THE RUNSORT PERMUTON
NOGA ALON, COLIN DEFANT, AND NOAH KRAVITZ

ABSTRACT. Suppose we choose a permutation 7 uniformly at random from S,. Let runsort(w) be
the permutation obtained by sorting the ascending runs of 7 into lexicographic order. Alexandersson
and Nabawanda recently asked if the plot of runsort(m), when scaled to the unit square [0, 1]?,
converges to a limit shape as n — oco. We answer their question by showing that the measures
corresponding to the scaled plots of these permutations runsort(m) converge with probability 1 to a
permuton (limiting probability distribution) that we describe explicitly. In particular, the support
of this permuton is {(z,y) € [0,1]* : < ye' "}

1. INTRODUCTION

Let S,, denote the set of permutations of the set [n] = {1,...,n}. The scaled plot of a permutation
T =TTy € Sy is the diagram showing the points (i/n, m;/n) for i € [n]. The scaled plot of 7 is
closely related to the probability measure v, on the unit square [0, 1]2 defined as follows. Consider
a point (z,y) € [0,1]%. If (i — 1)/n < x <i/n and (7; — 1)/n < y < m;/n for some i € [n], then v,
has density n at (z,y); otherwise, v, has density 0 at (x,y). In other words, we divide [0,1]? into
an n X n grid of squares, each with side length 1/n, and we assign each square a constant density
of either n or 0, according to whether or not the upper right corner of the square is a point in the
scaled plot of 7.

A permuton is a probability measure v on the unit square [0, 1]? that has uniform marginals, in
the sense that y([a, ] x [0,1]) = ~([0,1] X [a,b]) =b—a for all 0 < a < b < 1. Note that if 7 € Sy,
then ~, is a permuton. (This is why we chose to scale with density n.) There is a natural topology
on the space of permutons obtained by restricting the weak topology on probability measures. This

FIGURE 1. On the left is the scaled plot of runsort(w), where 7 is a permutation

chosen uniformly at random from Ssggpp. On the right is the runsort permuton R.

The dark curve C is the support of the singular continuous part of R. Shading

within the region C* indicates the density of the absolutely continuous part of R.
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coincides with the topology induced by the metric dg defined by
do(v,72) = S%P\’Yl(B) —72(B)|;

where we take the supremum over all axis-parallel rectangles in the unit square. There has been
a great deal of recent interest in describing permutons that arise as limits of large random permu-
tations [7]. Several results in this area concern the interplay between random permutations and
permutation patterns [3,5,6,8-10,14-18,22,24]. In a different direction, Dauvergne [12] recently
proved a beautiful result about permutons arising from random sorting networks (see also [2,13]).
Our goal in this article is to describe the permuton that emerges when we apply an operator called
runsort to a large random permutation.

An ascending run of a permutation (henceforth called a run for simplicity) is a maximal consec-
utive increasing subsequence. For instance, the runs of 351476298 are 35, 147, 6, 29, and 8. Given
a permutation 7w € S,,, let runsort(m) be the permutation obtained by sorting the runs of 7 into
lexicographic order. Equivalently, runsort sorts the runs so that their smallest entries appear in in-
creasing order. For example, runsort(351476298) = 147293568. Note that runsort is an idempotent
operator.

Motivated by the study of flattened partitions (see [11,19,20,25]), Alexandersson and Nabawanda
[4] proved several interesting combinatorial properties of runsort. When they chose 7 € S,, (for large
n) uniformly at random and plotted the permutation runsort(), they observed that it tended to
have a very distinctive shape (see the left side of Figure 1). Furthermore, they noticed that the
scaled plot of runsort(7) appeared to be bounded by a certain enveloping curve, and they asked if
this curve approaches some limit curve as n — oo. In this paper, we answer their question (in a
strong form) by showing that ¥ynsort(r) converges with high probability to a specific permuton.

Consider the curve

C = {(m,y) € 0,17 & = ye' ¥},
and let
Ct={(z,y) €[0,1]* 1z <ye' ¥}
be the region in the unit square above C. We define the runsort permuton R to be the permuton

given by
R(B) = / eV~ dy +/ (1—y)dy
BNC+t BNC

for every measurable set B C [0,1]2. Thus, R is the sum of its absolutely continuous part, which
has support C*, and its singular continuous part, which has support C. One can easily confirm by
direct computation that R is in fact a permuton (and we encourage the reader to do this).

Our main result is that R is the limiting distribution for the image under runsort of a large
random permutation.

Theorem 1.1 (Main Theorem). Fiz any € > 0, and choose 7" wniformly at random from S,,.
Then dD(’yrunsort(ﬂ.(n)), R) < € with probability tending to 1 as n — oo.

In other words, if we randomly choose permutations 7(™), then the measures Vrunsort(rx(n)) CONVErge
to R with probability 1.

We remark that a combination of absolutely continuous and singular continuous parts, such as
what R exhibits, seems to be rare in previous work on permutons. In our setting, however, it
is quite natural. As will become clear later, the singular part comes from the first entries of the
runs, and the continuous part comes from the remaining entries. A random permutation in S, has
(n+1)/2 runs on average, and the reader can check that indeed half of the total mass of R lies on
the curve C. More surprising is that the pointwise density of R in CT depends only on the vertical
coordinate y. This “horizontal uniformity” is not combinatorially obvious, and we do not know
how to establish it directly (that is, without recourse to the explicit characterization of R).
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In Section 2, we use martingale concentration inequalities to show that it suffices to understand
the expectation of Vrunsort(m(m))- In Section 3, we treat the enveloping curve C and determine the
distribution of mass on it. Section 4 is devoted to the density in the region C*. Section 5 concludes
the proof of Theorem 1.1. Finally, in Section 6, we briefly mention a possible generalization of this
type of question where our methods could be adapted.

1.1. Notation. We write ; for the i-th entry of a permutation 7. We write P[A] for the probability
of an event A and write E[X] for the expected value of a random variable X.

2. CONCENTRATION OF DISTRIBUTION

Our task is to show that if 7 is chosen randomly from Sy, then yyypsort(x) is suitably concentrated
everywhere. The key observation is that transposing two entries of 7 has only a small effect on
Yrunsort(r)s @s long as 7 does not have any unusually long runs. In order to make this notion precise,
we define the following variant of runsort: Let m € S,, be a permutation, and let Ay,..., A; be the
runs of m. We can break each run Ay into shorter subsequences Ag 1, ..., Ay (x), which we call
segments, as follows: If Ay has length smaller than logn, then set t(k) = 1 and Ay = Ay; if Ay
has length greater than logn, then break it directly before every position (of 7) that is an integer
multiple of |logn], so that A, has length exactly [logn] for 1 < £ < t(k), and Ay and Ay,
have length at most |logn|. We then define runsort(m) to be the permutation obtained by sorting
the runs Ay ¢ into lexicographic order. Note that runsort(m) = runsort(r) if all of the runs of 7 have
length at most |logn|; in particular, the following lemma tells us that if 7 is chosen randomly from
Sp, then runsort(m) = runsort(m) with probability tending very quickly to 1 as n — oo.

Lemma 2.1. Suppose w is chosen uniformly at random from Sy. If n is sufficiently large, then the
probability that every run of © has length at most logn is at least 1 — n~(lo8logn)/2,

Proof. Let T'= |logn|+1. For each i € [n—T+1], the probability that the entries of 7 in positions
i,i+1,...,i4+ T — 1 appear in increasing order is 1/T. Therefore, the probability that there is a
run of 7 of length at least T' is at most (n — T+ 1)/T!, which, by Stirling’s Formula, is at most
n—(oglogn)/2 for n sufficiently large. O

Lemma 2.2. Let B = [x1,22] X [y1, 2] C [0,1]? be a rectangle. Let © € S,, be a permutation, and
let ¥ = 7o (i1i2) be the permutation obtained from m by swapping the entries in positions i1 and
iz (that is, applying the transposition (i1i2)). Then |Yamsore(r)(B) — Yramsore(x)(B)| < 20logn/n.

Proof. We note that |Vrmsore(x)(B) — Vransore(x/) (B)|, viewed as a function of z1,z2,y1,y2, clearly
attains its maximum value when z1, z2, y1, y2 are all integer multiples of 1/n, so it suffices to prove
the lemma when B has this special form. In this case, we discretize the problem by writing

(1) Yransori(x) (B) =

(since each point (4, runsort(r);) contributes mass 1/n after rescaling), and likewise for Yrrssr() (B)-
When we apply the transposition (i1 42) to m, all but at most four of the segments Ay ¢y remain the
same. Since each segment has length at most logn, we see that at most 4 log n entries are in these
“affected” segments. It follows that for each entry j not in one of these affected runs, the horizontal
positions of j in runsort(m) and runsort(n’) differ by at most 4logn. In particular, these horizontal
positions are either both in the interval (z1n,zon| or neither in this interval, unless the position in
runsort(7) was within 4logn of either x1n or xon. So the change in the numerator on the right-hand
side of (1) coming from these entries is at most 16 logn, and we must absorb an additional error
of 4logn because we have no control over the positions of the entries of the affected segments. [

#{i:x1n <i < xon and yin < runsort(m); < yan}

n

(It is possible to replace the constant 20 by 4 in this lemma, but we do not optimize this constant
because it is irrelevant in what follows.)
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We require the following martingale inequality from [21] (see also page 35 of the book [23]).

Proposition 2.3 ([21,23]). Let f: S, — R be a function on permutations such that if =,7" € Sy,
differ by a transposition, then |f(w) — f(7')| < z. Then for m € S, chosen uniformly at random,
we have

P[|f(m) = E[f]| > ¢z] < 9/ (4n)

We note that by following the standard proof of Azuma’s Inequality (see, e.g., [1, Theorem 7.2.1])
with the obvious modification needed to deal with permutations, it is possible to improve the above
exponent from —c?/(4n) to —c?/(2n), but this is not necessary for our applications.

Before applying this proposition, we fix a bit of notation. For 1 <4, j < n, let p,(i, ) denote the
probability that the entry j is in the i-th position of runsort(r) when 7 € S,, is chosen uniformly
at random. For B = [z, 73] X [y1, 2] C [0, 1]?, let

D> palisg).

r1n<i<zan,
yin<j<yan

En(B) =

S\H

Define the analogous quantities p,,(4,j) and E,(B) with runsort replaced by runsort.

Lemma 2.4. Fiz any small € > 0, and suppose that m € S, is chosen uniformly at random. If
n is sufficiently large (as a function of ), then with probability at least 1 — €, the concentration
inequality

‘7runsort(7r) (B) - En(B)’ <e
holds simultaneously for all azis-parallel rectangles B C [0,1]2.

Proof. We make two reductions. First, write B = [z1, 2] X [y1, y2] and define B’ = [z},
where x| = |nx1]|/n, zh = [nxa]/n, ¥y = [ny1]/n, vb = |ny2|/n. Then E,(B) = E,(B

|7runsort(7r)(B) - Vrunsort(w)(B/” < 2/”'
Since this can be made smaller than ¢/3, it suffices to show that

|’7runsort(7r) (B) - En(B)| < 25/3
for all B whose vertices have coordinates that are integer multiples of 1/n. Note that in this case,
the quantities F,(B) and E,(B) are precisely the expected values of Yyunsort(x) (B) and Yransore(x) (B),
respectively.

Second, we know from Lemma 2.1 that runsort(mw) = runsort(mw) with probability at least 1 —
p~(oglogn)/2 " In particular, |p,(i,) — B, (i, )| < n=(081087)/2 for all i, j, so |E,(B) — En(B)| <
n - n~{0glogn)/2 \We can make this last quantity smaller than €/3 by choosing n large enough, so
it suffices to show that with probability at least 1 — 2¢/3, the inequality

[Vransere(n) (B) — En(B)| < /3
holds simultaneously for all axis-parallel rectangles B whose coordinates are integer multiples of
1/n.
For each such B with coordinates that are integer multiples of 1/n, combining Lemma 2.2 and
Proposition 2.3 (with z = 20logn/n and ¢ = en/60logn) gives that

"Yrunsort(w) (B) - EH(B)‘ < 5/3
6271
- 14400(log 'n)2

I X [y1, v5)

2y
") and

with probability at least 1 — e . A union bound gives that with probability at least

5277,

4.~ 2
1 — n*e 14400(logn) ,

the above inequality holds simultaneously for all B with coordinates that are integer multiples of
1/n, and taking n large guarantees that this probability is at least 1 — 2¢/3, as needed. 0
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This lemma tells us that it will suffice to work with the expectations E,(B). In particular, we
have reduced Theorem 1.1 to the following more manageable-looking statement. For each n, define
the probability measure R,, via Ry, (B) = E,(B) for all axis-parallel rectangles B C [0, 1].

Theorem 2.5. The measures R,, converge to R as n goes to infinity.

3. THE ENVELOPING CURVE

In this section, we address the “singular” behavior that comes from the first entries of runs; as
mentioned in the Introduction, this corresponds to the mass in R that lies on the curve C.

For y € [0,1] and 7 € S,,, we let Lr(y) denote the largest position i € [n] such that m; < yn if
y > 1/n, and we define L,(y) = 0 if y < 1/n. In other words, L.(y) is the smallest ¢ such that all
of the entries up to yn appear in the first i positions. Note that the curve x = L (y) is the lower
envelope of the scaled plot of . We start by computing the expected value of Lyynsort(r)(y) and

Lignsori(x) (Y)-
Proposition 3.1. Fiz y € [0,1], and suppose that m € Sy, is chosen uniformly at random. Then
IE’[Lrunsort(ﬂ') (y)] = nyeliy + O(lOg n)

and
E[Lrgnsare(r) (¥)] = nye' ™Y + O(log n).

Proof. We start with the first statement. For j € [n], define the random variable X; by

X, () 0, if j is not the beginning of a run of ;
() —
! k, if 7 is the beginning of a run of length k of .

It follows from the definition of runsort that

Z Xj(ﬁ) - m(ﬂ—) < Lrunsort(w) (y) < Z Xj(ﬁ>v

J<yn Jjsyn
where m(7) is the maximum length of a run in 7. We know from Lemma 2.1 that m(r) < logn
with probability at least 1 — n~(°81987)/2 Since m(n) < n for all 7 € S,,, we have

E[L unsort(x) (¥)] = Z E[X;(n)] — (1 — n*(loglogn)/Q) logn —n - p,—(loglogn)/2.
J<yn
Hence,
]E[Lrunsort(w) (y)] = Z E[X] (ﬂ-)] + O(lOg n)
Jj<yn
Consider j € [n] with j < yn, and let r be such that 7, = j. We wish to estimate the probability

that X;(m) > k+1 for each k > 0. If k > log n, then P[X;(7) > k+1] < n~(08187)/2 by Lemma 2.1
(and this contribution will turn out to be negligible). To handle the case k < logn, note that we
have X;(m) > k+ 1 if and only if the following both hold:

e Eitherr=1,0or2<r<n-—Fkand m._1 > j;

0 j < My < Ty < -+ < Mpgk.
Therefore,

L () k=1 ()

k! -1 k! -1y
nekt() R ()
Note that the first term is at most 1/n. To estimate the second term, we write

PIX;(m) > k+1] =

() _ﬁn—j—t

(i) g1t
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pals n nn—1-t)

(i ok k1
Lol

where the last bound uses the fact that k£ < logn. Combining these estimates yields
1
PLX;(m) > k+1] = O(1/n) + 15 (1 = (k+1)/n) ((1 —j/n)*" !+ O((k + 1)2/n)>
(1—j/n)*!

= O(1/n),

again using k < logn. So

n—1
E[X;(m)] = Y P[X;(m) = k +1]
k=0

— Uozgfbj <M/”)k+1 + O(l/n)) L0 (n , n—(loglogn)/2>

k!
k=0
= (1—j/n)(e=9/" + O(1/ [logn]!)) + O(log n/n) + O (n : n*<1°g1°g">/2)
= (1 —j/n)e'™/" 4+ O(logn/n).
Summing over j < yn gives

STEX (] = Y ((1=j/me "+ 0(ogn/n))

j<yn j<yn
y
= n/ (1 —t)e'~tdt + O(1) + O(log n)
0

= nye'™Y + O(logn),
and we conclude that
IE[Lrunsort(w) (y)] = nyeliy + O(log n)
For the statement about E[Lirssr(x)(y)], note that Lignsore(r) (¥) = Lrunsort(r) (¥) With probability
at least 1 — n~(081081)/2 1y Temma 2.1; when these quantities do differ, they differ by at most n,
and n - n~0081081)/2 cap he absorbed into the error term. ]

In order to apply Proposition 2.3, we need an analogue of Lemma 2.2. As in the previous section,
it is more convenient to work with runsort.

Lemma 3.2. Fizy € [0,1]. Let 7 € S, be a permutation, and let 7' = wo (i1 i2) be the permutation
obtained from w by swapping the entries in positions i1 and io. Then

| Liansore(r) (Y) — Liansore(r) (¥)| < 9logn.

Proof. Write {Ay ¢} and {A;M} for the sets of segments of 7w and 7', respectively. As in the proof of
Lemma 2.2, we note that multiplying 7 on the right by the transposition (i iz) affects at most four
of the segments Ay, ¢, which together contain at most 4logn entries. In particular, for each entry
j not in one of these affected segments, the horizontal positions of j in runsort(w) and runsort(n’)
differ by at most 4logn. Hence, the first Linsori(r)(y) + 4logn entries of runsort(n’) certainly
contain all of the entries up to yn except for possibly some of the 4logn entries in the affected
segments. These missing small entries (if any exist) are contained in at most four segments A?M
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of 7/, and these segments must appear in runsort(n’) directly after the last run that includes all
smaller entries. Since all runs have length at most log n, we see that all of the entries up to yn are
among the first

Lignsori(n)(y) +4logn +logn +4logn = Ligneor(x) (y) + 9logn

entries of runsort(n’); that is, Lignsore(x)(¥) < Liansori(r)(y) + 9logn. By the same argument, we
have Lrunsort(w)( ) < Lrunsort( )( ) + 9logn. U

Following the same strategy as in the previous section, we obtain a concentration inequality for
Lrunsort(w) (y) :

Lemma 3.3. Fiz y € [0,1], and suppose that m € S, is chosen uniformly at random. Then with
probability at least 1 — 2n~1081087)/2 "o have the concentration inequality

‘Lrunsort(rr) (y) - nyeliy‘ = O(\/ﬁ(log n)2)

Proof. Applying Proposition 2.3 with z = 9logn and ¢ = 2y/nlogn gives that with probability at
least 1 — 2e~(08™)* the quantity Lignsori(m) (y) differs from its expectation by at most 18+/n(log n)2.
Plugging in the estlmate from Proposition 3.1, we have that

| Lignsore(m) — nwe' Y| = O(v/n(logn)?)

with probability at least 1 — 2e~(1°8™)* " Since runsort(r) = runsort(r) with probability at least
1 — p~(oglogn)/2 (hy Lemma 2.1), we see that in fact | Lunsort(r) — nye'=Y| = O(y/n(logn)?) holds
with probability at least

1— 267(10gn)2 . nf(loglogn)/Q >1— 2n7(log10gn)/2' m

When the entry j = yn is the beginning of a run of 7, the position of j in runsort(r) is precisely
Lyynsort(r) (y)- Thus, the previous lemma tells us that in the scaled plot of runsort(r), the beginnings
of runs cluster around the curve C. To make this precise, let ¢, (i, j) denote the probability that the
entry j is the beginning of a run of 7 and is in the i-th position of runsort(7) when 7 € S,, is chosen
uniformly at random. (Here, g,(i,j) differs from p,(i,7) in that the former looks at only the first
entry of each run and the latter looks at all entries.) We obtain an estimate on the distribution of
qn(1,7) for fixed j.

Lemma 3.4. There ezists a constant C > 0 such that the following holds for all y € [0,1]:

Z gn(i,yn) — (1 —y + 1/n)| < 2n~(loglogn)/2
[i—nyel=¥|<Cy/n(logn)?
and
Z qn(i,yn) < 2n—(10glogn)/2‘
li—nye!~¥|>Cy/n(logn)?

Proof. Recall that the entry yn is the beginning of a run of 7 with probability (n —yn+1)/n. This
implies that } ;e ¢n(é,yn) =1 —y + 1/n. Both statements now follow from Lemma 3.3. O

Let us summarize in words what this lemma tells us about the contribution to the measures R,
(and eventually also R) from the beginnings of runs: This contribution is concentrated close to
the curve C, and the “weighting” in the y-direction is (1 — y) dy. We will make these observations
precise in Section 5.

Finally, we record a version of this result that will be convenient in the next section.

Lemma 3.5. There exists a constant C > 0 such that the following holds for all y € [0,1]: If
(> Cy/n(logn)? and k > yn are integers, then qn(nye' =Y — £, k) < 2n~(loglogn)/2,
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Proof. This follows from Lemma 3.3 and the observation that y <y implies that Lynsore(x)(y) <
Lrunsort(w) (y/) for every . ]

4. THE INTERIOR DENSITY

We now compute the limiting density for the non-singular part of the permuton. Suppose that
7 is a random permutation of length n. Recall that p, (i, j) denotes the probability that the entry
j is in the i-th position of runsort(w). In the previous section, we analyzed the case where the entry
Jj is the beginning of a run of 7, so we focus on the remaining case: Let p),(i,7) = pn(4,7) — gn(4, )
denote the probability that the entry j is in the i-th position of runsort(7) and is not the beginning
of a run of 7. We will be interested in the situation where i = xn and j = yn for fixed z,y € (0, 1),
where the point (x,y) lies in C* (i.e., strictly above C) and n tends to infinity. By the results of the
previous section, we know that p/, (i, ) is very close to py(7,7) in this regime. Whenever we use zn
or yn as an input for a function that takes integer values (such as py, pl,, or ¢,), we really mean
[xn] and [yn]; we simply omit the ceiling symbols to avoid a typhoon of ceiling symbols.

Fix n and 4,57 € [n] with ¢ > 1, and suppose that we obtain 7 by first picking a random
permutation 7’ on [n] \ {j} and then inserting the entry j in a random position. Let k denote the
entry in the (i — 1)-th position of runsort(m). The following two descriptions define the same event:

e The entry j is in the i-th position of runsort(r) and is not the beginning of a run of 7.
e k < j, and the entry j was inserted directly after the entry & in 7.

The probability of the first bullet point occurring is (by definition) p/, (4, j), and the probability of
the second bullet point occurring is

1 . 1 .
ﬁ ZAPTL—I(Y’_:LIC):E 1- - Z pn—l(l_lak)
1<k<j J<k<n—1

Putting these together, we find that

) A= (1= 3 - 1h)

j<k<n—1

Since py(i,7) and pl, (i,j) are very close, we incur a very small error if we replace p,_1(i — 1,k)
with p/,_;(¢—1, k) on the right-hand side; we will address this carefully below. So, up to this small
error, pl,(i,7) is equal to

1- Z p;z—l(i_lak)

j<k<n—1

1
n

Note that we have the boundary conditions p/,(1,j) = 0 for all j and p),(i,n) = 1/n for 1 <i < n.
We now define the quantities py(i,j) recursively via

- 1 ~ .
pn(z7]) = E 11— Z pn—l(l - 1)k) )

j<k<n—1

with the same boundary conditions p,(1,7) =0 and p,(i,n) = 1/n for 1 < i < n. We will see that
pl(zn,yn) and p,(zn,yn) are very close as long as n is sufficiently large (with respect to (z,y)).

By repeatedly applying the recurrence relation for p, we can express p,(i,j) as a sum of terms
involving pn—i4+1(1,k) (for j <k <n—i+1)and pp—r(i—7r,n—7r) (fori—r >1land j <k <n-r),
together with some constant terms:

e The terms p,—;+1(1, k) vanish by our boundary conditions.
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e BEach term p,_,(i —7,n—r) is equal to 1/(n —r) (by our boundary conditions) and appears
("_ﬁf;_l) times (by stars and bars), always weighted by m and carrying the
sign (—1)". Here, r ranges from 1 to min{n — j,i — 2}; call the latter quantity M.

E]

W appears ("? ) times, where s ranges from 0 to M.

Putting everything together, we arrive at the explicit formula

e Fach constant term

M . M .
= (=" n—j+r—1 (=1)° n—j
pn(z’])_;n(n—l)---(n—r)< r—1 >+s§_%n(n—l)~--(n—s)< s >
We remark that the only dependence on 7 is contained in the value of M. In the regime ¢ > n—j+2,
we see that M (and hence also py, (7, j)) is completely independent of i; this is a hint of the horizontal
uniformity alluded to in the Introduction. For ¢ = zn and j = yn with n tending to infinity, the
second sum (call it S2) will contribute the main term, and the first sum (call it S7) will contribute
a negligible error. Note that in this setting, M is asymptotically a positive constant multiple of n
(since z,y € (0,1)).
We begin with the first sum. Expanding the binomial coefficient gives

M T . . .
Slzz((_l) L (—gtr—Dn-j+r=2 (n-j+1)

r—1)! n(n—1) (n—2)(n—3)---(n—r)

r=1
Writing n — j = (1 — y)n, we estimate
n—j+t j o jt—=r—=1)+n(r-1)
B R
n—r+t—1 n nn—r+t—1)

uniformly in n,r,t (so the implied constant depends only on (z,y)). Then

=1 —y)+0(r/n)

STy P ] (A=)t +0 (2" /n))
- =2 oqm?)

which is o(1/n).
Performing the analogous computation for the second sum, we find that

55:%(—1)5‘Tll‘(n—j)(n—j—1)~--(n—j—5+1)

il (n=1)(n—=2)--(n—s)
1 M (—1)® s s+1
. EZ (1= +O((s + 127" /n))
s=0
- 6:1 +0(1/n?).

In summary, we have established the following proposition.

Proposition 4.1. Fiz z,y € (0,1) such that (x,y) € CT. Then

" oqm),

~ e
Pn(xn,yn) = -

where the implicit constant depends only on (z,vy).

It remains to bound the difference between p and p’. This consists of keeping track of the error
terms g = p — p’ when we iterate the recurrence (2). At the ¢-th stage, the number of terms p,,_y is

((1_;’)”) (by stars and bars), and each such term is scaled (up to a sign) by m Let @
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be the maximum of the error terms ¢ (which are certainly nonnegative). By the triangle inequality,
we may ignore the signs of the errors, and we find that

(1-y)n (1-y)n
! (xn,yn) — pp(zn, yn (L=y)n 1 l:
|y, (wn, yn) — P 7y)\<QZ§:; ( , )n(n_l)._.<n_£+l)<62§:: 0(Q).

We now bound Q.

Lemma 4.2. Fiz z,y € (0,1) such that (x,y) € C+. If n is sufficiently large (depending on (x,y)),
then the following holds: For all 1 < ¢ < min{zn — 1, (1 —y)n} and all yn < k < n — ¢, we have

Gn_o(zn — 0, k) < 2(yn)~osloslyn))/2,

Proof. We wish to apply Lemma 3.5 with n replaced by n — £. Let ¢ = ye' ™Y — x (which is strictly
positive). First, we check that

k>yn>y(n—10).

Second, we wish to show that xn—¢ < (n—£)ye' ™Y —C+v/n — {(log(n—¥))? (where C is the constant
from Lemma 3.5); this inequality rearranges to

en + (1 —ye'™Y) > Cv/n — £(log(n — £))>.

The term 1 — ye!~¥ is nonnegative, and we see that the inequality holds as long as n is sufficiently
large (depending on y and ). So we can apply Lemma 3.5, which tells us that

Gnio(xn — 0, k) < 2(n — ¢)~(oglog(n=0)/2

The right-hand side is an increasing function of ¢, so the bound ¢ < (1 — y)n gives the desired
inequality. U

The previous lemma implies that Q < 2(yn)~(eelen)/2 (which is certainly O(1/n?)) for n
sufficiently large, so we can deduce the main result of this section. (For y = 1, recall from above
that p/, (zn,n) = 1/n.)

Lemma 4.3. Fiz z,y € (0,1] such that (z,y) € C*. Then

/ eyil 2

where again the implied constant depends only on (z,vy).

Let us summarize in words what this lemma tells us about the contribution to the measures
R, (and eventually also R) from the entries that are not the beginnings of runs: In CT, this
contribution gives a density e!~Y dx dy at the point (z,y); note that this is independent of x. We
have said nothing about the contribution below C; that this contribution is 0 follows quickly from
Lemma 3.3, but in fact we will give an alternative argument in the next section.

5. PurTING EVERYTHING TOGETHER

We finally prove Theorem 2.5, which implies Theorem 1.1. The main idea is that we have already
accounted for 100% of the mass of R in our discussions in the previous two sections; this means that
there will not be any mass below the curve C and that we do not need to worry about additional
contributions very close to C from entries that are not the beginnings of runs.

For each axis-parallel rectangle B C [0, 1], it follows from Lemmas 3.4 and 4.3 that

liminf R,,(B) > / eV~ dy + / (1 —y)dy = R(B).
BNC+t
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Now fix an axis-parallel rectangle By C [0, 1]2. Choose a tiling of [0, 1]? by axis-parallel rectangles
By, ..., Bs (such a tiling certainly exists). We have

5 5
1 = limsup R, ( thsupR 0) > liminf R, (Bg) > Z R([0,1)%) = 1.

n—00 — n—oo p— n—0o0

These inequalities must all be equalities, so li_}In R, (B;) exists and equals R(B;). As B; was
n—oo

arbitrary, this completes the proof of Theorem 2.5.

6. A GENERALIZED SETTING

In this brief concluding section, we mention a setting in which the ideas presented earlier—
especially those concerning the concentration inequalities derived in Section 3—still hold.

The standardization of a sequence of n distinct integers is the permutation in 5, that has the same
relative order as the sequence. For example, the standardization of 4917 is 2413. Let F C |J,,~o Sn
be a family of permutations, and let 5, = F N S,. Assume that every permutation obtained by
taking the standardization of a prefix of a permutation in F is also in F. Let us also assume that
F contains the permutation 1 € S; and that there is some constant ¢ > 1 such that |F,| < n!/c"
for all sufficiently large n.

We can use the family F to split an arbitrary permutation m € S, into subsequences as follows.
Let [, 3 denote the subsequence of 7 consisting of entries in positions a,a + 1,...,b, and let T,y
be the standardization of 7, 5. Set ko = 1. Then let k1 be the smallest integer that is greater than
ko and satisfies 7 ] € F; we make the convention that ky =n+1if 7 € F. If ky #n + 1, let
ko be the smallest integer that is greater than k1 and satisfies 7, ,) € F; we make the convention
that kg =n +1if T, ) € F. Continue defining integers k; in this greedy fashion until reaching a
step at which k. = n+1. Note that g, x,—1), Ty ko—1]s - - - > T[ky_1,k-—1] all belong to the family F.
Let us call the subsequences Tk 1, —1], Tk, ko—1]> - - - » T[kr_1,kr—1] the F-runs of m. Define F-sort(r)
to be the permutation obtained by sorting the F-runs of 7 so that their minimal entries appear
in increasing order. Note that F-sort is the same as runsort when F is the family of increasing
permutations (consisting of one permutation of each length).

FIGURE 2. The scaled plots of F44¢_sort(r) (left) and F'¥-sort(r) (right), where
is a permutation chosen uniformly at random from Ssg00-

Suppose n is large. If we choose m € S, uniformly at random, then the minimal entries of the F-
runs of 7 should concentrate along a certain curve after we apply F-sort to 7. It should be possible
to make this concentration statement precise using the ideas from Section 3; however, determining
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exactly what the curve is could be very difficult. Here, we simply provide some images illustrating
how this phenomenon might look in specific examples.

A double descent of a permutation m € S,, is an index ¢ € {2,...,n — 1} such that m;_1 > m; >
Tiv1. A walley of 7 is an index i € {2,...,n — 1} such that m;_; > m; < m41. Let F99 be the
family of permutations with no double descents, and let F'¥ be the family of permutations with no
valleys. Figure 2 shows the scaled plots of F49°_sort(7) and F¥3-sort(r), where 7 is a permutation
chosen uniformly at random from Ssoggo.

One possibility for future research is the characterization of the limiting behavior of F-sort()
(m € Sy, chosen uniformly at random) for various specific choices of F. Perhaps even more inter-
esting would be the determination of more general properties such as the existence of a limiting
permuton and conditions on F that guarantee some form of “horizontal uniformity.” One could also
consider the limiting behavior of runsort(r) when 7 € S,, is chosen non-uniformly, e.g., according
to the Mallows distribution.
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