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A B S T R A C T

This paper focuses on the development of minimum time control profiles for point-to-point
motion of a gantry crane system in the presence of uncertainties in modal parameters. Assuming
that the velocity of the trolley of the crane can be commanded and is subject to limits, an
optimal control problem is posed to determine the bang-off-bang control profile to transition the
system from a point of rest to the terminal states with no residual vibrations. Both undamped
and underdamped systems are considered and the variation of the structure of the optimal
control profiles as a function of the final displacement is studied. As the magnitude of the
rigid body displacement is increased, the collapse and birthing of switches in the optimal
control profile are observed and explained. Robustness to uncertainties in modal parameters is
accounted for by forcing the state sensitivities at the terminal time to zero. The observation that
the time-optimal control profile merges with the robust time-optimal control is noted for specific
terminal displacements and the migration of zeros of the time-delay filter parameterizing the
optimal control profile are used to explain this counter intuitive result. As a comparison to
the proposed controller, an acceleration constrained time-optimal control is analyzed which as
expected demands a larger maneuver time. A two degree of freedom gantry crane system is
used to experimentally validate the observations of the numerical studies and the tradeoff of
increase in maneuver time to the reduction of residual vibrations is experimentally illustrated.

1. Introduction

Control of cranes is a topic that has garnered increased interest over the past three decades coinciding with the growth in the
se of prefiltering approaches to minimize residual vibrations of systems characterized by underdamped motion. A vast majority
f crane controllers can be classified as open-loop or closed-loop, with a few combining feedforward and feedback controllers in a
racking framework. One open-loop approach is called input shaping [1] which consists of a time-delay filter which is designed to
ancel the underdamped poles of the system [2]. The domain of input shaping has matured and can account for uncertainties in
odel parameters. To account for uncertainties in the estimated damping or natural frequencies of the underdamped poles, multiple
eros of the time-delay filter are placed at the nominal locations of the underdamped poles, resulting in robustness to uncertainties
n the modal parameters. Controllers which are robust around the nominal model [1] and those that account for interval domains of
uncertainties [3] have been developed. Constraints on jerk [4] and deflection [5] have also been taken into account in the design.
ecently distributed delay input shapers [6] have been studied which introduce a novel parameterization in the design of input
hapers. Including input shapers within a feedback loop has also been considered [7,8] as researchers explore techniques to exploit
he strengths of input shapers.
Noakes, Petterson, and Werner [9] proposed a switching control profile to generate oscillation-damped transport and swing-

free stop. Their technique consists of bang-off-bang acceleration profiles in which the pulses are timed to minimize the cable sway
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during the maneuver and results in a swing-free stop. They experimentally demonstrated the results of the open-loop control design.
Shah and Hong [10] applied input shaping for the underwater transport of nuclear power plant’s fuel. There have been numerous
publications related to the use of input shapers [1,2,11] for sway control of cranes [5,12–22]. Maghsoudi et al. [23] applied a
distributed time-delay filter on a gantry crane. They used the method proposed by Vyhlidal et al. [6] for uncertainty studies for
gantry crane control and demonstrated that applying a distributed time-delay filter lead to an asymmetric robustness behavior
of the residual sway about the nominal stage. Ramli et al. [24] designed a neural network-based input shaper while Yavuz and
Beller [25] used neural networks for a closed-loop controller when it is combined with an input shaper. Wahrburg et al. [26] and
Ramli et al. [27] applied input shaping for maneuvers of an overhead crane with non-zero initial conditions, with an objective of
zero residual oscillations of the payload. Additionally, work has been done in command shaping control for non-zero initial and final
conditions [28]. Stein and Singh [29] presented simulation results of velocity constrained design of input shaped control profiles
for a gantry crane system. Fliess et al. [30] used the concept of differential flatness to control the traversing and hoisting of an
overhead crane. This differential flatness based design was extended to discrete time design by Diwold et al. [31].

Alli and Singh [32] designed passive controllers for a distributed parameter representation of the crane cable for point-to-point
maneuvers where the integral of the time absolute error is minimized. O’Connor [33] used a wave equation representation of
the cable dynamics assuming that the velocity of the trolley could be commanded. The velocity of the trolley was assumed to be
constrained and the damping was assumed to be zero. Researchers included particle swarm optimization into controller design for
overhead cranes [34,35]. Golovin et al. [36] developed a 𝐻∞ robust controller for actively damping the structural vibrations of the
gantry crane system. Various control methods have also been proposed where the overhead crane is modeled as a double pendulum
system [37–40]. A few papers proposed controllers which combine closed-loop controller used in conjunction with open-loop shaped
profiles to track. Kolar et al. [41] proposed a hybrid solution combining an open-loop generated crane trajectory as a reference signal
and closed-loop controller for handling external disturbances. Li et al. [42] introduced an online planning method for minimum-
time control of overhead cranes. Furthermore, many papers considered the payload as a point mass whereas Stein and Singh [43]
proposed an input shaper used in conjunction with a proportional–derivative controller for a crane with an inertial payload. Other
work has considered sliding mode [19,44,45], adaptive control [46], discrepancy-based control [47] and compared different control
strategies [48] while including various external disturbances on cranes. Apart from time-optimal control, Sun et al. [49] investigated
an energy-optimal controller for an underactuated double pendulum crane with state and control constraints. Compared to active
vibration suppression of a crane’s payload, Yurchenko et al. [50] used a passive method with an absorber.

This paper considers a tabletop gantry crane system driven by stepper motors which permits commanding the position of the
trolley. By imposing velocity limits on the trolley motion, this paper considers the design of velocity constrained time-optimal
point-to-point control of a crane moving in two dimensions. Since the pendular motion is almost undamped, an undamped system
model was first considered. Subsequently, the structure of switching function was used to parameterize the bang-off-bang profile
and the resulting nonlinear programming problem was solved to determine the optimal solution for any arbitrary maneuver. The
bang-off-bang control structure was then generalized to cater to multi-mode systems with underdamped modes.

The main contributions of this work include: (1) Development of a velocity constrained time-optimal control profile for a
gantry crane which is robust to uncertainties in modal parameters, (2) Illustration of the non-intuitive result that the robust and
non-robust solutions are coincident for specific displacements, (3) Illustration that a rectangular pulse input can attenuate the
dominant vibratory modes for specific displacements, (4) Illustration of the change in structure of the optimal control profile, and
(5) Experimental validation of all the aforementioned observations.

Section 2 presents the development of velocity constrained time-optimal control for an undamped gantry crane system followed
by the development of controllers which are robust to uncertainties in the undamped frequencies in Section 3. Section 4 generalizes
the optimal control formulation for a multi-mode system with damped or undamped modes. Section 5 presents a simple approach to
determine the transition in the structure of the control profile, followed by the validation of the design on a two degree of freedom
gantry crane system. The paper concludes with a brief summary of the results of the paper.

2. Undamped system

The gantry crane setup includes a trolley driven by a stepper motor which permits the command of the trolley’s velocity by
assuming that the acceleration is zero as the commanded velocity transitions. A schematic of the crane and an equivalent spring-
mass system are shown in Fig. 1 where a small angle displacement is assumed [51,52]. The spring-mass model can be written
as:

𝑚𝐿𝛽(𝑡) + 𝑚𝑔 sin (𝛽(𝑡)) = 0 (1)

𝑚𝑥̈(𝑡) − 𝑚✟✟⌃ 0
𝑥̈𝑖(𝑡) + 𝑚𝑔

(

𝑥(𝑡) − 𝑥𝑖(𝑡)
𝐿

)

= 0 (2)

↔ 𝑚𝑥̈(𝑡) + 𝑘𝑥(𝑡) − 𝑘𝑥𝑖(𝑡) = 0 (3)

𝑥̇𝑖(𝑡) = 𝑣(𝑡) (4)

where 𝑣 the velocity of the trolley is considered as the input and is constrained 0 ≤ 𝑣 ≤ 𝑉𝑚. The assumption that velocity of the
trolley can be used as a control input is based on papers which demonstrate velocity input control of industrial cranes [44,53–55].
2
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Fig. 1. Equivalent spring-mass system for small angle displacements.
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where 𝜔𝑛 =
√

𝑘
𝑚 . The time-optimal control problem can be posed as:

min 𝐽 = ∫

𝑡𝑓

0
𝑑𝑡 (6a)

subject to

𝐗̇ = 𝐴𝐗 + 𝐵𝑣 (6b)

𝐗(0) =
{

0 0 0
}𝑇 (6c)

𝐗(𝑡𝑓 ) =
{

𝑥𝑓 0 𝑥𝑓
}𝑇 (6d)

0 ≤ 𝑣 ≤ 𝑉𝑚 ∀𝑡 (6e)

Defining the Hamiltonian as:

 = 1 + 𝜆𝑇 (𝐴𝐗 + 𝐵𝑣) , (7)

the necessary conditions for optimality can be derived using calculus of variations, resulting in the equations

𝐗̇ = 𝜕
𝜕𝜆

= 𝐴𝐗 + 𝐵𝑣 (8a)

𝝀̇ = − 𝜕
𝜕𝐗

= −𝐴𝑇 𝝀 (8b)

𝑣 = 𝑉𝑚𝐇(−𝐵𝑇 𝝀) (8c)

𝐗(0) = 0 and 𝐗(𝑡𝑓 ) =
{

𝑥𝑓 0 𝑥𝑓
}𝑇 (8d)

 = 0 at 𝑡 = 0, (8e)

here 𝐇 is the Heaviside step function. Eq. (8c) is derived using Pontryagin’s minimum principle (PMP) which requires the optimal
rolley velocity to be bang-off-bang. Eq. (8b) can be solved in closed form resulting in the equation:

𝝀(𝑡) = 𝑒−𝐴
𝑇 𝑡𝝀(0) (9)

hich can also be written as:

𝜆1(𝑡) = cos(𝜔𝑛𝑡)𝜆1(0) + 𝜔𝑛 sin(𝜔𝑛𝑡)𝜆2(0) (10)

𝜆2(𝑡) = −
sin(𝜔𝑛𝑡)

𝜔𝑛
𝜆1(0) + cos(𝜔𝑛𝑡)𝜆2(0) (11)

𝜆3(𝑡) = (1 − cos(𝜔𝑛𝑡))𝜆1(0) − 𝜔𝑛 sin(𝜔𝑛𝑡)𝜆2(0) + 𝜆3(0) (12)

or undamped systems. Since the switching function is 𝐵𝑇 𝝀, it reduces to the third costate which reveals that the switching function
s a non-zero mean harmonic. This structure will help comprehend the change in structure of the optimal control profile 𝑣(𝑡) as a
unction of the final displacement 𝑥𝑓 . Since the Hamiltonian  at all times, including the initial time, is zero, we have:

(0) = 1 + 𝜆𝑇
(

𝐴𝐗(0) + 𝐵𝑉
)

= 0 (13)
3
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Fig. 2. Anti-symmetric time-optimal control profile.

⇒ 𝜆3(0) = − 1
𝑉𝑚

. (14)

Further, for a rest-to-rest maneuver, which is the focus of this paper, the Hamiltonian  at the final time is:

(𝑡𝑓 ) = 1 + 𝜆𝑇
(

𝐴𝐗(𝑡𝑓 ) + 𝐵𝑉𝑚
)

= 0 (15)

⇒ 𝜆3(𝑡𝑓 ) = − 1
𝑉𝑚

. (16)

Substituting Eq. (16) into Eq. (12), we can show that:
𝜆2(0)
𝜆1(0)

= 1
𝜔𝑛

tan
(𝜔𝑛𝑡𝑓

2

)

. (17)

valuating the slope of 𝜆3(𝑡) at the initial time and final time, we can show that:

𝜆̇3(0) = −𝜔2
𝑛𝜆2(0), and 𝜆̇3(𝑡𝑓 ) = 𝜔2

𝑛𝜆2(0), (18)

hich permits us to conclude that the switching function is anti-symmetric about the mid-maneuver time, which implies there will
lways be an even number of switches and that pairs of switch times are equally distant from the mid-maneuver time. Using Eq. (17),
he time derivative of 𝜆3(𝑡) evaluated at the mid-maneuver time is:

𝜆̇3

( 𝑡𝑓
2

)

= 𝜔𝑛 sin
(

𝜔𝑛
𝑡𝑓
2

)

𝜆1(0) − 𝜔2
𝑛 cos

(

𝜔𝑛
𝑡𝑓
2

)

𝜆2(0) = 0 (19)

which implies that the slope of the switching curve is always zero at the mid-maneuver time. This prompts parameterizing the
optimal control profile as:

𝑣(𝑡) = 𝑉𝑚
(

1 −𝐇(𝑡 − (𝑇2 − 𝑇1)) +𝐇(𝑡 − (𝑇2 + 𝑇1)) −𝐇(𝑡 − 2𝑇2)
)

(20)

s illustrated in Fig. 2, which in the frequency domain is:

𝑉 (𝑠) =
𝑉𝑚
𝑠
(

1 − 𝑒−𝑠(𝑇2−𝑇1) + 𝑒−𝑠(𝑇2+𝑇1) − 𝑒−2𝑠𝑇2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐺𝑐 (𝑠)

(21)

here 𝐺𝑐 (𝑠) is the transfer function of the time-delay filter which generates the bang-off-bang control profile when subjected to a
tep input. By requiring that a pair of zeros of 𝐺𝑐 (𝑠) cancel the undamped poles of the system and the pole at the origin, one can
erive the constraint to formulate a parameter optimization problem. It can be seen that:

𝐺𝑐 (𝑠 = 0) = 1 − 1 + 1 − 1 = 0 (22)

hich implies that the transfer function has a zero at the origin. The rigid body boundary condition is determined by integrating
he bang-off-bang velocity profile leading to the equation:

𝑥𝑖(𝑡) = 𝑉𝑚
(

𝑡 − (𝑡 − 𝑇2 + 𝑇1)𝐇(𝑡 − 𝑇2 + 𝑇1) + (𝑡 − 𝑇2 − 𝑇1)𝐇(𝑡 − 𝑇2 − 𝑇1) − (𝑡 − 2𝑇2)𝐇(𝑡 − 2𝑇2)
)

(23)

hich at the final time of 𝑡 = 𝑡𝑓 = 2𝑇2 leads to the equation:

𝑥𝑖(2𝑇2) =𝑥𝑓 = 𝑉𝑚
(

2𝑇2 − (𝑇2 + 𝑇1) + (𝑇2 − 𝑇1)
)

(24)

↔ 𝑥𝑓 =2𝑉𝑚(𝑇2 − 𝑇1) ⇒ (𝑇2 − 𝑇1) =
𝑥𝑓
2𝑉𝑚

. (25)
4
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Furthermore, to cancel the undamped poles at 𝑠 = ±𝑗𝜔𝑛, we have:

𝐺𝑐 (𝑠 = 𝑗𝜔𝑛) = 1 − 𝑒−𝑗𝜔𝑛(𝑇2−𝑇1) + 𝑒−𝑗𝜔𝑛(𝑇2+𝑇1) − 𝑒−2𝑗𝜔𝑛𝑇2 = 0 (26)

hich reduces to:

1 − cos(𝜔𝑛(𝑇2 − 𝑇1)) + cos(𝜔𝑛(𝑇2 + 𝑇1)) − cos(2𝜔𝑛𝑇2) = 0 (27)

sin(𝜔𝑛(𝑇2 − 𝑇1)) − sin(𝜔𝑛(𝑇2 + 𝑇1)) + sin(2𝜔𝑛𝑇2) = 0 (28)

which simplifies to:

2 sin(𝜔𝑛𝑇2)
(

sin(𝜔𝑛𝑇2) − sin(𝜔𝑛𝑇1)
)

= 0 (29)

2 cos(𝜔𝑛𝑇2)
(

sin(𝜔𝑛𝑇2) − sin(𝜔𝑛𝑇1)
)

= 0 (30)

which leads to the solution:

𝑇2 =
𝜋
𝜔𝑛

− 𝑇1 (31)

which results in the closed form solution:

2𝑇2 =
𝜋
𝜔𝑛

+
𝑥𝑓
2𝑉𝑚

and 𝑇1 =
𝜋

2𝜔𝑛
−

𝑥𝑓
4𝑉𝑚

(32)

where 2𝑇2 is the maneuver time 𝑡𝑓 . Since both 𝑇1 and 𝑇2 are functions of the maneuver 𝑥𝑓 , the scenario of collapse of the switches
requires 𝑇1 = 0 which results in the constraint:

𝑥𝑓 =
2𝜋𝑉𝑚
𝜔𝑛

(33)

which is a bang profile or a constant velocity profile. It should be noted that the collapse of the switches is proportional to one
period of the switching function 2𝜋

𝜔𝑛
. Any increase in time associated with a maneuver greater than the bang profile will introduce

two additional switches. This results from the fact that there will be two peaks or troughs of the switching profile, which results in
four switches. An observation which will be exploited later is the fact that since the switching function is a harmonic with a bias,
the width of all the off zones in the bang-off-bang profiles will be the same. Consider a constant velocity profile with no zero zones
which can be parameterized as:

𝑣(𝑡) = 𝑉𝑚
(

1 −𝐇(𝑡 − 2𝑇2)
)

(34)

which can be represented in the frequency domain as:

𝑉 (𝑠) =
𝑉𝑚
𝑠
(

1 − 𝑒−2𝑠𝑇2
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐺𝑐 (𝑠)

. (35)

The final displacement is given by the equation:

𝑥𝑓 = 2𝑉𝑚𝑇2. (36)

The requirement that the transfer function 𝐺𝑐 (𝑠) places a zero at the location of the undamped poles of the system 𝑠 = ±𝑗𝜔𝑛 requires
the constraints:

1 − cos(2𝜔𝑛𝑇2) = 0 (37)

− sin(2𝜔𝑛𝑇2) = 0 (38)

which results in the solution:

𝑇2 =
𝑛𝜋
𝜔𝑛

, where 𝑛 = 1, 2, 3,… . (39)

ubstituting the solution 𝑇2 into Eq. (36), we have:

𝑥𝑓 =
2𝑛𝜋𝑉𝑚
𝜔𝑛

. (40)

The number of zero zones 𝑛 depends on the desired terminal displacement and is given by the constraint:
2(𝑛 − 1)𝜋𝑉𝑚

𝜔𝑛
≤ 𝑥𝑓 ≤

2𝑛𝜋𝑉𝑚
𝜔𝑛

. (41)

For example, when 0 ≤ 𝑥𝑓 ≤ 2𝜋𝑉𝑚
𝜔𝑛

, one zero velocity zone exists in the optimal velocity profile.
Since all the off zones of the bang-off-bang profiles are the same, we parameterize the width of each zero zone as 2𝑇1 and only

two parameters are needed to determine the velocity limited time-optimal control profile. Fig. 3 illustrates the variation of the
5

witch time for each zone as the terminal displacement increases. The change in structure of the time-optimal control profile with
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Fig. 3. Switching structure and switch time variation as a function of 𝑥𝑓
(

𝜏𝑖 = 𝑇𝑖∕𝑡𝑓
)

. Shaded areas illustrate the time span of 𝑇1 and the blue curve shows the
witching function. Different background colors illustrate the three different picked Zones for (I) Zone 1, (II) Zone 2, (III) Zone 3.

ncreasing terminal displacements is illustrated for three consecutive zones. Zone 1 is characterized by two switches which collapse
or a specific terminal displacement. Any increase in terminal displacement results in the introduction of two additional switches in
he optimal control profile. Fig. 3 also plots the switching function which illustrates that as the optimal control profile transitions
rom one zone to the next. The switching function includes a phase shift of 𝜋 radians, which results in new switches being birthed at
he initial and terminal times of the maneuver. For higher zones, switches can be introduced at the mid-maneuver time and 2𝜋∕𝜔𝑛
istance from each other.
To determine the values for 𝑇1, which is half the width of each zero velocity zone, and 𝑇2, which is half of the maneuver time,
parameter optimization problem is solved which minimizes 𝑇2 subject to the constraints:

𝑇2 − 𝑛𝑇1 =
𝑥𝑓
2𝑉𝑚

(42)

(−1)𝑛+1𝑛 sin(𝜔𝑛𝑇1) − sin(𝜔𝑛𝑇2) = 0 (43)

here 2𝑇1 is the width of each of the zero pulse and 2𝑇2 is the maneuver time. Eq. (42) is derived from the final displacement
onstraint and Eq. (43) is derived from the constraint that the time-delay filter needs to locate a pair of zeros at the location of the
ndamped poles of the system.
Eqs. (42) and (43) can be transformed into polynomial equations which can be solved efficiently to identify the optimal

parameters 𝑇1 and 𝑇2. The Appendix provides the details of the transformation to generate polynomial equations for zones 2 and 3
for illustrative purposes.

It is interesting to note that as 𝑥𝑓 → 0, Eq. (42) requires 𝑇1 → 𝑇2. Eq. (43) where 𝑛 = 1 requires

𝜔𝑛𝑇2 = 𝜋 − 𝜔𝑛𝑇1 (44)

hich results in the equation:

2𝑇2 =
𝜋 (45)
6
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Fig. 4. Switch and maneuver time variation of a non-robust time-optimal controller for an undamped 1 mode system. (a), (b) and (c) show the control profiles
for 𝑥𝑓 = 100 mm, 𝑥𝑓 = 300 mm and 𝑥𝑓 = 550 mm in Zone 1, Zone 2 and Zone 3 respectively.

hich one can note is analogous to the two-impulse input shaper [1] which for an undamped system places the two impulses of
qual magnitude half a period of oscillation apart. Note that 2𝑇2 corresponds to the maneuver time.
The upper graph of Fig. 4 illustrates the variation of the switch times and the maneuver time as a function of the terminal

isplacement 𝑥𝑓 . The solid colored zone corresponds to the time intervals when the input (velocity command) is at the maximum
nd the rest of the time intervals are when the input is zero. When 𝑥𝑓 = 240 mm, the two switches collapse resulting in a constant
elocity profile. This is followed by the birth of four switches which collapse concurrently for a terminal displacement of 𝑥𝑓 = 480 mm
ollowing which a six switch optimal control profile is birthed. The lower half of Fig. 4 illustrates the optimal solution for three
unique displacements in zones 1, 2 and 3, labeled ‘‘a’’, ‘‘b’’, and ‘‘c’’ respectively.

3. Robust control

The challenge of dealing with model parameter uncertainties is ubiquitous and there have been numerous approaches proposed
for the design of robust open-loop controllers including enforcing robustness around the nominal model of the system or a
minimax problem formulation where the maximum residual energy is minimized over an interval of uncertainty. In this research
we determined the sensitivity of the states of the system with respect to uncertainty in the spring stiffness which correspond to
uncertainties in the natural frequency and force the state sensitivities with respect to the uncertain frequency to zero at the terminal
time. The resulting time-optimal control problem includes the augmented state space model:

𝑥̇1(𝑡) = 𝑥2(𝑡) (46)

𝑥̇2(𝑡) = −𝜔2
𝑛𝑥1(𝑡) + 𝜔2

𝑛𝑥3(𝑡) (47)
𝑑𝑥̇1(𝑡)
𝑑𝜔𝑛

=
𝑑𝑥2(𝑡)
𝑑𝜔𝑛

(48)

𝑑𝑥̇2(𝑡)
𝑑𝜔𝑛

= −2𝜔𝑛𝑥1(𝑡) − 𝜔2
𝑛
𝑑𝑥1(𝑡)
𝑑𝜔𝑛

+ 2𝜔𝑛𝑥3(𝑡) (49)

𝑥̇3(𝑡) = 𝑣(𝑡) (50)

0 ≤ 𝑣 ≤ 𝑉𝑚. (51)

and is subject to the initial and final conditions:

𝑥1(0) = 𝑥2(0) = 𝑥3(0) = 0, (52)
𝑑𝑥1
𝑑𝜔𝑛

(0) =
𝑑𝑥2
𝑑𝜔𝑛

(0) = 0, (53)

𝑥1(𝑡𝑓 ) = 𝑥3(𝑡𝑓 ) = 𝑥𝑓 , (54)

𝑥2(𝑡𝑓 ) =
𝑑𝑥1
𝑑𝜔𝑛

(𝑡𝑓 ) =
𝑑𝑥2
𝑑𝜔𝑛

(𝑡𝑓 ) = 0. (55)

The robust velocity constrained time-optimal control problem for the undamped system is solved for various displacements. The
variation in the optimal control profile parameterized by the switch times and maneuver time are illustrated in Fig. 5 as a function
of the terminal displacement. Unlike the variation of the switch times as a function of terminal displacement and the concurrent
7
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Fig. 5. Switch and maneuver time variation of a robust time-optimal controller for an undamped 1 mode system.

Fig. 6. Residual energy at 𝑡𝑓 of a non-robust and robust time-optimal controller for a perturbation of ±30 % in 𝜔𝑛 at 𝑥𝑓 = 50 mm.

ollapse of the switches, this phenomena is not observed in the spectrum of switch times in Fig. 5. It nevertheless should be noted
hat the optimal control profile births and collapses switches as a function of terminal displacements, resulting in an optimal control
rofile where the number of switches is a function of the terminal displacement. Fig. 6 illustrates the variation of the residual energy
at the terminal time for the non-robust and robust time-optimal controllers over a range of uncertain natural frequencies for the
undamped system. It is clear that the red line, which represents the variation of residual energy of the robust control, outperforms
the non-robust design illustrated by the blue line. These graphs are generated for a terminal displacement of 𝑥𝑓 = 50 mm and a
natural frequency of 𝜔𝑛 = 2𝜋. The residual energy is given by:

𝑉 (𝑡) = 1
2
𝑥̇(𝑡)2 + 1

2
𝜔2
𝑛
(

𝑥(𝑡) − 𝑥𝑓
)2 . (56)

The sensitivity of the residual energy with respect to the natural frequency is:
𝑑𝑉 (𝑡)
𝑑𝜔𝑛

= 𝑥̇(𝑡)
𝑑𝑥̇(𝑡)
𝑑𝜔𝑛

+ 𝜔𝑛
(

𝑥(𝑡) − 𝑥𝑓
)2 ... + 𝜔2

𝑛
(

𝑥(𝑡) − 𝑥𝑓
) 𝑑𝑥(𝑡)
𝑑𝜔𝑛

.

ince the time-optimal control profile forces the terminal states to be 𝑥(𝑡𝑓 ) = 𝑥𝑓 and 𝑥̇(𝑡𝑓 ) = 0, 𝑉 (𝑡𝑓 ) and
𝑑𝑉 (𝑡)
𝑑𝜔 (𝑡𝑓 ) = 0, irrespective

of the magnitude of the sensitivity states, 𝑑𝑉 (𝑡)
𝑑𝜔𝑛

= 0 at the terminal time. The second derivative of the residual energy with respect
o the natural frequency is:

𝑑2𝑉 (𝑡)
𝑑𝜔2

𝑛
=
(

𝑑𝑥̇(𝑡)
𝑑𝜔𝑛

)2
+ 𝑥̇

𝑑2𝑥̇(𝑡)
𝑑𝜔2

𝑛
+
(

𝑥(𝑡) − 𝑥𝑓
)2 + 4𝜔𝑛

(

𝑥(𝑡) − 𝑥𝑓
) 𝑑𝑥(𝑡)
𝑑𝜔𝑛

+ 𝜔2
𝑛

(

𝑑𝑥(𝑡)
𝑑𝜔𝑛

)2
+ 𝜔2

𝑛
(

𝑥(𝑡) − 𝑥𝑓
) 𝑑2𝑥(𝑡)

𝑑𝜔2
𝑛

(57)

hich is the curvature since the first derivative is zero at the nominal frequency 𝜔𝑛. The curvature is defined as the reciprocal
f the radius of a circle which best approximates the curve 𝑉 (𝜔𝑛). The curvature can be used as a measure of the robustness of
he control profile in the proximity of the nominal model with a smaller curvature (i.e. an osculating circle with large radius)
ndicating a smaller residual energy variation or greater robustness to uncertainties in the natural frequency. The solid and dashed
ines in Fig. 7 correspond to the respective non-robust and robust solutions, the blue curves represent the variation in the maneuver
ime as a function of terminal displacement, and the black lines represent the variation of the residual energy and its derivatives
ith terminal displacement. The third panel of Fig. 7 shows that there is a profound variation in the curvature of residual energy
unction for the non-robust solution as a function of terminal displacement in comparison to that of the robust control which is zero
or all displacements. It is also intriguing that, for specific terminal displacements, the robust and non-robust solutions are identical,
.e., the maneuver times are the same and the curvatures are both zero. To comprehend this unique result the loci of the zeros of
he time-delay filter which generates the bang-off-bang control profiles are generated and are illustrated in Fig. 8.
All the graphs are generated for a nominal frequency of 𝜔𝑛 = 2𝜋. As illustrated by the upper graph of Fig. 8, the non-robust

esign requires that the time-delay filter place zeros at the location of the nominal undamped poles of the plant. Meanwhile, the
8
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Fig. 7. Variation of terminal time, residual energy and its derivatives as a function of 𝑥𝑓 for a non-robust and robust time-optimal controller to illustrate the
collapses of the switch times for an undamped 1 mode system.

lower graph of Fig. 8 shows that the robust design mandates that a pairs of zeros be located at the nominal poles of the plant.
The horizontal loci of zeros for both the robust and non-robust designs illustrates that the time-delay filter places single and double
sets of zeros at the nominal location of the poles for the non-robust and robust designs respectively. It can also be noted that the
zero loci for the non-robust design intersects the horizontal loci for a terminal displacement of 𝑥𝑓 = 266.5 mm (shown by the red
cross), resulting in a pair of coincident zeros which is what the robust-controller is mandated to do. This is the reason why, for
specific terminal displacements, the robust and non-robust designs results in identical solutions. It can also be seen that the same
phenomena occurs for a terminal displacement of 𝑥𝑓 = 513.3 mm.

Fig. 9 illustrates the location of the zeros of the time-delay filter for the non-robust and robust designs for the terminal
displacement 𝑥𝑓 = 500 mm. The blue circles correspond to the non-robust design and the red to the robust design. It should be
noted that the robust design includes two pairs of zeros at ±2𝜋𝑗 and the non-robust design includes one pair of zeros. The arrows
associated with the blue and red circles are the slopes of the loci of the zeros as a function of terminal displacement 𝑥𝑓 . It is evident
hat a blue zero is transitioning from above 2𝜋𝑗 with a negative slope and is shown to coincide with the nominal poles of the system
or 𝑥𝑓 = 513.3 mm, resulting in identical robust and non-robust designs.
The red and blue lines in Fig. 9 illustrate the variation in residual energy as the location of the nominal poles of the system are

aried. The non-robust design outperforms the robust design for perturbation of the uncertain frequency above 𝜔𝑛 = 2𝜋, while the
obust design outperforms the non-robust design for perturbations below the nominal frequency. This asymmetry is due to the fact
hat the non-robust design has a zero located immediately above the nominal frequency and ends up acting like the zero locations
f a minimax design [3]. It can also be seen that, for large perturbations of the uncertain frequency, the residual energy goes to
zero at locations where the time-delay filter has a zero.
9
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Fig. 8. Loci of zeros of the optimal time-delay filter for a non-robust and robust controller as a function of 𝑥𝑓 for a 1 mode system.

Fig. 9. Residual energy versus uncertain model frequency for a non-robust and robust controller at 𝑥𝑓 = 500 mm for a 1 mode system. The arrows indicate the
slopes of zero-loci for 𝑥𝑓 > 500 mm. 𝜔𝑛,𝑑𝑒𝑠𝑖𝑔𝑛 shows the frequency the time-delay filters were designed for.
10
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4. Generalization

Section 2 dealt with an undamped system with one mode which permitted a reduced order parameterization of the optimal
ontrol profile by exploiting the symmetrical nature of the control about the mid-maneuver time. This symmetry is attributed to the
act that the oscillatory motion excited by the input does not damp out and the symmetric input can, by virtue of linearity of the
ystem, generate an out of phase motion of the undamped modes which cancels the existing oscillations. For a system with damping,
he symmetric nature of the control profile is lost since the amplitude of the oscillatory mode decays over time. Consequently, the
ptimal control profiles need to explicitly parameterize every switch in addition to the maneuver time. Furthermore, there may be
ultiple modes which contribute to the output of interest and those modes need to be quiescent at the end of the maneuver as well.
or a system with multiple modes, characterized by damped or undamped modes, the bang-off-bang control profile is parameterized
s:

𝑣(𝑠) =
𝑉𝑚
𝑠

[

1 +
𝑁+1
∑

𝑖=1
(−1)𝑖𝑒−𝑠𝑇𝑖

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐺𝑐 (𝑠)

(58)

here 𝑁 is the number of switches which is an even number and 𝑇𝑁+1 is the maneuver time.
The constraints to identify the optimal values of 𝑇𝑖 are derived by requiring the zeros of the time-delay filter to cancel the pole

t the origin and the underdamped poles of the system. This results in the constraint:

𝐺𝑐 (𝑠 = 0) = 1 +
𝑁+1
∑

𝑖=1
(−1)𝑖 = 0, (59)

hich is automatically satisfied by the parameterization of the optimal control profile. To cancel the complex conjugate poles at
= −𝜎𝑘 ± 𝑗 𝜔𝑑,𝑘 = −𝜁𝑘𝜔𝑛,𝑘 ± 𝑗 𝜔𝑛,𝑘

√

1 − 𝜁2𝑘 , where 𝑘 = 1, 2,… , 𝑚 are the 𝑚 modes whose poles need to be canceled by the zeros of
the time-delay filter. This results in the constraints:

1+
𝑁+1
∑

𝑖=1
(−1)𝑖𝑒𝜎𝑘𝑇𝑖 cos(𝜔𝑑,𝑘𝑇𝑖) = 0 (60)

𝑁+1
∑

𝑖=1
(−1)𝑖𝑒𝜎𝑘𝑇𝑖 sin(𝜔𝑑,𝑘𝑇𝑖) = 0, 𝑘 = 1, 2,… , 𝑚. (61)

To satisfy the terminal rigid body displacement, we require:

𝑥(𝑇𝑁+1) = 𝑥𝑓 = ∫

𝑡𝑓

0
𝑉𝑚𝑑𝑡 (62)

= 𝑉𝑚

(

𝑇𝑁+1 +
𝑁
∑

𝑖=1
(−1)𝑖(𝑇𝑁+1 − 𝑇𝑖)

)

(63)

→ 𝑥𝑓 = 𝑉𝑚

(

𝑇𝑁+1 −
𝑁
∑

𝑖=1
(−1)𝑖𝑇𝑖

)

. (64)

The nonlinear optimization problem that requires solving is:

min 𝐽 = 𝑇𝑁+1 (65a)
subject to

𝑉𝑚

(

𝑇𝑁+1 −
𝑁
∑

𝑖=1
(−1)𝑖𝑇𝑖

)

= 𝑥𝑓 (65b)

1 +
𝑁+1
∑

𝑖=1
(−1)𝑖𝑒𝜎𝑘𝑇𝑖 cos(𝜔𝑑,𝑘𝑇𝑖) = 0 (65c)

𝑁+1
∑

𝑖=1
(−1)𝑖𝑒𝜎𝑘𝑇𝑖 sin(𝜔𝑑,𝑘𝑇𝑖) = 0, 𝑘 = 1, 2,… , 𝑚 (65d)

0 ≤ (𝑇𝑖+1 − 𝑇𝑖), for 𝑖 = 0, 1, 2,… , 𝑁, (65e)

where 𝑇0 = 0. As in the case of the undamped system, the number of switches necessary to parameterize the optimal control profile
changes with the terminal displacement. Fig. 10 illustrates the variation of the switch times as a function of the final displacement
and the control input over the maneuver time for a single mode system with an underdamped system model (𝜁 = 0.01). For terminal
displacements of 0− 700 mm, three zones have been identified, separated by the vertical dashed lines. Three representative optimal
control profiles are presented corresponding to three displacements highlighted by the dotted lines and labeled 𝑎, 𝑏, and 𝑐. It is
interesting to note that in zone 3, which includes the dotted line 𝑐, the number of switches required for the optimal control profile
starts with four switches, transitions to six switches, and returns to a four switch optimal control profile before finally transitioning
11

to a two switch profile.
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Fig. 10. Switch and maneuver time variation of a non-robust time-optimal controller for an underdamped 1 mode system.

. Switching profile transition

It is clear from Figs. 4 and 10 that the structure of bang-off-bang control profile changes as a function of the terminal
isplacement. In Fig. 4, for small displacements (𝑥𝑓 ≤ 240 mm), the optimal control profile is first characterized by two switches and
he switches, then, after collapsing, result in a pulse control profile which births a four switch control profile which subsequently
ransitions to a six switch control profile. The change in structure of the optimal control profile for underdamped systems is
ore involved as all switches do not collapse for the same value of the terminal displacement. To exactly determine the terminal
isplacement which corresponds to the birth or collapse of two or more switches, the constraint is that the switching function and
ts time derivative are simultaneously zero at some time instant. For the underdamped system the switching function 𝜆3(𝑡) can be
epresented as:

𝜆3(𝑡𝑐𝑟, 𝑥𝑓 ) = 𝜆̇3(𝑡𝑐𝑟, 𝑥𝑓 ) = 0, (66)

here 𝑡𝑐𝑟 is the switch time where two switches collapse. 𝑡𝑐𝑟 and 𝑥𝑓 can be determined by solving the two nonlinear simultaneous
quations in two unknowns while satisfying all the necessary conditions for optimality.

. Experimental results

A scaled model of a gantry crane was fabricated to test and validate the time-optimal control profiles presented in this paper. The
orkspace of the gantry crane includes a cuboid of dimensions 8’ × 4’ × 3’ as shown in Fig. 11. Its main element is a trolley which
lides on a rail and is able to move a payload over a 2-dimensional space (the winch motion of the crane is not active). The crane
s equipped with 3 stepper motors of type NEMA 23 with a driver setting of 400 steps per revolution, where two of them are used
or the 𝑦-axis and one for the 𝑥-axis. For this experiment just the motor of the 𝑥-axis is used. The drivers of the stepper motors are
onnected to an Arduino MEGA 2560 which receives the switch times and the desired position of the trolley as inputs. The maximum
elocity of the trolley is set to 240 mm/s. The inset of Fig. 11 includes two images. The one on the left illustrates the 3D printed
hassis which houses a cylindrical steel mass of 500g. A rope and a hook enable a connection between the chassis and the trolley
aking it a double pendulum system. The right panel illustrates the sensor integrated into the payload which includes two Arduino
anos, a 3-axis gyroscope (MPU-6050), and two nRF24L01 single chip radio transceivers. One Arduino Nano is housed within the
hassis to process the data provided by the gyroscope and to transmit the data to the other Arduino Nano, which is connected to
receiver. To permit a repeatable evaluation of the robustness of the controller, a cable deployment setup was designed which
ermits changing the length 𝐿1 of the pendulum about a nominal length. The change in cable length changes the modal frequency
f the system and was used to test the robustness of the controller to uncertainties in modal parameters of the gantry crane system.
A series of experiments were conducted to illustrate some of the novel observations of the analytical study. The first of which

ncluded the collapse of the switches of the velocity constrained time-optimal control profile for a system with a single undamped
ode. The simplest model of the gantry crane includes representing the suspended mass as a single undamped pendulum and
rectangular command, i.e., a bang control profile should cancel the undamped mode for a specific displacement. The natural
requency and damping ratio of the first mode of the pendulum with the nominal length were experimentally determined to be
𝑛 = 0.6832 Hz and 𝜁1 = 0.001517 which was approximated to be zero in the development of the controller.
Fig. 12 illustrates experimental results for terminal displacements resident in zone 1, which corresponds to the optimal control

rofile being characterized by a two switch bang-off-bang profile. To illustrate the fact that for specific terminal displacements,
bang profile (pulse) results in zero terminal vibration, a pulse with increasing width is progressively applied. Starting from a
12

erminal displacement of 𝑥𝑓 = 200 mm and progressively increasing it until 𝑥𝑓 = 351.3 mm, the maneuver time increases, but at the
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Fig. 11. Experimental setup of a gantry crane with an inset of the sensor part, which consists of a powerbank, Arduino Nano, 3-axis gyroscope (MPU-6050),
nd an nRF24L01 transceiver. Rotation around the 𝑦-axis is introduced as the swinging angle 𝛼. 𝐿1 is denoted as the rope length and 𝐿2 = 7.86 cm.

Fig. 12. Residual vibration variation when changing the final displacement from 𝑥𝑓 = 200 mm to 𝑥𝑓 = 351.3 mm for a pulse control profile. The blue curve
illustrates the residual vibration at 𝑥𝑓 = 351.3 mm which validates the cancellation of the first mode of vibration.

ame time, the maximum angular displacement of the pendulum 𝛼 is decreasing until it is not present at the end of the maneuver
for a displacement of 351.3 mm. It can be noted that a small high frequency oscillation is evident which corresponds to the second
mode of the double pendulum system which is not considered in the controller design. For the next set of experiments, the double
pendulum model of the crane is assumed in the identification of the parameters of the two modes of oscillation. The second mode’s
parameters are identified to be 𝜔𝑛,2 = 6.159 Hz and 𝜁2 = 0.026065 where the damping of the second mode is an order of magnitude
reater than that of the first. For the two mode system, three controllers were tested. The first controller was designed to cancel
he first mode only. The second controller was designed to cancel both of the modes at the end of the maneuver and the third
13
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Fig. 13. Swinging angle 𝛼 (around y-axis) for a 1 mode time-delay filter (non-robust), 2 mode time-delay filter (non-robust), and 2 mode time-delay filter
(robust) when 𝑥𝑓 = 100 mm. Shaded regions help to distinguish between the operating and residual (off) time of the controller. The final time 𝑡𝑓 for each
cenario is highlighted by a red dashed line.

ontroller was designed to be robust to uncertainties in both the modes’ natural frequencies. Fig. 13 illustrates the time variation of
he angular displacement of the pendular payload where the green region corresponds to when the control input is active and the
ellow region is the post-actuation domain. The first panel of Fig. 13 illustrates the impact of canceling the first mode, the second
anel corresponds to the controller canceling both modes, and the third panels display the elimination of residual vibration when
he robust time-optimal control profile is used to drive the system. These results were generated for a terminal displacement of
00 mm and the pendulum length 𝐿1 which corresponds to the nominal model which was used to identify the modal parameters.
o illustrate the variation in residual energy as the pendular length is varied, five experiments were conducted for each pendular
ength to account for uncertainties in initial conditions. With a total of seven perturbed lengths of the pendulum on either side of
he nominal length, a total of 150 experiments were conducted. Box and whisker charts are used to illustrate uncertainties in the
esidual energy for each of the perturbed models. Fig. 14 illustrates the profound improvement in the use of the robust controller
or which the residual vibration for the various pendulum lengths appear negligible compared to the residual energy resulting from
he use of the non-robust control profiles. The final set of experiments illustrates a rather counter intuitive result which claims
hat the non-robust design and robust designs are coincident since the non-robust design for specific terminal displacements of the
ingle-mode model places multiple zeros of the time-delay filter at the nominal location of the poles of the system. Fig. 15 illustrates
he residual vibration box and whisker charts for a terminal displacement of 𝑥𝑓 = 390.1 mm, where it is evident that the residual
nergy curve is relatively flat. It should be pointed out that in this design, only the first mode of vibration was considered in the
esign, since observation of the coincidence of the robust and non-robust design has been observed for system with single undamped
odes.

. Comparison to acceleration constrained control

The approach presented in this paper falls under the umbrella of input-shaping. One can also extend the proposed approach to
ynthesize input shapers which incorporate acceleration bounds in addition to velocity constraints [51]. This section presents results
omparing input shapers designed with and without acceleration constraints with both subject to the same velocity constraints. These
esults are presented in Figs. 16a–d where it is evident that both approaches satisfy the terminal requirement. Not surprisingly, the
ddition of acceleration bounds increases the maneuver time. Fig. 16a illustrates the normalized control profile for shaped inputs
ith (red) and without (blue) acceleration constraint. The final time without an acceleration constraint is 𝑡𝑓 = 0.9402 s and with

𝑓 = 0.9882 s, a marginal increase in the maneuver time. Fig. 16b illustrates the displacement of the cart where the accelerations
onstrained displacement profile arrive at the desired cart displacement of 𝑥𝑓 = 100 mm after the unconstrained profile does. The
isplacement and velocity profiles of the suspended mass illustrated in Fig. 16c and Fig. 16d, respectively, illustrate minimal change
14

n their time evolution.
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Fig. 14. Residual energy variation at 𝑡𝑓 of time-optimal controllers for 𝑥𝑓 = 100 mm for different rope lengths 𝐿1 varying from 39.9 cm to 51.1 cm in 15
equally spaced intervals. The time-optimal controllers are designed for 𝐿1 = 45.5 cm. Blue and red shaded illustrate the residual energy statistics for the 2 mode
non-robust and robust controller respectively. Furthermore, the time history of the swinging angle 𝛼 for a non-robust vs robust scenario is illustrated by insets.
The overall box and whisker chart includes 150 experiments.

Fig. 15. Residual energy at 𝑡𝑓 of a time-optimal controller at 𝑥𝑓 = 390.1 mm for different rope length 𝐿1 varying from 39.9 cm to 51.1 cm in 15 equally spaced
intervals. The controller is designed for a system with 𝐿1 = 45.5 cm where the non-robust and robust solution collapse. The change of swinging angle 𝛼 for the
controller is illustrated by insets. The overall box and whisker chart includes 75 experiments.

Fig. 17 illustrates the time history of the angular velocity measured by the gyroscope attached to the payload. It can clearly be
seen that the rectangular pulse input (without prefiltering) leads to the greatest oscillations. The time delay filter without acceleration
constraints has smaller oscillations and the smallest oscillations correspond to the time delay filter with acceleration constraints.
Note that the time-delay filters are designed to only attenuate the first mode. Imposing acceleration constraints lead to a roll off of
the magnitude of the Bode diagram of the transfer function of the time-delay filter, resulting in less energy being injected into the
uncontrolled second and third modes of the system. This comes at the cost of increasing the maneuver time. It is possible to use
the design framework presented in the paper to target the second mode and illustrate that multiple modes can be canceled with
an increase in the maneuver time when acceleration constraints are imposed. It should be noted that the oscillations in Fig. 17
correspond to the second mode of the pendulum.
15
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Fig. 16. Simulation of time-optimal velocity constrained controller without acceleration bounds (blue) versus time-optimal velocity constrained controller with
acceleration bounds (red) where the minimal/maximal acceleration is 𝑎𝑚𝑖𝑛∕𝑚𝑎𝑥 = ±5𝑒3 mm/s2.

Fig. 17. Experiment of time-optimal velocity constrained controller without acceleration bounds (blue) versus time-optimal velocity constrained controller with
acceleration bounds (red). The solid lines are the angular velocity of 𝛼̇ around the 𝑦-axis. The black, blue, and red colors represent a rectangular pulse, time
delay filter without acceleration bounds and time delay filter with acceleration bounds respectively. For the red case the minimal/maximal acceleration bound
is 𝑎𝑚𝑖𝑛∕𝑚𝑎𝑥 = ±5𝑒3 mm/s2. The dashed lines mark the final maneuver times.

8. Conclusions

This paper presents an optimal control based development of a velocity limited minimum time control of a gantry crane system
which is characterized by two modes of vibratory motion. The variation in the structure of the optimal control profile is presented
for a single mode system where the vibratory modes are undamped or underdamped. It is noted that, as the final displacement
increases, there is an increase in the number of switches in the optimal control profile with periodic terminal displacements requiring
a pulse control profile with no switches. The optimal control framework is extended to account for multiple vibratory modes such
as when the crane is modeled as a double pendulum. The state sensitivities are used to determine controllers which are robust
to uncertainties in model parameters. Experimental results validate the counter intuitive observation that for specific terminal
displacement the robust and non-robust optimal control profiles are coincident. The experimental results also clearly demonstrate
the profound reduction in residual vibrations of the double pendulum system when the length of the pendulum is changed to serve
as a proxy for uncertainties in natural frequencies of the model.
16
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Appendix

The time-optimal control profile for zone 1 illustrated in Fig. 4 parameterized with two variables 𝑇1 and 𝑇2 has a closed form
solution. For higher order zones, the transcendental constraint equations cannot be solved in closed form, but can be converted to
a polynomial equation as illustrated for zones 2 and 3.

Zone 2

The parameterization of the time-optimal control for Zone 2 leads to the constraints:

2 sin(𝜔𝑛𝑇1) + sin(𝜔𝑛𝑇2) = 0 (A.1)

2𝑇2 − 4𝑇1 =
𝑥𝑓
𝑉𝑚

. (A.2)

Let 𝑥𝑓∕𝑉𝑚 = 2𝑎𝜔𝑛, which gives 2𝑇2 − 4𝑇1 = 2𝑎𝜔𝑛 or 𝑇2 = 2𝑇1 + 𝑎𝜔𝑛. Eq. (A.1) becomes 2 sin(𝜔𝑛𝑇1) + sin(2𝜔𝑛𝑇1 + 𝑎𝜔2
𝑛) = 0. This can

e further simplified to:

2 sin
(

𝜔𝑛𝑇1
)

+ sin
(

2𝜔𝑛𝑇1
)

cos
(

𝑎𝜔2
𝑛
)

+ sin
(

𝑎𝜔2
𝑛
)

cos
(

2𝜔𝑛𝑇1
)

= 0. (A.3)

et 𝛼 = sin
(

𝑎𝜔2
𝑛
)

, 𝛽 = cos
(

𝑎𝜔2
𝑛
)

and 𝑡 = 𝜔𝑛𝑇1:

2 sin(𝑡) + 𝛽 sin(2𝑡) + 𝛼 cos(2𝑡) = 0. (A.4)

et 𝑡 = cos−1(𝑧), resulting in the simplified equation:

2 sin(cos−1(𝑧)) + 𝛽 sin(2𝑐𝑜𝑠−1(𝑧)) + 𝛼 cos(2𝑐𝑜𝑠−1(𝑧)) = 0 (A.5)

2
√

1 − 𝑧2 + 𝛽2𝑧
√

1 − 𝑧2 + 𝛼
(

2𝑧2 − 1
)

= 0 (A.6)

2
√

1 − 𝑧2 (𝛽𝑧 + 1) + 𝛼
(

2𝑧2 − 1
)

= 0 (A.7)

𝛼
(

2𝑧2 − 1
)

= −2
√

1 − 𝑧2 (𝛽𝑧 + 1) (A.8)

𝛼2
(

4𝑧4 − 4𝑧2 + 1
)

= 4
(

1 − 𝑧2
) (

𝛽2𝑧2 + 2𝛽𝑧 + 1
)

(A.9)
(

4𝛼2 + 4𝛽2
)

𝑧4 + 8𝛽𝑧3 +
(

−4𝛼2 − 4𝛽2 + 4
)

𝑧2 − 8𝛽𝑧 + 𝛼2 − 4 = 0. (A.10)

xploiting the knowledge that 𝛼2 + 𝛽2 = 1, we have:

4𝑧4 + 8𝛽𝑧3 − 8𝛽𝑧 + 𝛼 − 4 = 0. (A.11)

rom Eq. (A.11) the parameter 𝑇1 can be calculated by using 𝑡 = 𝑐𝑜𝑠−1(𝑧) and 𝑇1 = 𝑡∕𝜔𝑛. Assuming that 𝜔𝑛 is given and the user
an choose any 𝑥𝑓 which lies in the bounds of the zone, the quartic equation provides a solution for the switch time 𝑇1. From
here, the mid-maneuver time 𝑇2 can easily be calculated by Eq. (A.2). For illustrative purposes, assume 𝜔𝑛 = 2𝜋, 𝑥𝑓 = 400 mm and
𝑚 = 240 mm/s. Since the discriminant of the quartic equation is negative, we have two real and two complex conjugate roots. We
isregard the complex roots, obtain 𝑇1,1 = 0.0409 s and 𝑇1,2 = 0.4247 s, and from there 𝑇2,1 = 0.9151 s and 𝑇2,2 = 1.6827 s follows.
he time-optimal problem requires the shorter time which is why 𝑇 is discarded.
17
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Zone 3

The switch parameterization for Zone 3 can be written as:

3 sin(𝜔𝑛𝑇1) − sin(𝜔𝑛𝑇2) = 0 (A.12)

2𝑇2 − 6𝑇1 =
𝑥𝑓
𝑉𝑚

. (A.13)

Let 𝑥𝑓∕𝑉𝑚 = 2𝑎𝜔𝑛, which gives 2𝑇2 −6𝑇1 = 2𝑎𝜔𝑛 or 𝑇2 = 3𝑇1 + 𝑎𝜔𝑛. Eq. (A.13) becomes −3 sin
(

𝜔𝑛𝑇1
)

+ sin
(

2𝜔𝑛𝑇1 + 𝑎𝜔2
𝑛 + 𝜔𝑛𝑇1

)

= 0.
This can be further simplified to:

−3 sin
(

𝜔𝑛𝑇1
)

+ sin
(

2𝜔𝑛𝑇1
)

cos
(

𝑎𝜔2
𝑛 + 𝜔𝑛𝑇1

)

+ sin
(

𝑎𝜔2
𝑛 + 𝜔𝑛𝑇1

)

cos
(

2𝜔𝑛𝑇1
)

= 0. (A.14)

et 𝛼 = sin
(

𝑎𝜔2
𝑛
)

, 𝛽 = cos
(

𝑎𝜔2
𝑛
)

and 𝑡 = 𝜔𝑛𝑇1, Eq. (A.14) can be rewritten as:

−3 sin(𝑡) + sin(2𝑡) (𝛽 cos(𝑡) − 𝛼 sin(𝑡)) + cos(2𝑡) (𝛼 cos(𝑡) + 𝛽 sin(𝑡)) = 0. (A.15)

Let 𝑡 = cos−1(𝑧):

−3 sin(cos−1(𝑧)) + sin
(

2 cos−1(𝑧)
) (

𝛽 cos(cos−1(𝑧)) − 𝛼 sin(cos−1(𝑧))
)

...

... + cos(2 cos−1(𝑧))
(

𝛼 cos(cos−1(𝑧)) + 𝛽 sin(cos−1(𝑧))
)

= 0 (A.16)

−3
√

1 − 𝑧2 + 2𝑧
√

1 − 𝑧2
(

𝛽𝑧 − 𝛼
√

1 − 𝑧2
)

+
(

2𝑧2 − 1
)

(

𝛼𝑧 + 𝛽
√

1 − 𝑧2
)

= 0 (A.17)

−3
√

1 − 𝑧2 + 2𝛽𝑧2
√

1 − 𝑧2 − 2𝛼𝑧(1 − 𝑧2) + (2𝑧2 − 1)𝛼𝑧 +
(

2𝑧2 − 1
)

𝛽
√

1 − 𝑧2 = 0 (A.18)
√

1 − 𝑧2
(

4𝛽𝑧2 − 𝛽 − 3
)

= −4𝛼𝑧3 + 3𝛼𝑧 (A.19)
(

1 − 𝑧2
) (

16𝛽2𝑧4 − 8𝛽(𝛽 + 3)𝑧2 + 𝛽2 + 6𝛽 + 9
)

= 16𝛼2𝑧6 − 24𝛼2𝑧4 + 9𝛼2𝑧2. (A.20)

ith the knowledge that 𝛼2 + 𝛽2 = 1, we have:

−16𝑧6 + (24 + 24𝛽)𝑧4 + (−30𝛽 − 18)𝑧2 + 𝛽2 + 6𝛽 + 9 = 0, (A.21)

hich can be reduced to a cubic equation by introducing 𝑧2 = 𝑤, resulting in the equation:

−16𝑤3 + (24 + 24𝛽)𝑤2 + (−30𝛽 − 18)𝑤 + 𝛽2 + 6𝛽 + 9 = 0. (A.22)

f we pick 𝜔𝑛 = 2𝜋, 𝑥𝑓 = 600 mm and 𝑉𝑚 = 240 mm/s, the only real solution which would satisfy Eq. (A.12) is 𝑇1 = 0.0395 s and
herefore 𝑇2 = 1.3684 s. Note, 𝑡 = cos−1(𝑧) supports two real solutions and 4 complex conjugate solutions. From there, 𝑇1 can be
calculated but in this case just one of the real solutions satisfies Eq. (A.12).
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