TYPICAL AND EXTREMAL ASPECTS OF FRIENDS-AND-STRANGERS
GRAPHS

NOGA ALON, COLIN DEFANT, AND NOAH KRAVITZ

ABSTRACT. Given graphs X and Y with vertex sets V(X) and V(Y) of the same cardinality,
the friends-and-strangers graph FS(X,Y") is the graph whose vertex set consists of all bijections
o : V(X) = V(Y), where two bijections ¢ and o’ are adjacent if they agree everywhere except
for two adjacent vertices a,b € V(X) such that o(a) and o(b) are adjacent in Y. The most
fundamental question that one can ask about these friends-and-strangers graphs is whether or not
they are connected; we address this problem from two different perspectives. First, we address
the case of “typical” X and Y by proving that if X and Y are independent Erdés-Rényi random
graphs with n vertices and edge probability p, then the threshold probability guaranteeing the
connectedness of FS(X,Y) with high probability is p = n~1/2*°(1) Second, we address the case of
“extremal” X and Y by proving that the smallest minimum degree of the n-vertex graphs X and
Y that guarantees the connectedness of FS(X,Y") is between 3n/5+ O(1) and 9n/14 + O(1). When
X and Y are bipartite, a parity obstruction forces FS(X,Y’) to be disconnected. In this bipartite
setting, we prove analogous “typical” and “extremal” results concerning when FS(X,Y") has exactly
2 connected components; for the extremal question, we obtain a nearly exact result.

1. INTRODUCTION

1.1. Background. The second and third authors [4] recently introduced a general problem con-
cerning friends and strangers walking on graphs. Given simple graphs X and Y on n vertices,
we define the friends-and-strangers graph of X and Y, denoted FS(X,Y’), as follows. The vertex
set of FS(X,Y) is the set of all bijections o : V(X) — V(Y) from the vertex set of X to the
vertex set of Y; two bijections ¢ and ¢’ are connected by an edge if and only if X contains an
edge {a,b} such that {o(a),o(b)} is an edge in Y, o(a) = o'(b), o(b) = o'(a), and o(c) = o'(c)
for all ¢ € V(X) \ {a,b}. In other words, we connect o and o’ if they differ only at a pair of
adjacent vertices such that the images of these vertices under o are adjacent in Y. In this case,
the operation that transforms o into ¢’ is called an (X,Y)-friendly swap. We will sometime refer
to this operation as an (X,Y)-friendly swap across {a,b} when we wish to specify the edge of X
over which the swap takes place.

The friends-and-strangers graph FS(X,Y") has the following non-technical interpretation. Iden-
tify n different people with the vertices of Y. Say that two such people are friends with each other
if they are adjacent in Y, and say that they are strangers otherwise. Now, suppose that these
people are standing on the vertices of X so that each vertex has exactly one person standing on
it. At each point in time, two friends standing on adjacent vertices of X may swap places, but two
strangers may not. It is natural to ask how various configurations can be reached from other con-
figurations when we allow multiple such swaps, and this is precisely the information that is encoded
in FS(X,Y). In particular, the connected components of FS(X,Y") correspond to the equivalence
classes of mutually-reachable configurations.

This framework is quite general, and several special cases have received attention in the past in
other contexts. For instance, Stanley [7] studied the connected components of FS(Path,, Pathy,);

the graph FS(K,,Y) is the Cayley graph of &,, generated by the transpositions corresponding to
1
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edges of Y'; the famous 15-puzzle can be interpreted in terms of FS(Staryg, Gridsx4); and Wilson [8],
generalizing the 15-puzzle, studied the connected components of FS(Star,,Y’) for arbitrary graphs
Y. In [4], the second and third authors established several general properties of FS(X,Y’) and
investigated necessary and sufficient conditions for FS(X,Y’) to be connected. For arbitrary graphs
Y, they also characterized the connected components of FS(Path,,, Y") in terms of acyclic orientations
of the complement of Y and characterized the connected components of FS(Cycle,,,Y") in terms of
toric acyclic orientations (also called toric partial orders) of the complement of Y. In this paper, we
will continue the theme of determining when FS(X,Y") is connected. While the article [4] focused
on exact results of an enumerative/algebraic flavor, we will focus here on more probabilistic and
extremal questions.

1.2. Main results. Most previous work on FS(X,Y’) has focused on the case where X (or Y)
is a particular highly-structured graph. Omne natural and new question concerns the connected
components of FS(X,Y) when X and Y are random graphs. We denote by G(n,p) the probability
space of Erdds-Rényi random edge-subgraphs of the complete graph K, in which each edge appears
with probability p. If we choose X and Y independently from G(n,p), what values of p guarantee
that, with high probability, the graph FS(X,Y) is either connected or disconnected? We answer
this question by finding, up to a multiplicative factor of n°!) the threshold for p at which FS(X,Y)
changes from disconnected with high probability to connected with high probability. (As usual, we
say that an event occurs with high probability if its probability of occurring tends to 1 as the size
of the graph involved tends to cc.)

Theorem 1.1. Fiz some small € > 0. Let X and Y be independently-chosen random graphs in
G(n,p), where p = p(n) depends on n. If
2-1/2 _ ¢
nl/2
then FS(X,Y) is disconnected with high probability. If
. exp(2(logn)*?)
= nl/2 )
then FS(X,Y") is connected with high probability.

JURS

The first inequality in this theorem comes from the threshold for FS(X,Y’) having isolated ver-
tices; it seems that (as in the usual case of a binomial random graph) this local obstruction to
connectedness tells essentially the whole story.

An Erdés-Rényi random edge-subgraph of K, , with edge probability p is an edge-subgraph of the
complete bipartite graph K, , in which each edge appears with probability p and the events that
different edges appear are independent. Let G(K, ,,p) be the probability space of these random
graphs. In Proposition 2.5, we will see that there is a simple parity obstruction that keeps FS(X,Y)
from being connected if both X and Y are n-vertex bipartite graphs for n > 3. One might wonder
when FS(X,Y') has exactly 2 components if X and Y are independently-chosen graphs in G(K,., p).

Theorem 1.2. Fiz some small € > 0. Let X and Y be independently-chosen random graphs in
G(Kyr,p), where p = p(r) depends on r. If
J1-c
PE i
then FS(X,Y") has more than 2 connected components with high probability. If

5(log r)1/10
= 310
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then FS(X,Y") has exactly 2 connected components with high probability.

Next, from a more extremal point of view, we examine what minimum-degree condition on X
and Y suffices to guarantee the connectedness of FS(X,Y’). Let §(G) denote the minimum degree
of the graph G.

Theorem 1.3. For each n > 1, let d,, denote the smallest nonnegative integer such that whenever
X and Y are n-vertex graphs with 6(X) > dy, and §(Y) > d,, the friends-and-strangers graph
FS(X,Y) is connected. We have

dp > =n — 2.

3
5
If n > 23, then
9

dp, < —n-—+1.

14

We remark that the threshold at which isolated vertices disappear is lower than the threshold
at which FS(X,Y) becomes connected. Indeed, it is not difficult to see that the graph FS(X,Y)
cannot have isolated vertices if 6(X) > n/2 and §(Y') > n/2.

Of course, we can ask the same question in the case where X and Y are bipartite. In this case,
we are able to obtain upper and lower bounds that are extremely close to each other.

Theorem 1.4. For each r > 2, let d,, be the smallest nonnegative integer such that whenever X
and Y are edge-subgraphs of K, , with §(X) > d,, and 6(Y') > d,,, the friends-and-strangers graph
FS(X,Y) has exactly 2 connected components. We have

[37”—1—1-‘ <d. < [37’4—2_‘.
4 - 4

The lower and upper bounds for d,, in Theorem 1.4 differ by 1 when » = 1 (mod 4) and are
equal when r Z 1 (mod 4). The lower bound is actually the cutoff for FS(X,Y") to avoid isolated
vertices; unlike in the non-bipartite case, this cutoff is essentially the same as the cutoff for FS(X,Y)
to become connected (even though we do not know how to prove that the cutoffs are exactly the
same when 7 =1 (mod 4)).

1.3. Structure of the paper. In Section 2, we fix notation and terminology and establish several
important facts concerning friends-and-strangers graphs that will be used throughout the rest of the
article. Sections 3, 4, 5, and 6 are devoted to proving Theorems 1.1, 1.2, 1.3, and 1.4, respectively.
In Section 7, we raise several open questions and conjectures.

2. PRELIMINARIES

We begin by recording several results, definitions, and preliminary observations. For additional
information about friends-and-strangers graphs, we refer the reader to [4].

2.1. Basic notation and terminology.

e We write [n] for the set {1,...,n}.
e All graphs in this paper are assumed to be simple. We let V(G) and E(G) denote the vertex
set and edge set, respectively, of a graph G.
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We let 6(G) denote the minimum degree of a graph G.

If G is a graph and S C V(G), then G|g denotes the induced subgraph of G on S.

We let K, denote the complete graph on n vertices and let K. ; denote the complete bipartite
graph with partite sets of sizes r and s. Let Star,, denote the star graph K ,—1.

If G is a graph and v is one of its vertices, then N(v) = {u € V(G) : {v,u} € E(G)} denotes
the open neighborhood of v and N[v] = N(v) U {v} denotes the closed neighborhood of v. If
S C V(G), then we similarly define the open and closed neighborhoods N(S) = |J,cg N(v)
and N[S] = [, cg N[v], respectively.

e If ¥ is a finite sequence, then rev(X) denotes the reverse of X.

Let X and Y be n-vertex graphs, and let {u,v} be an edge in Y. Suppose o,0’ : V(X) = V(Y)
are bijections such that ¢’ is obtained from o by performing an (X, Y')-friendly swap across the edge
{7 (u),0c7 (v)} € E(X). (Recall that this means that o and o’ agree on V (X)\ {o~!(u),oc 1 (v)}
and disagree on the set {o~!(u),c~1(v)}.) It will be convenient to refer to the (X, Y)-friendly swap
transforming o into ¢’ by writing simply wv. If og,01,...,0, is a sequence of bijections, where
each o; is obtained from o;_1 by the (X,Y)-friendly swap w;v;, then we say ujvi, ugva, ..., uyv,
is a sequence of (X,Y)-friendly swaps that transforms o into o’. We say this sequence of swaps
involves the vertices ui,v1,u2,v2, ..., Uy, v, (and does not involve vertices that are not in this list).

Example 2.1. Let
X = w’ .'LJ 'UI and Y = w
u v

Let us denote a bijection 7 : V(X) — V(Y) by a diagram of X with each vertex a also labeled by
7(a) in red. For instance, the bijection o defined by o(u’) = u, o(v') = v, o(w') = w, and o(2') = z

is represented by
wo T U v

The sequence ¥ = wzx, wu, wv, wu, wx of (X,Y)-friendly swaps transforms o into the bijection o’
defined by o'(u') = v, o/(v') = u, o/(w') = w, and o’(2’) = x. The application of this sequence to
o can be represented pictorially as

It will be useful to keep in mind that the order of X and Y is somewhat irrelevant because the
map V(FS(X,Y)) — V(FS(Y, X)) given by o — o1 is a graph isomorphism.

2.2. Stars and Wilsonian graphs. A graph G is called biconnected if for every v € V(G), the
induced subgraph G|y(g)\ (v} obtained by deleting v from G' is connected. We will make frequent
use of one of Wilson’s results [8] about graphs of the form FS(Star,,Y’). The statement of this
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result makes reference to the special graph
Oy =

Theorem 2.2 ([8]). If Y is a graph on n wvertices that is biconnected, not a cycle graph with at
least 4 vertices, not isomorphic to 0y, and not bipartite, then FS(Star,,Y) is connected.

Theorem 2.2 motivates the following definition.

Definition 2.3. We say a graph G is Wilsonian if it is biconnected, non-bipartite, and neither a
cycle graph with at least 4 vertices nor isomorphic to the exceptional graph 6.

The proof of Theorem 2.2 is difficult and algebraic in nature; we will often use the result as a
black box in conjunction with the following sufficient condition for a graph to be Wilsonian (which
is clear from the definitions).

Lemma 2.4. If G is an n-vertex graph with minimum degree 6(G) > n/2, then G is Wilsonian.

2.3. The case of bipartite X and Y. Given a finite set A, we can consider the symmetric group
G4 of all bijections 0 : A — A. We let sgn : &4 — Z/27Z be the sign homomorphism, which
is the unique group homomorphism satisfying sgn((a b)) = 1 for every transposition (a b) € & 4.
Note that if A and B are two finite sets and o,7 : A — B are bijections, then sgn(oc~! o 7) has
the same parity as the number of transpositions by which we must multiply o to obtain 7. The
following proposition (essentially Proposition 2.7 from [4]) says that X and Y being bipartite is an
obstruction to FS(X,Y") being connected.

Proposition 2.5. Let X and Y be bipartite graphs on n vertices with vertex bipartitions {Ax, Bx }
and {Ay, By}, respectively. If the bijections o and T are in the same connected component of
FS(X,Y), then sgn(o~! o 7) has the same parity as |T(Ax) N Ay| — |o(Ax) N Ay|.

Proof. The bijection 7 is obtained from o by performing a sequence of (X, Y )-friendly swaps across
some edges {a1,b1},...,{ag, b} (in this order) for some aj,...,apy € Ax and by,...,by € Byx.
Let 09 = o and 0; = 0;—1 0 (a; b;) for all ¢ € [{], so that 7 = op. If 0,_1(a;) € Ay, then
Jz‘(ai) = Ui—l(bi) € By, so O'Z'(Ax) N Ay = (Ui—l(AX) N Ay) \ {az} If U,-_l(ai) € By, then
oi(a;) = oi—1(bi) € Ay, so 0;(Ax) N Ay = (0i—1(Ax) N Ay) U {a;}. In each of these cases,
loi(Ax) N Ay | — |oi—1(Ax) N Ay| is either 1 or —1. Hence,

l

I7(Ax) N Ay| = |o(Ax) N Ay| = (loi(Ax) N Ay| = |oi-1(Ax) N Ay])
i=1

has the same parity as £, which has the same parity as sgn(c 1 o7) = sgn((ay by)o---o(as by)). O

If X and Y are n-vertex bipartite graphs with vertex bipartitions {Ax, Bx} and {Ay, By},
respectively, then we say two bijections o, 7 : V(X) — V(Y) are concordant if sgn(c—' o 7) has the
same parity as |[T(Ax) N Ay|—|o(Ax) N Ay|. Tt is straightforward to check that concordance is an
equivalence relation. An immediate consequence of Proposition 2.5 is that if n > 3, then FS(X,Y)
has at least 2 connected components. It is natural to ask when this parity obstruction is in fact
the only obstacle preventing the graph FS(X,Y") from being connected. In other words, for various
choices of bipartite graphs X and Y, we are interested in when FS(X,Y") has exactly 2 connected
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components. As a first step, we show that this is the case when X and Y are complete bipartite
graphs that are not both stars.

Proposition 2.6. Let n > 4, and let r and s be integers satisfyingl <r <n—1and2 <s<n-—2.
Then the graph FS(K; p—r, Ksn—s) has exactly 2 connected components.

Proof. Let {Ax,Bx} and {Ay, By} be the vertex bipartitions of X and Y, respectively. It suffices
to prove that any two concordant vertices are in the same connected component of FS(X,Y"). We
will show this by induction on n. The case n = 4 can be verified by hand (or computer), so assume
n > 5.

If r =1orr = n—1, then it follows from Theorem 1 of [8] that FS(Ki,—1,Ksn—s) =
FS(Stary,, Ks,,—s) has 2 connected components. In this case, it follows from Proposition 2.5
that any two concordant vertices are in the same connected component. Hence, we may assume
2<r<n-2. Let 0,7 : V(X) = V(Y) be concordant bijections. Let us assume for the moment
that o(Ax) N7(Bx) # (. This implies that there exists a vertex yp € V(Y') such that the vertex
xo = 0 1(yo) is in Ay and the vertex z1 = 77 1(yg) is in By (hence, {xg, 21} € E(X)). Let 31 be a
vertex that is adjacent to yp in Y. Let o : V(X) — V(Y) be a bijection that is concordant with &
and satisfies 7(x¢) = yo and d(x1) = y;1 (such a bijection exists because n > 5). Let 7 = g o (zg x1)
be the bijection obtained by applying an (X,Y)-friendly swap across {zg,z1} to 0. Because &
is concordant with 7 (by Proposition 2.5) and o is concordant with ¢ and 7, it follows that 7T is
concordant with 7. Furthermore, 7(z¢) = y1 and 7(x1) = yo.

We claim that ¢ is in the same connected component of FS(X,Y') as ¢ and that 7 is in the same
connected component as 7. Let X' = X\V(X)\{xo} and Y/ = Y]V(y)\{yo}. Because o and o are
concordant, the bijections oy (x/) : V(X') = V(Y') and G|y (x+y : V(X') = V(Y”) are concordant
as well. It follows by induction that these latter two bijections are in the same connected component
of FS(X',Y”), so there is a sequence ¥ of (X', Y”)-friendly swaps transforming oy (x+ into o[y (x.
We can view X as a sequence of (X, Y)-friendly swaps transforming o into 7, so ¢ is in the same
connected component as o. A completely analogous argument proves that 7 is in the same connected
component as 7. We defined 7 so that it is adjacent to ¢ in FS(X,Y’), so ¢ and 7 are in the same
connected component of FS(X,Y).

Now assume o(Ax) N7(Bx) =0. We have 7(Bx) =V (Y) \ 0(Ax) = o(V(X) \ Ax) = o(Bx).
There exist a € Ax, b € Bx, and a bijection ¢’ such that ¢’ is obtained by applying an (X,Y)-
friendly swap across {a,b} to 0. Now ¢’(a) = o(b) € 0(Bx) = 7(Bx), so ¢'(Ax) N7(Bx) # 0. By
the previous discussion, ¢’ and 7 are in the same connected component of FS(X,Y"). Consequently,
o and T are in the same connected component. ]

2.4. Exchangeable pairs. We now turn to an extension of the notion of an (X, Y')-friendly swap.
Let X and Y be n-vertex graphs, and fix a bijection o € V(FS(X,Y)). Let u and v be distinct
vertices of Y, and write ' = o~ !(u) and v' = 07 (v). Let o o (v’ v’) be the bijection that sends
u’ to v, sends v/ to u, and sends x to x for all x € V(X) \ {v/,v'}. We say that u and v are
(X,Y)-exchangeable from o if o and o o (v’ v’) are in the same connected component of FS(X,Y).
In other words, u and v are exchangeable from o if there is a sequence of (X,Y)-friendly swaps
that, when applied to o, has the overall effect of swapping u and v (even if this swap is not itself
(X,Y)-friendly). If ¥ is a sequence of (X, Y)-friendly swaps that transforms o into oo (v’ v’), then
we say that applying ¥ to o exchanges v and v. For instance, this is the case in Example 2.1.

As a warm-up, let us establish some basic facts about exchangeability.
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Lemma 2.7. Let X and Y be graphs, and let o € V(FS(X,Y)). Two vertices u,v € V(Y) are

(X,Y)-exchangeable from o if and only if c=(u) and o~ (v) are (Y, X)-exchangeable from o~ '.

Proof. This statement follows immediately from the observation that the map o + o~ ! is a graph

isomorphism from FS(X,Y") to FS(Y, X). O

The following proposition shows that when we are concerned only with the vertex sets of the
connected components of FS(X,Y"), widespread exchangeability can be worth as much as actually
having more edges in Y.

Proposition 2.8. Let X, Y, and Y be n-vertex graphs such that Y is an edge-subgraph of Y.
Suppose that for every edge {u,v} of Y and every bijection o satisfying {o—(u), 0 (v)} € B(X),
the vertices u and v are (X,Y)-exchangeable from o. Then the connected components of FS(X,Y)
and the connected components of FS(X, 17) have the same vertex sets. In particular, the number of
connected components of FS(X, 17) is equal to the number of connected components of FS(X,Y).

Proof. Tt suffices to show that if {o,0'} is an edge in FS(X, 17), then o and o’ are in the same
connected component of FS(X,Y). Let {o,0'} € E(FS(X,Y)). The bijection ¢’ is obtained from
o by an (X,Y)-friendly swap across some edge {u/,v'} in X; let u = o(v/) and v = o(v') so that
{u,v} € E(Y). Our hypothesis tells us that u and v are (X,Y )-exchangeable from o; that is to
say, o and ¢’ are in the same connected component of FS(X,Y). O

We highlight the special case where X is connected and Y = K,.

Lemma 2.9. Let X and Y be n-vertex graphs, and suppose that X is connected. Suppose that
for all distinct vertices u,v € V(Y) and every bijection o satisfying {c~*(u),c 1 (v)} € E(X), the
vertices u and v are (X,Y)-exchangeable from o. Then FS(X,Y) is connected.

Proof. 1t suffices to consider the case in which V(X) = V(Y) = [n] so that V(FS(X,Y)) is the
symmetric group &,,. Each edge {i,j} of X corresponds naturally to the transposition (i j) € &,.
By Proposition 2.8, it suffices to show that FS(X, K,) is connected. Note that FS(X, K,) is
isomorphic to the Cayley graph of &,, generated by the transpositions corresponding to the edges
of X. It is well known [5, Lemma 3.10.1] and easy to show that this Cayley graph is connected
(i.e., the transpositions corresponding to edges of X generate G,,) since X is connected. g

3. RANDOM GRAPHS

3.1. Disconnectedness with high probability. Notice that the following proposition, which is
phrased in terms of isolated vertices instead of disconnectedness, is actually stronger than the first
statement in Theorem 1.1.

Proposition 3.1. Fiz any small € > 0, and let X and Y be independently-chosen random graphs
in G(n,p). If
2-1/2 _ ¢

then the friends-and-strangers graph FS(X,Y") has an isolated vertex with high probability.
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Proof. There is an extensive literature dealing with edge-disjoint placements of graphs. In particu-
lar, Sauer and Spencer [6] (see also Catlin’s article [3]) proved that if G and H are n-vertex graphs
with maximum degrees A(G) and A(H) satisfying 2A(G)A(H) < n, then there exists a bijection
o : V(G) — V(H) such that for every edge {a,b} of G, the pair {o(a),c(b)} is not an edge in H.
This is equivalent to the statement that o is an isolated vertex in FS(G, H). Let us now return
to our random graphs X and Y. It suffices to consider the case in which p = (2*1/ 2_¢)/ n'/2; in
this case, it is well known that A(X) = pn(1 4+ o(1)) and A(Y) = pn(1 + o(1)) with high prob-
ability. Consequently, 2A(X)A(Y) = 2p*n?(1 +o(1)) < 2 (2712 - 5)2 (14 o(1))n < n with high
probability. O

3.2. Connectedness with high probability. In this section, we prove the second part of The-
orem 1.1. In order to do this, we first prove a somewhat technical lemma that allows us to find
specific pairs of graphs embedded in pairs of random graphs. This lemma will also be one of our
main tools when we analyze random bipartite graphs in Section 4. Let us first introduce some
notation and definitions.

Let m be a positive integer, and let G and H be two graphs on the vertex set [m]. Let X and Y
be n-vertex graphs, and let o : V(X) — V(Y) be a bijection. Let Vi,...,V,, be a list of m pairwise
disjoint sets of vertices of Y. We say that the pair of graphs (G, H) is embeddable in (X,Y") with
respect to the sets Vi,...,Vy, and the bijection o if there exist vertices v; € V; for all i € [m] such
that for all 4, j € [m], we have

{i,j} € B(H) = {vi,v;} € B(Y) and {i,j} € E(G) = {07 (vi),0 ' (vj)} € B(X).

Suppose q1, . . ., ¢m are nonnegative integers satisfying q1 + - - - + ¢, < n. We say the pair (G, H)
is (q1,-..,qm)-embeddable in (X,Y) if for every list Vi,..., V,, of pairwise disjoint subsets of V' (Y")
satisfying |V;| = ¢; for all i € [m] and every bijection o : V(X) — V(Y), the pair (G, H) is
embeddable in (X,Y") with respect to the sets Vi,...,V;, and the bijection o.

Lemma 3.2. Let m,n,q1,...,qm be positive integers such that Q :=q1 + -+ gm < n, and let G
and H be two graphs on the vertex set [m]. For every set J C [m], let B(J) = |E(G|j)|+ |E(H| )|
Choose 0 < p <1, and let X andY be independently-chosen random graphs in G(n,p). If for every
set J C [m] satisfying 5(J) > 1 we have

PP ][ a =3 2" Qlogn,
jeJ

then the probability that the pair (G, H) is (qi,. .., qm)-embeddable in (X,Y) is at least 1 — n~%.

Proof. We may assume (([m]) > 1 since the lemma is trivial otherwise. Fix a list Vi,...,V, of
pairwise disjoint subsets of V(Y') satisfying |V;| = ¢; for all i € [m] and an injection ¢ : Uz‘e[m] Vi —
V(X). There are at most n?? ways to make these choices. Now extend +~! arbitrarily to a bijection
o:V(X)— V(Y). Note that whether or not (G, H) is embeddable in (X,Y) with respect to the
sets Vi,..., Vi, and the bijection o does not depend on the way in which we extended ! to o.
We will show that the probability that (G, H) is not embeddable in (X,Y’) with respect to the sets
Vi,...,Vy, and the bijection o is at most n~3%; this will imply the desired result. In order to do
this, we make use of the Janson Inequalities (as stated in Theorems 8.1.1 and 8.1.2 of [1]).

Given a tuple t = (v1,...,vp) € V1 X -+ x Vp,, let By be the event that for all 4, j € [m], we have
{i,j} e E(H) = {v;,vj} € E(Y) and {i,j} € E(G) = {U_l(vi),o*_l(vj)} € BE(X).
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For tuples t = (v1,...,vp) and ¢ = (v],...,v},) in Vi x --- x V,,, and J C [m], we write t ~j ¢ if

J ={j€[m]:v;=0v;}. Wewrite t ~ ¢ if there exist i,j € [m] such that v; = v, v; = v}, and
{i,j} € E(G) U E(H). Observe that t ~ ¢’ if and only if ¢ ~; ¢’ for some set J C [m] satisfying
B(J) > 1. Moreover, if ¢t 7 ¢/, then the events B; and By are independent. We define
A = "Pr[B; A Byl
tt!
where Pr[B; A By| is the probability that B; and By both occur and the sum is over all ordered
pairs (t,t’) such that t,t' € Vj x --- x V,, and t ~ t'. Let

p= >, PrB]
teVi XXV
be the expected number of the events B; that occur. We have
(1) p=p" " I ¢ =327 Qlogn,
j€iml

where the inequality follows from our hypothesis with J = [m)].

Observe that we can write

(2) A= > Ay
JC[m]
B(J)=1
where Ay = Z Pr[B: A By]. For each J C [m] with 8(J) > 1, we have
tr gt!
2
) 2 | L2(8(m)-B()) — H
jed i€m]\J J&s %

Indeed, the number of ways to choose vertices v; = v; € Vjforall j € Jis Hje 745, and the
probability that we have

{i,j} €e E(H) = {vj,v;} € E(Y) and {i,j} € E(G) = {J_l(vi),a_l(vj)} € BE(X)

for all 4,5 € J is pP). Moreover, the number of ways to choose the (distinct) vertices v;,v] € V;
for all i € [m]\ J is at most [[;cpn s q?, and the probability that we have

{i,j} € E(H) = {v;,vj}, {vg,v;} e E(Y)
and
{i,j} € B(G) = {0 (v:),0 " (vj)}, {07 (v}), 07 ' (v))} € E(X)
for all (,5) € ([m] x [m]) \ (J x J) is p?BmD=A) " Combining (2) and (3) yields the inequality
2

7

(4) A< s
JCZ[1n] pIB(J) H]EJ q]
B(J)>1

The event that (G, H) is not embeddable in (X,Y’) with respect to the sets Vi,..., Vy, and the
bijection o is the same as the event /\tele---xvm B; that none of the events B; occur. If A < p,
then by the Janson Inequality [1, Theorem 8.1.1] and (1), we have

Pr /\ By| < e MR < et/2 < o7 (6Qloem)/2 — p=3Q
teVi XXV
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as desired. Now suppose A > u. By (2), there must be a subset J* C [m] such that 5(J*) > 1 and
Ay > A/2™. Using (3), we find that

J* .

w2 P er a1 e e

IA — 2m+1AJ* = 9m+1 M2 - 2m+1p -

JjeJ*

Combining this with the hypothesis of the lemma shows that u?/(2A) > 3Qlogn. We can now use
the extended Janson Inequality [1, Theorem 8.1.2] to find that

)

teVi XXV

as desired. (]

Our basic strategy for proving the second part of Theorem 1.1 is as follows. Let n be a large
integer, and let

m = {(log n)2/3J :

(We omit the floor symbols in what follows since doing so will not affect asymptotics.) We will
construct specific graphs G* and H* on the vertex set [m + 2] and then use repeated applications
of Wilson’s theorem to prove that the vertices m + 1 and m + 2 are (G*, H*)-exchangeable from
the identity bijection Id. We will then consider independently-chosen random graphs X and Y in
G(n,p) and use Lemma 3.2 to show that the following holds with high probability: For any fixed
vertices u,v € V(Y) and any bijection o : V(X) — V(Y) such that {o~!(u),c 1 (v)} € E(X),
there is a graph embedding ¢ of G* into X and a graph embedding ¢ of H* into Y such that
Y(m+1) = u, w(m+2) = v, and ¥ oId = o o ¢. This will imply that (with high probability)
for any such u, v, and o, the vertices u and v are (X, Y)-exchangeable from o; the proof will then
follow from Lemma 2.9.

To begin this endeavor, we describe the graphs G* and H*, each with vertex set [m + 2]. Let

N

(once again, we omit the floor symbols in what follows). Denote the elements of [m] (written in an
arbitrary order) by

Wy, L1y ey Tl Y1y -5 Yl 21y -+ -5 Zm—20—1-

The edge set of H* consists of all edges of the form {m + 1,z;}, {m + 2,y;}, {w,z;}, {w,y;}, or
{w, z} for 1 <i,5 <land 1 <k <m—2¢—1. In other words, if we let H** denote the star graph
on the vertex set [m] with center w, then H* is obtained from H** by adding the vertices m+1 and
m + 2, along with the additional edges of the form {m + 1,z;} and {m + 2,y;}. To construct G*,
we first construct a graph G** on the vertex set [m] by arranging the vertices in [m] along a cycle
graph in such a way that the vertices z1, ..., z12 appear in this (cyclic) order when we traverse the
cycle clockwise. We then add in the edges {z1, 26}, {22, 24}, {27, 212}, {28, z10}. We also make sure
to place the vertices on the cycle in such a way that the following conditions are satisfied:

e The cycle contains the edges {z4, 25}, {25, 26}, {#10, 211}, {711,212} (i-e., 24, 25, 26 appear
consecutively along the cycle, as do 219, 211, 212)-

e The clockwise distance along the cycle between z3 and z5 is £—1, as is the clockwise distance
along the cycle between zg and z17.

e The clockwise distance along the cycle from zo to z4 is an even number.
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e The 2¢ 4 1 vertices w,x1,...,%s,Y1,.-.,Yye are placed on the cycle so that the distance in
G™* between any two of them, as well as the distance in G** between any one of them and
any one of the vertices z3, 25, 29, 211, is at least m/(3¢).

e The girth of the entire graph G** is at least m/6.

The graph G* is obtained from G** by adding the vertices m + 1 and m + 2 and the additional
edges {m +1,m + 2}, {m + 1,23}, {im+ 1L, z11}, {m+ 2,25}, {m + 2,29} to G**. Figure 1 shows
schematic drawings of the graphs G* and H*. In what follows, we refer to the cycle in G* containing
all the vertices in [m] as the large cycle in G*.

m+1 m+ 2

G* H”

FIGURE 1. Schematic diagrams of G* and H*. The graphs G** and H** are obtained
from G* and H*, respectively, by removing the blue vertices and edges. In the
diagram representing G*, the red arcs on the large cycle are assumed to contain
several vertices and edges, while each of the blue and black arcs represents a single
edge. The vertices w,x1,...,2¢,y1,-..,y¢ are not marked in the diagram of G*;
these vertices are placed in arbitrary positions so that the distance between any two
of them, as well as the distance between any one of them and any one of the vertices
23, 25, 29, 211, 18 at least m/(3¢).

Lemma 3.3. Let G* and H* be the graphs constructed above. The vertices m + 1 and m + 2 are
(G*, H*)-exchangeable from the identity bijection Id : [m + 2] — [m + 2].

Proof. Let G** = G*|;;;) as above, and let G™™ = G™[(;;,19]\{z5,21,}- 1t IS easy to see that G*™* and
G*** are biconnected, not cycles, and not equal to the graph 6y from Theorem 2.2. The smaller
arc of the large cycle in G* connecting z2 to z4 has an even number of edges by construction, so
adding the edge {z2, 24} to that arc produces a cycle of odd length. It follows that G** and G***
are not bipartite, so they are both Wilsonian (see Definition 2.3).

Let 71 : [m + 2] — [m + 2] be a bijection satisfying the following:

e The vertices 7, *(x1),..., 7] *(2¢) appear in this order consecutively along the large cycle
in G*, with 7,1 (21) = 23 and 7, ! (z¢) = 2s.
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e The vertices 7, Y, ..., T (y4) appear in this order consecutively along the large cycle in
G*, with 77 Y (y1) = 29 and 77 ' (ye) = 211.
e We have 7y {(m + 1) =m+ 1 and 7, *(m +2) = m + 2.

Since H*™* = H *|[m} is a star graph and G** is Wilsonian, we can use Wilson’s Theorem 2.2
to see that there exists a sequence ; of (G**, H**)-friendly swaps that transforms the bijection
Id : [m] — [m] into 71y, We will view %1 as a sequence of (G*, H*)-friendly swaps that does not
involve m + 1 or m + 2; then ¥, transforms Id : [m + 2] — [m + 2] into 7.

Applying the sequence
Yo = (m + 1)$17 (m + 1):E27 ) (m + 1)33'(, (TTL + 2)y17 (m + 2)y27 SER) (’I?’L + 2):’/5

of (G*, H*)-friendly swaps transforms 71 into a bijection 75 : [m+2] — [m+2] satistying 7, ' (m+1) =
z5 and 75 ' (m +2) = z11. Now let 73 : [m + 2] — [m + 2] be a bijection satisfying 73 ' (v1) = m +2,
5 Hy1) = m+1, 75 H(mA41) = 25, and 73 ' (m+2) = 211. Because H** = H*|[,) is a star graph and
G*** = G*‘[m+2}\{Z5,Z11} is Wilsonian, Wilson’s Theorem 2.2 guarantees the existence of a sequence
Y3 of (G*™*, H**)-friendly swaps that transforms the bijection To|(,49)\ {25,211} IO T3] -2\ {25,211} -
We will view X3 as a sequence of (G*, H*)-friendly swaps that does not involve m+1 or m+2; then
Y3 transforms 75 into 73. We can now apply the (G*, H*)-friendly swaps (m + 1)z1 and (m + 2)y;
in order to transform 73 into a bijection 74 : [m + 2] — [m + 2] satisfying 7, ' (m + 1) = m + 2 and
77 (m +2) = m + 1. Finally, let 75 : [m + 2] — [m + 2] be the transposition that sends m + 1
to m + 2, sends m + 2 to m + 1, and sends ¢ to ¢ for all i € [m]. We can once again use Wilson’s
Theorem 2.2 with the star graph H™* and the Wilsonian graph G** to see that there is a sequence
¥4 of (G**, H**)-friendly swaps transforming 74|, into the bijection Id : [m] — [m]. We can view
Y4 as a sequence of (G*, H*)-friendly swaps that transforms 74 into 75. Putting this all together,
we see that applying the sequence

Y1, 32, X3, (m + D)1, (m + 2)y1, 3q
of (G*, H*)-friendly swaps to Id : [m + 2] — [m + 2] exchanges m + 1 and m + 2. O

Lemma 3.4. Let n be a large positive integer, and let m, £, G**, and H** be as described above. Let
I ={z1,....,x0,y1,-..,Y0, 23, 25, 29, 211 }. Let q; = |pn/(30)] for all i € T, and let ¢; = [n/(2m)]|
for alli € [m]\T. Let p=p(n) be a probability such that

_ exp(2(logm)??)

= nl/2 :
Let X and Y be independently-chosen random graphs in G(n,p). If n is sufficiently large, then the
probability that the pair (G**, H**) is (q1, . .., qm)-embeddable in (X,Y) is at least 1 —n~"/3.

Proof. Let Q = q1 + -+ + gm, and note that n/3 < Q < n. For each set J C [m], let B8(J) =
|E(G*|5)| + |E(H**|s)| and v(J) = |J NT'|. The proof will follow from Lemma 3.2 if we can show
that p?(/) [licsa >3- 2+ logn for every J C [m] satisfying B(J) > 1. Using the definitions of

q1,---,qm (and ignoring floor symbols), we can rewrite this inequality as
v(J) |[=7(J)
(5) PP (%) (;) > 3-2" plogn.
m

Let us first assume J is such that 8(J) > 1 and w ¢ J. The graph H**|; has no edges, so the
assumption that B3(J) > 1 guarantees that there is an edge {t1,t2} € E(G**) such that t1,t3 € J.
We constructed G** so that no two of the vertices in I" are adjacent, so one of the vertices in {t1,t2},
say t1, is not in I'. Now let J' = (J \ {t1}) U {w}, and observe that |J'| = |J| and v(J') = ~(J).
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There are |J| — 1 edges in H**|; and at most |J| — 1 edges in G**|; that are incident to t;, so
B(J") > B(J). Consequently,

p/B(J) <@>7(J)< n )\JI—V(J) >

57 o 8(J) <@>7(J') ( n >|J/|—7(J’)'

3¢ 2m

The previous paragraph demonstrates that in order to prove the lemma, it suffices to prove (5)
for all sets J C [m] satisfying #(J) > 1 and w € J. Assume J satisfies these conditions, and observe
that |E(H**|y)| = |J| — 1 since w € J. Let a(J) = |E(G**| ;)| = B(J) —|J|+ 1. With this notation,

. g ) ¥
PO (Z) D (YD et P\ (2m\ T e (2T
3¢ 2m 2m 3¢ - 2m

Therefore, it suffices to prove that

2.\ Il
© PR -1 (g?”b) > 3.9 logn
m

for all sets J C [m] satisfying 5(J) > 1 and w € J. To do this, we consider four cases. In
what follows, let ¢(J) be the number of connected components of G**|;. Let us also recall that
m = (logn)?? and £ = /m/2 = (logn)'/3/2 (ignoring floor symbols). Furthermore, note that
p?n/(2m) is certainly greater than 1.

Case 1: Suppose |J| > m/6. It follows from the construction of G** that a(J) < |J| + 4, so

J J 6 6
P (P . s (20 . pris (270 e et (2 "
2m - 2m - 2m 2m

m/6 m/6
> = (E+7/2) <P2n) / > p—(+7/2) (exp(4(10g n)2/3)>

2m - 2m
(logn)2/3 /6
1 7 exp(4(logn)?/3
exp (= (e o) (2R )

2 1 1
= exp <3(log n)*3 — i(log n)*3 4+ O(log n)> = exp <6(log n)*3 4+ O(log n)) ,
and this is certainly greater than 3 - 2™ 1nlogn if n is sufficiently large.

Case 2: Suppose |J| < m/6 and v(J) > ¢(J) + 2. Because the graph G** has girth at least m/6,
the induced subgraph G**|; must be a forest. This implies that a(J) = |J| — ¢(J). Now recall that
for any distinct s1,s9 € T'U{w}, if {s1,s2} # {23, 25} and {s1,s2} # {29, 211}, then the distance
between s; and s2 in G** is at least m/(3¢). Since w € J, it is straightforward to check that
|J| > (v(J) = e(J) — 1)m/(30); indeed, if a connected component of G**|; contains k elements of
(TU{w}) \ {z3,29}, then this connected component must contain at least (k — 1)m/(3¢) vertices.
Therefore,

2\ 1 2\ 2\ () =)= 1)m/(30)
PR 111 (P”) _ e (P”> > prD)—e)-1 (P")

2m 2m 2m
Y(J)—e(J)—1
(p*n)™/0 (2 \m/(30), —1/240(1)) V7o)
= ((gm)m/@a g = (/O )

2/3)(log n)1/3 Y(J)—c(J)—1
= ((exp (4 (logn)2/3>>( fote) n1/2+0(1))
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J)—c(J)—-1
_ (n8/3—1/2+o<1>)”( . D)
and this is greater than 3 - 2"+ nlogn if n is sufficiently large.

Case 3: Suppose |J| < m/6 and ¢(J) < v(J) < c(J)+1. As in the previous case, the lower bound
on the girth of G** forces G**|; to be a forest, so a(J) = |J| — ¢(J). The number of elements of
' U {w} that are in J is y(J) + 1, which is at least ¢(J) + 1. This means that some connected
component of G**|; contains at least 2 elements of I'U{w}. The minimum distance in G** between
any two elements of I' U {w} is ¢ — 1, so |J| > £. It follows that

J YA ¢ 2/3
PR 111 r’n H>p7u)_cu)_1 e\ _ (pPn) _ P <4€(10g”) )
2m - 2m 2m (Qm)e

_ exp (2 (logn)) _ 24o()
(2m)* ’

and this is greater than 3 - 2"*nlogn if n is sufficiently large.
Case 4: Suppose |J| < m/6 and v(J) < ¢(J) — 1. As in the previous two cases, the assumption

that |J| < m/6 forces G**|; to be a forest so that a(J) = |J| —¢(J). Furthermore, |J| > 2 because
B(J) > 1. Consequently,

2.\ |/l 2.\ Il 2.\ 2 2,2
pe()=ll-1 (P — pYD—e()-1 (P >p2 (P) P
2m 2m - 2m (2m)?

_exp (4(log n)2/3) n  e'Mn

(2m)? (2m)?’
and this is greater than 3 - 2" *nlogn if n is sufficiently large. O

We can now complete the proof of Theorem 1.1.

Proposition 3.5. Let X and Y be independently-chosen random graphs in G(n,p). If
exp(2(log n)*/?)
>
= nl/2 ’

then FS(X,Y") is connected with high probability.

Proof. Let n be a large positive integer, and let m, ¢, G*, G**, H*, and H** be as described
above. Let I and ¢1,..., ¢, be as in the statement of Lemma 3.4. We may assume that the pair
(G**, H*) is (q1, - .. ,qm)-embeddable in (X,Y’) since Lemma 3.4 tells us that this happens with
high probability. Because p is much larger than log n/n, it is well known that with high probability,
X and Y are connected and the degrees of all vertices in X and Y are pn(1+ o(1)); hence, we may
assume X and Y have these properties.

Choose vertices u,v € V(Y) and a bijection o : V(X) — V(Y) such that {o=(u),071(v)} €
E(X). Let us choose pairwise disjoint subsets V1,...,V;, of V(Y) \ {u, v} such that

|Vi| = q; for all i € [m)];

Veis. .., Vg, are all contained in the neighborhood of u in Y;
Vyis .-, Vy, are all contained in the neighborhood of v in Y7
V., and V,,, are contained in the neighborhood of o ~!(u) in X;
V.. and V,, are contained in the neighborhood of o~!(v) in X.
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Note that such a choice is possible because ¢; = |pn/(3¢)] for all i € I'. Because the pair (G**, H**)
is (q1,- .., qm)-embeddable in (X,Y’), it must be the case that (G**, H**) is embeddable in (X,Y)
with respect to the sets Vi,...,V,, and the bijection ¢. This means that there exist vertices v; € V;
for all i € [m] such that for all 7,5 € [m], we have

{i,j} e E(H") = {v;,v;} € E(Y) and {i,j} € E(G") = {0'_1(1)2')70'_1(1)]')} € B(X).

Define a map ¢ : V(H*) — V(YY) by ¢¥(m + 1) = u, ¥(m + 2) = v, and (i) = v; for all i € [m].
Define ¢ : V(G*) — V(X) by ¢ = pold = 0~ o1. Because the vertices vy, ..., vy, u,v are
distinct, the maps ¢ and ¢ are injective. It is immediate from our construction that 1 is a graph
embedding of H* into Y that sends m + 1 to v and sends m + 2 to v. Similarly, ¢ is a graph
embedding of G* into X that sends m + 1 to 0~ !(u) and sends m + 2 to o~ 1(v). Lemma 3.3 tells
us that there is a sequence ¥ of (G*, H*)-friendly swaps that we can apply to the identity bijection
Id : [m 4+ 2] — [m + 2] in order to exchange m + 1 and m + 2. Using the graph embeddings ¢ and
© = oo, we can transfer ¥ to a sequence of (X, Y )-friendly swaps that we can apply to o in
order to exchange u and v. This proves that u and v are (X, Y )-exchangeable from o; as u, v, and
o were arbitrary (subject to the condition {o=1(u),0~t(v)} € E(X)), it follows from Lemma 2.9
that FS(X,Y’) is connected. O

4. RANDOM BIPARTITE GRAPHS

4.1. Disconnectedness with high probability. The following proposition implies the first state-
ment in Theorem 1.1.

Proposition 4.1. Fix some smalle > 0, and let X and Y be independently-chosen random bipartite

graphs in G(K, -, p). If
_ < 1—=¢
p=p(r) < iz

then the friends-and-strangers graph FS(X,Y) has an isolated vertex with high probability.

Proof. The proof is essentially the same as that of Proposition 3.1. It follows from [6] that if G and
H are n-vertex graphs with maximum degrees A(G) and A(H) satisfying 2A(G)A(H) < n, then
FS(G, H) has an isolated vertex. Now consider the random graphs X and Y, each of which has 2r
vertices. It suffices to assume p = (1—¢)/r'/2; in this case, it is well known that A(X) = pr(1+o(1))
and A(Y) = pr(1 + o(1)) with high probability. Consequently, 2A(X)A(Y) = 2p?r?(1 + o(1)) <
2(1—e)*(1+ o(1))r < 2r with high probability. O

4.2. Connectedness with high probability. We now turn to the second statement in Theo-
rem 1.2. The argument requires a modification of the techniques from Section 3.2, so we begin by
looking at embeddability in bipartite graphs. Let G and H be bipartite graphs on m vertices with
bipartitions {Ag, Bg} and {Ap, By}, respectively. Let X and Y be bipartite graphs on 2r vertices
with bipartitions {Ax, Bx} and {Ay, By}, respectively, where |Ax| = |Bx| = |Ay| = |By| = 7.
Let 0 : V(X) — V(Y) be a bijection. We say a list V1,...,V,, of pairwise disjoint subsets of V' (Y")
is admissible for o with respect to (G, H) if the following conditions hold:

e The subsets V; for i € Ay are all contained in one of the partite sets of Y, and the subsets
V; for i € By are all contained in the other partite set of Y.

e The subsets o~ 1(V;) for i € Ag are all contained in one of the partite sets of X, and the
subsets 0~ (V;) for i € Bg are all contained in the other partite set of X.
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These “correlation” conditions on the V;’s will prevent parity obstructions when we try to find
embeddings.

Recall that a pair of graphs (G, H) is said to be embeddable in (X,Y) with respect to the sets
Vi,..., Vi and the bijection o if there exist vertices v; € V; for all ¢ € [m] such that for all 4, j € [m],
we have

{i,j} e E(H) = {v;,vj} € E(Y) and {i,j} € E(G) = {U_l(vi),o*_l(vj)} € BE(X).

Now, suppose qi, . .., Gm are integers satisfying g1 + - - 4+ ¢, < 2r. We say that the pair (G, H) is
(q15- -, qm)-bipartite embeddable in (X,Y) if the pair (G, H) is embeddable in (X,Y’) with respect
to the sets Vi,..., V., and the bijection o for every bijection o and every list Vi,...,V,, that is
admissible for o with respect to (G, H) and satisfies |V;| = ¢; for all i € [m]. (Of course, one could
extend this definition to the case where the parts of the vertex bipartitions of X and Y do not all
have size r, but we do not state this asymmetric version because it is more complicated than what
we will need.)

Lemma 4.2. Let G and H be bipartite graphs on the vertex set [m] with bipartitions {Ag, Ba}
and {Ag, Br}, respectively. Let r,qi,...,qm be positive integers such that Q := q1 + -+ qm < 2r.
For every set J C [m], let B(J) = |E(G|s)| + |E(H|s)|. Choose 0 < p <1, and let X and Y be
independently-chosen random graphs in G(K, ., p). If for every set J C [m] satisfying 5(J) > 1 we
have
POl a >3- 2" Qlog(2r),
jeJ

then the probability that the pair (G, H) is (qi,...,qm)-bipartite-embeddable in (X,Y) is at least
1—(2r)7€.

Proof. Let us view K,, as an edge-subgraph of K5,. We can choose the graphs X and Y by
first choosing independent graphs X and Y in G(2r,p) and then deleting edges that connect two
vertices within the same partite set of K, ,. If the pair (G, H) is (q1, . . ., gm)-embeddable in (X,Y),
then it is (¢, - . ., ¢m)-bipartite-embeddable in (X,Y). Lemma 3.2 tells us that this happens with
probability at least 1 — (2r)~<. O

Recall that we proved the second statement in Theorem 1.1 by applying Lemma 3.2 with two
graphs G** and H**, each with m = L(log n)2/3J vertices. In order to use these specific graphs,
we repeatedly made use of Wilson’s Theorem 2.2. Unfortunately, the known bipartite analogue of
Theorem 2.2 (see [8]) is not sufficiently robust, and we do not know of a suitable substitute, so
we will not apply Lemma 4.2 with m — oco. Rather, we will apply it with four particular pairs
of graphs, each with m = 8; this is why the two bounds in Theorem 1.2 differ by a multiplicative
factor of r1/5+°(1) while the bounds in Theorem 1.1 differ by a multiplicative factor of n®™).

We now introduce the four pairs of graphs that we will need. Figure 2 shows the pairs of graphs
(GT, Hy), (G, Hyy), (G, Hiy), and (Giy, Hjy,), where each graph has the vertex set {1,...,8}.
For each R € {I,ILIIL IV}, let (Gg', HY) be obtained from (G, Hf;) by deleting the vertices 7
and 8 from each graph. Thus, G§* and H* are graphs on the vertex set {1,...,6}.

Lemma 4.3. For every R € {ILILIIL IV}, the vertices 7 and 8 are (Gg, HY)-exchangeable from
the identity bijection Id : {1,...,8} — {1,...,8}.

Proof. In each case, we will simply state the sequence of (G, Hf;)-friendly swaps (which we found
using computer assistance) that can be applied to the identity bijection in order to exchange 7 and
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Agy B Apy By Ac, Be:, Ape Bu;,
7 8 7 8 7 8 7 8
1 5 3 4 1 4 3 6
2 6 1 2 D 1
3 2 3 6 2
4 5 4
6 5
G Hy G Hi,
Ac, Be:,  Amy By Acs, Bg:,  Amg Bug,
7 8 7 8 7 8 7 8
1 5 3 4 1 4 3 6
2 6 1 5 2 5 1 4
3 2 6 3 6 2 5}
4
fll H, I*II ;(V H I*V

FIGURE 2. Diagrams showing the graphs G}, and Hy; for R € {I,ILIII,IV}. The
graphs G5 and HE" are obtained from G% and Hf, respectively, by removing the
blue vertices and edges.

8. For (G, Hf'), the sequence of swaps is
46,34, 45,47, 34, 38,46, 47, 24, 34, 14, 46, 45, 24, 34, 14, 46,
45,24, 34,47, 24, 45, 46, 14, 47, 24, 45, 46, 14, 47, 24, 45.
For (Gfp, Hjp), the sequence of swaps is
16, 56,67, 46, 36,67, 46, 36, 26, 16, 56, 38, 36, 16, 26, 67, 46, 36, 56, 26, 67, 46, 36, 56, 16, 67, 26.
For (G{yy, Hjy;), the sequence of swaps is
36,34,47,35, 34, 38, 14, 34, 24, 14, 34, 35, 47, 34, 38, 35, 34, 14, 24, 47, 14, 34, 35, 38, 36.
Finally, for (G}y, Hiy ), the sequence of swaps is
926,35, 14, 34, 38, 36, 34, 67, 38, 16, 36, 35, 38, 34, 14, 16, 36, 38, 26, 35, 34, 38, 35. 0

Lemma 4.4. Let r be a large positive integer, and let the pairs (G", HY) be as above. Let p = p(r)
be a probability that satisfies
5(log r)1/10
p> e
Let X and 'Y be independently-chosen random graphs in G(K,,p). Let ¢ = |pr/13]. If r is suffi-
ciently large, then the probability that every pair (G, H') (forR € {I,ILIILIV} ) is (¢,49,49,49,4,9)-
bipartite-embeddable in (X,Y) is at least 1 — 4(2r) %4,
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Proof. Fix R € {I, I, II[,IV}. Preserve the notation from Lemma 4.2 with m = 6, with ¢; = --- =
g6 = ¢, and with (G§", HY") playing the role of (G, H). Note that Q = 6¢. It is straightforward
(yet somewhat tedious) to verify that if r is sufficiently large, then

PP H qj > 3-2"T1Qlog(2r)
jeJ

for every set J C {1,...,6} satisfying §(J) > 1. Indeed, verifying this inequality for a fixed
J is easy, and there are at most 64 possible choices of J. By Lemma 4.2, the probability that
(G, HYY) is (¢,4, 4, g, g, q)-bipartite-embeddable in (X,Y) is at least 1 — (2r)7%%. The desired
result now follows from taking a union bound over the 4 choices for R. g

We are now in a position to prove the second statement of Theorem 1.2.
Proposition 4.5. Let X and Y be independently-chosen random graphs in G(K,,,p), where

5(log 7,)1/10
P =50

The following holds with high probability: For every edge-supergraph X of X, every bijection o :
V(X) = V(Y), and all vertices u and v in different partite sets of Y such that {o7Y(u),07(v)} €
E(X), we have that the vertices u and v are (X,Y)-exchangeable from o.

Before we prove this proposition, let us see how it implies the second statement in Theorem 1.2.
Choose X and Y independently from G(K, ,,p), where p > 5(log r)1/10 /3:3/10  Proposition 4.5
is clearly symmetric in X and Y, so we can apply it (with the roles of X and Y switched and
X = Y’) in conjunction with Proposition 2.8 to see that, with high probability, FS(Y, X) has the
same number of connected components as FS(Y, K,,). On the other hand, we can also apply
Proposition 4.5 directly (with X = K,,) in conjunction with Proposition 2.8 to see that, with
high probability, FS(K,,,Y) has the same number of connected components as FS(K,. ,, K ).
Since FS(X,Y) = FS(Y, X) and FS(Y, K,.,) = FS(K,,,Y), it follows that FS(X,Y’) has the same
number of connected components as FS(K -, K, ,) with high probability. This number of connected
components is 2 by Proposition 2.6.

Proof of Proposition 4.5. As usual, let X and Y have vertex bipartitions {Ax, Bx} and {Ay, By },
respectively. Let ¢ = [pr/13]. With high probability, all of the vertices in X and Y have degrees
pr(1+o(1)); henceforth, we will assume that this is the case. It follows from Lemma 4.4 that, with
high probability, every pair (G§', Hg") for R € {I, 1L IIL, IV} is (¢, ¢, ¢, ¢, ¢, ¢)-bipartite-embeddable
in (X,Y); henceforth, we will assume that this is the case as well. Suppose X is an edge-subgraph
of a graph X. Fix a bijection o : V(X) — V(Y) and vertices u,v in different partite sets of ¥’
such that {o~!(u),oc " (v)} € E(X). For convenience, let ' = o~ !(u) and v = o~(v). Without
loss of generality, suppose that v € Ay, v € Bx, u € Ay, and v € By. We now distinguish
four cases, depending on how the neighborhoods of «’ and v’ (respectively, u and v) correlate with
the bipartition {Ay, By} (respectively, {Ax, Bx}) after an application of o (respectively, o~1). In
what follows, the neighborhood of a vertex in V(X) is taken with respect to X (not X). Say that
o majority-maps N (u') (respectively, N(v')) into Ay if Ay contains at least half of the elements of
o(N(u')) (respectively, N(v')), and say that ¢ majority-maps N (u’) (respectively, N(v')) into By
otherwise. We give a similar definition of ¢~! majority-mapping N(u) or N(v) into Ax or Bx.
Our four cases are the following:
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I. o majority-maps N (u’) and N(v') into the same part of the bipartition of Y, and o ~! majority-
maps N(u) and N(v) into the same part of the bipartition of X.

II. o majority-maps N (u') and N (v') into the same part of the bipartition of Y, and ¢ ~! majority-
maps N(u) and N (v) into different parts of the bipartition of X.

III. o majority-maps N (u') and N (v') into different parts of the bipartition of Y, and o~ majority-
maps N(u) and N(v) into the same part of the bipartition of X.

IV. o majority-maps N (u') and N (v') into different parts of the bipartition of Y, and o~! majority-
maps N(u) and N (v) into different parts of the bipartition of X.

We will give a detailed explanation of the proof in Case I, but we only sketch the other three
cases because they are very similar.

Case I: Without loss of generality, we may assume that ¢ majority-maps both N(u’) and N(v’)
into Ay (0therw1se we can switch the roles of w and v and switch the roles of v’ and v'). Note that
u and v are (X, Y )-exchangeable from o if and only they are (X, Y )-exchangeable from o o (u/ v');
thus, by possibly replacing o with o o (u/ v') and switching the names of Ax and By, we may
also assume that o~! majority-maps both N(u) and N(v) into Ax. Each of the sets N(u'), N(v'),
N(u), N(v) has size pr(1+ o(1)), so we can find pairwise disjoint sets Vi,..., Vg in V(Y) \ {u, v},
each of size ¢ = |pr/13], such that the following hold:

e 071 (V5), 071 (Vs) € N(v') (which implies that o=1(V5),o~(Vs) C Bx) and Vs, Vg C Ay.
e 071 (V1), 071 (Vo) € N(v') (which implies that c=(V1),0~ 1 (V5) C Ax) and V4, Vs C Ay.
e V4 C N(u) (which implies that V4 C By) and o= 1(V}) C Ax.
e V3 C N(v) (which implies that V3 C Ay) and o~ !(13) C Ax.

Note that the list V1,. .., Vi is admissible for o with respect to (G7*, H*). Since the pair (G{*, H{"™)

s (¢,9,49, ¢, q,q)-bipartite-embeddable in (X,Y’), it must be embeddable in (X,Y’) with respect
to the sets Vi ..., Vs and the bijection o. This means that there exist vertices v; € V; for all
i€ {1,...,6} such that for all ¢, j € [m], we have

{i,j} € B(H*) = {vi,v;} € E(Y) and {i,j} € E(Gf*) = {0 '(v), 07 (vj)} € E(X).
Let v} = o~ L(v;) for all i € {1,...,6}. We have
{u/ vi}, {u vg ), {v), 01} {0 vh € BE(X)  and  {u,v4}, {v,v3} € E(Y)

by construction.

Define a map ¢ : V(Hf) = V(YY) by ¥(7) = u, ¥(8) = v, and (i) = v; for all i € {1,...,6}.
Define ¢ : V(GY) — V()N() by ¢ = pold = o0~ o). Note that 1) and ¢ are injective. By the
discussion in the previous paragraph, v is a graph embedding of Hf into Y that sends 7 to u and
sends 8 to v. Similarly, ¢ is a graph embedding of G} into X that sends 7 to v/ and sends 8 to
v'. Lemma 4.3 tells us that there is a sequence Xp of (G}, H{)-friendly swaps that we can apply
to the identity bijection Id : {1,...,8} — {1,...,8} in order to exchange 7 and 8; using the graph
embeddings 1 and ¢ = 0~ 01}, we can transfer X1 to a sequence of ()~( ,Y)-friendly swaps that we
can apply to ¢ in order to exchange u and v.

Case II: As in Case I, we may assume without loss of generality that ¢ majority-maps both N (u’)
and N(v') into Ay. By possibly replacing o with o o (v’ v') and switching the names of Ax and
By, we may also assume that o~ majority-maps N(u) into Bx and majority-maps N (v) into Ax.
We can produce pairwise disjoint sets Vi,..., Vg in V(Y) \ {u,v}, each of size ¢, such that the
following hold:
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Vi),

( “1(V5) € N(u') and Vi, V5 C Ay.
(V1)

,0 Y (V3) € N(v') and V4, V5 C Ay.
(u) and o=1(V3) C Ax.
(v) and o~1(V3) C By.

_ =

o
o

Q Q

<

3
6

CN
CN

<

The list Vi,...,Vs is admissible for o with respect to (Gjf, Hf). The same argument as in
Case I, except with Gf, H, GT*, H{* replaced by Gy}, Hy, Gy, Hji', shows that u and v are (X,Y)-
exchangeable from o.

Cases IIT and IV: We omit the details of these cases, which are entirely analogous to Cases I
and II. In Case R (for R € {III,IV}), we find the necessary pairwise disjoint sets Vi,..., Vg in
V(Y) \ {u,v}, each of size ¢, such that the list Vi,..., Vg is admissible for o with respect to
(GE', HY). Repeating the same argument as before shows that v and v are ()? , Y)-exchangeable
from o. ]

5. GRAPHS WITH LARGE MINIMUM DEGREE

The purpose of this section is to prove Theorem 1.4, which gives bounds for d,,. Recall that this
is the smallest nonnegative integer such that any two n-vertex graphs X and Y with minimum
degrees at least d,, must have a connected friends-and-strangers graph FS(X,Y).

5.1. Lower bound.

3
Proposition 5.1. We have d,, > EM 2.

Proof. The proposition is trivial if n < 4, so we may assume n > 5. We exhibt the bound by
constructing an explicit family of examples. Partition the set [n] into 5 subsets Ay, ..., As, each of
size [n/5] or [n/5] + 1. The edge sets E(X) and E(Y) are defined as follows. Suppose z € A;,
y € Aj, and z # y. We put {z,y} € E(X) if and only if i — j # +2 (mod 5), and we have
{z,y} € E(Y) if and only if i — 7 £ £1 (mod 5). It is straightforward to check that 6(X) and 6(Y)
are each at least 3n/5 —11/5. Therefore, if we can show that FS(X,Y") is disconnected, then it will
follow that d,, > 3n/5 — 2.

If o : [n] — [n] is a bijection such that o(A;) = A; for all i € {1,...,5} and ¢’ is a bijection
obtained by applying an (X,Y)-friendly swap to o, then we must also have o'(4;) = A; for all
i€ {l,...,5}. Since n > 5, it follows that there exists a bijection 7 : [n] — [n] that is not in the
same connected component of FS(X,Y") as the identity bijection Id : [n] — [n]. O

5.2. Upper bound. The proof of the upper bound for d,, given in Theorem 1.3 is quite a bit more
involved than the proof of the lower bound and will require the following lemma.

Lemma 5.2. Let m > 1, and let G and H be m-vertex graphs such that §(G) and 6(H) are each
at least 9m/14. Let 7 : V(G) — V(H) be a bijection, and suppose u,v € V(H) are such that
{77 (), 7" (v)} € E(G). Either u and v are (G, H)-exchangeable from 7, or there exist vertices
w,x € V(H) satisfying the following:

e we N(u)NN(v).
o 71 (z) € N(7Hu)) N N(t71(v)).
o {w,z} € E(H).
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o The induced subgraph G|,-1(npu)) has distinct connected components C1 and Cy such that
), 77 (v), 7" x) € V(C1) and 77 (w) € V(C2). Furthermore, 2m/7 < |V(C1)| <
3m/7, 2m/7 < |V (Ca)| < 3m/7, and each of C1 and Cq is Wilsonian.

Proof. In order to illustrate where the number 9/14 arises, we let ¢ = 9/14. To ease notation,
let o/ = 771(u) and v = 771 (v). Let A’ = N(u/)N N(v'), B = N(u) N N(v), C = N[B], and
D'=N@W)UN(@'). Let A=71(A"), B =7"YB), C" =771(C), and D = 7(D’). Note that

(7) Al = |A'] > (2¢ = 1)m,

and

(8) IB| = |B'| > (2¢ — 1)m.

We have [D'| = [N (u')| + [N (V)] — [N(«) " N(v')] = [N (&) + [N ()] = [A], so
(9) |D| = |D'| > 2em — |A'].

There are two cases to consider.

Case 1: A’ NC’' = (. In this case, we have the inequality
(10) |A'| +|C'| < m.
We may assume without loss of generality that
|B'N N > |B'nN@)|.
Thus, letting Z = 7(B'N N(u')) = BN 7(N(u')), we have

21= 1B ANG| 2 (B AN+ B ANW)) 2 51B' 0 D = |B\ (V(G)\ D)

1 1
(11) > 5 (1B = V(&) \ D) = S (IB] + [D'] = m).
We are going to show that the induced subgraph H|; is Wilsonian. Lemma 2.4 tells us that it
1
suffices to show that |N(z) N Z| > §\Z| for all z € Z. Choose z € Z. Since Z C B, we have
N(z) CC,so
IN(z) N Z| = IN(2)| = [N(2) \ Z] = em = [N(2) \ Z| = em — (|C] = | Z]).
1 1
We want to show that em — (|C|—|Z]) > §|Z|, which we can rewrite as em — |C| + §|Z| > 0. Now,
using (7), (8), (9), (10), and (11), we find that

1 1 1
em — |C] —|—§\Z\ > cm — |C| +1(’B| +|D'| —m) > em —|C| + Z(’B| + (2em — |A'|) —m)

1 1 1 1 1 3
= em — |1+ 1Bl + {(2em —m) — {IA] = em — ('] + |4 + FB] + 1(2em —m) + 2|4
1 1 3 1 1 3
>cm—m+—|Bl+-2ecm—m)+ A >em—m+ —-2c—1)m+ —(2ecm —m) + —(2¢ — 1)m
4 4 4 4 4 4
7
zicm—zm:O.

(This is where the number 9/14 arises.) This demonstrates that H|z is Wilsonian. Since Z C B =
N(u) N N(v), it follows from Definition 2.3 that the induced subgraph H|z .} is also Wilsonian.
Furthermore, the induced subgraph G| -1(zu{uv}) = Gl(BAN(w))Ufw v} CONtains a spanning star
with center u’. By Wilson’s Theorem 2.2, the graph FS(G|;-1(zuquw}), H|z0{uw}) i connected.
Therefore, there is a sequence ¥ of (G \771( Zufuw})s H | 2U{u,v})-friendly swaps that exchanges u and
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v when applied to T’Tﬂ(zu{u,v})- We can view ¥ as a sequence of (G, H)-friendly swaps that
exchanges u and v when applied to 7; consequently, v and v are (G, H)-exchangeable from 7.

Case 2: A'NC’ # (). In this case, there exist w € B and € N[w] such that 77!(z) € A’ = N(u/)n
N(v'). If x = w, then applying the sequence of (G, H)-friendly swaps wu, wv, wu to 7 exchanges
u and v, implying that u and v are (G, H)-exchangeable from 7. Now suppose x # w so that
x € N(w). Suppose that 771 (w) and 77!(z) are in the same connected component of the induced
subgraph G|, -1 (y,))- This means there exists a path 7~ (w), 77 (t1), 77 (t2), ..., 77 (t,), 7 (x)
in G such that ¢1,...,t, € N(w). Applying the sequence of (G, H)-friendly swaps

wt1, wta, ..., Wy, WT, WU, WU, W, WL, Wy, ..., Wy, Wt

to 7 exchanges u and v, implying that u and v are (G, H)-exchangeable from 7 in this case as well.

We may now assume that 7! (w) and 77! (z) are in different connected components of G|, -1 (nfu])-
Let C; be the connected component of G| —1(y,|) containing 77 1(x), and let and Cy be the con-
nected component containing 7! (w). Each vertex in C; has at least ¢m neighbors in G, and at
most m — | N[w]| of these neighbors lie outside 71(N[w]). Since C; is a connected component of
Glr—1(N[w)), every neighbor of a vertex in C; that is in 771(N[w]) must be in C;. Therefore, the
graph C; has minimum degree at least cm — (m — |N[w]|) = (¢ — 1)m + | N[w]|. Similarly, Co has
minimum degree at least (¢ — 1)m + |N]w]|. Consequently, for each i € {1,2}, we have

V(€| > (¢ = Dm + [Nw]| > (2¢ = 1)ym = %m

Now, |N[w]| > |[V(C1)| + |V (C2)| > 2((c — 1)m + |N[w]|), so |[N[w]| < 2(1 — ¢)m = 5m/7. Because
[V(C1)| > 2m/7, this shows that |V (Cq)| < |N[w]| — |[V(C1)| < 3m/7. The minimum degree of Cy
satisfies

5(C2) > (¢ — Dym + |N[w]] > (2¢ — 1)ym = %m > V(e

so Lemma 2.4 tells us that Co is Wilsonian. A similar argument shows that C; is Wilsonian and
satisfies |[V(C1)| < 3m/7. O

9
Proposition 5.3. Ifn > 23, then d,, < " + 1.

Proof. Let X and Y be n-vertex graphs such that §(X) > 9n/14 + 1 and 6(Y) > 9n/14 + 1. We
will consider subgraphs of X and Y, but the notation N(:) and N|-| will always refer to open
and closed neighborhoods in the full graphs X and Y. Fix a bijection o : V(X) — V(Y) and
vertices u,v € V(Y) such that {o~(u),0c 1 (v)} € E(X). We will prove that v and v are (X,Y)-
exchangeable from o. As X is certainly connected and u and v were chosen arbitrarily, it will then
follow from Lemma 2.9 that FS(X,Y) is connected. This will prove that d,, < 9n/14 + 1.

Suppose instead that u and v are not (X, Y)-exchangeable from o. Applying Lemma 5.2 (with
X, Y, and o playing the roles of G, H, and 7), we find that there exist wgy,zo € V(Y) such that
the following hold:

wp € N(u) N N(v).

o (zo) € N(o7H(u)) N N(o~1(v)).

{’wo,l’o} S E(Y)

The induced subgraph X|,-1(n[u,]) has distinct connected components C; and Ca such that
o~ (u),07 (v),0 7 (zg) € V(C1) and 77 (wp) € V(C2). Furthermore, 2m/7 < |V (C1)| <
3m/7,2m/7 < |V(C2)| < 3m/7, and each of C; and Cs is Wilsonian.
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To ease notation, let us write v/ = o= (u), v’ = 07 (v), wy = o~ (wyp), and zf, = o~ (zp). Let
us also write o(C;) for the induced subgraph of Y on the vertex set o(V(C;)). Let m = n — 2,
and let H = X|y(x)\(uw} and G = Y|y )\ quw}- Let 7: V(G) — V(H) be the restriction of ot
to the set V(G) = V(Y) \ {u,v}. Suppose wg and zq are (H,G)-exchangeable from 7=!. This
means that there is a sequence ¥ of (H, G)-friendly swaps such that applying ¥ to 7~ exchanges
wg and xg. We may view ¥ as a sequence of (X, Y)-friendly swaps that does not involve u or v.
Applying the sequence of (X,Y)-friendly swaps X, wou, wov, wou, rev(X) to o exchanges u and v.
This contradicts the assumption that u and v are not (X, Y')-exchangeable from o, so we conclude
that the vertices wg and z¢ are not (H,G)-exchangeable from 771. By Lemma 2.7, the vertices wj,
and z(, are not (G, H)-exchangeable from 7. Note that G and H are m-vertex graphs such that

d(G) and 6(H) are at least (9n/14 4+ 1) — 2 > 9m/14. Furthermore, w(, z(, € V(H) are such that
{7‘ 1( 0), 7 (xh)} = {wo,z0} € E(G). Tt now follows from Lemma 5.2 that there exist vertices
wi, ) € V(H) = V(X) \ {«/,v'} such that, using the notation wy = o(w}) and x; = o(z}), we
have:

w) € N(wp) NN ().

1(ah) € N(r(wh)) 0 N (- (xh)) = N(uo) 1 N (z0).

{w},z}} € E(H) C E(X).

The induced subgraph G| -1(njw;]) = Y |o(Ww]) has distinct connected components Dy and

Dy such that the vertices 77 (w}) = wo, 77 (x}) = z0, and 771 (x})) = 21 are in Dy and the
vertex 77 H(w}) = wy is in Dy. Furthermore, 2m/7 < |V(Dy)| < 3m/7, 2m/7 < |V (D2)| <
3m/7, and each of D; and D is Wilsonian.

Let us write o~ 1(D;) for the induced subgraph of X on the vertex set o~ 1(V(D;)). Because
w) € 071 (V(Dy)) C N[w}], the graph o~1(Dy) contains a spanning star with center wj.

Figure 3 shows a schematic diagram indicating some of the special vertices and sets of vertices
in X and Y that we have considered up to this point. Note that the circle representing o=1(Dy) is
drawn so that the vertex set of this subgraph appears to be disjoint from those of C; and Cy. Our
next goal is to prove that V(Dy) N N[wp] = 0 so that the figure is accurate.

71(92) D,

X Y

F1GURE 3. In each of X and Y, the three circles represent induced subgraphs. A
thick circle indicates a Wilsonian induced subgraph. A colored dotted circle indicates
an induced subgraph with a spanning star, and the asterisk of the same color marks
the center of that star.
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Suppose there exists ¢ € V(Da) N N[wp]. Because Dy is Wilsonian and o~ !(Dy) contains a
spanning star with center w}, we can use Wilson’s Theorem 2.2 to deduce that there is a sequence
Y of (671(Dy), Dy)-friendly swaps that transforms oly-1(v(D,)) into a bijection that sends w; to g.
If ¢ = wo, then let ¥’ = . If ¢ # wy, then let ¥’ be the sequence X, qwp. In either case, we can
view X' as a sequence of (X, Y)-friendly swaps that does not involve u or v and that transforms o
into a bijection p : V(X) — V(Y) satisfying pu(w)) = wo. Applying the sequence of (X,Y)-friendly
swaps

E,a WoTo, WU, WoV, Wol, WOL0, I‘eV(E/)
to o exchanges v and v, which contradicts the assumption that « and v are not (X, Y)-exchangeable
from o. Therefore, we must have
V(D3) N Nwg] = 0.

Consider a vertex h € V(D3). Suppose by way of contradiction that there exist distinct vertices
s1,52 € N(h) No(V(C2)). Because 6(X) and 6(Y) are at least 9n/14 4+ 1, we can certainly find
distinct vertices t1,t € N(wp) N o(N(w))). Note that the vertices t} = o=1(t1) and t) = o~ 1(t2)
are in the same connected component of X|,-1(nfuw,)) as wy,, namely, Co. Because Cy is Wilsonian
and o(Cy) contains a spanning star with center wg, we can invoke Wilson’s Theorem 2.2 in order to
see that there is a sequence ¥ of (C2,0(Cz2))-friendly swaps that transforms |y (c,) into a bijection
that sends ¢} to s1, sends t), to wp, and sends wy(, to s2. We also know that Dy is Wilsonian and
that ¢~!(Dy) contains a spanning star with center w}, so we can use Wilson’s Theorem 2.2 once
again to obtain a sequence ¥’ of (07! (Dy), Dy)-friendly swaps that transforms of,—1(y(p,)) into a
bijection that sends w] to h. We have seen that V(Ds) N N|w] = 0, so the sequences ¥ and ¥
involve disjoint sets of vertices. Furthermore, ¥ and ¥’ do involve u, v, or xg. Therefore, we may
view X, ¥ as a sequence of (X, Y )-friendly swaps that transforms o into a bijection u satisfying

pu) =u, p')=v, plag) =z, pty)=s1, pty) =wo, p(wy) =s2, p(wi) = h.
However, we now readily check that applying the sequence
¥, % hsa, hs1, wos1, Wosa, WoTo, Woll, WU, Wolk, WL, WoS2, WoS1, hs1, hsy, rev(E), rev(X)

of (X, Y)-friendly swaps to o exchanges v and v, which is a contradiction. From this contradiction,
we deduce that |[N(h)No(V(C2))| < 1. As a consequence, we find that |[N(h)N(V(Y)\o(V(C2)))| >
In/14. As |[V(Y)\(V(C2))| = n—|V(C2)| < 5n/7, there are at most n/14 vertices in V(Y)\ o (V(C2))
that are not adjacent to h. Because |V(C1) \ {u,v}| > 2n/7 — 2, it follows that

INGE) O (V) {u,0])] = [VIE)\ {0} — 2gm > 2IVIE)\ {u}] — 5.

3 1
As h was arbitrary, this demonstrates that every vertex in Dy has at least ZW(CI) \ {u,v}| — 5
neighbors in V(C1) \ {u,v}.

Let Q = V(X)\(V(C1)UV (Co)UaH(V(Ds))). We have seen that V(Cy), V(Cz2), and o~ 1(V(Dy))
are disjoint (since V(Da) N N{wg] = 0), so
2 2 3 4
Q1= n— [V(E)| ~ [V(Co)| — V(D) < n— [V(e)| ~ 2n— 2m = 20— V(e +

This shows that if ¢ € V(C), then the number of neighbors of ¢ in V(Cy) U o~ 1(V(Dy)) satisfies

NN (V(C)Uo™ (VDo) 2 —n+ 1 - [N A V(E)] ~ [NB) N Q)

14
9 3 4 3 10
> = — — 1= (Zn-— —)=—n+—.
> S 1= Vel - 0 - (Ga-wier+ ) = Sne 3
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Since |07} (D2)| < 3m/7 = 3(n — 2)/7 and each vertex in C; has at least 3n/14 + 10/7 neighbors
in 071(Dy), we can use the pigeonhole principle to see that there exists a vertex y’ € o~1(V(Dy))
with at least

S 2 SIVIC)I + g VC] 2 5V + g - 2
1 47
> Ve \ {u v} + o7

neighbors in C;. Letting Z' = N(y") N (V(C1) \ {u,v}), we have

L1 5
> = —.

1
We have seen that each vertex in Dy has at least %\V(Cl) \{u, v} — 3 neighbors in V(Cy) \ {u, v}.

1 5
Among these neighbors, at most §]V(C1) \ {u,v}| — op e not in the set Z = o(Z’). Therefore,

each vertex in Dy has at least

Z!V(Cl) \ w0} = % - (;!V(Cl) \ {u, v} - 251> = iyV(cl) \ {u, v} - %

neighbors in Z. Because n > 23 and [V/(C1)| > 2n/7, it is straightforward to check that

1 1 1

—|V(C - —>—|V(C .

Ve {w, o} = 55 > SIVE) \ {0}
Furthermore, |Dy| > 2m/7 = 2(n — 2)/7 > 6, so there must exist distinct vertices hy and hg in Dy
that have a common neighbor z in Z. We once again use the fact that Dy is Wilsonian and that
o~ 1(Ds) contains a spanning star with center w}. By Wilson’s Theorem 2.2, there is a sequence 3
of (¢71(Dy), Dy)-friendly swaps that transforms ols—1(p,) into a bijection that sends y to h; and
sends w] to hy. Notice that ¥ does not involve any of the vertices u, v, wo, g, 2 since these vertices

are not in Dy. Therefore, we can view X as a sequence of (X,Y)-friendly swaps that transforms o
into a bijection pu satisfying

pu) =u, p')=v, plxg) =20, p(wy)=wo, py)="h, pwy)=nhs.
We now check that applying the sequence
3, zh1, zhg, zwg, WoTg, Wol, WU, Woll, WoLg, 2Wo, 2ha, zh1, rev(X)

of (X,Y)-friendly swaps to o exchanges u and v, which is our final contradiction. O

6. BIPARTITE GRAPHS WITH LARGE MINIMUM DEGREE

For r > 2, recall that d,, is the smallest nonnegative integer such that any two edge-subgraphs
X and Y of K,, with minimum degrees at least d,, must have a friends-and-strangers graph
FS(X,Y) with exactly 2 connected components. In this section, we prove Theorem 1.4, which
almost determines the exact value of d,. ;.
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6.1. Lower bound.

3r+1
Proposition 6.1. Forr > 2, we have d,, > [ s w .

Proof. For each r > 2, we construct edge-subgraphs X and Y of K., each with minimum degree at
least {%W —1, such that FS(X,Y") has an isolated vertex; by Proposition 2.5, this suffices to show
that FS(X,Y’) has more than 2 connected components. We will partition each partite set in each
graph into two subsets. Let the partite sets in the bipartition of X be Ax U Bx and Cx U Dy, where
Ax and Dy each contain [r/2] vertices and Bx and Cx each contain |r/2] vertices; similarly, let
the partite sets in the bipartition of Y be Ay U Cy and By U Dy, where Ay and Dy each contain
[r/2] vertices and By and Cy each contain |r/2] vertices. Fix a bijection o¢ : V(X ) — V(Y) such
that 0'0(14)() = Ay, O'Q(BX) = By, O’o(CX) = Cy, and Uo(Dx) = Dy.

We now describe the edge set of X. First, connect every vertex in Ax to every vertex in Cx,
and connect every vertex in By to every vertex in Dx. Second, add edges between Ax and Dx so

[r/2] [r/2]
2 2

that each vertex in Ax has { J neighbors in Dx and each vertex in Dx has { J neighbors

in Ax (this is easy to achieve); similarly, add edges between Bx and Cx so that each vertex in By

r/2 r/2
has | 32 i

J neighbors in C'xy and each vertex in C'x has [ J neighbors in Bx. We now describe

the edge set of Y in a similar manner. First, connect every vertex in Ay to every vertex in By,
and connect every vertex in Cy to every vertex in Dy. Second, connect u € Ay to v € Dy if and
only if {og l(u),aa L(v)} is not an edge of X; similarly, connect s € By to t € Cy if and only if
{o51(s),05 (1)} is not an edge of X. By construction, g is an isolated vertex in FS(X,Y). Tt is
straightforward to check (with casework on the residue of r modulo 4) that X and Y each have
minimum degree at least [%] —1. O

6.2. Upper bound.

Proposition 6.2. Let X and Y be edge-subgraphs of Ky, such that min{5(X),5(Y)} > [25f2].
Let o : V(X) — V(YY) be a bijection. If u,v € V(YY) are in different partite sets of Y and are such
that {o=(u),0 " (v)} € E(X), then u and v are (X,Y)-exchangeable from o.

Before proving this proposition, let us see how it implies the desired inequality d,, < {%]

Suppose X and Y are edge-subgraphs of K., with min{5(X),5(Y)} > [252]. Proposition 6.2 tells
us that the hypothesis of Proposition 2.8 is satisfied with Y = K, ,, so it follows from that lemma
that the number of connected components of FS(X, K. ,) is the same as the number of connected
components of FS(X,Y). We also know that FS(X, K,.,) = FS(K,,, X). Because K, , and X are
edge-subgraphs of K,, with min{d(K,,),5(X)} > [252], we can use Proposition 6.2 once again
to see that the hypothesis of Proposition 2.8 is satisfied with the pair (K, ,, X) playing the role of
(X,Y) and with Y = K, ,. Therefore, the number of connected components of FS(K.,., X'), which
is also the number of connected components of FS(X,Y), is equal to the number of connected
components of FS(K, ., K,,). We know by Proposition 2.6 that FS(K,,, K,,) has 2 connected
components. As X and Y were arbitrary, this proves that d,., < {%1

Proof of Proposition 6.2. Let § = min{§(X),d(Y)}; our hypothesis states that § > [25£2]. Let
{Ax,Bx} and {Ay, By} be the bipartitions of X and Y, respectively. Without loss of generality,
we may assume u € Ay and v € By. Let v/ = o~ (u) and v = 0~ (v). Our goal is to show
that o and o o (u’ v') are in the same connected component of FS(X,Y’). We may assume that the
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partite set of X containing v’ contains at least r/2 elements of 0~ !(By) since, otherwise, we can
simply switch the roles of o and o o (u/ v"). Without loss of generality, we may assume v’ € Ay
and v' € Bx. Thus, |[Bx No~Y(By)| > r/2.

Note that there are at most r — § vertices By that are not adjacent to u, at most r/2 vertices
in By that are not in o(Bx), and at most r — § vertices in By that are not adjacent to u’. Since
(r—20)+(r/2)+ (r—¢6) =5r/2 — 26 < r, there must exist w € N(u) C By such that the vertex
w' = o~ (w) is adjacent to u’. Let D = Ax\ (N(v')NN(w')). Note that |D| < r—(26—r) = 2r—26.

Suppose we now consider an arbitrary bijection 7 : V/(X) — V(Y). We have the following claims:

Claim 1: If x € 7(D) N Ay and |77 }(Ay) N Ax| > 2r — 25 + 1, then there exists a vertex
y € (By N7(Bx)) \ {v,w} such that y is adjacent to x and 771(y) is adjacent to 7~1(x).

Claim 2: If ¢ € By N7(Ax \ D) and |7~}(By) N Ax| > 2r — 24, then there exists s € Ay N7(By)
such that s is adjacent to ¢ and 771(s) is adjacent to 771(q).

To prove Claim 1, notice that there are strictly fewer than r—(2r—20+1) = 20 —r — 1 vertices in
Ay N7(Bx), at most r — § vertices in Bx that are not adjacent to 771(x), and at most r — § vertices
in By that are not adjacent to . Since (20 —r—1)+(r—9d)+(r—39) = r—1, it follows that there exist
distinct vertices y1,y2 € By N 7(Bx) such that yi,y2 € N(z) and 77 (y1), 7 1 (y2) € N(771(2)).
Because 7 !(z) is in D and is a common neighbor of 771(y;) and 77 !(ys), it follows from the
definition of D that at least one of the vertices 77 (y1), 7 (y2) is not in {v’,w’}. Without loss of
generality, say 771 (y1) € {v/,w'}. Then y = y; is the desired vertex.

The proof of Claim 2 is similar. There are strictly fewer than r — (2r — 20) = 26 — r vertices
in By N7(Bx), at most r — § vertices in By that are not adjacent to 77*(g), and at most 7 — §
vertices in Ay that are not adjacent to ¢. Since (20 —r) + (r — ) + (r — ) = r, the desired vertex
s must exist.

Now suppose 7 is a bijection that can be obtained from o via a sequence of (X,Y)-friendly
swaps that does not involve u, v, or w. This implies that 7(u') = o(u) = u, 7(v') = ¢(v') = v, and
T(w') = o(w') = w. Let us assume for the moment that at least one of the following is true:

I. There exists x € 7(D) N Ay.
II. We have |77 1(By) N Ax| > 2r — 24.

Suppose we are in Case L. If |[771(Ay) N Ax| > 2r — 26 + 1, then by Claim 1, there exists
y € (By N7(Bx)) \ {v,w} such that we can apply the (X,Y)-friendly swap zy to 7. We call this
a preliminary swap of the first kind. This swap does not involve u, v, or w. To see this, note that
x is in 7(D), which is disjoint from {u,v,w}. Also, we chose y so that it is not in {v,w}, and we
must have y # u since y € By and u € Ay. If instead we have |71 (Ay) N Ax| < 2r — 26 + 1, then
|77 Y(By)NAx| >7r— (2r —25 +1) = 2§ —r — 1 > 2r — 26, which means that we are in Case II.

Suppose now that we are in Case II. Since |D| < 2r — 24, there is at least one vertex ¢ €
By N7(Ax \ D). By Claim 2, there is a vertex s € Ay N 7(Byx) such that we can apply the
(X,Y)-friendly swap gs to 7. We call this a preliminary swap of the second kind. This swap does
not involve u, v, or w. Indeed, ¢ is in By N 7(Ax), which is disjoint from {u,v,w}, and s is in
Ay N7(Bx), which is also disjoint from {u,v,w}.
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If 7/ is obtained by applying a preliminary swap of the first kind to 7, then |7/(D) N Ay| <
|7(D)NAy| and |By N7T'(Ax \ D)| < |By N7(Ax \ D)|. If 7/ is obtained by applying a preliminary
swap of the second kind to 7, then |By N7/(Ax \ D)| < |[By N7(Ax \ D)| and |7/(D) N Ay| <
|7(D) N Ay|. Therefore, if we repeatedly apply these preliminary swaps, we eventually obtain a
bijection p: V(X) — V(Y) such that

1 can be obtained from o by performing a sequence of swaps not involving u, v, or w;
p(') = u, p(v') = v, and p(w') = w;

u(D) C By (ie., u(D) N Ay = 0);

By N u(Ax \ D) = 0.

Notice that the condition By N u(Ax \ D) = 0 forces |~ (By) N Ax| < |D| < 2r — 26.

Let 3 be a sequence of (X,Y)-friendly swaps not involving u, v, or w that transforms o into u.
We will demonstrate that there is a sequence S of (X, Y) friendly swaps such that applying S to
1 exchanges u and v. It will then follow that ¥* = X, 5, rev(X) is a sequence of (X,Y)-friendly
swaps such that applying ¥* to o exchanges uw and v (i.e., 3* transforms o into o o (v’ v')); this
will complete the proof.

ﬂ_l(zl) Z1

e (22) 2
AX Bx Ay By

FIGURE 4. The special vertices and edges used in the proof of Proposition 6.2.

We wish to choose distinct 21,22 € N(v) N N(w) such that p~!(21) and p~!(z2) are both in
Ax. To see that this is possible, note that there are at most 2r — 24 vertices in u~!(By) N Ax,
at most r — § vertices in Ay that are not adjacent to v, and at most r — § vertices in Ay that are
not adjacent to w. Because (2r — 20) + (r — ) + (r — 0) = 4r — 45 < r — 1, the desired vertices
21, 29 exist. Now recall that p(D) C By so that u='(z1) and u~!(22) are both in Ay \ D. By the
definition of D, the vertices u~'(21) and p~'(22) are both adjacent to v" and w’. See Figure 4 for
an illustration of the graphs X and Y along with the special vertices that we have considered up
to this point. We now readily check that applying the sequence

Y = V21, Wz2e, W21, WU, W22, WZ1,V21,V22,WZQ

to p exchanges u and v. O

7. FUTURE WORK

Of course, it would be desirable to improve the estimates obtained in our main theorems. Along
these lines, we have the following conjectures. In Conjectures 7.3 and 7.4, we preserve the definitions
of d,, and d,., from Theorems 1.3 and 1.4, respectively.

Conjecture 7.1. There exists an absolute constant C' > 0 such that if p > Cn~/2 and X andY are
independently-chosen random graphs in G(n,p), then FS(X,Y) is connected with high probability.
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Conjecture 7.2. There exists an absolute constant C' > 0 such that if p > Cr=/2 and X and
Y are independently-chosen random graphs in G(K,,,p), then FS(X,Y) has ezactly 2 connected
components with high probability.

Conjecture 7.3. We have d,, = gn + O(1).

1
Conjecture 7.4. We have d,., = F)TZ —‘

We mention that it is also possible to study non-symmetric versions of the main questions
that we have investigated in this paper. One possible extension of the “typical” problem is to gain
information about the pairs of probabilities (p;(n), p2(n)) such that FS(X,Y") is connected with high
probability when X and Y are drawn from G(n,p;) and G(n,ps2), respectively. Similarly, for the
“extremal” problem, one could ask about the pairs (d1(n), d2(n)) that guarantee the connectedness
of FS(X,Y) whenever X and Y are m-vertex graphs with minimum degrees at least d; and ds,
respectively. The bipartite analogues of both of these questions could also be interesting.

It may also be fruitful to study a more fine-grained “hitting-time” version of the result in The-
orem 1.1, which says that the threshold for FS(X,Y’) becoming connected with high probability is
roughly the same as the threshold for FS(X,Y’) having no isolated vertices with high probability.
To be precise, fix a positive integer n, and let {(X¢,Y:)}, << (1) be a random sequence of pairs of

n-vertex graphs, where Xy and Y have no edges and each X; (respectively, Y;) is obtained from
X;—1 (respectively, Y;_1) by independently at random adding an edge that is not already in X

(respectively, Y;). Note that X(n) = Y(n) = K,, so FS (X(n),Y(n)) is certainly connected. Let
2 2 2 2

tiso be the smallest value of ¢ for which FS(Xy,Y;) has no isolated vertices, and let teonn be the

smallest value of ¢ for which FS(X},Y};) is connected. It is obvious that tconn > tiso; Theorem 1.1

and Proposition 3.1 show that teonn < tiso n°®) with high probability. We might ask if ¢;5, and
teconn are more closely related.

Question 7.5. Is it true that teonn = tiso wWith high probability? If not, is it at least true that
teonn = tiso(1 + 0(1)) with high probability, or that teonn = O(tiso) with high probability?

In a similar direction, suppose again that X and Y are chosen independently from G(n,p). One
might investigate how the expected number and sizes of the connected components of FS(X,Y)
change as p varies. For instance, is there a phenomenon akin to the giant component phenomenon
for random graphs?

We know from Proposition 2.6 that FS(K, ., K, ,) has exactly 2 connected components; it would
be interesting to understand which edge-subgraphs X of K, , are such that FS(X, K, ,) has exactly
2 connected components. (Recall that in the non-bipartite case, FS(X, K,) is connected if and only
if X is connected.)

Question 7.6. Let X be a random graph in G(K,., ,p). Under what conditions on p will FS(X, K, ;)
be disconnected with high probability? Under what conditions on p will FS(X, K, ,) be connected
with high probability?

Problem 7.7. Define dy.,. to be the smallest nonnegative integer such that for every edge-subgraph
X of Ky with 6(X) > dy ., the graph FS(X, K, ;) has evactly 2 connected components. Obtain
estimates for d,. .
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We have focused on the number of connected components of the friends-and-strangers graphs
FS(X,Y), but one could also consider other graph parameters. Most notably, it would be very
interesting to have nontrivial results concerning the diameters of these graphs.

Question 7.8. Does there exist an absolute constant C > 0 such that for all n-vertex graphs X
and 'Y, every connected component of FS(X,Y') has diameter at most nC?

Problem 7.9. Obtain estimates (in terms of n and p) for the expected value of the maximum
diameter of a connected component of FS(X,Y) when X and Y are independently-chosen random
graphs in G(n,p).

Finally, we mention that it could be fruitful to study random walks on friends-and-strangers
graphs; indeed, this corresponds to friends and strangers randomly walking on graphs. Random
walks on FS(X, K,,) correspond to the interchange process on X as discussed, for example, in [2].
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