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AbstractÐMajority of aircraft under the Urban Air Mobility
(UAM) concept are expected to be of the electric vertical takeoff
and landing (eVTOL) vehicle type, which will operate out of
vertiports. While this is akin to the relationship between general
aviation aircraft and airports, the conceived location of vertiports
within dense urban environments presents unique challenges in
managing the air traffic served by a vertiport. This challenge
becomes pronounced within increasing frequency of scheduled
landings and take-offs. This paper assumes a centralized air
traffic controller (ATC) to explore the performance of a new
AI driven ATC approach to manage the eVTOLs served by the
vertiport. Minimum separation-driven safety and delays are the
two important considerations in this case. The ATC problem is
modeled as a task allocation problem, and uncertainties due to
communication disruptions (e.g., poor link quality) and inclement
weather (e.g., high gust effects) are added as a small probability
of action failures. To learn the vertiport ATC policy, a novel
graph-based reinforcement learning (RL) solution called ªUrban
Air Mobility- Vertiport Schedule Management (UAM-VSM)º is
developed. This approach uses graph convolutional networks
(GCNs) to abstract the vertiport space and eVTOL space as
graphs, and aggregate information for a centralized ATC agent
to help generalize the environment. Unreal Engine combined
with Airsim is used as the simulation environment over which
training and testing occurs. Uncertainties are considered only
during testing, due to the high cost of Mc sampling over such
realistic simulations. The proposed graph RL method demon-
strates significantly better performance on the test scenarios when
compared against a feasible random decision-making baseline
and a first come first serve (FCFS) baseline, including the ability
to generalize to unseen scenarios and with uncertainties.

I. INTRODUCTION

Technology for transportation is rapidly evolving every day,

with self-driving cars and autonomous air package delivery

around the corner. It is estimated by 2050 around 68% of

the world’s population will live in urban areas [1]. Urban

Air Mobility (UAM) adds a new dimension to the mode

of transportation, where vertical takeoff and landing (VTOL)

devices are used for transporting people at moderate altitudes

[2]. The concept of UAMs dates back to 1953 when New York
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Airways operated commercial air taxis using helicopters. With

the current advancements in electrical, propulsion, and battery

fields, air taxis are becoming more viable and economical [3].

Companies like Uber are racing towards the development and

deployment of VTOLs in urban areas [4], but the time frame

remains a mystery as the deployment faces several challenges

including government regulations. Due to the availability of

current transportation spaces and the estimated population,

UAMs are inevitable in the near future.

Currently, the Air Traffic Control (ATC) operates all the

vehicles with the ability to fly [5]. A vertiport is an area

where the VTOLs take-off, land, and charge their batteries [6].

When it comes to VTOLs, the number of vehicles entering or

leaving a vertiport will be hundreds to thousands in an hour

[7]. In this case, it is more challenging to control the aircraft’s

landing/take-off (L/TO) and it raises concerns about safety

and regulation. The First-come, First-served concept does not

serve well in the presence of uncertainties and emergencies.

In this paper, we propose a solution for regulating the VTOLs

inside the vertiport zone while simultaneously maintaining the

safety of the VTOLs. This is a multi-dimensional problem and

needs to be modeled beyond the simple linear mathematical

modeling, hence we created a novel 3D simulation environ-

ment incorporated with realistic physics and primitives like

path planning. Importantly our simulator runs much faster than

real-time and this helps us in collecting the data required for

learning. Two different learning-based algorithms are trained

and compared with each other. There are several prior works

that discuss the modeling of vertiport [8] and VTOLs [9]. Here

the design of vertiport and VTOLs are out of scope, instead

we consider the port to be a helipad and UAV to be the VTOL,

since the concept applies the same.

Recently, Artificial Neural Network (ANN) based learning

algorithms are used in various intelligent autonomous system

and it plays a better role in decision-making when compared

to humans [10]. Most successful RL applications such as self-

driving cars and robotics include more than a single agent and

are solved as Multi-Agent Reinforcement learning (MARL)

problems [11]. Over the past few years, there have been several

notable works on applying Graph-based Reinforcement Learn-

ing (RL) for various single and multi-agent Combinatorial

Optimization (CO) problems [12]±[24]. Here, the state space

variables which can be modeled as a graph are encoded using

Graph Neural Networks (GNN), which will be part of the

policy network. There are several difficulties in MARL such



as the curse of dimensionality or the exponential growth in

state-action space, Non stationarity- complicated dynamics,

and the credit assignment-the ambiguity on which agent has

to be rewarded [25]. Some of the recent works to overcome

the limitations involve converting the MARL problems to

single agent [26] (centralized training), the experience of

all the agents are collected and trained by one agent and

with decentralized implementation where the trained model is

being implemented on all the agents to enable decentralized

decision-making [27]. We have formulated our problem as a

single agent, though the number of agents can go beyond

the numbers in this paper. Furthermore, we discretized a

continuous environment and formulated the state space with

discrete space which is easier to learn compared to continuous

state space.

The main contributions of this paper are 1) Formulation of

the vertiport operations management as a Markov Decision

Process (MDP) ± a.k.a. short-term-scale VTOL landing/take-

off(L/TO) scheduling problem, 2) Development of 3D simula-

tion environment for modeling the UAM vertiport operations

and 3) Development of a (graph) learning framework to

provide the policies for timing the L/TO of the aircraft within

the vertiports operational space considering environmental

and operational uncertainties. The remainder of the paper

is organized as follows. In section II we explain the MDP

formulation and the learning approach. In section IV we briefly

explain the architecture of the simulation, together with the

working of its individual components and the details on the

learning algorithm used. In section V-B, the different case

studies are explained.

II. VERTIPORT OPERATION MANAGEMENT:

FORMULATION AND LEARNING APPROACH

This is an Urban Air Mobility - Vertiport Schedule Man-

agement problem, and the goal is to design a GCN policy

capable of training an ATC agent. This agent must be able

to: allocate tasks to eVTOLs in its airspace (charging, taking

off, landing, hovering), maintain high charge levels across all

eVTOLs, avoid collisions and follow each eVTOLs specified

flight plan. The environment consists of 2 normal ports, 1

charging port, 5 destinations outside of the agent air space,

and 7 hovering spots. A simplified movement chart of the

environment can be found in figure 1. The following sub-

sections will go into more detail about the environment and

Markov Decision Process (MDP) formulation we chose for

this problem.

A. Environment

The environment is initialized with 4 eVTOLs, and each one

takes off to a random destination, and returns. Each eVTOL

receives a new flight plan when they land at the vertiport,

which designates a time 10 to 20 minutes in the future where

they’ll need to take off, and which destination they’ll need to

go to. Once an eVTOL reaches a destination, they’ll receive

a flight plan to return to the vertiport automatically, and the

ATC will need to land them within 15 minutes of their arrival.
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Fig. 1: State and action diagram for the vertiport environment

This is further explained in figure 4. Each eVTOL starts off

with a full charge and discharges at each step. The discharge

rate depends on the state of the eVTOL:

discharge rate =







distance traveled × 0.5 if cruising

2 if hovering

4 if idling on ground
(1)

This is done to make sure the eVTOL will discharge its

battery when it’s not moving. At every step, an eVTOL can

recover 10% of its battery if it’s landed on the charging port.

Each E-VTOL moves asynchronously, such that there can be

multiple E-VTOLs moving at the same time. Due to this

configuration, the agent can learn to avoid collisions with two

or more E-VTOLs intersecting. At every time step, the agent

will select a new E-VTOL to take an action, and this goes in

order. If the selected E-VTOL is currently at a destination,

the agent will wait for it to re-enter the vertiport airspace

before selecting an action for it to take. The simulation runs

at 300x real-time, so every second that passes equates to

5 minutes in the simulator. This is good for training, as it

allows for step times of close to 0.2 seconds, or approximately

288 seconds (4.8 minutes) per episode (1440 steps). Each

episode is approximately 24 hours in the simulation, a full

day of operation. Each E-VTOL is updated with a minimum

frequency of 45Hz, which includes updating all features

(location, delay, battery status, and E-VTOL status).

B. MDP Formulation

The problem is modeled as a Markov decision process

(MDP) which has the following parameters:

s = Fs(bi, ci, li, xi,p, yi,p, pa,t)

a = Fa(s)

r = Fr(a, s, §, β, γ, τ, γ, wn)

(2)

where i and p stand for all the vehicles and ports respectively.

The state and action space can be found in table I, and the

reward is shown in equation 3.τ is the takeoff coefficient, γ

is the landing coefficient, λ is the battery coefficient, β is the

delay coefficient, § is the safety coefficient, and wn are the

weights. These coefficients are further explained below.



Fig. 2: Minimal Separation Scenario

R = w1τ + w2γ + w3λ+ w4β + w5§ (3)

1) Takeoff & Landing coefficient: We define a ªgoodº

takeoff as one where the E-VTOL is: i) taking off on time

(within 5 minutes of its scheduled takeoff time); ii) taking off

with a battery level greater than 30%. This criterion is the

same for a ªgoodº landing except that the E-VTOL can also

choose to land earlier than its scheduled time. Both τ and γ

∈ {−5, 5}.

2) Battery coefficient: This coefficient is defined as:

λ =

{

5× battery remaining

100
if battery remaining ≥ 30

−5 else
(4)

where the value is gradually increased as the E-VTOL charges.

To further discourage traveling with a critical battery level,

there is a penalty assigned once the battery percentage drops

below 30%. To achieve the battery coefficient the agent would

need to keep each E-VTOL fully charged.

3) Delay coefficient: Delay is introduced in the environ-

ment once an E-VTOL has missed it’s window for either taking

off or landing. This delay will rise as the simulation time goes

on until the E-VTOL travels and receives a new schedule. The

delay coefficient is defined as:

β = −5 + 10× e−delay (5)

where the delay term is in minutes. This encourages the

agent to keep the delay as low as possible to achieve the

maximum delay coefficient.

4) Safety coefficient: Before the safety coefficient can be

calculated, the environment will check to see if the selected

E-VTOL: i.) Is currently en-route to a location; ii.) Has an

intersecting path with another E-VTOL that is en route. This

can be visualized in figure 2. In the figure, two E-VTOLs are

traveling towards an intersection point. The distance between

them at any given point is made into a function of time

Type Variable

Vertiport states
Availability - Pa

Port type - Pt

Location - (xp, yp)

VTOL states

Current status - ci
Battery capacity - bi
Schedule status - li
Location - (xi, yi)
Port availability - Pa

Action Space

Stay still
Takeoff
Move/ land in normal port - 1,2
Move/ land in battery port - 1
Move to hover spots - 1,2,3,4,5,6,7
Continue previous action
Avoid collision

TABLE I: MDP formulation

using the euclidean distance combined with their instantaneous

position and velocity vectors:

D(t) =
√

(x1 − x2 + tvx1
− tvx2)2 + (y1 − y2 + tvy1

− tvy2)2

(6)

where xn, yn, vxn
, vyn

are the position and velocity compo-

nents of E-VTOLs 1 and 2. This equation is then differentiated

with respect to time and solved for the local minimum, tmin:

tmin = −
2(vx1

− vx2
)(x1 − x2) + 2(vy1

− vy2
)(y1 − y2)

2(vx1
− vx2

)2 + 2(vy1
− vy2

)2

(7)

tmin is then plugged back into equation 6 to get the

minimum separation Dmin. Each simulated E-VTOL has an

occupant space of 1x1 meters, so if Dmin is less than 3 meters

and the agent doesn’t take evasive action, the agent will be

penalized:

§ =







0 if Dmin is None

−5 if Dmin ≤ 3.0 & action ̸= avoid collision

5 if Dmin ≤ 3.0 & action = avoid collision
(8)

5) Reward weights: Each coefficient is multiplied by a

weight w1, w2, ..wn based on the importance of each coeffi-

cient. In our problem, safety is considered more important, and

maximum weight is allotted for safety coefficient § followed

by β, τ, γ, λ.

III. LEARNING ARCHITECTURE

This paper focuses on a deep reinforcement learning frame-

work known as proximal policy optimization (PPO) [28].

PPO is similar to Trust Region Policy Optimization, otherwise

known as TRPO [29]. What sets PPO apart is the ability to

clip policy expansion through the use of its unique objective

function, which allows for safer policy exploration without the

cost of larger unstable policy updates. This clipping parameter

can be increased or decreased to control how big the updates

are, and when combined with Adams gradient descent it makes

for a powerful learning algorithm. We use OpenAI Gym and

Stable Baselines 3 [30] [31] for reinforcement learning, and



the general flow of the training environment can be found in

figure 5.

A. GCN Agent

As stated above, PPO is a state-of-the-art actor-critic RL

method that has demonstrated high efficiency, wide adapt-

ability, and robust reliability [32]. For this paper, we will

be using a graph-learning PPO agent, trained with a policy

network consisting of a Graph Neural Networks (GNN). GNNs

have been successfully implemented in a wide variety of task

allocation, scheduling, and path planning problems [17], [24],

[33] in the past few years. One of the main advantages of

GNNs is their ability to use the structural information (local

and global) of a problem formulated as graph-structured data,

and are represented as graph embedding, node embeddings,

or edge embeddings. In this work we implement a Graph

Convolutional Network (GCN) [34] for graph embeddings and

a custom multi-layer perceptron (MLP) for transforming a

final feature vector into a set of log probabilities. The RL

parameters used for training the networks are mentioned in

the table II, and the network architecture used for the GRL

agent is shown in figure 3. The GRL agent MLP consists of

2 layers of 128 and 64 neurons shown in 3. Additionally, The

agent utilizes masking which will depend on the state of the

selected E-VTOL and the availability of each port. This takes

away a layer of complexity and allows the agent to focus

on other environmental factors, such as avoiding collisions

and reducing uncertainty. As shown in figure 3, the GCN

agent has a feature abstraction, policy and value network to

work with PPO. We make use of biases for the linear layers

and use randomized ReLU (RReLU) with a slope ranging

from 0.1 to 0.3, as this was the quickest and most effective

option for mitigating vanishing gradients. Initially, we went

with LeakyReLU, however, the time spent tuning the activation

layer for each network was very time-consuming. The Adam

optimizer with a learning rate of 1e-5 is used for back-

propagation. The main difference lies in the feature abstraction

network where we use two GCNs, which take the E-VTOL

and vertiport feature matrix along with their respective edge

connectivity matrix. The policy network will use a four-

layer MLP with a log-softmax transformation to obtain log

probabilities for the 11 actions. The agent utilizes masking

which will depend on the state of the selected E-VTOL and the

availability of each port. This takes away a layer of complexity

and allows the agent to focus on other environmental factors,

such as avoiding collisions and reducing uncertainty.

IV. SIMULATION ENVIRONMENT

A custom simulation for eVTOLs is developed on top of

Microsoft AirSim. AirSim [35] is an open-source robotics

simulation platform. AirSim helps us to solve the need for

large data sets for training and allows debugging in the simu-

lator. AirSim leverages current game engines(Unreal Engine)

[36] rendering, physics, and perception computation to create

accurate, real-world simulations. Together, this realism, based

on efficiently generated ground-truth data, enables the study

Fig. 3: Feature abstraction, value and policy networks for the

proposed GRL agent

Fig. 4: Flowchart Representing the Decision-Making

and execution of complex, time-consuming, and risky missions

in the real world. AirSim enables us to simulate the physics

of eVTOLs, while the properties of vertiport and eVTOLs

are programmatically implemented in Python. The overall

framework used for learning is shown in Figure 5. The OpenAI

Gym-based Reinforcement Learning interface is developed for

communication with the AirSim and the learning agent. We

will now describe each component in more detail.

A. OpenAI Gym Interface

Gym is an open-source Python library and it provides a

standard API to communicate between learning algorithms

and environments [37]. Since its release, Gym API become

the field standard for training and developing RL problems.

In our case, the Gym interface plays a crucial role in commu-

nicating between all the different components of the learning

framework. For instance, the Gym interface receives a decoded

action from the action manager and it sends this information



Fig. 5: Simulation Environment Overview Showing the Flow of Information through the State Manager, Action Manager,

Learning Policy Network, and the Simulation Engine (Airsim + Unreal)

to the Python API layer of AirSim, which in turn simulates

the physics and dynamics of the vehicle.

B. AirSim+Unreal

A custom environment is built on Unreal Engine [36]

with 3 vertiports and the AirSim plugin is incorporated with

5 VTOLs. The AirSim plugin manages the physics of the

VTOLs and sends data such as location, and collision informa-

tion to the OpenAI Gym interface. AirSim provides an option

to run the simulation much faster than the real-world clock,

this helps to speed up the training process. The AirSim API

layer receives instructions from the Gym interface such as the

go-to location/takeoff/land, the AirSim manages the physics

and path planning while the unreal engine renders them on

screen. The graphical interface is shown in figure 6

Fig. 6: The Simulation Environment Developed using Unreal

Engine.

C. State Manager

The state manager inherits all the properties of ports and

VTOLs and is responsible for extracting the required state

information of particular VTOLs requested by the Gym in-

terface. The properties of VTOLs include 1. Battery level,

2. Schedule, 3. current position, 4. Status(on-time, delayed).

We defined 2 Python classes one for UAM and another for

ports. Each VTOL will derive the properties of UAM class

and the ports class encapsulates the properties of the vertiports.

The ports class manages the vertiport and is responsible for

sending out the status of individual ports to all the vehicles

and updating the status when a vehicle lands or leaves the port.

Two kinds of ports are considered here 1. Battery ports, only

these ports are capable of charging the vehicles, and 2. Normal

ports. The hover spots are also managed by ports class, the

vehicles take one of these positions when entering the port

zone and hover here till the agent decides an action.

D. Action Manager

The Action manager inherits all the properties of ports and

VTOLs and is responsible for decoding the actions sent by the

RL agent. Once decoded the action is sent to the vehicle and

the status of vehicle and port are updated accordingly. The

Gym interface communicates between the RL agent and the

action manager.

Algorithm PPO

Maximum Timesteps 300,000
Learning Rate 1e-5

Discount Factor 1
Number of Steps 20,000

Batch Size 10,000
Entropy Coefficient 0.001

Reward Weights {0.3, 0.3, 0.35, 0.1, 0.35}

TABLE II: Reinforcement Learning Parameters

V. RESULTS AND DISCUSSION

This section is split into two sub-sections: a learning section

and a case study section. The learning section will go over the

training: what went well, and what we still need to work on.

The case study section will focus more on evaluating the GRL

agent with and without uncertainty in the environment. Here

uncertainty means three things:



1) Wind effects are added to the environment as an adver-

sary vector, which will lower the linear velocity of the

eVTOL or negate it completely with a 5% occurrence.

2) Battery ports have a 5% chance of not working on a

given step.

3) eVTOLs will have a 5% chance of not taking off.

These three changes to the environment will simulate in-

clement weather, faulty equipment and mechanical failures

of eVTOLs respectively. Ideally, the agent will learn how to

account for these changes by: sending eVTOLs off earlier

to their destinations to account for wind effect slowdowns,

keeping eVTOLs charging for an extra step if their charging

equipment is faulty, and takeoff immediately once mechanical

failures are addressed to save time. During this, the agent

is still expected to uphold the highest level of safety for

passengers, so it will be heavily penalized for collisions. The

agent will be tested for 50 episodes (72000 steps) in each case

study, with each episode representing 24 hours or 1 day of

vertiport operation. Then, it will be compared against a random

agent and a first come first serve (FCFS) agent. The random

agent is quite simple in nature, and takes a random action at

each step, without taking the state space into consideration.

On the other hand, the FCFS agent will use queues to decide

which eVTOL should take off and which should land and

charge. While an eVTOL is waiting in a queue, it will wait

in a normal port, or a hovering spot if the normal ports are

taken. The FCFS agent will also charge each eVTOL until it

is at or above 60%, after which it will take off and enter the

landing queue.

A. Learning Curve

The GRL agent was trained for 300k steps, or 200 episodes

and the training plots are included in figure 7. From the reward

and loss plots, we can tell that the agent was able to generalize

the environment, for the reward was steadily increasing and

the loss was steadily decreasing. There was a sudden increase

in the loss of around 60 episodes, which indicates the agent

wasn’t making the right approximations with the state space

information it received, although the loss eventually went back

down and continued to decrease. Additionally, we include

other plots in figure 7 which show: the average battery levels of

each drone per episode; the number of good takeoffs and good

landings by the agent per episode; the average delay of a single

drone in hours per episode, and the number of collisions per

episode the agent experiences. This information was recorded

during training and helps us interpret the agent’s performance.

We can see that the agent starts off with a lower battery level,

and eventually learns to keep it over 30% at all times, as

anything lower will lead to reward penalties. The delay also

starts off very high, but as the agent gets used to taking off and

landing it starts to diminish as well. Unfortunately, the agent

never quite learns how to avoid all collisions, as it avoids some

but incurs more as time goes on. This is due to the weights

for safety not being high enough. If the reward weight for

safety was higher, the agent would be forced to minimize all

collisions in order to maintain a high reward, instead of trying

to offset the collision penalty with more good takeoffs and

landings.

Fig. 7: Reward and loss plot for the GRL agent along with

environment metrics for interpretability

B. Case Study(s)

For the case studies, we chose to use the ideal trained GRL

model at 160k steps, or 111 episodes. At that point in training,

the collisions were the lowest, the good takeoffs and landings

were balanced, the delay was close to a local minimum, and

the average battery levels were close to a local max as shown

in figure 7. The case study results can be found in figure 8.

Case 1: the GRL agent does well across every metric except

for collisions. Noticeably, the GRL agent has more deviation

in every metric, which is likely due to the agent adapting to

various situations per episode. If the agent had more time

to train and fine-tune it’s policy, these deviations would be

smaller and more controlled. The FCFS agent was the second-

best performer, and was more consistent along each metric.

The random agent performed the worst out of the three, which

is expected.

Case 2: The performance across the GRL and FCFS agents

decreased substantially in some metrics and less so in others.

The GRL agent reacts as expected to the noisy additions in

the environment: the reward drops, indicating some difficulty

maximizing performance across all metrics; the battery lev-

els drop by 13%, a direct cause of the charging ports not

malfunctioning; the delay also increases while the number of

good takeoffs decreases, the effect of harsh wind and eVTOL

mechanical failures during takeoff; good landings decrease as

well due to eVTOLs no longer being on time to land; lastly,

the number of collisions decrease by a small percentage, due

to a direct correlation with eVTOLs taking off less. The FCFS

agent also sees a decrease in performance for the same reasons,

while the random agent is far behind the other two baselines in

every metric except collisions. Interestingly, the FCFS agent

has less delay overall when noise is present, and this is likely

due to it’s consistency when completing tasks (taking off an

eVTOL and then landing it in two queues) which keeps giving

eVTOLs new schedules and resetting their delay. If an eVTOL

is in the queue but not at the front, the FCFS agent will skip

over it, which saves time and minimizes delay. On the other

hand, the GRL agent will wait for an eVTOL to be in it’s

airspace to take an action for it, which can lead to deceptively

increased delay times.



Fig. 8: Case study results. In case 1 the three agents are tested without noise in the environment, and in case 2 they are tested

with noise.

These results show the GRL agent can actually learn the pa-

rameter space of our simulated environment, and furthermore

adapt to added noise in the simulation with varying levels of

success. Given more time to train and tune hyper-parameters,

and a better combination of reward weights, we believe this

agent can do well in every metric, with and without noise

present in the environment.

C. Action Analysis

Additionally, we recorded the GRL agent in the simulation

environment with and without noise for 5 episodes each, and

charted the action distribution in figure 9. This chart shows the

count of each action the agent chose during those 5 episodes,

along with the percentage of time those actions were chosen.

Right away we notice the agent is not using all of the actions

it’s been allotted, which either means it doesn’t deem them

necessary for maximizing the reward or that the agent hasn’t

had enough time to figure out how to use them properly.

Another reason why the agent might not need to use all of the

actions is due to the small group of eVTOLs it’s controlling. it

will be interesting to see how the agent scales up, and how it

will use more than one port, and one hovering spot to keep up

it’s current rhythm. The second important thing to note has to

do with the agent distribution with noise. The actions chosen

are the same, however the frequency changes, especially for

avoiding collision and continue actions. This shows the agent

tried to make changes in real-time to adapt to the noise; it

could be that it tried to avoid a collision due to inclement wind,

or something similar. This also speaks to the effectiveness of

the simulator we chose. The wind vectors we created were

realistic enough to present a real challenge to the agent, and

in doing so we allowed it to further generalize the environment

and growing parameter space as a direct product of the added

noise.

VI. CONCLUSION

In this paper, we proposed a graph-based reinforcement

learning (RL) for Urban Air Mobility (UAM) vertiport op-

erations management problem in the presence of various envi-

ronmental uncertainties (wind gust effects), and observational

uncertainties (malfunctioning battery ports and eVTOL take-

off delay). The novelty of our approach lies in the introduction

of Graph Neural Networks (GNN), which serve as a feature

abstraction for the state space, for the RL framework. The

reward function for the MDP was tailored as a weighted sum

of terms that quantify good take-offs, good landings, battery

state, delay, and safety. Initially, the UAM vertiport operations

management problem is formulated as a Markov Decision

Process (MDP), and a policy-gradient RL method (Proximal

Policy Optimization) was used to solve the MDP. The GNN-

based policy network consists of two Graph Convolutional

Networks (GCN), which are used to encode the vertiport

state information and the eVTOL state information (both

represented as a graph), respectively. The RL environment was

modeled as an OpenAI gym-based environment using AirSim

and Unreal engine. The trained policy (best performing) was

tested on two sets of test scenarios. In the first set, the test

scenarios were drawn from the same distribution as for train-

ing, while in the second set the test scenarios had uncertainty.

For baseline comparison, a first come first serve (FCFS), and

a random agent was used. Both sets of scenarios consist of 50

unseen episodes. From both cases, the GRL agent has a clear

advantage in comparing w.r.t the total rewards. On a closer

look at the individual metrics that constitute the reward, it

can be seen that the GRL agent performs poorly only for the



Fig. 9: Action distribution for the GRL agent in an environment with and without noise accumulated over 5 episodes

number of collisions. This can be mitigated by prioritizing the

number of collisions by increasing the weight corresponding to

it while training. The two case studies demonstrate the ability

of the GRL agent to generalize across unseen scenarios and

with uncertainty. Further analyses of the actions taken show

how the uncertainties altered the decision-making to take less

take-off and more collision avoidance and hence to be more

conservative.
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