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Abstract: This paper focuses on the development of a global sensitivity based design of robust
input shapers. The Derivative-based Global Sensitivity Measure (DGSM) which consists of the
expected value of the absolute value of the gradient of the terminal residual energy with respect
to the uncertain parameters, is used to tradeoff performance to robustness. A multi-objective
cost function which is a convex combination of the terminal residual energy for rest-to-rest
maneuvers and the DGSM, is used to design robust input shapers. The proposed approach is
illustrated on a single spring-mass-dashpot system and the benchmark floating oscillator. As
compared to the traditional Zero Vibration Derivative Input Shaper, the proposed approach is
demonstrated to reduce the average residual energy over the domain of uncertainty.
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1. INTRODUCTION

Precision motion control in applications such as wafer
scanners, atomic force microscopes, hard disk drives,
cranes etc. are demanding higher speed of operation and
smaller residual vibrations to increase productivity. In-
creasing speed can be achieved with light weight struc-
tures, which are then burdened with low frequency vibra-
tions which is deleterious to the desirable functioning of
the device. For applications where there are significant
uncertainties in the model parameters, it is imperative
that the issue of robustness be addressed in the design
of controllers. A popular approach for precision motion
control of vibratory systems is by shaping the command
input using a technique which is referred to as Input Shap-
ing (Singer and Seering (1990)). The survey papers (Singh
and Singhose (2002)) and (Singh and Vyhĺıdal (2020))
provide an overview of the early development and the
latest developments in Input Shaping, respectively. There
is a large body of research addressing the questions of
robustness by forcing the state sensitivities to the uncer-
tain parameters to be zero at the terminal time of the
maneuver (Liu and Singh (1997)). The sensitivities are
typically evaluated at the nominal model parameters and
are only guaranteed to provide locally robust controllers.
To address the issues of robustness of the controller over
a support of the uncertainty, a minimax problem formula-
tion has been addressed in the past ( Singhose et al. (1996),
Singh (2002)).

Global sensitivity analysis (GSA) refers to approaches to
analyze the impact of uncertain variables on outputs of
interest over the entire domain of uncertainty (Saltelli
(2008)). These metrics attempt to apportion uncertainties
in the output to individual uncertain variables and as a
consequence, provide a rank order of the impact of the
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uncertain variables on the output of interest. There are
numerous global sensitivity metrics including the Sobol
indices (Sobol’ (1990)) which are variance based measures,
derivative based metrics which are relative to the Morris
method and the non-moment based metrics such as the δ
metrics (Borgonovo (2007), Nandi and Singh (2021)).

In this paper, we propose the use of global sensitivity mea-
sures, specifically the Derivative-based Global Sensitivity
Measure (DGSM) (Kucherenko and Song (2016)) which is
the expected value of the absolute value of the gradient of
the output to the uncertain parameters. Since this paper
deals with precision motion control of vibratory systems,
the output of interest is the residual energy at the terminal
time. A multi-objective cost function which weights the
residual energy against the DGSM is used to arrive at a
robust Input Shaper.

2. METHOD

Fig. 1 illustrates a single mass system, where the mass is
connected to a rigid wall with a spring of stiffness k and
a damper with a damping coefficient c. The equations of

Fig. 1. Single mass-spring-damper model where the input
u is controlling the position of the first mass x1.

motion can be written as:
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The residual energy for a rest-to-rest maneuver, is:
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where T1 and U1 are the kinetic and potential energy
respectively. Note that the final desired position is 1 and
therefore just point-to-point maneuver are considered in
this paper. The subscript “f” marks the state at the final
time tf . The initial conditions are: x(0) = ẋ(0) = 0.

2.1 Closed form Time Delay Filter

Considering the nominal model with k = 1 and c = 0.1,
an input shaped could be used to shape the reference
as illustrated in Fig. 2, where r(t) = 1, the unit step,
throughout the paper. In this paper a time delay filter

Fig. 2. Block diagram of a nonrobust and robust input
shaper.

(TDF) is used as an input shaper with a transfer function:

G(s) = A0 +A1e
−sτ , (3)

where the gains A0 and A1 can be calculated in closed
form (Singer and Seering (1990), Singh (2010)):
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and τ is delay time and can be calculated as (Singh
(2010)):

τ =
π

ω
√
1− ζ2

(6)

It should be noted that we consider a damped system and

therefore s = −ζωn±jωn

√
1− ζ2, where ωn and ζ are the

natural frequency and the damping ratio (c = 2ζωn). The
robust input shaper, which consists of a cascade of two
time-delay filters, is chosen as a benchmark to compare
the performance of the proposed controller.

2.2 Sensitivity based design

The aim here is to reduce the sensitivity of the residual
energy with respect to the spring stiffness k and damp-
ing coefficient c. Therefore, the sensitivities dV1/dk and

dV1/dc are included in the controller design. Taking the
derivative of Eq. (1) with respect to k and c results in:
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To trade-off performance for robustness, a cost function F
can be written as a combination of the residual energy V
and the sensitivities with respect to k and c,

F = α (T1 + U1) +
(1− α)
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dV1/dk and dV1/dc can be calculated from Eq. (2) and
a scaling factor of 1/10 is used to weight the cost appro-
priately. α is used as a weighing parameters to penalize
the cost either on the residual energy (α → 1) or on the
sensitivities in k and c (α → 0). For simplicity we further
set m = 1 and Eq. (9) becomes:
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A gradient-based method finds a control input u for
a point-to-point maneuver where the final time tf is
prescribed by the user and is assumed to be 2τ to provide
a fair comparison to the TDF. Uncertainties in k and c are
assumed to be uniformly distributed and represented as:

k = 1 + k̃ (11)

c = 0.1 + c̃ (12)

where k̃ and c̃ range from −0.3 to 0.3, and −0.03 to 0.03
respectively. The cost for the optimizer is the Expected
value of the residual energy over the 2D uncertain domain
and is represented as:

f = E[F (k, c, α)]. (13)

2.3 Floating oscillator

To illustrate the GSA on a multimode system a floating
oscillator with a PD controller is chosen which is illustrated
in Fig. 3. The equations of motion are:

m1ẍ1 − k (x2 − x1)− c (ẋ2 − ẋ1) = u (14)

m2ẍ2 + k (x2 − x1) + c (ẋ2 − ẋ1) = 0 (15)

where m1 and m2 are the first and second mass respec-
tively. A PD-controller

u = −kp (x1 − r∗)− kdẋ1, (16)

is applied on the position error of the first mass x1, making
the closed loop system one with two underdamped modes.

The residual energy of the system is:
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m1ẋ
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2
2f

2
...

...+
1

2
[x1f − r∗, x2f − r∗]

[
k + kp −k
−k k
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]
where the cost function remains the same as in Eq.(9),
and k and c are uncertain as prescribed in Eq. (11) and
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Fig. 3. a) Floating oscillator with a PD controller where
the input u is controlling the position x1 of the first
mass. b) Block diagram of the model, showing the
location of the input shaper.

(12). Further we set kp = kd = 1 and r∗ = 1. Robustness
(2 cascaded TDFs per mode) is applied to both modes
resulting in a cascade of two time-delay filter with three
delays each.

3. RESULTS

A Pareto front is established by sweeping α from 1 to 0.
For each α, MATLAB add-on SNOPT7 (Gill et al. (2005))
is used to determine the shaped reference profile. The
optimization process gets initialized with α = 1 and then
progressively reduced to α = 0, where the initial guess for
the following α sample is the solution of the previous one.

3.1 Single mass system

For the optimization process the final time for the GSA
is tf = 6.2911. Fig. 4 illustrates the position x and
velocity ẋ of the mass over time. Each graph represents
a different combination for k and c when α = 1. It can be
clearly seen that the controller based on the GSA design
is outperforming the TDF in terms of the final position
(xf = 1) whereas both perform about the same for the
final velocity ẋf . The different control structure for a GSA
based design compared to a TDF can be seen in Fig. 5.
The input for the GSA is restricted to 5 samples and for
simplicity just the two extreme cases α = 1 and α = 0 are
shown. It is obvious that the control input is less aggressive
for α = 0 than for α = 1. Note that α = 0 represents
the most desensitized cost function. The residual energy
can be illustrated as a surface plot over the 2D uncertain
domain of k and c as it can be seen in Fig. 6. Setting
α = 1, the cost function purely minimizes the mean of the
expected value of the residual energy over the uncertain
space. The GSA design (blue) shows on average a better
performance than the robust TDF (red) especially in the
regions of most uncertainty. Just around the nominal stage
and along its uncertainty in c, the robust TDF outperforms
the GSA which is the tradeoff for the advantage of the
GSA. The main goal of the GSA is to desensitize the
residual energy for uncertainties in k and c. This can be
best expressed in terms of variance of the residual energy

Fig. 4. Position x1 and velocity ẋ1 for k = [0.7, 1.3] and
c = [0.07, 0.13]. The solid blue and dashed red graphs
refer to the global sensitivity based design (α = 1) and
a robust time delay filter respectively. tf marks the
final time of the maneuver.

Fig. 5. Control input for a global sensitivity based design
and robust time delay filter. The solid blue, dashed
teal and solid red line represent the global sensitivity
based design for α = 1, α = 0 and robust time delay
filter respectively.

Fig. 6. Residual energy of a single mass-spring-damper sys-
tem over the uncertain spring stiffness and damping
constant. The blue and red surface show the residual
energy referring to the global sensitivity (α = 1) based
and the robust time delay filter design respectively.



over the uncertainties. Shifting α towards 0 increases the
penalty on the sensitivity part of the cost function relative
to the residual energy. Fig. 7 illustrates two histograms of
the residual energy, when α = 1 where the cost function is
purely the mean of the residual energy and α = 0 where
the cost depends solely on the sensitivities of the residual
energy with respect to k and c. As expected for α = 1 the
mean is low but the variance is high, whereas for α = 0 the
mean is higher than for α = 1 but the variance is smaller.
This observation matches the expectations when analyzing
Eq. (9). One could imagine that the blue surface of Fig. 6
gets lifted up but flattened out when α = 0 representing a
higher mean but less variance. Another way of illustrating

Fig. 7. Histogram of the residual energy of a single Mass-
Spring-Damper system over uncertain spring stiffness
and damping constant when a global sensitivity based
controller design is applied for choosing α = 1 and
α = 0.

Eq. (9) is the so called Pareto frontier. From there one
could pick the optimal tradeoff point (knee point) when
weighing the mean of the residual energy compared to
the sensitivities with respect to k and c. This is shown
in Fig. 8. Besides the histograms, Fig. 9 presents the
variation of the expected value of the residual energy and
its variance as a function of α. From Fig. 9a) it can be
seen that increasing α increases the penalty on the mean
of the residual energy, reducing the mean residual energy,
but increases the variance of the residual energy. Fig. 9b)
illustrates the variance of the residual energy over α.

Fig. 8. Pareto frontier of the expected values of the residual
energy and the summation of the absolute sensitivities
with respect to the spring stiffness and damping
constant when parameter α is changed from 0 to 1
in 100 samples.

Fig. 9. a) Expected value over variance of the residual
energy when parameter α is varied from 0 to 1 in
100 samples.



3.2 Floating oscillator

For the floating oscillator, the maneuver time tf is 14.2672.
Here the GSA controller is discretized with 15 samples.
The trajectories for the positions x1 and x2 and the
velocities ẋ1 and ẋ2 for a floating oscillator can be seen
in Fig. 10. Picking α = 1, it should be noted that the GSA
performs as well as the robust TDF and both methods
seem to fulfill the final goal x1 ≈ 1 and ẋ1f ≈ 0 over
multiple realizations over the uncertain domain.

Fig. 10. Position x1 and x2, and velocity ẋ1 and ẋ2 for
k = [0.7, 1.3] and c = [0.07, 0.13]. The solid blue
and dashed red graphs refer to the global sensitivity
based design (α = 1) and a robust time delay filter
respectively.

A closer look at the residual energy in Fig. 11 reveals
that the GSA for α = 1 performs on average better than
the robust TDF. Only around the nominal stage where
k = 1 and c = 0.01 and along the uncertainty in c the
robust TDF slightly outperforms the GSA based design.
It is clearly visible that the uncertainty in the damping
coefficient c doesn’t impact the residual energy as much
as the spring stiffness k.

Fig. 11. Residual energy of a double mass-spring-damper
system over the uncertain spring stiffness and damp-
ing constant. The blue and red surface show the resid-
ual energy referring to the global sensitivity (α = 1)
based and the robust time delay filter design respec-
tively.

A closer look at the histograms (see Fig. 12) reveals the
same observation as for the single mass, although in a
clearer form. If α = 1, the mean of the residual energy
is small but the variance is large. Setting α = 0 increases
the mean compared to the case of α = 1 but the variance
is much smaller.

Fig. 12. Histogram of the residual energy of the floating
oscillator system over uncertain spring stiffness and
damping constant when a global sensitivity based
controller design is applied for choosing α = 1 and
α = 0.

4. CONCLUSION

In this paper a global sensitivity based controller design
is proposed. The newly developed method is compared to
the established robust time delay filter technique. Both
methods are studied on a single spring mass system and a
floating oscillator. The main idea is to reduce the residual
energy of the system at the final time when uncertainties



in the spring stiffness and the damping coefficient exist.
To provide a fair comparison, the maneuver time for the
global sensitivity based design is identical to the robust
time delay filter. The cost function for the optimization
process depends on the mean of the residual energy and
its derivatives with respect to the spring stiffness and
the damping coefficient. A weighing parameter embedded
in the cost function assigns the focus on minimizing the
mean of the residual energy or on desensitizing the residual
energy with respect to the model uncertainties.

It should be noted that in both tested models, the uncer-
tainty in the damping coefficient doesn’t play a significant
role compared to the spring stiffness. On average the global
sensitivity based design outperforms the established time
delay filter technique except around the nominal stage.
However, it should be mentioned that the character of
sensitivity based controller design lies on the desensitiza-
tion to uncertainties, meaning that a lower variance in the
residual energy comes automatically with a higher mean.

The current formulation of the optimization problem re-
sults in a nonlinear programming problem which is bur-
dened with all the challenges associated with solving non-
convex problems. Convex problem formulation and demon-
strating it experimentally are planned for the near future.
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