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Abstract—Majority of aircraft under the Urban Air Mobility
(UAM) concept are expected to be of the electric vertical takeoff
and landing (eVTOL) vehicle type, which will operate out of
vertiports. While this is akin to the relationship between general
aviation aircraft and airports, the conceived location of vertiports
within dense urban environments presents unique challenges in
managing the air traffic served by a vertiport. This challenge
becomes pronounced within increasing frequency of scheduled
landings and take-offs. This paper assumes a centralized air
traffic controller (ATC) to explore the performance of a new
Al driven ATC approach to manage the eVTOLSs served by the
vertiport. Minimum separation-driven safety and delays are the
two important considerations in this case. The ATC problem is
modeled as a task allocation problem, and uncertainties due to
communication disruptions (e.g., poor link quality) and inclement
weather (e.g., high gust effects) are added as a small probability
of action failures. To learn the vertiport ATC policy, a novel
graph-based reinforcement learning (RL) solution called “Urban
Air Mobility- Vertiport Schedule Management (UAM-VSM)” is
developed. This approach uses graph convolutional networks
(GCNs) to abstract the vertiport space and eVTOL space as
graphs, and aggregate information for a centralized ATC agent
to help generalize the environment. Unreal Engine combined
with Airsim is used as the simulation environment over which
training and testing occurs. Uncertainties are considered only
during testing, due to the high cost of Mc sampling over such
realistic simulations. The proposed graph RL method demon-
strates significantly better performance on the test scenarios when
compared against a feasible random decision-making baseline
and a first come first serve (FCFS) baseline, including the ability
to generalize to unseen scenarios and with uncertainties.

I. INTRODUCTION

Technology for transportation is rapidly evolving every day,
with self-driving cars and autonomous air package delivery
around the corner. It is estimated by 2050 around 68% of
the world’s population will live in urban areas [1]. Urban
Air Mobility (UAM) adds a new dimension to the mode
of transportation, where vertical takeoff and landing (VTOL)
devices are used for transporting people at moderate altitudes
[2]. The concept of UAMs dates back to 1953 when New York
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Airways operated commercial air taxis using helicopters. With
the current advancements in electrical, propulsion, and battery
fields, air taxis are becoming more viable and economical [3].
Companies like Uber are racing towards the development and
deployment of VTOLs in urban areas [4], but the time frame
remains a mystery as the deployment faces several challenges
including government regulations. Due to the availability of
current transportation spaces and the estimated population,
UAMs are inevitable in the near future.

Currently, the Air Traffic Control (ATC) operates all the
vehicles with the ability to fly [5]. A vertiport is an area
where the VTOLSs take-off, land, and charge their batteries [6].
When it comes to VTOLSs, the number of vehicles entering or
leaving a vertiport will be hundreds to thousands in an hour
[7]. In this case, it is more challenging to control the aircraft’s
landing/take-off (L/TO) and it raises concerns about safety
and regulation. The First-come, First-served concept does not
serve well in the presence of uncertainties and emergencies.
In this paper, we propose a solution for regulating the VTOLSs
inside the vertiport zone while simultaneously maintaining the
safety of the VTOLs. This is a multi-dimensional problem and
needs to be modeled beyond the simple linear mathematical
modeling, hence we created a novel 3D simulation environ-
ment incorporated with realistic physics and primitives like
path planning. Importantly our simulator runs much faster than
real-time and this helps us in collecting the data required for
learning. Two different learning-based algorithms are trained
and compared with each other. There are several prior works
that discuss the modeling of vertiport [8] and VTOLSs [9]. Here
the design of vertiport and VTOLs are out of scope, instead
we consider the port to be a helipad and UAV to be the VTOL,
since the concept applies the same.

Recently, Artificial Neural Network (ANN) based learning
algorithms are used in various intelligent autonomous system
and it plays a better role in decision-making when compared
to humans [10]. Most successful RL applications such as self-
driving cars and robotics include more than a single agent and
are solved as Multi-Agent Reinforcement learning (MARL)
problems [11]. Over the past few years, there have been several
notable works on applying Graph-based Reinforcement Learn-
ing (RL) for various single and multi-agent Combinatorial
Optimization (CO) problems [12]-[24]. Here, the state space
variables which can be modeled as a graph are encoded using
Graph Neural Networks (GNN), which will be part of the
policy network. There are several difficulties in MARL such



as the curse of dimensionality or the exponential growth in
state-action space, Non stationarity- complicated dynamics,
and the credit assignment-the ambiguity on which agent has
to be rewarded [25]. Some of the recent works to overcome
the limitations involve converting the MARL problems to
single agent [26] (centralized training), the experience of
all the agents are collected and trained by one agent and
with decentralized implementation where the trained model is
being implemented on all the agents to enable decentralized
decision-making [27]. We have formulated our problem as a
single agent, though the number of agents can go beyond
the numbers in this paper. Furthermore, we discretized a
continuous environment and formulated the state space with
discrete space which is easier to learn compared to continuous
state space.

The main contributions of this paper are 1) Formulation of
the vertiport operations management as a Markov Decision
Process (MDP) — a.k.a. short-term-scale VTOL landing/take-
off(L/TO) scheduling problem, 2) Development of 3D simula-
tion environment for modeling the UAM vertiport operations
and 3) Development of a (graph) learning framework to
provide the policies for timing the L/TO of the aircraft within
the vertiports operational space considering environmental
and operational uncertainties. The remainder of the paper
is organized as follows. In section II we explain the MDP
formulation and the learning approach. In section IV we briefly
explain the architecture of the simulation, together with the
working of its individual components and the details on the
learning algorithm used. In section V-B, the different case
studies are explained.

II. VERTIPORT OPERATION MANAGEMENT:
FORMULATION AND LEARNING APPROACH

This is an Urban Air Mobility - Vertiport Schedule Man-
agement problem, and the goal is to design a GCN policy
capable of training an ATC agent. This agent must be able
to: allocate tasks to eVTOLSs in its airspace (charging, taking
off, landing, hovering), maintain high charge levels across all
eVTOLs, avoid collisions and follow each eVTOLs specified
flight plan. The environment consists of 2 normal ports, 1
charging port, 5 destinations outside of the agent air space,
and 7 hovering spots. A simplified movement chart of the
environment can be found in figure 1. The following sub-
sections will go into more detail about the environment and
Markov Decision Process (MDP) formulation we chose for
this problem.

A. Environment

The environment is initialized with 4 eVTOLSs, and each one
takes off to a random destination, and returns. Each eVTOL
receives a new flight plan when they land at the vertiport,
which designates a time 10 to 20 minutes in the future where
they’ll need to take off, and which destination they’ll need to
go to. Once an eVTOL reaches a destination, they’ll receive
a flight plan to return to the vertiport automatically, and the
ATC will need to land them within 15 minutes of their arrival.

Destination

Fig. 1: State and action diagram for the vertiport environment

This is further explained in figure 4. Each eVTOL starts off
with a full charge and discharges at each step. The discharge
rate depends on the state of the eVTOL:

distance traveled x 0.5 if cruising
discharge rate = ¢ 2 if hovering
4 if idling on ground

1

This is done to make sure the eVTOL will discharge its
battery when it’s not moving. At every step, an eVTOL can
recover 10% of its battery if it’s landed on the charging port.
Each E-VTOL moves asynchronously, such that there can be
multiple E-VTOLs moving at the same time. Due to this
configuration, the agent can learn to avoid collisions with two
or more E-VTOLSs intersecting. At every time step, the agent
will select a new E-VTOL to take an action, and this goes in
order. If the selected E-VTOL is currently at a destination,
the agent will wait for it to re-enter the vertiport airspace
before selecting an action for it to take. The simulation runs
at 300x real-time, so every second that passes equates to
5 minutes in the simulator. This is good for training, as it
allows for step times of close to 0.2 seconds, or approximately
288 seconds (4.8 minutes) per episode (1440 steps). Each
episode is approximately 24 hours in the simulation, a full
day of operation. Each E-VTOL is updated with a minimum
frequency of 45Hz, which includes updating all features
(location, delay, battery status, and E-VTOL status).

B. MDP Formulation

The problem is modeled as a Markov decision process
(MDP) which has the following parameters:

§= ]:S(bivcia li>xi,p>yi,p7pa,t)
a = Fa(s) 2
r= fr(a,s, §7ﬂ7rya’rarvan)

where ¢ and p stand for all the vehicles and ports respectively.
The state and action space can be found in table I, and the
reward is shown in equation 3.7 is the takeoff coefficient, ~y
is the landing coefficient, A is the battery coefficient, 3 is the
delay coefficient, § is the safety coefficient, and w,, are the
weights. These coefficients are further explained below.
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1) Takeoff & Landing coefficient: We define a “good”
takeoff as one where the E-VTOL is: i) taking off on time
(within 5 minutes of its scheduled takeoff time); ii) taking off
with a battery level greater than 30%. This criterion is the
same for a “good” landing except that the E-VTOL can also
choose to land earlier than its scheduled time. Both 7 and ~
€ {-5,5}.

2) Battery coefficient: This coefficient is defined as:

battery_remaining
A=4 0% T
-5

if battery_remaining > 30
else

“)
where the value is gradually increased as the E-VTOL charges.
To further discourage traveling with a critical battery level,
there is a penalty assigned once the battery percentage drops
below 30%. To achieve the battery coefficient the agent would
need to keep each E-VTOL fully charged.

3) Delay coefficient: Delay is introduced in the environ-
ment once an E-VTOL has missed it’s window for either taking
off or landing. This delay will rise as the simulation time goes
on until the E-VTOL travels and receives a new schedule. The
delay coefficient is defined as:

B =—5+10 x el (5)

where the delay term is in minutes. This encourages the
agent to keep the delay as low as possible to achieve the
maximum delay coefficient.

4) Safety coefficient: Before the safety coefficient can be
calculated, the environment will check to see if the selected
E-VTOL: i.) Is currently en-route to a location; ii.) Has an
intersecting path with another E-VTOL that is en route. This
can be visualized in figure 2. In the figure, two E-VTOLSs are
traveling towards an intersection point. The distance between
them at any given point is made into a function of time

Variable

Availability - P,

Port type - P;

Location - (zp, yp)

Current status - ¢;

Battery capacity - b;

Schedule status - 1;

Location - (x4, y;)

Port availability - P,

Stay still

Takeoff

Move/ land in normal port - 1,2
Move/ land in battery port - 1
Move to hover spots - 1,2,3,4,5,6,7
Continue previous action

Avoid collision

TABLE I: MDP formulation

Type

Vertiport states

VTOL states

Action Space

using the euclidean distance combined with their instantaneous
position and velocity vectors:

D(t) = \/(xl — To + vy, — tvza)? + (Y1 — Yo + tuy, — tvys)?
(6)

where x,,, yn, Vs, , vy, are the position and velocity compo-
nents of E-VTOLs 1 and 2. This equation is then differentiated
with respect to time and solved for the local minimum, %,,;,:

Q(Um - UIz)(ml - 1‘2) + 2(”1}1 — Uy2)(yl - y2)
2(U$1 - U962)2 + 2(1].7!1 - Uy2)2
(7)

tmin 1S then plugged back into equation 6 to get the
minimum separation D,,;,. Each simulated E-VTOL has an
occupant space of 1x1 meters, so if D,,;, is less than 3 meters
and the agent doesn’t take evasive action, the agent will be
penalized:

tmin =

0 if Dyin @5 None
=5 if Dpin < 3.0 & action # avoid collision
5 if Dyin < 3.0 & action = avoid collision
®)
5) Reward weights: Each coefficient is multiplied by a
weight wq, ws, ..w, based on the importance of each coeffi-
cient. In our problem, safety is considered more important, and
maximum weight is allotted for safety coefficient § followed

by ﬁ77—7’Y7A'

III. LEARNING ARCHITECTURE

§ =

This paper focuses on a deep reinforcement learning frame-
work known as proximal policy optimization (PPO) [28].
PPO is similar to Trust Region Policy Optimization, otherwise
known as TRPO [29]. What sets PPO apart is the ability to
clip policy expansion through the use of its unique objective
function, which allows for safer policy exploration without the
cost of larger unstable policy updates. This clipping parameter
can be increased or decreased to control how big the updates
are, and when combined with Adams gradient descent it makes
for a powerful learning algorithm. We use OpenAl Gym and
Stable Baselines 3 [30] [31] for reinforcement learning, and



the general flow of the training environment can be found in
figure 5.

A. GCN Agent

As stated above, PPO is a state-of-the-art actor-critic RL
method that has demonstrated high efficiency, wide adapt-
ability, and robust reliability [32]. For this paper, we will
be using a graph-learning PPO agent, trained with a policy
network consisting of a Graph Neural Networks (GNN). GNNs
have been successfully implemented in a wide variety of task
allocation, scheduling, and path planning problems [17], [24],
[33] in the past few years. One of the main advantages of
GNNSs is their ability to use the structural information (local
and global) of a problem formulated as graph-structured data,
and are represented as graph embedding, node embeddings,
or edge embeddings. In this work we implement a Graph
Convolutional Network (GCN) [34] for graph embeddings and
a custom multi-layer perceptron (MLP) for transforming a
final feature vector into a set of log probabilities. The RL
parameters used for training the networks are mentioned in
the table II, and the network architecture used for the GRL
agent is shown in figure 3. The GRL agent MLP consists of
2 layers of 128 and 64 neurons shown in 3. Additionally, The
agent utilizes masking which will depend on the state of the
selected E-VTOL and the availability of each port. This takes
away a layer of complexity and allows the agent to focus
on other environmental factors, such as avoiding collisions
and reducing uncertainty. As shown in figure 3, the GCN
agent has a feature abstraction, policy and value network to
work with PPO. We make use of biases for the linear layers
and use randomized ReLU (RReLU) with a slope ranging
from 0.1 to 0.3, as this was the quickest and most effective
option for mitigating vanishing gradients. Initially, we went
with LeakyReLU, however, the time spent tuning the activation
layer for each network was very time-consuming. The Adam
optimizer with a learning rate of le-5 is used for back-
propagation. The main difference lies in the feature abstraction
network where we use two GCNs, which take the E-VTOL
and vertiport feature matrix along with their respective edge
connectivity matrix. The policy network will use a four-
layer MLP with a log-softmax transformation to obtain log
probabilities for the 11 actions. The agent utilizes masking
which will depend on the state of the selected E-VTOL and the
availability of each port. This takes away a layer of complexity
and allows the agent to focus on other environmental factors,
such as avoiding collisions and reducing uncertainty.

IV. SIMULATION ENVIRONMENT

A custom simulation for eVTOLs is developed on top of
Microsoft AirSim. AirSim [35] is an open-source robotics
simulation platform. AirSim helps us to solve the need for
large data sets for training and allows debugging in the simu-
lator. AirSim leverages current game engines(Unreal Engine)
[36] rendering, physics, and perception computation to create
accurate, real-world simulations. Together, this realism, based
on efficiently generated ground-truth data, enables the study
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Fig. 3: Feature abstraction, value and policy networks for the
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Fig. 4: Flowchart Representing the Decision-Making

and execution of complex, time-consuming, and risky missions
in the real world. AirSim enables us to simulate the physics
of eVTOLs, while the properties of vertiport and eVTOLSs
are programmatically implemented in Python. The overall
framework used for learning is shown in Figure 5. The OpenAl
Gym-based Reinforcement Learning interface is developed for
communication with the AirSim and the learning agent. We
will now describe each component in more detail.

A. OpenAl Gym Interface

Gym is an open-source Python library and it provides a
standard API to communicate between learning algorithms
and environments [37]. Since its release, Gym API become
the field standard for training and developing RL problems.
In our case, the Gym interface plays a crucial role in commu-
nicating between all the different components of the learning
framework. For instance, the Gym interface receives a decoded
action from the action manager and it sends this information
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to the Python API layer of AirSim, which in turn simulates
the physics and dynamics of the vehicle.

B. AirSim+Unreal

A custom environment is built on Unreal Engine [36]
with 3 vertiports and the AirSim plugin is incorporated with
5 VTOLs. The AirSim plugin manages the physics of the
VTOLSs and sends data such as location, and collision informa-
tion to the OpenAl Gym interface. AirSim provides an option
to run the simulation much faster than the real-world clock,
this helps to speed up the training process. The AirSim API
layer receives instructions from the Gym interface such as the
go-to location/takeoff/land, the AirSim manages the physics
and path planning while the unreal engine renders them on
screen. The graphical interface is shown in figure 6

Fig. 6: The Simulation Environment Developed using Unreal
Engine.

C. State Manager

The state manager inherits all the properties of ports and
VTOLs and is responsible for extracting the required state
information of particular VTOLs requested by the Gym in-
terface. The properties of VTOLs include 1. Battery level,
2. Schedule, 3. current position, 4. Status(on-time, delayed).
We defined 2 Python classes one for UAM and another for
ports. Each VTOL will derive the properties of UAM class
and the ports class encapsulates the properties of the vertiports.
The ports class manages the vertiport and is responsible for

sending out the status of individual ports to all the vehicles
and updating the status when a vehicle lands or leaves the port.
Two kinds of ports are considered here 1. Battery ports, only
these ports are capable of charging the vehicles, and 2. Normal
ports. The hover spots are also managed by ports class, the
vehicles take one of these positions when entering the port
zone and hover here till the agent decides an action.

D. Action Manager

The Action manager inherits all the properties of ports and
VTOLSs and is responsible for decoding the actions sent by the
RL agent. Once decoded the action is sent to the vehicle and
the status of vehicle and port are updated accordingly. The
Gym interface communicates between the RL agent and the
action manager.

Algorithm PPO
Maximum Timesteps 300,000
Learning Rate le-5
Discount Factor 1
Number of Steps 20,000
Batch Size 10,000
Entropy Coefficient 0.001

Reward Weights {0.3,0.3,0.35,0.1,0.35}

TABLE II: Reinforcement Learning Parameters

V. RESULTS AND DISCUSSION

This section is split into two sub-sections: a learning section
and a case study section. The learning section will go over the
training: what went well, and what we still need to work on.
The case study section will focus more on evaluating the GRL
agent with and without uncertainty in the environment. Here
uncertainty means three things:



1) Wind effects are added to the environment as an adver-
sary vector, which will lower the linear velocity of the
eVTOL or negate it completely with a 5% occurrence.

2) Battery ports have a 5% chance of not working on a
given step.

3) eVTOLs will have a 5% chance of not taking off.

These three changes to the environment will simulate in-

clement weather, faulty equipment and mechanical failures
of eVTOLs respectively. Ideally, the agent will learn how to
account for these changes by: sending eVTOLs off earlier
to their destinations to account for wind effect slowdowns,
keeping eVTOLs charging for an extra step if their charging
equipment is faulty, and takeoff immediately once mechanical
failures are addressed to save time. During this, the agent
is still expected to uphold the highest level of safety for
passengers, so it will be heavily penalized for collisions. The
agent will be tested for 50 episodes (72000 steps) in each case
study, with each episode representing 24 hours or 1 day of
vertiport operation. Then, it will be compared against a random
agent and a first come first serve (FCFS) agent. The random
agent is quite simple in nature, and takes a random action at
each step, without taking the state space into consideration.
On the other hand, the FCFS agent will use queues to decide
which eVTOL should take off and which should land and
charge. While an eVTOL is waiting in a queue, it will wait
in a normal port, or a hovering spot if the normal ports are
taken. The FCFS agent will also charge each eVTOL until it
is at or above 60%, after which it will take off and enter the
landing queue.

A. Learning Curve

The GRL agent was trained for 300k steps, or 200 episodes
and the training plots are included in figure 7. From the reward
and loss plots, we can tell that the agent was able to generalize
the environment, for the reward was steadily increasing and
the loss was steadily decreasing. There was a sudden increase
in the loss of around 60 episodes, which indicates the agent
wasn’t making the right approximations with the state space
information it received, although the loss eventually went back
down and continued to decrease. Additionally, we include
other plots in figure 7 which show: the average battery levels of
each drone per episode; the number of good takeoffs and good
landings by the agent per episode; the average delay of a single
drone in hours per episode, and the number of collisions per
episode the agent experiences. This information was recorded
during training and helps us interpret the agent’s performance.
We can see that the agent starts off with a lower battery level,
and eventually learns to keep it over 30% at all times, as
anything lower will lead to reward penalties. The delay also
starts off very high, but as the agent gets used to taking off and
landing it starts to diminish as well. Unfortunately, the agent
never quite learns how to avoid all collisions, as it avoids some
but incurs more as time goes on. This is due to the weights
for safety not being high enough. If the reward weight for
safety was higher, the agent would be forced to minimize all
collisions in order to maintain a high reward, instead of trying

to offset the collision penalty with more good takeoffs and
landings.
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B. Case Study(s)

For the case studies, we chose to use the ideal trained GRL

model at 160k steps, or 111 episodes. At that point in training,
the collisions were the lowest, the good takeoffs and landings
were balanced, the delay was close to a local minimum, and
the average battery levels were close to a local max as shown
in figure 7. The case study results can be found in figure 8.
Case 1: the GRL agent does well across every metric except
for collisions. Noticeably, the GRL agent has more deviation
in every metric, which is likely due to the agent adapting to
various situations per episode. If the agent had more time
to train and fine-tune it’s policy, these deviations would be
smaller and more controlled. The FCFS agent was the second-
best performer, and was more consistent along each metric.
The random agent performed the worst out of the three, which
is expected.
Case 2: The performance across the GRL and FCFS agents
decreased substantially in some metrics and less so in others.
The GRL agent reacts as expected to the noisy additions in
the environment: the reward drops, indicating some difficulty
maximizing performance across all metrics; the battery lev-
els drop by 13%, a direct cause of the charging ports not
malfunctioning; the delay also increases while the number of
good takeoffs decreases, the effect of harsh wind and eVTOL
mechanical failures during takeoff; good landings decrease as
well due to eVTOLs no longer being on time to land; lastly,
the number of collisions decrease by a small percentage, due
to a direct correlation with eVTOLSs taking off less. The FCFS
agent also sees a decrease in performance for the same reasons,
while the random agent is far behind the other two baselines in
every metric except collisions. Interestingly, the FCFS agent
has less delay overall when noise is present, and this is likely
due to it’s consistency when completing tasks (taking off an
eVTOL and then landing it in two queues) which keeps giving
eVTOLs new schedules and resetting their delay. If an eVTOL
is in the queue but not at the front, the FCFS agent will skip
over it, which saves time and minimizes delay. On the other
hand, the GRL agent will wait for an eVTOL to be in it’s
airspace to take an action for it, which can lead to deceptively
increased delay times.
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with noise.

These results show the GRL agent can actually learn the pa-
rameter space of our simulated environment, and furthermore
adapt to added noise in the simulation with varying levels of
success. Given more time to train and tune hyper-parameters,
and a better combination of reward weights, we believe this
agent can do well in every metric, with and without noise
present in the environment.

C. Action Analysis

Additionally, we recorded the GRL agent in the simulation
environment with and without noise for 5 episodes each, and
charted the action distribution in figure 9. This chart shows the
count of each action the agent chose during those 5 episodes,
along with the percentage of time those actions were chosen.
Right away we notice the agent is not using all of the actions
it’s been allotted, which either means it doesn’t deem them
necessary for maximizing the reward or that the agent hasn’t
had enough time to figure out how to use them properly.
Another reason why the agent might not need to use all of the
actions is due to the small group of eVTOLSs it’s controlling. it
will be interesting to see how the agent scales up, and how it
will use more than one port, and one hovering spot to keep up
it’s current thythm. The second important thing to note has to
do with the agent distribution with noise. The actions chosen
are the same, however the frequency changes, especially for
avoiding collision and continue actions. This shows the agent
tried to make changes in real-time to adapt to the noise; it
could be that it tried to avoid a collision due to inclement wind,
or something similar. This also speaks to the effectiveness of
the simulator we chose. The wind vectors we created were
realistic enough to present a real challenge to the agent, and
in doing so we allowed it to further generalize the environment

and growing parameter space as a direct product of the added
noise.

VI. CONCLUSION

In this paper, we proposed a graph-based reinforcement
learning (RL) for Urban Air Mobility (UAM) vertiport op-
erations management problem in the presence of various envi-
ronmental uncertainties (wind gust effects), and observational
uncertainties (malfunctioning battery ports and eVTOL take-
off delay). The novelty of our approach lies in the introduction
of Graph Neural Networks (GNN), which serve as a feature
abstraction for the state space, for the RL framework. The
reward function for the MDP was tailored as a weighted sum
of terms that quantify good take-offs, good landings, battery
state, delay, and safety. Initially, the UAM vertiport operations
management problem is formulated as a Markov Decision
Process (MDP), and a policy-gradient RL method (Proximal
Policy Optimization) was used to solve the MDP. The GNN-
based policy network consists of two Graph Convolutional
Networks (GCN), which are used to encode the vertiport
state information and the eVTOL state information (both
represented as a graph), respectively. The RL environment was
modeled as an OpenAl gym-based environment using AirSim
and Unreal engine. The trained policy (best performing) was
tested on two sets of test scenarios. In the first set, the test
scenarios were drawn from the same distribution as for train-
ing, while in the second set the test scenarios had uncertainty.
For baseline comparison, a first come first serve (FCFS), and
a random agent was used. Both sets of scenarios consist of 50
unseen episodes. From both cases, the GRL agent has a clear
advantage in comparing w.r.t the total rewards. On a closer
look at the individual metrics that constitute the reward, it
can be seen that the GRL agent performs poorly only for the
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Fig. 9: Action distribution for the GRL agent in an environment with and without noise accumulated over 5 episodes

number of collisions. This can be mitigated by prioritizing the
number of collisions by increasing the weight corresponding to
it while training. The two case studies demonstrate the ability
of the GRL agent to generalize across unseen scenarios and
with uncertainty. Further analyses of the actions taken show
how the uncertainties altered the decision-making to take less
take-off and more collision avoidance and hence to be more
conservative.
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