hold, in

addition to standard positivity and consistency conditions (Robins, 1986), then ψ can be

identified via the mediation formula (Pearl, 2001)

ψ =

∫∫

E(Y | A = 1,m, l) dF(m | A = 0, l) dF(l). (1)

If one were to interpret the causal diagram in Fig. 1(a) as a nonparametric structural

equation model with independent errors, then the above conditional independencies are

consistent with that diagram.

The cross-world assumption has been the subject of much controversy, given that it can

never be empirically verified or guaranteed by any study design. This has therefore led to an
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4 O. Dukes, I. Shpitser AND E. J. Tchetgen Tchetgen

alternative way of conceptualizing natural direct and indirect effects via ‘treatment-splitting’

without reference to cross-world counterfactuals (Robins &Richardson, 2010; Robins et al.,

2021). In what follows, we adopt the more traditional cross-world framework for mediation

analysis, but expect that all of our results for identification of ψ carry over to the split-

treatment approach, which we leave to future work.

2.2. The proximal mediation formula

Figure 1(b) displays a setting where the previous conditional exchangeability and the

cross-world assumptions would not hold due to the presence of the unmeasured variable

U , which is a common cause of A, M and Y . We now assume that the observed covari-

ates L can be divided into three buckets (X ,Z,W). First, X is a common cause of A, M

and Y . Then Z and W are proxy variables that are only associated with A, M and Y via

an unmeasured common cause. The failure of conditional exchangeability means that an

analysis that would adjust for X , Z andW via X or conditioning on them in the mediation

formula would return biased results due to residual confounding from U . In what follows,

we therefore adopt a different approach for identification of ψ , based on leveraging the

proxy variables Z and W to learn about U . Before giving the first identification result, we

discuss the assumptions involved.

Assumption 1 (Consistency). Suppose that

(i) M(a) = M almost surely for those with A = a;

(ii) Y(a,m) = Y almost surely for those with A = a andM = m.

Assumption 2 (Positivity). Suppose that

(i) fM|A,U ,X (m | A,U ,X) > 0 almost surely for all m ∈ S;

(ii) Pr(A = a | U ,X) > 0 almost surely for a = 0, 1.

Assumption 3 (Latent conditional exchangeability). Suppose that

(i) Y(a,m) ⊥⊥A | U ,X for a = 0, 1 and each m ∈ S;

(ii) Y(a,m) ⊥⊥M(a) | A = a,U ,X for a = 0, 1 and each m ∈ S;

(iii) M(a) ⊥⊥A | U ,X for a = 0, 1.

Assumption 4 (Latent cross-world assumption). Suppose thatY(a,m) ⊥⊥M(a′) | U ,X for

a, a′ = 0, 1 and each m ∈ S.

Assumptions 1–4 are similar to those made in standard mediation analyses, except that

they also allow for the existence of an unmeasured variable U . The following assumption

will directly enable us to leverage information from the proxy variables.

Assumption 5 (Exposure- and outcome-inducing proxies). Suppose that

(i) Z⊥⊥Y(a,m) | A,M(a),U ,X for a = 0, 1 and each m ∈ S;

(ii) Z⊥⊥M(a) | A,U ,X for a = 0, 1;

(iii) W ⊥⊥M(a) | U ,X for a = 0, 1;

(iv) W ⊥⊥ (A,Z) | M(a),U ,X for a = 0, 1.

This assumption essentially requires thatA andM have no direct causal effect onW , and

thatZ has no causal effect onM orY . Also,Z andW are only associated via the unmeasured

common cause U . This assumption formally encodes what it means for Z and W to be

proxies, in the sense that they become uninformative about confounding conditional onU . It
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Proximal mediation analysis 5

is compatible with the causal diagram in Fig. 1(b). However, there are many other diagrams

that may be compatible with Assumption 5, some of which are given in the Supplementary

Material. For example, Z can be a direct cause of A, and W can cause Y . In general, this

assumption is not testable, given that it involves the unmeasured U .

Identification of the mediation functional requires existence of multiple ‘confounding

bridge’ functions (Miao et al., 2020). We also need to ensure that the confounding bridge

functions can be identified from the data, given that we have access to Z. Formalizing both

of these types of condition in general settings is subtle, since the confounding bridge func-

tion will be defined as the solution to an integral equation. We formalize them using the

completeness conditions below.

Assumption 6 (Completeness).

(i) For any square-integrable function g(u), if E{g(U) | Z = z,A = 1,M = m,X = x} =

0 for any z, m and x almost surely, then g(U) = 0 almost surely.

(ii) For any square-integrable function g(u), if E{g(U) | Z = z,A = 0,X = x} = 0 for

any z and x almost surely, then g(U) = 0 almost surely.

Completeness is a technical condition that arises in conjunction with sufficiency in the

theory of statistical inference. In causal inference, it has been invoked for identification in

the context of nonparametric regression with an instrumental variable (Newey & Powell,

2003), where it is used as an analogue of the rank and order conditions that arise in the

classical instrumental variable set-up. This assumption essentially means that any variation

in U is associated with a form of variation in Z, given A = 1, M and X , and given A = 0

and X . Further discussion of completeness in this context is given in the Supplementary

Material.

We are now in a position to give our first identification result.

THEOREM 1. Suppose that there exist confounding bridge functions h1(w,M,X) and

h0(w,X) that satisfy

E(Y | Z,A = 1,M,X) =

∫

h1(w,M,X) dF(w | Z,A = 1,M,X), (2)

E{h1(W ,M,X) | Z,A = 0,X} =

∫

h0(w,X) dF(w | Z,A = 0,X). (3)

Then, under Assumptions 1–6, it follows that

E(Y | U ,A = 1,M,X) =

∫

h1(w,M,X) dF(w | U ,A = 1,M,X), (4)

E{h1(W ,M,X) | U ,A = 0,X} =

∫

h0(w,X) dF(w | U ,A = 0,X), (5)

and furthermore that E[Y{1,M(0)}] is identified as

ψ =

∫∫

h0(w, x) dF(w | x) dF(x). (6)
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6 O. Dukes, I. Shpitser AND E. J. Tchetgen Tchetgen

The proof of this result, as well as all others in this paper, is given in the Supplementary

Material. We name (6) the proximal mediation formula, since it generalizes Pearl’s funda-

mental mediation formula (1) to settings where key confounders are unmeasured. Similar

to the proximal g-formula in Tchetgen Tchetgen et al. (2020), (6) is expressed in terms of

nested bridge functions. Interestingly, although inferring natural direct and indirect effects

involves understanding the effects of the exposure on the mediator and the mediator on the

outcome, ψ can be identified without a need for additional proxy variables. Nevertheless,

compared with proximal identification of the average causal effect, additional restrictions

are placed on the exposure- and outcome-inducing proxies, in terms of their relationship

to M. For example, neither Z nor W are allowed to cause M. Such assumptions could be

relaxed by collecting data on separate proxies for each bridge function; we will investigate

this in future work.

Equations (2) and (3) refer to inverse problems that are known as Fredholm integral equa-

tions of the first kind. We refer to Miao et al. (2018) and Cui et al. (2023) for mathematical

conditions that ensure that these equations admit solutions. The solutions to these equations

are not required to be unique, as all solutions yield a unique value of ψ . The identification

assumptions may nevertheless be adjusted in order to guarantee a unique solution. Unlike

Assumptions 1–6, the condition that (2) and (3) admit solutions is potentially empirically

verifiable.

2.3. Alternative identification strategies

In this section, we establish two alternative proximal identification results to the proximal

mediation formula, which rely on alternative assumptions regarding completeness and the

existence of relevant confounding bridge functions, which are given in the Supplementary

Material.

THEOREM 2. (i) Suppose that there exist confounding bridge functions h1(w,M,X) that

satisfy (2) and q0(z,X) that satisfies

1

f (A = 0 | W ,X)
= E{q0(Z,X) | W ,A = 0,X}. (7)

Under Assumptions 1–5 and 6(i) above and AssumptionA.1.2 in the SupplementaryMaterial,

it follows that both

1

f (A = 0 | U ,X)
= E{q0(Z,X) | U ,A = 0,X} (8)

and (4) hold, and furthermore that E[Y{1,M(0)}] is identified as

ψ =

∫∫

I(a = 0)q0(z, x)h1(w,m, x) dF(w, z, a,m | x) dF(x). (9)

(ii) Alternatively, suppose that there exist confounding bridge functions q0(z,X) that satisfy

(7) and q1(z,M,X) that satisfies

E{q0(Z,X) | W ,A = 0,M,X}
f (A = 0 | W ,M,X)

f (A = 1 | W ,M,X)
= E{q1(Z,M,X) | W ,A = 1,M,X}.

(10)
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Proximal mediation analysis 7

Under Assumptions 1–5 and Assumptions A.1.1–A.1.2 in the Supplementary Material, it

follows that both

E{q0(Z,X) | U ,A = 0,M,X}
f (A = 0 | U ,M,X)

f (A = 1 | U ,M,X)
= E{q1(Z,M,X) | U ,A = 1,M,X}

(11)

and (8) hold, and that E[Y{1,M(0)}] is identified as

ψ =

∫∫

I(a = 1)q1(z,m, x)y dF(y, z, a,m | x) dF(x). (12)

We therefore have three results for proximal identification, each of which relies on two

confounding bridge assumptions. The strategy given in part (i) of the above theorem

relies on a combination of outcome- and treatment-inducing confounding bridge functions,

whereas the final strategy relies on two nested treatment-inducing confounding bridge func-

tions. Result (8) follows from Cui et al. (2023), and formal conditions for the existence of

solutions to (7) and (10) are given in that paper.

3. Semiparametric inference

3.1. The semiparametric efficiency bound

In this section, we consider inference for ψ under the semiparametric model Msp that

places no restrictions on the observed data distribution besides existence, but not necessar-

ily uniqueness, of bridge functions h1 and h0 that solve (2) and (3). Assumed existence of the

outcome bridge functions places restrictions on the tangent space. Under the additional reg-

ularity conditions described below, we can also obtain the semiparametric efficiency bound

under Msp.

Assumption 7 (Regularity conditions).

(i) Let T1 : L2(W ,M,X) → L2(Z,A = 1,M,X) denote the operator, given by T1(g) ≡

E{g(W ,M,X) | Z,A = 1,M,X}. At the true data generating mechanism, T1 is

surjective.

(ii) Let T0 : L2(W ,M,X) → L2(Z,A = 0,X) denote the operator, given by T0(g) ≡

E{g(W ,M,X) | Z,A = 0,X}. Then at the true data generating mechanism, T0 is

surjective.

As noted in Ying et al. (2022), this condition relies on the functions L2(W ,M,X) being

rich enough such that any element in L2(Z,A = 1,M,X) and L2(Z,A = 0,X) can be

generated via the conditional expectation map. Then we arrive at the following result.

THEOREM 3. Assume that there exist bridge functions h1 and h0 at all data laws that belong

to the semiparametric modelMsp. Furthermore, suppose that at the true data law there exists

q0 and q1 that solve (7) and (10), and that Assumption 6 holds, such that ψ is unique. Then

IFψ = I(A = 1)q1(Z,M,X){Y − h1(W ,M,X)}

+ I(A = 0)q0(Z,X){h1(W ,M,X) − h0(W ,X)} + h0(W ,X) − ψ

is a valid influence function for ψ under Msp. Furthermore, the efficiency bound at the

submodel where Assumption 7 holds and all bridge functions are unique is E(IF2
ψ ).
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8 O. Dukes, I. Shpitser AND E. J. Tchetgen Tchetgen

3.2. Multiply robust estimation

We consider the setting where L is high dimensional, and parametric working models

for h1, h0, q0 and q1 may be useful as a form of dimension reduction. In that case, we

show that an estimator of ψ based on the efficient influence function is multiply robust,

in the sense that only certain combinations of these working models need to be correctly

specified in order to yield an unbiased estimator. To make this more concrete, consider

the following semiparametric models that impose certain restrictions on the observed data

distribution:

M1 : h1(W ,M,X) and h0(W ,X) are assumed to be correctly specified,

M2 : h1(W ,M,X) and q0(Z,X) are assumed to be correctly specified,

M3 : q1(Z,M,X) and q0(Z,X) are assumed to be correctly specified.

Here, M1, M2 and M3 are all submodels of Msp. The proposed approach will rely on

models for the confounding bridge functions, but we show that only one of M1, M2 and

M3 needs to hold to ensure unbiased estimation of the target parameter.

We first consider how to obtain inference in the submodels M1, M2 and M3. Let

h1(W ,M,X ;β1) and h0(W ,X ;β0) denote models for the respective bridge functions

h1(W ,M,X) and h0(W ,X), indexed by finite-dimensional parameters β1 and β0. Like-

wise, q1(Z,M,X ; γ1) and q0(Z,X ; γ0) are models for the bridge functions q1(Z,M,X) and

q0(Z,X) indexed by the finite-dimensional parameters γ1 and γ0, respectively. It follows

from Cui et al. (2023) that one can obtain estimates β̂1, β̂0 and γ̂0 of β1, β0 and γ0 as the

solutions to the respective estimating equations:

n
∑

i=1

Ai{Yi − h1(Wi,Mi,Xi;β1)}c1(Zi,Mi,Xi) = 0,

n
∑

i=1

(1 − Ai){h1(Wi,Mi,Xi;β1) − h0(Wi,Xi;β0)}c0(Zi,Xi) = 0,

n
∑

i=1

{(1 − Ai)q0(Zi,Xi; γ0) − 1}d0(Wi,Xi) = 0.

The first two sets of equations can be solved sequentially. Here c1(Zi,Mi,Xi) is a function of

the same dimension as β1, and c0(Zi,Xi) and d0(Wi,Xi) are similarly defined. Although β̂0

and hence h0(W ,X ; β̂0) depends on β̂1, this dependence is suppressed to simplify notation.

The above estimating equations can be implemented using software for generalized method

of moments or, when models are linear, two-stage least squares. Interestingly, despite the

fact that (10) suggests that estimation of γ0 would require postulation of a model for

1/f (A = 0 | W ,X), Cui et al. (2023) showed that this is not the case. The efficient

choices of c1(Zi,Mi,Xi), c0(Zi,Xi) and d0(Wi,Xi) are all implied by results in the Appen-

dix of Cui et al. (2023). Since the resulting efficiency gain compared to using the choices

c1(Zi,Mi,Xi) = (1,ZT
i ,Mi,X

T
i )T, c0(Zi,Xi) = (1,ZT

i ,X
T
i )T and d0(Wi,Xi) = (1,WT

i ,X
T
i )T

is likely to be modest in most situations (Stephens et al., 2014), we do not consider locally

efficient estimation of the nuisance parameters any further.

Since q1 involves solving an integral equation (10) involving the ratio of propensity

score functions, the results from previous work do not extend to inference for γ1. The
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Proximal mediation analysis 9

following theorem then suggests how to obtain semiparametric inference under modelM3,

and is more generally relevant for estimation of the average treatment effect in the treated

population.

THEOREM 4. All influence functions of regular and asymptotically linear estimators of γ1
under the semiparametric modelM3 are of the form

−V−1

[

{Aq1(Z,M,X ; γ1) − (1 − A)q0(Z,X ; γ0)}d1(W ,M,X)

− E

{

∂q0(Z,X ; γ0)

∂γ0
(1 − A)d1(W ,M,X)

}

ϕ(W ,Z,A,X ; γ0)

]

for some function d1(W ,M,X) that is of the same dimension as γ1, where

V = E

{

∂q1(Z,M,X ; γ1)

∂γ1
Ad1(W ,M,X)

}

and ϕ(W ,Z,A,X ; γ0) is the influence function for an estimator of γ0.

This theorem indicates that inference for γ1 can be obtained without the need to model

either f (A = 0 | W ,M,X) or f (A = 1 | W ,M,X), or their ratio. Indeed, it suggests an

estimation strategy for γ1; namely, after obtaining γ̂0 as previously described, one can obtain

γ̂1 as the solution to the equations

n
∑

i=1

{Aiq1(Zi,Mi,Xi; γ1) − (1 − Ai)q0(Zi,Xi; γ̂0)}(1,W
T
i ,Mi,X

T
i )T = 0.

Consistent estimation of γ1 nevertheless relies on consistent estimation of γ0. Given that

q1(Z,M,X ; γ1) and q0(Z,X ; γ0) are both confounding bridges for the treatment assignment

mechanism, this raises the question of how to postulate models for the two bridge functions

that are compatible. A brief discussion on model compatibility is given in § 4 below, with

more detailed results given in the Supplementary Material.

Once we have strategies for estimating nuisance parameters indexing the bridge functions,

one can construct proximal outcome regression, hybrid and inverse probability weighting

estimators of ψ :

ψ̂P-OR =
1

n

n
∑

i=1

h0(Wi,Xi; γ̂0),

ψ̂P-hybrid =
1

n

n
∑

i=1

(1 − Ai)q0(Zi,Xi; γ̂0)h1(Wi,Mi,Xi; β̂1),

ψ̂P-IPW =
1

n

n
∑

i=1

Aiq1(Zi,Mi,Xi; γ̂1)Yi.

Then ψ̂P-OR is a consistent and asymptotically normal estimator under modelM1, ψ̂P-hybrid

is consistent and asymptotically normal under model M2, and ψ̂P-IPW is consistent and

asymptotically normal under model M3. Correctly specifying models for the different
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10 O. Dukes, I. Shpitser AND E. J. Tchetgen Tchetgen

bridge functions may be challenging, since they are defined as solutions to integral equa-

tions, rather than the conditional expectations or probabilities more common in causal

inference, e.g., E(Y |A= 1,L) or f (A= 1 |L). The development of a proximal multiply

robust estimator, which enables the relaxation of parametric modelling assumptions, is

therefore of interest.

THEOREM 5. Under typical regularity conditions,

ψ̂P-MR =
1

n

n
∑

i=1

Aiq1(Zi,Mi,Xi; γ̂1){Yi − h1(Wi,Mi,Xi; β̂1)}

+ (1 − Ai)q0(Zi,Xi; γ̂0){h1(Wi,Mi,Xi; β̂1) − h0(Wi,Xi; γ̂0)} + h0(Wi,Xi; γ̂0)

is a consistent and asymptotically normal estimator of ψ under the union model Munion =

M1 ∪ M2 ∪ M3. Furthermore, ψ̂P-MR attains the semiparametric efficiency bound at the

intersection submodelM1 ∩ M2 ∩ M3 where Assumption 7 also holds.

Using standard M-estimation arguments, and the influence functions for the nuisance

parameter estimators, one can construct a nonparametric sandwich estimator of the stan-

dard error for ψ̂P-MR that is robust to potential model misspecification; an alternative

option is the nonparametric bootstrap. A weakness of our estimator is that, when Y is

binary, ψ̂P-MR is not guaranteed to fall within the [0,1] interval. This is an important

topic for future work and could be remedied, e.g., by adapting the proposal in § 5 of

Tchetgen Tchetgen & Shpitser (2012).

4. Simulation studies

In order to evaluate the finite sample performance of the proposed estimators, we con-

ducted a simulation study. Specifically letting we generated data (Y ,A,M,X ,W ,Z) by

X ,U ∼ MVN{(0.25, 0.25, 0)T,�}; f (A = 1 | X ,U) = expit{−(0.5, 0.5)TX − 0.4U}; Z |

A,X ,U ∼ N {0.2−0.52A+(0.2, 0.2)TX−U , 1};W | X ,U ∼ N {0.3+(0.2, 0.2)TX−0.6U , 1}

andM | A,X ,U ∼ N {−0.3A− (0.5, 0.5)TX + 0.4U , 1}, where X = (X1,X2)
T and

� =

⎛

⎝

σ 2
x1

σx1x2 σx1u

σx1x2 σ 2
x2

σx2u

σx1u σx2u σ 2
u

⎞

⎠ =

⎛

⎝

0.25 0 0.05

0 0.25 0.05

0.05 0.05 1

⎞

⎠ .

Finally, Y = 2 + 2A + M + 2W − (1, 1)TX − U + 2ε∗, where ε∗ ∼ N (0, 1). SinceW and

M are linear in X , U and the exposure, it follows that this data generating mechanism is

compatible with the following models for h1, h0:

h1(W ,M,X ;β1) = β1,0 + β1,wW + βT

1,xX + β1,mM,

h0(W ,X ;β0) = β0,0 + β0,wW + βT

0,xX .

Furthermore, in the SupplementaryMaterial, we also show that, whenA follows a Bernoulli

distribution, givenU and X ,M is normally distributed, givenU , A and X and Z ∼ N (ε0 +

εuU + εaA+ εxX , σ 2
z|u,a,x); then the choice of bridge functions

q0(Z,X) = 1 + exp{−(γ0,0 + γ0,zZ + γ0,xX)},
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Proximal mediation analysis 11

Table 1. Simulation results from experiments 1–4

Experiment Estimator Bias MSE Coverage Mean length Med. length

1 θ̂P-IPW 0.00 0.02 0.95 0.51 0.50

θ̂P-hybrid 0.00 0.02 0.96 0.50 0.50

θ̂P-OR 0.00 0.02 0.96 0.50 0.50

θ̂P-MR 0.00 0.02 0.95 0.51 0.50

2 θ̂P-IPW 0.19 0.05 0.71 0.52 0.51

θ̂P-hybrid −0.15 0.04 0.82 0.52 0.52

θ̂P-OR 0.00 0.02 0.95 0.50 0.50

θ̂P-MR 0.00 0.02 0.95 0.50 0.50

3 θ̂P-IPW 0.38 0.16 0.30 0.60 0.59

θ̂P-hybrid 0.00 0.02 0.95 0.50 0.50

θ̂P-OR −0.14 0.04 0.81 0.52 0.51

θ̂P-MR 0.00 0.02 0.95 0.51 0.50

4 θ̂P-IPW −0.01 0.02 0.94 0.51 0.51

θ̂P-hybrid 0.21 0.06 0.66 0.53 0.53

θ̂P-OR 0.17 0.05 0.72 0.52 0.51

θ̂P-MR −0.01 0.02 0.95 0.51 0.51

Bias, Monte Carlo bias; MSE, mean squared error; Coverage, 95% confidence inter-

val coverage; Mean length, average 95% confidence interval length; Med. length,

median 95% confidence interval length.

q1(Z,M,X) = exp(γ1,0 + γ1,zZ + γ1,mM + γ1,xX)

+ {q0(Z,X) − 1} exp{γ1,0 + γ0,zεa + γ1,z(Z + γ0,zσ
2
z|u,a,x)

+ γ1,mM + γ1,xX}

satisfies (7) and (10). Under the additional constraint that εa = −γ1,zσ
2
z|u,a,x, which is

enforced here, it follows that the expression for q1 simplifies to

q1(Z,M,X) = q0(Z,X) exp(γ1,0 + γ1,zZ + γ1,zM + γ1,xX).

Let δ̂P-DR be the proximal doubly robust estimator of E{Y(0)} considered in Cui et al.

(2023). We considered four proximal mediation estimators of the natural direct effect

E{Y(1,M(0))} − E{Y(0)}: θ̂P-OR = ψ̂P-OR − δ̂P-DR, θ̂P-hybrid = ψ̂P-hybrid − δ̂P-DR, θ̂P-IPW =

ψ̂P-IPW− δ̂P-DR and θ̂P-MR = ψ̂P-MR− δ̂P-DR. We evaluated the performance of the proposed

settings in settings where either all bridge functions were correctly modelled (experiment 1),

q1 and q0 were misspecified (experiment 2), q1 and h0 were misspecified (experiment 3) or

h1 and h0 were misspecified (experiment 4). We misspecified the models by including |X1|
1/2

and |X2|
1/2 in the bridge function rather thanX . We conducted simulations at n = 2000 and

repeated each experiment 1000 times.

The results are given in Table 1. As a benchmark, we also considered a naïve nonprox-

imal estimator θ̂OLS of the direct effect, based on linearly regressing Y on A, M, Z, W

and X ; its Monte Carlo bias was 0.5, with 95% confidence intervals that included the true

value only 29% of the time. When all bridge functions were correctly specified, the different

proximal estimators had comparable performance, with θ̂P-OR and θ̂P-MR exhibiting slightly

greater efficiency compared with the other methods. Across the different mechanisms of

misspecification considered, we see that only the multiply robust estimator continues to have

low bias, with confidence intervals that possess approximately their advertised coverage.
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12 O. Dukes, I. Shpitser AND E. J. Tchetgen Tchetgen

In a further set of simulation studies, we considered sensitivity of the different proposals

to changes in the confoundingmechanism aswell as violations of the structural assumptions

that underpin the methods. First, in experiment 5 we changed the above data-generating

mechanism such that f (A = 1 | X ,U), f (M | A,X ,U) and f (Y | A,M,W ,X ,U) no

longer depended on U , to check how the methods performed when there was no unmea-

sured confounding. In this specific setting, to construct the benchmark estimator θ̂OLS, we

adjusted for A, M, X and W , but not Z, to avoid collider bias induced via an association

between A and U . In experiment 6, we considered violations of the exclusion restriction

Assumption 5.2, by generating Y = 2 + 2A + M + 2W − (1, 1)TX − U − 0.5Z + 2ε∗.

In experiment 7, we considered violations of the exclusion restriction Assumption 5.4, by

generatingW fromW | X ,U ,A ∼ N (0.3 + (0.2, 0.2)TX − 0.6U + 0.2A, 1). In experiment

8, we looked at a near violation of the completeness conditions, where the coefficient for

U in the model for E(W | X ,U) was reduced in strength to 0.05, such that W was only

weakly U-relevant and the conditional associations between W and Z were also weak. In

experiment 9, we reversed this such that Z was now only weakly U-relevant. Each of the

models used to construct the bridge functions included X , rather than the transformations

considered in experiments 2–4. Values of the parameters in the data-generating mechanism

were adjusted where necessary, to ensure that all bridge functions were correctly specified.

The results of experiments 5–9 are given in the Supplementary Material. We see that in set-

tings where conditional exchangeability holds, the proximal estimators perform similarly in

terms of bias compared with θ̂OLS, but displayed a decrease in efficiency.When the exclusion

restrictions are violated, the proximal estimators performed similarly or slightly worse than

the naïve, biased ordinary least-squares estimator. When Z orW are notU-relevant, we see

that the standard errors for the proximal estimators can dramatically inflate; this is unsur-

prising, given how common instrumental variable estimators perform when instruments are

weak/irrelevant. The proximal estimators also typically displayed considerably larger bias

than θ̂OLS, but smaller median bias. Themultiply robust estimator θ̂P-MR generally displayed

smaller mean and median bias compared with the other methods in experiments 8 and 9.

5. Data analysis

In the Job Corps study, participants were randomized from November 1994 to Febru-

ary 1996 either to treatment, i.e., access to the Job Corps program, or to control, i.e., no

access. However, since individuals could choose whether to participate in the program or

not, we treat the exposure of interest as nonrandomized. The outcome of interest was the

number of arrests in the fourth year after assignment, and the mediator of interest was the

percentage of weeks employed in the second year. Although data on a rich set of covari-

ates were measured at baseline, it was nevertheless possible that unmeasured confounding

could lead to biased estimates of both direct and indirect effects. Investigators collected

information on factors that were known to be associated with duration in the program,

e.g., expectations of the program, interactions with recruiters. Huber et al. (2020) noted

that such variables may be strongly correlated with motivation, considered as an important

latent source of confounding. They therefore adjusted for these variables in the analysis in

the same way as standard measured confounders. In contrast, we treated these variables as

proxies of an unmeasured confounder, and changed the analysis accordingly. Similar to

Tchetgen Tchetgen et al. (2020), we restricted consideration to four potential proxies

strongly correlated with the expose and/or the outcome: time being spent spoken to by

the recruiter, worried about the Job Corps program, expected improvement in social skills
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Proximal mediation analysis 13

Table 2. Results from the analysis of the Job Corps study

Estimand S-MR 95% CI P-MR 95% CI

E[Y{1,M(0)}] − [Y{0,M(0)}] −0.0107 −0.0341, 0.0128 0.0057 −0.0699, 0.0813

E[Y{1,M(1)}] − [Y{0,M(1)}] −0.0110 −0.0345, 0.0124 −0.0016 −0.0781, 0.0749

E[Y{1,M(1)}] − [Y{1,M(0)}] 0.0006 −0.0229, 0.0241 −0.0088 −0.0314, 0.0138

E[Y{0,M(1)}] − [Y{0,M(0)}] 0.0009 −0.0001, 0.0019 −0.0016 −0.0110, 0.0078

S-MR, standard multiply robust estimator; P-MR, multiply robust estimators of

E[Y{1,M(0)}] and E[Y{0,M(1)}]; CI, confidence interval.

and whether the first contact by the recruiter was in the office or not. Since there was no

a priori understanding as to whether these were candidates for Z or W , we used the algo-

rithm described by Tchetgen Tchetgen et al. (2020) to assign them. This led to the first two

being used for Z, and the second two used forW .

Our sample consisted of 10 775 participants; further information on the sample is given

in Huber et al. (2020). There were 257 participants with missing data on Z who were

removed from the analysis. Linear and logistic models were postulated for the outcome

and exposure bridge functions, respectively. We considered both proximal inverse probabil-

ity weighting, hybrid, outcome regression and multiply robust estimators of E[Y{1,M(0)}]

and E[Y{0,M(1)}]. We contrasted our estimator with a standard multiply robust approach

θ̂S-MR based on the efficient influence function derived by Tchetgen Tchetgen & Shpitser

(2012), that is valid under conditional exchangeability-type assumptions; we again postu-

lated linear models for E(Y | A = a,M,X ,Z,W) and E{E(Y | A = a,M,X ,Z,W) |

A = a∗,X ,Z,W}, and a logistic model for the odds P(A = 1 | M,X ,Z,W)/P(A = 0 |

M,X ,Z,W) and for P(A = 1 | X ,Z,W). All outcome regression models for the con-

founding bridge functions and otherwise were fitted separately in control and treatment

groups, to allow for treatment-mediator and treatment-covariate interactions. Since the set

of covariates measured at baseline was relatively high in dimension, we excluded variables

with amounts of missingness> 50%, or which had somemissing values andwere highly cor-

related with variables that were fully observed. For all other variables with missingness, we

used the missing indicator method as in Huber et al. (2020). Standard errors for all estima-

tors were calculated using sandwich estimators. In the Supplementary Material, following

the AGReMA statement on good practice for conducting and reporting mediation analysis

(Lee et al., 2021), we provide further information on the study and data analysis.

Results for the standard and proximal multiply robust approaches can be seen in Table 2.

The total effect estimate given by the standard approach was −0.01 (95% confidence inter-

val: −0.022, 0.002) and for the proximal approach, it was −0.003 (95% confidence interval:

−0.040, 0.033). The estimates of the direct and indirect effects yielded by both approaches

are also close to the null, and all 95% confidence intervals contain the null. The direct effect

estimates under the proximal approach tended to be closer to the null; and the indirect effects

were slightly larger in magnitude, although still very small. The results of the other esti-

mators can be found in the Supplementary Material; the multiply robust estimator θ̂P-MR

tended to agree more closely with θ̂P-hybrid, although there was not a large disparity between

the point estimates.

6. Discussion

An advantage of doubly/multiply robust methods, used in combination with cross-

fitting, is that data-adaptive methods can be used to estimate nuisance parameters, yet their

potentially slow rates of convergence are not necessarily inherited by the estimator of the
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14 O. Dukes, I. Shpitser AND E. J. Tchetgen Tchetgen

target parameter (Chernozhukov et al., 2018). A complication in proximal learning is that

the nuisances are defined as the solutions to integral equations. Progress in this direction is

described inGhassami et al. (2022) andKallus et al. (2022); it would thus be useful to extend

these ideas to mediation analysis. Another avenue for future work would be to extend the

results of identification and estimation to more general path-specific effects (Avin et al.,

2005; Shpitser, 2013), which are relevant in particular in settings when confounders of the

mediator-outcome relationship are affected by the exposure. In such cases the cross-world

assumption fails to hold, and standard natural effects are no longer identified. Finally,

an important topic more generally in proximal learning is the development of sensitivity

analysis methods. A simple way to check how sensitive results are to categorization of the

Z and W proxies is to permute the labels. The development of more advanced tools to

assess deviations from specific key assumptions, e.g., the exclusion restrictions involving the

proxies, is left to future work. Under the failure of certain assumptions, methods for par-

tial identification such as nonparametric bounds may also be useful (Robins, 1989; Manski,

1990).
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