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ABSTRACT

Quantifying the resilience in the food system is important for food
security issues. In this work, we present a geospatial knowledge
graph (GeoKG)-based method for measuring the resilience of a
multi-commodity flow network. Specifically, we develop a CFS-
GeoKG ontology to describe geospatial semantics of a multi-
commodity flow network comprehensively, and design resilience
metrics that measure the node-level and network-level dependence
of single-sourcing, distant, or non-adjacent suppliers/customers
in food supply chains. We conduct a case study of the US state-
level agricultural multi-commodity flow network with hierarchical
commodity types. The results indicate that, by leveraging GeoKG,
our method supports measuring both node-level and network-
level resilience across space and over time and also helps discover
concentration patterns of agricultural resources in the spatial
network at different geographic scales.
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1 INTRODUCTION

According to the State of Food Security and Nutrition in the
World report in 2022 by the Food and Agriculture Organization of
the United Nations [7], the number of people affected by global
hunger has increased by 150 million since the COVID-19 outbreak,
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reaching 828 million in 2021. 11.7% of the global population
faced food insecurity nowadays. Resilient and sustainable food
supply chain networks may benefit the production, delivery, and
consumption of agricultural products, thereby showing promises
in mitigating global hunger and critical for regional and global
food security [14, 18, 25]. However, food supply chain networks
involve multidimensional interactions and complex decisions. All
participants in supply chains contend with diverse food demands,
transportation time and cost, sales strategy, natural conditions, etc.
This means that understanding supply chain resilience is a grand
challenge [2, 30].

Recently, different measures have been proposed in complex
(spatial) networks [3, 8, 16] and applied in understanding the
resilience and the resilience-efficiency trade-off in the global food
trade network [6, 14, 22, 27]. For example, Fair et al. [6] built a
dynamic model of the global wheat trade network and explored
the resilience of the network to targeted attacks on edges. Tu
et al. [27] measured the connectivity, structure, and modularity
of a global food trade network and investigated their association
with the resilience of the network. Karakoc and Konar [14] studied
topological and weighted resilience and efficiency metrics and
proposed a complex network framework for evaluating the trade-
off between efficiency and resilience of food trade networks.
However, it is still hard to comprehensively assess the food
system resilience with complex multidimensional information (e.g.,
multiple commodity types, suppliers and customers, geographic
proximity, and at different scales). With the recent advances in
geospatial knowledge graphs (GeoKG) [12, 17], the importance of
spatial concepts (e.g., the scale of geographic entities and spatial
dependence) has been addressed in knowledge discovery, semantic
reasoning, etc. Such concepts can be integrated with food systems
[9] to help decision makers understand and improve the structure
and resilience of food supply chain networks, thereby safeguarding
local, regional, and global food security.

In this work, we present a novel method for measuring
network resilience via GeoKG and apply it for understanding
the node-level and network-level resilience of the US agricultural
multi-commodity flow network at different geographic scales. By
leveraging GeoKG, we are able to integrate several factors into
resilience metrics (i.e., commodity value, supplier or customer
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commodity diversity, average transport miles, and geographic
adjacency) and comprehensively measure the single-sourcing
dependence of suppliers, customers, and commodity types as well
as the geographic proximity and adjacency (spatial dependence) in
the network. Such comprehensive resilience metrics may not only
allow a good assessment of the resilience of the entire network or
the nodes themselves when facing disruption risks, but also help us
discover trends in the dispersion or concentration of agricultural
resources at different geographic scales.

The remainder of the paper is organized as follows: In Section 2,
we first introduce the ontology design of CFS-GeoKG, a geographic
knowledge graph for storing and querying geospatial semantics of
multi-commodity flow data. We then propose two resilience metrics
for the comprehensive measurement of node-level and network-
level resilience via CFS-GeoKG which considers commodity value
and diversity, average transport miles, and geographic adjacency. In
Section 3, we report and discuss the results from a case study of the
US agricultural multi-commodity flow network using our proposed
methods. In section 4, we discuss the limits associated with our
data source and metric design, and we summarize corresponding
future research directions. Finally, in Section 5, we conclude this
work and outline future works.

2 METHODS

In this section, we first present a GeoKG ontology design: CFS-
GeoKG, which describes the US multi-commodity flow network
based on the US Commodity Flow Survey (CFS) data'. Then we
introduce several network resilience evaluation metrics based
on the designed CFS-GeoKG, which comprehensively consider
multi-dimensional semantics such as supplier/customer/commodity
diversity, commodity value, geographic adjacency, and average
transport mileage in the measurements. We also demonstrate how
to calculate the proposed resilience metrics via CFS-GeoKG using
the SPARQL query.

2.1 CFS-GeoKG Ontology

We design an ontology “CFS-GeoKG” to comprehensively describe
geospatial semantic information in the US multi-commodity flow
network. The CFS-GeoKG ontology is designed to 1) define
hierarchical geographical entities and their relations in the multi-
commodity flow network; 2) describe hierarchical multi-type
commodity flows and their properties; and 3) support network
resilience measurement; and 4) link out to and reuse existing
semantic ontology design patterns for better interoperability
or interlinking existing Linked data and other Web resources
[11]. Figure 1 presents the ontology design of CFS-GeoKG.
Each commodity flow in the network belongs to the class
cfs:CFObject, which has several essential properties: cfs:CFValue,
the total value ($ millions) of the commodity flow; cfs:AvgMileage,
the average transport mileage (miles) of the commodity flow;
time:year from the Time Ontology in OWL?, the year of
the commodity flow; cfs:CFCode, the commodity code such as
Standard Classification of Transported Goods (SCTG, described

!https://www.census.gov/programs-surveys/cfs.html
https://www.w3.0rg/TR/owl-time/
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by ¢fs:SCTG)? or North American Industry Classification System
(NAICS, described by cfs:NAICS)*. Note that the hierarchical
structure in commodity types, if exists, can be preserved by adding
corresponding data properties to cfs:CFCode; and kwg-ont:Region®
from the KnowWhereGraph ontology [12], describing hierarchical
geographical entities involved in CFS data such as the geographical
or administrative origin and destination (e.g., state, region, division,
and CFS area) of a commodity flow. Note that the concepts of regions
and divisions we employ in the paper are from the Geographic
Levels defined by the US Census Bureau®.

For each agricultural commodity code (i.e., each food type), if
available, we also link it to its corresponding FoodOn ontology class
[4] to add more food information. To support the storage and query
of geospatial information, we utilize the GeoSPARQL developed
by Open Geospatial Consortium (OGC) that defines a vocabulary
for representing geospatial data in resource description framework
(RDF) [1]. Specifically, kwg-ont:Region has either a geo:Geometry or
a geo:GeometryCollection depending on its geographical type. For
example, a state has one geo:Geometry that describes its boundary,
area, etc.; a region or division contains multiple states, therefore
having a geo:GeometryCollection containing multiple geo:Geometry.
We also utilize the GeoNames ontology [28] (e.g., assigning a
gn:Feature for each kwg-ont:Region) to support the storage and
query of geographical names, geolD, geographical types, etc. Note
that we did not show all CFS attributes in Figure 1 for simplicity.
In fact, more properties such as the total weight of the commodity
flow (e.g., cfs:CFWeight) can be described in the CFS-GeoKG.
With the CFS-GeoKG, we are able to annotate the geographical
entities and commodity flow entities as well as their properties and
relations in the semantic network, which lays the foundation for a
comprehensive network resilience assessments.

2.2 Network Resilience Metrics

We measure resilience in a multi-commodity flow network mainly
based on the extent of dependence on Single-Sourcing Dependence
[20, 26]. According to different levels of resilience measurement,
we propose two types of resilience metrics: node-level resilience and
network-level resilience. Generally speaking, a node (e.g., a state) is
less resilient if it tends to rely more on a single supplier, a single
customer, or a single commodity type. This is because a centralized
risk due to single sourcing leads to a lower fault tolerance. When
the largest supplier or customer of the node is removed from
the supply chain, or the commodity on which the node is most
reliant are out of supply or unsalable, the resulting impact could
be devastating for the node’s economy (e.g., disruption risks [13]).
Also, from a geographical perspective, a node is less resilient if
it tends to rely more on geographically distant or non-adjacent
suppliers or customers. Generally, longer distance transport not
only increases transport costs, but also increases transport risks
[10]. We therefore define the resilience of a node as a comprehensive
measurement of the dependence on multiple suppliers/customers,
commodity types and geographic proximity. In Table 1, we list

Shttps://bhs.econ.census.gov/bhsphpext/brdsearch/scs_code.html
4https://www.census.gov/naics/
Shttps://stko-kwg.geog.ucsb.edu/lod/ontology#Region
®https://www.census.gov/programs-surveys/economic- census/guidance-
geographies/levels.html


https://www.census.gov/programs-surveys/cfs.html
https://www.w3.org/TR/owl-time/
https://bhs.econ.census.gov/bhsphpext/brdsearch/scs_code.html
https://www.census.gov/naics/
https://stko-kwg.geog.ucsb.edu/lod/ontology#Region
https://www.census.gov/programs-surveys/economic-census/guidance-geographies/levels.html
https://www.census.gov/programs-surveys/economic-census/guidance-geographies/levels.html

Measuring Network Resilience via Geospatial Knowledge Graph

Conference’17, July 2017, Washington, DC, USA

time:year \ rdfs:Class cfs:SCTG cfs:NAICS
. . t
time:hasTime rdf:type rdfs:subClassOf rdfs:subClassOf
| N
cfs:CFValue [« cfs:hasCFValue > cfs:CFObject cfs:hasCFCode +  cfs:CFCode
cfs:hasCFAvgMileage foifl | . |
CTs:TliowskFrom
cfs:CFAvgMileage — cfe-flowsTo °f5=haSFl°°d0“

gn:Feature [« cfs:hasGnFeature -

kwg-ont:Region

foodon:00001002

cfs:hasGeometry

(food product)

/ cfs:hasGeometryCollection
N

geo:Geometry

geo:GeometryCollection

Figure 1: The ontology design of CFS-GeoKG.

four factors that affects node-level resilience: Commodity Value
(CV), Supplier/Customer/Commodity Diversity (SCCD), Average
Transport Mileage (ATM), and Geographic Adjacency (GA). We
summarize a bottom-top calculation of node-level resilience in four
steps (Figure 2):

Table 1: Factors affecting node resilience.

Factors  Description

Ccv The value of a commodity flow

SCCD  The diversity of suppliers/customers/commodities
ATM The average transport mileage of a commodity flow
GA The geographic adjacency between the origin and

destination of a commodity flow

Combining CV with ATM and GA: In order to reflect the
average transport mileage and geographic adjacency information in
commodity values, we combine them using the following formula:

Viisje) = Vlimie) X @imjie) X By )

where V(;_, ;) and a(;_, ) denote the value and the factor for
average transport mileage of the flow with commodity type ¢ from
node i to node j, respectively. We set a(;_, ) = 1 when ATM is
shorter than 1 mile, otherwise we set a(;_, ; ¢) to be the square root
of ATM; f(; j) denotes the factor for geographic adjacency between
node i and node j. §; j) = 0.9 if node i and node j is geographically
adjacent, otherwise f(; ) = 1. Note that these factors can be
modified based on domain knowledge. Also, in the CFS-GeoKG,
CV and ATM can be queried via cfs:CFValue and cfs:AvgMileage,
and GA can be queried using geo:ehMeet, the ’Meet’ relation in
Egenhofer’s Topological Relation Family between regions [5] and
implemented by GeoSPARQL.

Measuring Single-Supplier/Customer Dependence: By
leveraging Shannon entropy [24], we measure the single-
supplier/customer dependence of a node for each commodity type
(here we measure the single-customer dependence as an example):

Hic) == Z pjlogy pj @)
J
Dy =27 = [ [ ¥/ (3)
J

Where H(;.) denotes the Shannon entropy of the value
distribution of commodity type c centered to node i; p; =
V<’i_)j,c) 12; V(’i_)j’c) is the normalized commodity value; D; )
denotes the extent of single-customer dependence of node i on
commodity type c (i.e., a weighted geometric mean of normalized
commodity value distribution [21]). A larger D; o) implies a higher
single-customer dependence.

Measuring Single-Commodity-Type Dependence: Building
upon the single-customer dependence, we further measure the
single-commodity-type dependence of a node. Due to the hierarchy
of commodity types (e.g., 'SCTG 02100 Wheat’ is a subClass of
"SCTG 02 Cereal Grains’) as shown in Figure 2, we first calculate
the single-commodity-type dependence for each aggregated
commodity type (e.g., CFCode A and B), and then we calculate
the overall single-commodity-type dependence of a node:

Plic
D(i,A) = l_lp(i(,c)) (4)
ceA
o P(i.A)
pi= [ »ii (5)
A€Agg

where D; is the overall single-commodity-type dependence
of node i; Agg is a set of aggregated commodity types;

PaiA) = V(’l., A /XAcAgg V(’i’ A) is the normalized value of V('i, A =

Dia) Zcea V(’l. o which is the value of aggregated commodity
A reflecting single-commodity-type dependence; Dy; 4) is the
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Figure 2: A conceptual graph showing the bottom-up node-level export resilience calculation.

single-commodity-type dependence of the aggregated commodity
type A; pic) V(’i,c)/ZCE A V’i’c) is the normalized value of
V(’l.’c) =D(ie) X V(,i—>j,c)’ which is the value of commodity type
c reflecting single-customer dependence. Note that in the CFS-
GeoKG, aggregated commodity types are stored as data properties
of ¢fs:CFCode.

Measuring Node-Level Resilience: Eventually, we get a
node-level resilience R; that comprehensively measures the
single-supplier/customer dependence, single-commodity-type
dependence, transport distance, and geographic adjacency of the
node i:

ZAEAgg v
Ri=1- DiT(”A)

1

(©)

where V! = Yacagg Xcea 2j V(’l._U.’c) denotes the total
commodity value of node i combined with average transport miles
and geography adjacency information. The higher the R;, the
less dependent node i is on single or geographically distant/non-
adjacent supplier/customer or single commodity type, thus the
higher the resilience. Depending on commodity in-flows and out-
flows, we can calculate the node-level import resilience R;:” and
export resilience R?*! of node i, respectively.

Measuring Network-Level Resilience: It is natural to
consider how to extend this node-level resilience metric to a
network-level resilience metric. Likewise, network-level resilience
also relies on CV, SCCD, ATM, and GA. We refer to the concept
of a food trade network resilience proposed by [14], where they
define network resilience as the resilience to the targeted attack
on the major exporter with the most mass supply. We modify this
definition as “the resilience to the targeted attack on the most
influential importer/exporter in the multi-commodity network”.
Here the most influential importer/exporter may: 1) have a very
high total commodity flow value (combined with transport mileage
and geographic adjacency) in the multi-commodity network; and 2)
have very deep integration with the multi-commodity network
(i.e., the business and value are deeply linked to most of the

commodity types). The most influential importer/exporter does
the best of the two aspects combined, therefore attacking such an
importer/exporter will have a huge impact on the vulnerability of
entire network. By capturing such a change in the network, we are
able to measure the network-level resilience as below:

Rper =1 —max(l;) (7)
= RV 8
= SR ®

where R; denotes the node-level resilience of node i, which
also implies the extent of integration between node i and the
network; V" denotes the total commodity value of node i described
in formula (6). I; thereby reflects the overall influence of node i on
the entire network. Likewise, we can calculate the network-level
import resilience R and export resilience R%%! using commodity
in-flows and out-flows, respectively.

Resilience Computation via CFS-GeoKG using SPASQL:
The aforementioned resilience metrics can be defined and
implemented as on-demand query functions (with the prefix cfsf)
[23], which are used to calculate the node-level and network-level
resilience scores via the CFS-GeoKG. Here we give an example of
how to retrieve the top-10 states with the highest node-level export
resilience in 2017 using the predefined cfsf:node_export_resilience
query function. This function takes a kwg-ont:Region node and three
other parameters (i.e., year, ATM and GA factors) as inputs, and
return the export resilience of that node as the output:

cfsf : node_export_resilience (node: kwg-ont:Region,
year: time:year,

atm: xsd: string ,

ga: xsd:double): xsd:double

PP CR

The example SPARQL query is as below:

SELECT ?state ( cfsf: node_export_resilience (? state, 2017, 'sqrt’,
AS ? expResilience )

WHERE {

?state rdf:type kwg-ont:Region.

0.9)

PRI O
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?state cfs :hasGnFeature ?gnFeature.
?gnFeature gn:featureCode 'ADM1'".

ORDER BY DESC(? expResilience )
LIMIT 10

where %tate denotes the nodes in the CFS-GeoKG we select. We
first select the state-level kwg-ont:Region nodes with gn:featureCode
as ’ADMY’, and then we calculate their node-level export resilience
via the cfsfinode_export_resilience query function, where we set
year as 2017 for calculating resilience scores in 2017, atm as
’sqrt’ to use the square root of ATM for the a factor reflecting
average transport mileage, and ga as 0.9 for the f factor reflecting
geographic adjacency. Lastly, we sort the results based on the
calculated export resilience in descending order and return the
first 10 results. Similarly, the node-level import resilience and the
network-level resilience measures can also be calculated on-the-fly
with predefined SPARQL query functions. The key consideration
of on-demand computation vs. pre-compute is because we can
calibrate the parameters and update resilience scores to see the
changes, especially when we want to investigate how a change in
node property would affect the network resilience.

3 RESULTS

Table 2: List of agricultural commodity types in SCTG.

Code Description

01 Live Animals and Fish

02 Cereal Grains (including seed)

03 Agricultural Products Except for Animal Feed,
Cereal Grains, and Forage Products

04 Animal Feed, Eggs, Honey, and Other Products of
Animal Origin

05 Meat, Poultry, Fish, Seafood, and Their Preparations

06 Milled Grain Products and Preparations, and Bakery
Products

07 Other Prepared Foodstuffs, Fats and Oils

08 Alcoholic Beverages and Denatured Alcohol

In our experiments, we utilize the CFS-GeoKG and designed
metrics to measure both node-level resilience and network-level
resilience of the US Multi-Commodity Flow Network. The CFS
is conducted every five years by the Bureau of Transportation
Statistics (BTS) and the U.S. Census Bureau. CFS provides
comprehensive data of domestic freight shipments including
commodity type, value, weight, distance shipped, origin and
destination, etc. from national-level to state-level. As an example,
we focus on the agricultural multi-commodity flows in 2012 and
2017 at differential geographical scales by extracting the data
with SCTG code from 01 to 08 (details are listed in Table 2) and

under different geographical units (i.e., state, division, and region).

Following the SCTG Commodity Code List’, we further aggregate
code 01-05 (i.e., Agriculture Products and Fish, denoted as A) and
06-08 (i.e., Grains and Alcohol, denoted as B) to preserve the

"https://bhs.econ.census.gov/bhsphpext/brdsearch/scs_code.html
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hierarchical commodity type structure. After loading CFS data into
CFS-GeoKG, there are 64 geographical unit entities, including 51
states, 9 divisions, and 4 regions. There are also 3,381 commodity
flow entities covering different geographical units, years, and
commodity types. The state-level agricultural commodity flows
in 2012 and 2017 are visualized on the map in Figure 4, respectively.
The flow width reflects the total commodity value of each flow.

We first calculate the node-level import resilience R;:" and export
resilience Rl.O”t for each node i at the state level in the agricultural
multi-commodity flow network and list the top-10 resilient states
in 2017 in Table 3. Then we calculate both import influence Il.i"
and export influence Il?”” to the network for each node i and
list the top-10 states in 2017 in Table 4. The ranking in Table 3
differs from Table 4 as node-level resilience mainly reflects the
resilience of the nodes themselves to single-source dependence,
transport distance, and geographic adjacency, which does not
necessarily rely on their total commodity values, while the influence
on the network relies heavily on the total commodity value of the
nodes. In Figure 3, we further visualize all the node-level import
and export resilience for each state in 2012 and 2017 as well as
the import and export influence of each state to the entire food
flow spatial network in 2012 and 2017. Darker color represents
higher resilience or influence. We can observe from the figure
that the east-coast states, west-cost states, and mid-west states
have higher node-level resilience than other areas. This might be
because they have larger and wider supply chains for purchasing
and selling agricultural products, making them less dependent on
single-sourcing suppliers/customers or geographic constraints, and
thereby more resilient to disruption risks. Moreover, we can observe
that many top agricultural-producing states such as California,
Texas, and mid-west states have high import and export influence
on the network, indicating that they contribute high agricultural
commodity values, practice robust supply chain strategies, and
play important roles in the US food system. In Figure 5, we also
show how the ranking of each state’s import or export influence
on the entire network changes from 2012 to 2017. It shows that
the rankings of both the most influential and less influential states
in the network do not change a lot, and most of the states in the
middle may change rankings within a certain range, which also
matches our intuition.

Table 3: The Top-10 states with highest node-level import or
export resilience in the network in 2017.

State Ri:” State R?”t
North Carolina  0.968 California 0.970
Kentucky 0.965 Georgia 0.963
Georgia 0.965 Nebraska 0.962
Pennsylvania 0.965 Kentucky 0.959
California 0.964 North Carolina  0.959
Michigan 0.963 Pennsylvania 0.959
Florida 0.961 South Carolina  0.957
Illinois 0.959 Alabama 0.956
Texas 0.956 Minnesota 0.955
Virginia 0.954 Tennessee 0.953
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A 2012 Node-Level Import Resilience B 2012 Node-Level Export Resilience
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Figure 3: The visualization of the state-level resilience and influence in the agricultural multi-commodity flow network in the
U.S. in 2012 and 2017. A-B: node-level import and export resilience of each state in 2012; C-D: node-level import and export
resilience of each state in 2017; E-F: import and export influence of each state on the network in 2012; C-D: import and export
influence of each state on the network in 2017.
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Figure 4: The state-level agricultural multi-commodity flow network in the U.S. in 2012 (left) and 2017 (right).
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Figure 5: The ranking changes of import influence (left) and export influence (right) of states to the multi-commodity flow
network between 2012 and 2017.
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Table 4: The Top-10 most influential states to the import or
export of the network in 2017.

State I{" State Il?’“t

California 0.108 California 0.132
Texas 0.104 Texas 0.096
Florida 0.062 Tllinois 0.061
Louisiana 0.057 Towa 0.058
Washington 0.057 Nebraska 0.045
Pennsylvania 0.053 Minnesota 0.040
Georgia 0.052 Georgia 0.039
New York 0.048 Ohio 0.038
Illinois 0.046 Missouri 0.032
Ohio 0.034 Kansas 0.031

We then measure the network-level resilience in 2012 and 2017.
Here we report the overall network-level resilience Ryer = (Rf{:,t +
ROU1)/2 at three different geographic scales in Table 5. The results
show that the overall resilience of the agricultural commodity flow
network at the state level increased from 0.867 in 2012 to 0.880 in
2017 by 1.5%, indicating the success in creating a more resilient
interstate supply chain in agriculture. At the division level and
the region level, however, the overall resilience in 2017 drops a
bit (by 0.4% and 6.7%) from 2012. This might be related to the
increasing concentration of agricultural resources in some specific
areas. For example, the Pacific Division, which is the division with
the most agricultural influence based on CFS data, continued to
increase its import and export influence by 11.6% and 8.6% in 2017
compared to 2012, respectively, which leads to a drop in network-
level resilience in 2017. This observation suggests that we may need
to pay attention to the increasing concentration of agricultural
resources on a larger geographic scale and take corresponding
measures to enhance the resilience of the overall agricultural supply
chain network [15].

Table 5: The overall network-level resilience in 2012 and
2017 at different geographical scales.

Scale Rﬁgltz R?l(;y Changes (%)
State 0.867 0.880 +1.5%
Division 0.766 0.763 -0.4%
Region 0.647 0.604 -6.7%

4 DISCUSSION

We acknowledge several limits associated with the current data
source, each of which prompts further research directions. First,
utilizing CFS data requires that we represent both food imported
internationally as well as that sourced within the U.S. The
easily identifiable CFS state-level unit of analysis requires further
unpacking to reveal geographically relevant foodsheds. This is to
say that corn and wheat produced in the Great Plains cover parts of
several states with broadly similar production characteristics and
relatively few transportation modes to reach processing centers and

Rao et al.

markets. Likewise, substate regions, such as cranberry production in
Wisconsin or Maine, or the vast variety of products (and associated
ecological problems) of California’s central valley demand resilience
analysis at an appropriate geographic scale.

Second, regions are differentially diverse in their agricultural
products and processing activities. This suggests the need for an
index of product diversity, benchmarked on other USDA measures,
such as the typical consumer market basket or NIH food pyramids
to deepen our understanding of regional resilience. Clearly, such
measures should account for locally available processing to
transform commodities into consumable products.

Third, we need to further address the notion of value.
Ease of analysis compels us to reduce the value to a dollar
amount associated with the CFS. This reductionist approach
allows for ease of analysis and the ability to advance an initial
understanding of resilience. A deeper understanding would follow
by developing indices of value that relate to nutrition, energy use,
or multifunctionality of specific crops.

Fourth, our measure of resilience is robust given our
operationalization of data and objectives, but, again, a deeper
understanding of resilience will include a variety of social factors.
The notion of resilience can be operationalized at various scales —
individuals, households, communities, ecoregions, etc.. A regional
operationalization of resilience would embrace multiple public
and private sector organizations and the demographically diverse
population associated with a region or state. Characteristics of
resilience could include communicative connectivity, flexibility,
and fungibility of organizational units and subunits such that
resilience is represented as a socio-technical characteristic of a
region [19, 29]. Another promising approach to resilience is to
examine the relative resilience of the distribution infrastructure
associated with geography, and further, we could specify the relative
resilience of particular subpopulations, such as those in prisons,
schools, hospitals, or non-consumer food systems.

Lastly, our point in this paper is to introduce a GeoKG-based
approach to measuring resilience and demonstrate its use. Thus,
our results, while real and meaningful, are mainly for reference
since the parameters we use have not been thoroughly investigated
or calibrated. More appropriate parameter settings will alter the
resilience measurement results. So, one more task would be to
refine our parameter settings and metric designs by exploring the
aforementioned research directions.

5 CONCLUSION

In this paper, we introduce a GeoKG-based approach to measuring
the resilience of a multi-commodity flow network. The case study
shows that CFS-GeoKG well supports the storage and query of
geospatial semantics of a multi-commodity flow network, thereby
supporting the comprehensive measurement of single-sourcing
dependence and the dependence of geographically distant or
non-adjacent suppliers/customers. The CFS-GeoKG well supports
measuring both node-level and network-level resilience and
also helps discover the increasing concentration of agricultural
resources at higher geographical levels, implying broad application
prospects of GeoKG in multi-commodity supply chain networks.
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Our future works include linking CFS-GeoKG to more
existing semantic ontologies for better scalability, understanding
geographically relevant foodsheds, product diversity index and
their relationships with resilience, integrating more promising data
and factors into resilience metrics such as social economics, energy
use, and nutrition profiles, and investigating the trade-off between
resilience and efficiency of multi-commodity flow networks to
discover better food supply chain network structures.
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